1
|
Dervisevic M, Esser L, Chen Y, Alba M, Prieto-Simon B, Voelcker NH. High-density microneedle array-based wearable electrochemical biosensor for detection of insulin in interstitial fluid. Biosens Bioelectron 2025; 271:116995. [PMID: 39616898 DOI: 10.1016/j.bios.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/09/2024] [Accepted: 11/24/2024] [Indexed: 01/06/2025]
Abstract
The development of point-of-care wearable devices capable of measuring insulin concentration has the potential to significantly improve diabetes management and life quality of diabetic patients. However, the lack of a suitable point-of-care device for personal use makes regular insulin level measurements challenging, in stark contrast to glucose monitoring. Herein, we report an electrochemical transdermal biosensor that utilizes a high-density polymeric microneedle array (MNA) to detect insulin in interstitial fluid (ISF). The biosensor consists of gold-coated polymeric MNA modified with an insulin-selective aptamer, which was used for extraction and electrochemical quantification of the insulin in ISF. In vitro testing of biosensor, performed in artificial ISF (aISF), showed high selectivity for insulin with a linear response between 0.01 nM and 4 nM (sensitivity of ∼65 Ω nM-1), a range that covers both the physiological and the pathological concentration range. Furthermore, ex vivo extraction and quantification of insulin from mouse skin showed no impact on the biosensor's linear response. As a proof of concept, an MNA-based biosensing platform was utilized for the extraction and quantification of insulin on live mouse skin. In vivo application showed the ability of MNs to reach ISF, extract insulin from ISF, and perform electrochemical measurements sufficient for determining insulin levels in blood and ISF. We believe that our MNA-based biosensing platform based on extraction and quantification of the biomarkers will help move insulin assays from traditional laboratory approaches to personalized point-of-care settings.
Collapse
Affiliation(s)
- Muamer Dervisevic
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| | - Lars Esser
- Commonwealth Scientific and Industrial Research Organization (CSIRO, Clayton, Victoria, 3168, Australia
| | - Yaping Chen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| | - Maria Alba
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Beatriz Prieto-Simon
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007, Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia; Materials Science and Engineering, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
2
|
Dervisevic M, Harberts J, Sánchez-Salcedo R, Voelcker NH. 3D Polymeric Lattice Microstructure-Based Microneedle Array for Transdermal Electrochemical Biosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412999. [PMID: 39394738 DOI: 10.1002/adma.202412999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Microneedles (MNs) or microneedle arrays (MNAs) are critical components of minimally invasive devices comprised of a single or a series of micro-scale projections. MNs can bypass the outermost layer of the skin and painlessly access microcirculation of the epidermis and dermis layers, attracting great interest in the development of personalized healthcare monitoring and diagnostic devices. However, MN technology has not yet reached its full potential since current micro- and nanofabrication methods do not address the need of fabricating MNs with complex surfaces to facilitate the development of clinically adequate devices. This work presents a new approach that combines 3D printing technology based on two-photon polymerization with soft lithography for cost-effective and time-saving fabrication of complex MNAs. Specifically, this method relies on printing complex 3D objects efficiently replicated into polymeric substrates via soft lithography, resulting in a free-standing polymeric lattice (PL) membrane that can be transferred onto gold-coated MNs and used for electrochemical biosensing. This platform shows excellent electrochemical performance in detecting metabolite (glucose) and protein (insulin) biomarkers with a dynamic linear range sufficient for detecting biomarkers in healthy individuals and patients. The approach holds great potential for fabricating next-generationMNs, including their transfer into clinically adequate devices.
Collapse
Affiliation(s)
- Muamer Dervisevic
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
| | - Jann Harberts
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
| | - Raquel Sánchez-Salcedo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
3
|
Ding S, Brownlee BJ, Parate K, Pola CC, Chen B, Hostetter JM, Jones D, Jackman J, Iverson BD, Claussen JC. IFN-γ and IL-10 Immunosensor with Vertically Aligned Carbon Nanotube Interdigitated Electrodes toward Pen-Side Cattle Paratuberculosis Monitoring. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400021. [PMID: 39440229 PMCID: PMC11492326 DOI: 10.1002/gch2.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/20/2024] [Indexed: 10/25/2024]
Abstract
Highly sensitive vertically aligned carbon nanotube arrays (VANTAs) interdigitated electrode (IDE) arrays are developed for electrochemical biosensing of two cytokines (i.e., interleukin-10 (IL-10) and interferon-gamma (IFN-γ)) that are useful for early detection Johne's disease (Bovine Paratuberculosis) in cattle. The high aspect ratio VANTA-IDEs (50-60 µm in height) are grown through a chemical vapor deposition process from an iron (Fe) catalyst that is lithographically patterned on a silicon wafer with equal finger width and inter-finger spacing of 25 µm. After functionalization with distinct antibodies the VANTA-IDEs are capable of selective detection of both IL-10 and IFN-γ within an actual biological matrix (i.e., diluted bovine implant supernatant) over concentration ranges of 0.1 to 30 pg mL-1 (limit of detection - LOD: 0.0911 pg mL-1) and 50-500 pg mL-1 (LOD: 24.17 pg mL-1), respectively with a response time of <35 min. Results demonstrate important initial steps for rapid, pen-side identification of cattle with stage-I Mycobacterium avium subspecies paratuberculosis infection before physical symptoms of Johne's disease are present. Such a rapid pen-side diagnostic test can be used on cattle at an auction or before they are introduced to a herd to ensure the larger population does not become infected with Johne's disease.
