1
|
Zhong S, Li R, Tian Y, Wei Z, Zhang L, Chen Y, Zhou R, Zhang Q, Ru X. Integrative models for environmental forecasting of phthalate migration from microplastics in aquaculture environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136194. [PMID: 39447233 DOI: 10.1016/j.jhazmat.2024.136194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The pervasive utilization of plastic tools in aquaculture introduces significant volumes of microplastic fibers, presenting a consequential risk through the leaching of additives such as phthalates. This study scrutinizes the leaching dynamics of six prevalent phthalate esters (PAEs) from thirteen plastic aquaculture tools comprising polyethylene terephthalate (PET), polypropylene (PP), and polyethylene (PE), with ΣPAEs ranging from 0.24 to 4.26 mg g-1. Di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) emerged as predominant, marking significant environmental concern. Over a 30-day period, leaching quantities of Σ6PAEs from PET, PP, and PE fibers reached 36.65 μg g-1, 21.87 μg g-1 and 19.11 μg g-1, respectively, influenced by factors such as time, temperature, turbulence, and salinity. Notably, turbulence exerted the most pronounced effect, followed by temperature, with negligible influence from salinity. The kinetic models aligning with interface diffusion control was developed, predicting PAEs' leaching behavior with activation energies (Ea) indicative of the process's thermodynamic nature. The application of this model to real-world aquaculture waters forecasted significant risks, corroborating with empirical data and underscoring the pressing need for regulatory and mitigation strategies against PAEs contamination from aquaculture practices.
Collapse
Affiliation(s)
- Shan Zhong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ruiyue Li
- Beijing China Sciences Runyu Environmental Technology Co., Ltd, Beijing 100080, China
| | - Yaowen Tian
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zengxian Wei
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Lishan Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Yan Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ruyue Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Qian Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xuan Ru
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
2
|
Gao Z, Wei Z, Zheng Y, Wu S, Zhou X, Ruan A. Evolution mechanism of microbial community structure and metabolic activity in aquatic nutrient-poor sedimentary environments driven by 17β-estradiol pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50333-50346. [PMID: 39093391 DOI: 10.1007/s11356-024-34580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
17β-Estradiol (E2) is a novel micro-pollutant that is widely distributed in aquatic sediments and has a universal toxicological effect on aquatic organisms. However, its ecological impact on aquatic microorganisms is not yet clear. In this study, we designed a simulation system for oligotrophic water deposition in the laboratory, analyzed the impact of different concentrations of E2 pollution on the carbon metabolism activity (carbon gas emission rate) of water microorganisms. Based on high-throughput sequencing results, we revealed the impact of E2 pollution on the community structure succession and metabolic function of bacteria, archaea, and methanogens in the simulated system, explored the impact mechanism of E2 pollution on microbial carbon metabolism in water bodies. Our results suggested that E2 significantly impacts the bacterial and archaeal community rather than the methanogen community, thereby indirectly inhibiting methane production. The achievements will bridge the theoretical gap between estrogen metabolism and carbon metabolism in sedimentary environments and contribute to enriching the ecological toxicology theory of steroid estrogen.
Collapse
Affiliation(s)
- Zihao Gao
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Zhipeng Wei
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yu Zheng
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Shuai Wu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Xiaotian Zhou
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China.
- College of Geography and Remote Sensing, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
3
|
Gao Z, Zheng Y, Li Z, Ruan A. Effects of 17β-Estradiol Pollution on Microbial Communities and Methane Emissions in Aerobic Water Bodies. TOXICS 2024; 12:373. [PMID: 38787152 PMCID: PMC11126138 DOI: 10.3390/toxics12050373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
17β-Estradiol (E2) is a widely present trace pollutant in aquatic environments. However, its impact on microbial communities in aerobic lake waters, which are crucial for methane (CH4) production, remains unclear. This study conducted an E2 contamination experiment by constructing laboratory-simulated aerobic microecosystems. Using 16S rRNA high-throughput sequencing, the effects of E2 on bacterial and archaeal communities were systematically examined. Combined with gas chromatography, the patterns and mechanisms of E2's impact on CH4 emissions in aerobic aquatic systems were uncovered for the first time. Generally, E2 contamination increased the randomness of bacterial and archaeal community assemblies and weakened microbial interactions. Furthermore, changes occurred in the composition and ecological functions of bacterial and archaeal communities under E2 pollution. Specifically, two days after exposure to E2, the relative abundance of Proteobacteria in the low-concentration (L) and high-concentration (H) groups decreased by 6.99% and 4.01%, respectively, compared to the control group (C). Conversely, the relative abundance of Planctomycetota was 1.81% and 1.60% higher in the L and H groups, respectively. E2 contamination led to an increase in the relative abundance of the methanogenesis functional group and a decrease in that of the methanotrophy functional group. These changes led to an increase in CH4 emissions. This study comprehensively investigated the ecotoxicological effects of E2 pollution on microbial communities in aerobic water bodies and filled the knowledge gap regarding aerobic methane production under E2 contamination.