Collapse
Affiliation(s)
- Shaowei Ding
- Mechanical Engineering DepartmentIowa State UniversityAmesIA50011USA
| | | | - Kshama Parate
- Mechanical Engineering DepartmentIowa State UniversityAmesIA50011USA
| | - Cicero C. Pola
- Mechanical Engineering DepartmentIowa State UniversityAmesIA50011USA
| | - Bolin Chen
- Mechanical Engineering DepartmentIowa State UniversityAmesIA50011USA
| | - Jesse M. Hostetter
- Department of PathologyVeterinary Medicine SchoolIowa State UniversityAmesIA20011USA
| | - Douglas Jones
- Department of PathologyVeterinary Medicine SchoolIowa State UniversityAmesIA20011USA
| | - John Jackman
- Department of Industrial and Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Brian D. Iverson
- Department of Mechanical EngineeringBrigham Young UniversityProvoUT84602USA
| | | |
Collapse
|
4
|
Garcia-Melo LF, Chagoya Pio NA, Campoy Ramírez JA, Madrigal-Bujaidar E, Álvarez-González I, Morales-González JA, Madrigal-Santillán EO, Batina N. Development of the BAT-26 mutation-based electrochemical genosensor for identifying microsatellite instability in relationship to cancer. SENSING AND BIO-SENSING RESEARCH 2024; 44:100651. [DOI: 10.1016/j.sbsr.2024.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2024] Open
|
5
|
Niedziałkowski P, Jurczak P, Orlikowska M, Wcisło A, Ryl J, Ossowski T, Czaplewska P. Phospholipid-functionalized gold electrode for cellular membrane interface studies - interactions between DMPC bilayer and human cystatin C. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184266. [PMID: 38151198 DOI: 10.1016/j.bbamem.2023.184266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
This work describes the electrochemical studies on the interactions between V57G mutant of human cystatin C (hCC V57G) and membrane bilayer immobilized on the surface of a gold electrode. The electrode was modified with 6-mercaptohexan-1-ol (MCH) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). DMPC was used as a membrane mimetic for monitoring electrochemical changes resulting from the interactions between the functionalized electrode surface and human cystatin C. The interactions between the modified electrode and hCC V57G were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in a phosphate buffered saline (PBS) containing Fe(CN)63-/4- as a redox probe. The electrochemical measurements confirm that fabricated electrode is sensitive to hCC V57G at the concentration of 1 × 10-14 M. The incubation studies carried out at higher concentrations resulted in insignificant changes observed in cyclic voltammetry and electrochemical impedance spectroscopy measurements. The calculated values of surface coverage θR confirm that the electrode is equally covered at higher concentrations of hCC V57G. Measurements of wettability and surface free energy made it possible to determine the influence of individual structural elements of the modified gold electrode on its properties, and thus allowed to understand the nature of the interactions. Contact angle values confirmed the results obtained during electrochemical measurements, indicating the sensitivity of the electrode towards hCC V57G at the concentration of 1 × 10-14 M. In addition, the XPS spectra confirmed the successful anchoring of hCC V57G to the DMPC-functionalized surface.
Collapse
Affiliation(s)
- Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland.
| | - Przemysław Jurczak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland; Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Abrahama 58, Gdańsk 80-307, Poland.
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Anna Wcisło
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Institute of Nanotechnology and Materials Engineering and Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Paulina Czaplewska
- Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Abrahama 58, Gdańsk 80-307, Poland
| |
Collapse
|
6
|
Dhinesh Kumar M, Karthikeyan M, Sharma N, Raju V, Vatsalarani J, Kalivendi SV, Karunakaran C. Molecular imprinting synthetic receptor based sensor for determination of Parkinson's disease biomarker DJ-1. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Zhu H, Mao Z, Chen J, Hu J, Hu X, Koh K, Chen H. Cucurbit[7]urils induced bimetallic nanoparticles network for ultra-sensitive detection of Caspase-3 based on surface plasmon resonance. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Wang J, Zhou H, Liu J, He J, Liu J, Yang W. Electrochemical detection of DNA by formation of efficient electron transfer pathways through adsorbing gold nanoparticles to DNA modified electrodes. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Enzyme-like electrocatalysis from 2D gold nanograss-nanocube assemblies. J Colloid Interface Sci 2020; 575:24-34. [PMID: 32344216 DOI: 10.1016/j.jcis.2020.04.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 11/24/2022]
Abstract
Nanotechnology's rapid development of nanostructured materials with disruptive material properties has inspired research for their use as electrocatalysts to potentially substitute enzymes. Herein, a novel electrocatalytic nanomaterial was constructed by growing gold nanograss (AuNG) on 2D nanoassemblies of gold nanocubes (AuNC). The resulting structure (NG@NC) was used for the detection of H2O2via its electrochemical reduction. The NG@NC electrode displayed a large active surface area, resulting in improved electron transfer efficiency. On the nanoscale, AuNG maintained its structure, providing high stability and reproducibility of the sensing platform. Our nanostructured electrode showed excellent catalytic activity towards H2O2 at an applied potential of -0.5 V vs Ag/AgCl. This facilitated H2O2 detection with excellent selectivity in an environment like human urine, and a linear response from 50 µM to 30 mM, with a sensitivity of 100.66 ± 4.0 μA mM-1 cm-2. The NG@NC-based sensor hence shows great potential in nonenzymatic electrochemical sensing.
Collapse
|
10
|
Zeng D, Salvatore P, Karlsen KK, Zhang J, Wengel J, Ulstrup J. Reprint of "Electrochemical intercalator binding to single- and double-strand DNA- and LNA-based molecules on Au(111)-electrode surfaces". J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Dervisevic E, Dervisevic M, Wang Y, Malaver‐Ortega LF, Cheng W, Tuck KL, Voelcker NH, Cadarso VJ. Highly Selective Nanostructured Electrochemical Sensor Utilizing Densely Packed Ultrathin Gold Nanowires Film. ELECTROANAL 2020. [DOI: 10.1002/elan.202060071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Esma Dervisevic
- Department of Mechanical and Aerospace EngineeringMonash University, Room 227, New Horizons Building 20 Research Way Clayton VIC 3800 Australia
| | - Muamer Dervisevic
- Monash Institute of Pharmaceutical Sciences (MIPS)Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Clayton VIC 3168 Australia
- The Melbourne Centre for Nanofabrication Clayton, Victoria 3800, Australia
| | - Yan Wang
- Department of Chemical EngineeringMonash University Clayton, Victoria 3800 Australia
| | - Luis F. Malaver‐Ortega
- Monash Institute of Pharmaceutical Sciences (MIPS)Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Wenlong Cheng
- The Melbourne Centre for Nanofabrication Clayton, Victoria 3800, Australia
- Department of Chemical EngineeringMonash University Clayton, Victoria 3800 Australia
| | - Kellie L. Tuck
- School of ChemistryMonash University Clayton, Victoria 3800 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences (MIPS)Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Clayton VIC 3168 Australia
- The Melbourne Centre for Nanofabrication Clayton, Victoria 3800, Australia
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace EngineeringMonash University, Room 227, New Horizons Building 20 Research Way Clayton VIC 3800 Australia
- The Melbourne Centre for Nanofabrication Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Zeng D, Salvatore P, Karlsen KK, Zhang J, Wengel J, Ulstrup J. Electrochemical intercalator binding to single- and double-strand DNA- and LNA-based molecules on Au(111)-electrode surfaces. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Lima D, Hacke ACM, Inaba J, Pessôa CA, Kerman K. Electrochemical detection of specific interactions between apolipoprotein E isoforms and DNA sequences related to Alzheimer's disease. Bioelectrochemistry 2019; 133:107447. [PMID: 32006858 DOI: 10.1016/j.bioelechem.2019.107447] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 12/26/2022]
Abstract
Apolipoprotein E4 (ApoE4) has a key role on the onset and progression of Alzheimer's disease (AD), since it favours the deposition of toxic amyloid-beta (Aβ) aggregates in the brain. These effects might result from the interaction between ApoE4 and specific DNA promoters related to cellular autophagy pathways and to the expression of neuroprotective proteins, like sirtuin-1. Herein, we modified gold electrodes with mixed self-assembled monolayers of 6-mercapto-1-hexanol and thiolated DNA oligonucleotides related to CLEAR (associated with autophagic processes that enable the clearance of toxic species, such as Aβ) and SirT1 (related to the expression of sirtuin-1) promoter sequences. The interactions of the immobilized DNA sequences with isoforms of ApoE (ApoE4/ApoE3/ApoE2) were investigated by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) measurements. By monitoring current and charge transfer resistance (Rct) variations, CLEAR showed to interact specifically with ApoE4, whereas SirT1 showed a higher affinity to ApoE4 compared to ApoE3 and ApoE2. To the best of our knowledge, this is the first report about the application of electrochemical techniques to investigate the sequence-specific interaction between ApoE isoforms and CLEAR and SirT1 oligonucleotides.
Collapse
Affiliation(s)
- Dhésmon Lima
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil
| | - Ana Carolina M Hacke
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil
| | - Juliana Inaba
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil
| | - Christiana A Pessôa
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, M1C 1A4 Toronto, ON, Canada.
| |
Collapse
|
14
|
Althagafi II, Kassem MA, Awad MI. Enhanced Electrocatalytic Oxidation of Paracetamol at DNA Modified Gold Electrode. ELECTROANAL 2019. [DOI: 10.1002/elan.201900141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ismail I. Althagafi
- Chemistry Department, Faculty of Applied ScienceUmm Al-Qura University, Makkah Kingdom Saudi Arabia
| | - Mohammed A. Kassem
- Chemistry Department, Faculty of Applied ScienceUmm Al-Qura University, Makkah Kingdom Saudi Arabia
- Chemistry Department, Faculty of ScienceBenha University Benha 13518 Egypt
| | - Mohamed I. Awad
- Chemistry Department, Faculty of Applied ScienceUmm Al-Qura University, Makkah Kingdom Saudi Arabia
- Chemistry Department, Faculty of ScienceCairo University Cairo Egypt
| |
Collapse
|
15
|
Lozano Untiveros K, da Silva EG, de Abreu FC, da Silva-Júnior EF, de Araújo-Junior JX, Mendoça de Aquino T, Armas SM, de Moura RO, Mendonça-Junior FJ, Serafim VL, Chumbimuni-Torres K. An electrochemical biosensor based on Hairpin-DNA modified gold electrode for detection of DNA damage by a hybrid cancer drug intercalation. Biosens Bioelectron 2019; 133:160-168. [DOI: 10.1016/j.bios.2019.02.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
|
16
|
Construction and Electrochemical Property Studies of DNA Duplexes Tethered to Gold Electrode via Au−C Bond. ELECTROANAL 2018. [DOI: 10.1002/elan.201800673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Peng G, Li X, Cui F, Qiu Q, Chen X, Huang H. Aflatoxin B1 Electrochemical Aptasensor Based on Tetrahedral DNA Nanostructures Functionalized Three Dimensionally Ordered Macroporous MoS 2-AuNPs Film. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17551-17559. [PMID: 29733573 DOI: 10.1021/acsami.8b01693] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In food safety evaluation, aflatoxin B1 (AFB1) is an important indicator. In this work, we developed an AFB1 electrochemical aptasensor based on a tetrahedral DNA nanostructures (TDNs) immobilized three dimensionally ordered macroporous MoS2-AuNPs hybrid (3DOM MoS2-AuNPs) recognition interface and horseradish peroxidase (HRP) functionalized magnetic signal amplifier. To greatly enhance the recognition efficiency, sensitivity, and stability of the aptasensor, the AFB1 aptamer-incorporated TDNs were ingeniously combined with the 3DOM MoS2-AuNPs film for the construction of the sensing interface. The aptamers would release from the electrode surface after they reacted with AFB1, and then the hybridization-free TDNs formed. Thus, the biocomposite of DNA helper strands (H1)/HRP functionalized AuNPs-SiO2@Fe3O4 nanospheres would combine with the hybridization-free TDNs due to the hybridization of H1 and TDNs. The more AFB1 existed in the solution, the more H1/HRP-AuNPs-SiO2@Fe3O4 could be combined onto the 3DOM MoS2-AuNPs surface. The current response coming from HRP-catalyzed reduction of H2O2 using thionine (Thi) as electrochemical probe was proportional with the AFB1 concentration. Upon optimal conditions, the aptasensor showed specificity for AFB1, achieving a good linear range of 0.1 fg/mL-0.1 μg/mL and the detection limit of 0.01 fg/mL. Furthermore, the developed aptasensor was also applied for detecting AFB1 content in rice and wheat powder samples, obtaining good results in conformity with those achieved from the high-performance liquid chromatography tandem mass spectrometry (HPLC-MS) method.
Collapse
|
18
|
Scharnweber D, Bierbaum S, Wolf-Brandstetter C. Utilizing DNA for functionalization of biomaterial surfaces. FEBS Lett 2018; 592:2181-2196. [PMID: 29683477 DOI: 10.1002/1873-3468.13065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/27/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
DNA sequences are widely used for gene transfer into cells including a number of substrate surface-based supporting systems, but due to its singular structure property profile, DNA also offers multiple options for noncanonical applications. The special case of using DNA and oligodeoxyribonucleotide (ODN) structures for surface functionalization of biomedical implants is summarized here with the major focus on (a) immobilization or anchoring of nucleic acid structures on substrate surfaces, (b) incorporation of biologically active molecules (BAM) into such systems, and (c) biological characteristics of the resulting surfaces in vitro and in vivo. Sterilizations issues, important for potential clinical applications, are also considered.
Collapse
Affiliation(s)
- Dieter Scharnweber
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Germany
| | - Susanne Bierbaum
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Germany.,International Medical College, Münster, Germany
| | | |
Collapse
|
19
|
Settu K, Liu JT, Chen CJ, Tsai JZ. Development of carbon-graphene-based aptamer biosensor for EN2 protein detection. Anal Biochem 2017; 534:99-107. [PMID: 28709900 DOI: 10.1016/j.ab.2017.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/01/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022]
Abstract
In this study, we developed a screen-printed carbon-graphene-based electrochemical biosensor for EN2 protein detection. The engrailed-2 (EN2) protein, a biomarker for prostate cancer, is known to be a strong binder to a specific DNA sequence (5'-TAATTA-3') to regulate transcription. To take advantage of this intrinsic property, aptamer probes with TAATTA sequence was immobilized onto the screen-printed carbon-graphene electrode surface via EDC-NHS coupling approach. Cyclic voltammetry (CV) of the electrochemical measurement technique was employed for the quantitative detection of EN2 protein. The hindrance to the redox reaction of potassium ferricyanide on the biosensor surface due to the binding of the immobilized aptamer with its target EN2 protein quantified the protein concentration. Under optimum conditions, the aptamer biosensor can detect EN2 protein over a linear range from 35 to 185 nM with a detection limit of 38.5 nM.
Collapse
Affiliation(s)
- Kalpana Settu
- Department of Electrical Engineering, National Taipei University, Sanxia, Taiwan
| | - Jen-Tsai Liu
- College of Materials Sciences and Opto-electronics, University of Chinese Academy of Sciences, Beijing, China
| | - Ching-Jung Chen
- School of Electronic and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jang-Zern Tsai
- Department of Electrical Engineering, National Central University, Jhongli, Taiwan.
| |
Collapse
|
20
|
Ding S, Mosher C, Lee XY, Das SR, Cargill AA, Tang X, Chen B, McLamore ES, Gomes C, Hostetter JM, Claussen JC. Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array. ACS Sens 2017; 2:210-217. [PMID: 28723140 DOI: 10.1021/acssensors.6b00581] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A label-free electrochemical impedance spectroscopy (EIS) aptasensor for rapid detection (<35 min) of interferon-gamma (IFN-γ) was fabricated by immobilizing a RNA aptamer capture probe (ACP), selective to IFN-γ, on a gold interdigitated electrode array (Au IDE). The ACP was modified with a thiol group at the 5' terminal end and subsequently co-immobilized with 1,6-hexanedithiol (HDT) and 6-mercapto-1-hexanolphosphate (MCH) to the gold surface through thiol-gold interactions. This ACP/HDT-MCH ternary surface monolayer facilitates efficient hybridization with IFN-γ and displays high resistance to nonspecific adsorption of nontarget proteins [i.e., fetal bovine serum (FBS) and bovine serum albumin (BSA)]. The Au IDE functionalized with ACP/HDT-MCH was able to measure IFN-γ in actual FBS solution with a linear sensing range from 22.22 pM to 0.11 nM (1-5 ng/mL) and a detection limit of 11.56 pM. The ability to rapidly sense IFN-γ within this sensing range makes the developed electrochemical platform conducive toward in-field disease detection of a variety of diseases including paratuberculosis (i.e., Johne's Disease). Furthermore, experimental results were numerically validated with an equivalent circuit model that elucidated the effects of the sensing process and the influence of the immobilized ternary monolayer on signal output. This is the first time that ternary surface monolayers have been used to selectively capture/detect IFN-γ on Au IDEs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eric S. McLamore
- Agriculture
and Biological Engineering Department, Institute of Food and Agricultural
Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Carmen Gomes
- Biological and Agricultural Engineering Department, Texas A&M University, College Station, Texas 77843, United States
| | | | | |
Collapse
|
21
|
Spin-coated Au-nanohole arrays engineered by nanosphere lithography for a Staphylococcus aureus 16S rRNA electrochemical sensor. Biosens Bioelectron 2015; 77:1086-94. [PMID: 26556186 DOI: 10.1016/j.bios.2015.10.094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 02/04/2023]
Abstract
The nanopatterning of gold nanoparticle (AuNP) arrays on an indium tin oxide (ITO) electrode using efficient and low-cost methods is described. This process used nanosphere lithography (NSL) encompassing the deposition of monolayered Polystyrene (PS) followed by a convective self-assembly drop coating protocol onto the ITO substrate that further acted as the mask after the AuNP assembly. The results showed that spin-coating allowed AuNPs to follow the contour and adhere to the PS nanospheres. The final products, after etching the PS, generated a highly ordered Au-nanohole array on an ITO substrate. The Au-nanohole arrays on the ITO electrode provided a greater surface area and successfully enhanced the peak current of electrochemical measurements by 82% compared with bare ITO and was used to detect Staphylococcus aureus 16S rRNA hybridization. In contrast to non-templated AuNP structures, the Au-nanohole arrays on the ITO electrode contributed to an optimum sensitivity improvement in DNA hybridization detection by 23%, along with an impressive limit of detection (LOD) of 10 pM. The high specificity of this distinguished structure was also achieved in the hybridization measurements of multi-analyte pathogens. These findings indicate that the combination of PS nanosphere lithography, followed by the spin-coating of AuNPs, leads to an inexpensive and simple engineering process that effectively generates uniform Au-nanohole arrays on ITO, which provides a greater surface area to optimize the electrochemical performance of the DNA biosensor.
Collapse
|
22
|
Microscale electrodes integrated on COP for real sample Campylobacter spp. detection. Biosens Bioelectron 2015; 70:491-7. [DOI: 10.1016/j.bios.2015.03.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/18/2015] [Accepted: 03/25/2015] [Indexed: 11/19/2022]
|
23
|
Fernandez RE, Williams SE, Li R, Zhou A. Gapped-duplex structure to label-free mismatch detection of pathogen DNA on solid substrate. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
24
|
Dong S, Zhao R, Zhu J, Lu X, Li Y, Qiu S, Jia L, Jiao X, Song S, Fan C, Hao R, Song H. Electrochemical DNA Biosensor Based on a Tetrahedral Nanostructure Probe for the Detection of Avian Influenza A (H7N9) Virus. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8834-42. [PMID: 25844798 DOI: 10.1021/acsami.5b01438] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A DNA tetrahedral nanostructure-based electrochemical biosensor was developed to detect avian influenza A (H7N9) virus through recognizing a fragment of the hemagglutinin gene sequence. The DNA tetrahedral probe was immobilized onto a gold electrode surface based on self-assembly between three thiolated nucleotide sequences and a longer nucleotide sequence containing complementary DNA to hybridize with the target single-stranded (ss)DNA. The captured target sequence was hybridized with a biotinylated-ssDNA oligonucleotide as a detection probe, and then avidin-horseradish peroxidase was introduced to produce an amperometric signal through the interaction with 3,3',5,5'-tetramethylbenzidine substrate. The target ssDNA was obtained by asymmetric polymerase chain reaction (PCR) of the cDNA template, reversely transcribed from the viral lysate of influenza A (H7N9) virus in throat swabs. The results showed that this electrochemical biosensor could specifically recognize the target DNA fragment of influenza A (H7N9) virus from other types of influenza viruses, such as influenza A (H1N1) and (H3N2) viruses, and even from single-base mismatches of oligonucleotides. Its detection limit could reach a magnitude of 100 fM for target nucleotide sequences. Moreover, the cycle number of the asymmetric PCR could be reduced below three with the electrochemical biosensor still distinguishing the target sequence from the negative control. To the best of our knowledge, this is the first report of the detection of target DNA from clinical samples using a tetrahedral DNA probe functionalized electrochemical biosensor. It displays that the DNA tetrahedra has a great potential application as a probe of the electrochemical biosensor to detect avian influenza A (H7N9) virus and other pathogens at the gene level, which will potentially aid the prevention and control of the disease caused by such pathogens.
Collapse
Affiliation(s)
- Shibiao Dong
- †Institute for Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
- ‡Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Rongtao Zhao
- †Institute for Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jiangong Zhu
- ∥Clinical Diagnostic Center, 302 Hospital of PLA, Beijing 100039, China
| | - Xiao Lu
- †Institute for Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yang Li
- †Institute for Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shaofu Qiu
- †Institute for Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Leili Jia
- †Institute for Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiong Jiao
- ‡Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Shiping Song
- §Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- §Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - RongZhang Hao
- †Institute for Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - HongBin Song
- †Institute for Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
25
|
Bhattarai JK, Sharma A, Fujikawa K, Demchenko AV, Stine KJ. Electrochemical synthesis of nanostructured gold film for the study of carbohydrate-lectin interactions using localized surface plasmon resonance spectroscopy. Carbohydr Res 2015; 405:55-65. [PMID: 25442712 PMCID: PMC4355165 DOI: 10.1016/j.carres.2014.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/15/2014] [Accepted: 08/30/2014] [Indexed: 11/18/2022]
Abstract
Localized surface plasmon resonance (LSPR) spectroscopy is a label-free chemical and biological molecular sensing technique whose sensitivity depends upon development of nanostructured transducers. Herein, we report an electrodeposition method for fabricating nanostructured gold films (NGFs) that can be used as transducers in LSPR spectroscopy. The NGF was prepared by electrodepositing gold from potassium dicyanoaurate solution onto a flat gold surface using two sequential controlled potential steps. Imaging by scanning electron microscopy reveals a morphology consisting of randomly configured block-like nanostructures. The bulk refractive index sensitivity of the prepared NGF is 100±2 nmRIU(-1) and the initial peak in the reflectance spectrum is at 518±1 nm under N2(g). The figure of merit is 1.7. In addition, we have studied the interaction between carbohydrate (mannose) and lectin (Concanavalin A) on the NGF surface using LSPR spectroscopy by measuring the interaction of 8-mercaptooctyl-α-d-mannopyranoside (αMan-C8-SH) with Concanavalin A by first immobilizing αMan-C8-SH in mixed SAMs with 3,6-dioxa-8-mercaptooctanol (TEG-SH) on the NGF surface. The interaction of Con A with the mixed SAMs is confirmed using electrochemical impedance spectroscopy. Finally, the NGF surface was regenerated to its original sensitivity by removing the SAM and the bound biomolecules. The results from these experiments contribute toward the development of inexpensive LSPR based sensors that could be useful for studying glycan-protein interactions and other bioanalytical purposes.
Collapse
Affiliation(s)
- Jay K Bhattarai
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, United States; Center for Nanoscience, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, United States
| | - Abeera Sharma
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, United States; Center for Nanoscience, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, United States
| | - Kohki Fujikawa
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, United States
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, United States; Center for Nanoscience, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, United States.
| |
Collapse
|
26
|
Ternary DNA chip based on a novel thymine spacer group chemistry. Colloids Surf B Biointerfaces 2015; 125:270-6. [DOI: 10.1016/j.colsurfb.2014.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 10/24/2014] [Accepted: 10/30/2014] [Indexed: 11/24/2022]
|
27
|
Ben-Yoav H, Dykstra PH, Bentley WE, Ghodssi R. A controlled microfluidic electrochemical lab-on-a-chip for label-free diffusion-restricted DNA hybridization analysis. Biosens Bioelectron 2014; 64:579-85. [PMID: 25310492 DOI: 10.1016/j.bios.2014.09.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 01/22/2023]
Abstract
Lab-on-a-chip (LOC) devices for electrochemical analysis of DNA hybridization events offer a technology for real-time and label-free assessment of biomarkers at the point-of-care. Here, we present a microfluidic LOC, with 3 × 3 arrayed electrochemical sensors for the analysis of DNA hybridization events. A new dual layer microfluidic valved manipulation system is integrated providing controlled and automated capabilities for high throughput analysis. This feature improves the repeatability, accuracy, and overall sensing performance (Fig. 1). The electrochemical activity of the fabricated microfluidic device is validated and demonstrated repeatable and reversible Nernstian characteristics. System design required detailed analysis of energy storage and dissipation as our sensing modeling involves diffusion-related electrochemical impedance spectroscopy. The effect of DNA hybridization on the calculated charge transfer resistance and the diffusional resistance components is evaluated. We demonstrate a specific device with an average cross-reactivity value of 27.5%. The device yields semilogarithmic dose response and enables a theoretical detection limit of 1 nM of complementary ssDNA target. This limit is lower than our previously reported non-valved device by 74% due to on-chip valve integration providing controlled and accurate assay capabilities.
Collapse
Affiliation(s)
- Hadar Ben-Yoav
- MEMS Sensors and Actuators Laboratory (MSAL), Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA.
| | - Peter H Dykstra
- MEMS Sensors and Actuators Laboratory (MSAL), Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Reza Ghodssi
- MEMS Sensors and Actuators Laboratory (MSAL), Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
28
|
Ben-Yoav H, Dykstra PH, Gordonov T, Bentley WE, Ghodssi R. A microfluidic-based electrochemical biochip for label-free DNA hybridization analysis. J Vis Exp 2014:51797. [PMID: 25285529 PMCID: PMC4828060 DOI: 10.3791/51797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Miniaturization of analytical benchtop procedures into the micro-scale provides significant advantages in regards to reaction time, cost, and integration of pre-processing steps. Utilizing these devices towards the analysis of DNA hybridization events is important because it offers a technology for real time assessment of biomarkers at the point-of-care for various diseases. However, when the device footprint decreases the dominance of various physical phenomena increases. These phenomena influence the fabrication precision and operation reliability of the device. Therefore, there is a great need to accurately fabricate and operate these devices in a reproducible manner in order to improve the overall performance. Here, we describe the protocols and the methods used for the fabrication and the operation of a microfluidic-based electrochemical biochip for accurate analysis of DNA hybridization events. The biochip is composed of two parts: a microfluidic chip with three parallel micro-channels made of polydimethylsiloxane (PDMS), and a 3 x 3 arrayed electrochemical micro-chip. The DNA hybridization events are detected using electrochemical impedance spectroscopy (EIS) analysis. The EIS analysis enables monitoring variations of the properties of the electrochemical system that are dominant at these length scales. With the ability to monitor changes of both charge transfer and diffusional resistance with the biosensor, we demonstrate the selectivity to complementary ssDNA targets, a calculated detection limit of 3.8 nM, and a 13% cross-reactivity with other non-complementary ssDNA following 20 min of incubation. This methodology can improve the performance of miniaturized devices by elucidating on the behavior of diffusion at the micro-scale regime and by enabling the study of DNA hybridization events.
Collapse
Affiliation(s)
- Hadar Ben-Yoav
- MEMS Sensors and Actuators Laboratory (MSAL), Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland;
| | - Peter H Dykstra
- MEMS Sensors and Actuators Laboratory (MSAL), Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland
| | - Tanya Gordonov
- Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland
| | - Reza Ghodssi
- MEMS Sensors and Actuators Laboratory (MSAL), Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland
| |
Collapse
|
29
|
Salamifar SE, Lai RY. Fabrication of Electrochemical DNA Sensors on Gold-Modified Recessed Platinum Nanoelectrodes. Anal Chem 2014; 86:2849-52. [DOI: 10.1021/ac403816h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- S. Ehsan Salamifar
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, NE 68588-0304, United States
| | - Rebecca Y. Lai
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, NE 68588-0304, United States
| |
Collapse
|
30
|
Wang Q, Ding Y, Wang L, Ni J, Yu Z, Lin H, Gao F. Low-Background, Highly Sensitive DNA Biosensor by Using an Electrically Neutral Cobalt(II) Complex as the Redox Hybridization Indicator. Chem Asian J 2013; 8:1455-62. [DOI: 10.1002/asia.201300047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/07/2013] [Indexed: 11/10/2022]
|
31
|
Analysis of the evolution of the detection limits of electrochemical DNA biosensors. Anal Bioanal Chem 2013; 405:3705-14. [DOI: 10.1007/s00216-012-6672-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/04/2012] [Accepted: 12/18/2012] [Indexed: 11/26/2022]
|
32
|
A microfluidic-based electrochemical biochip for label-free diffusion-restricted DNA hybridization analysis. Biosens Bioelectron 2012; 38:114-20. [DOI: 10.1016/j.bios.2012.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/20/2012] [Accepted: 05/08/2012] [Indexed: 11/22/2022]
|
33
|
Bonyár A, Molnár LM, Harsányi G. Localization factor: A new parameter for the quantitative characterization of surface structure with atomic force microscopy (AFM). Micron 2012; 43:305-10. [DOI: 10.1016/j.micron.2011.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
|
34
|
Dykstra PH, Roy V, Byrd C, Bentley WE, Ghodssi R. Microfluidic electrochemical sensor array for characterizing protein interactions with various functionalized surfaces. Anal Chem 2011; 83:5920-7. [PMID: 21688780 DOI: 10.1021/ac200835s] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a unique microfluidic platform to allow for quick and sensitive probing of protein adsorption to various functionalized surfaces. The ability to tailor a sensor surface for a specific analyte is crucial for the successful application of portable gas and fluid sensors and is of great interest to the drug screening community. However, choosing the correct surface chemistry to successfully passivate against nonspecific binding typically requires repeated trial and error experiments. The presented device incorporates an array of integrated electrochemical sensors for fast, sensitive, label-free detection of these binding interactions. The layout of the electrodes allows for loading various surface chemistries in one direction while sensing their interactions with particular compounds in another without any cross-contamination. Impedance data is collected for three commonly used passivation compounds (mercaptohexanol, polyethylene glycol, and bovine serum albumin) and demonstrates their interaction with three commonly studied proteins in genetic and cancer research (cAMP receptor protein, tumor necrosis factor α, and tumor necrosis factor β). The ability to quickly characterize various surface interactions provides knowledge for selecting optimal functionalization for any biosensor.
Collapse
Affiliation(s)
- Peter H Dykstra
- MEMS Sensors and Actuators Laboratory (MSAL), Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States.
| | | | | | | | | |
Collapse
|