Collapse
Affiliation(s)
- Zihao Gao
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; (Z.G.); (Y.Z.); (Z.L.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yu Zheng
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; (Z.G.); (Y.Z.); (Z.L.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Zhendong Li
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; (Z.G.); (Y.Z.); (Z.L.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; (Z.G.); (Y.Z.); (Z.L.)
- College of Geography and Remote Sensing, Hohai University, Nanjing 210098, China
| |
Collapse
|
4
|
Zhou J, He X, Zhang Z, Wu G, Liu P, Wang D, Shi P, Zhang XX. Chemical-toxicological insights and process comparison for estrogenic activity mitigation in municipal wastewater treatment plants. WATER RESEARCH 2024; 253:121304. [PMID: 38364463 DOI: 10.1016/j.watres.2024.121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Efforts in water ecosystem conservation require an understanding of causative factors and removal efficacies associated with mixture toxicity during wastewater treatment. This study conducts a comprehensive investigation into the interplay between wastewater estrogenic activity and 30 estrogen-like endocrine disrupting chemicals (EEDCs) across 12 municipal wastewater treatment plants (WWTPs) spanning four seasons in China. Results reveal substantial estrogenic activity in all WWTPs and potential endocrine-disrupting risks in over 37.5 % of final effluent samples, with heightened effects during colder seasons. While phthalates are the predominant EEDCs (concentrations ranging from 86.39 %) for both estrogenic activity and major EEDCs (phthalates and estrogens), with the secondary and tertiary treatment segments contributing 88.59 ± 8.12 % and 11.41 ± 8.12 %, respectively. Among various secondary treatment processes, the anaerobic/anoxic/oxic-membrane bioreactor (A/A/O-MBR) excels in removing both estrogenic activity and EEDCs. In tertiary treatment, removal efficiencies increase with the inclusion of components involving physical, chemical, and biological removal principles. Furthermore, correlation and multiple liner regression analysis establish a significant (p < 0.05) positive association between solid retention time (SRT) and removal efficiencies of estrogenic activity and EEDCs within WWTPs. This study provides valuable insights from the perspective of prioritizing key pollutants, the necessity of integrating more efficient secondary and tertiary treatment processes, along with adjustments to operational parameters like SRT, to mitigate estrogenic activity in municipal WWTPs. This contribution aids in managing endocrine-disrupting risks in wastewater as part of ecological conservation efforts.
Collapse
Affiliation(s)
- Jiawei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Zepeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
LI H, REN G, LI H, CHEN X, ZHANG Z, ZHAO Y. Imine-linked porous covalent organic framework used for the solid-phase extraction of estrogens from honey prior to liquid chromatography-tandem mass spectrometry. Se Pu 2022; 40:704-711. [PMID: 35903837 PMCID: PMC9404133 DOI: 10.3724/sp.j.1123.2022.03017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
以亚胺连接的多孔共价有机骨架材料(IL-COF-1)作为固相萃取的吸附剂,建立了液相色谱-串联质谱快速检测蜂蜜样品中痕量雌激素的方法。该研究选择雌二醇、己烯雌酚、雌三醇、β-雌二醇和炔雌醇5种雌激素作为目标分析物。在蜂蜜样品中添加雌激素,采用单因素优化法对影响萃取效果的重要因素进行优化,获得最佳条件:IL-COF-1用量为30 mg,样品流速为3 mL/min,样品溶液pH值为7,以5 mL的1%(v/v)氨水-甲醇溶液进行洗脱,流速为0.4 mL/min,萃取过程中不添加NaCl。采用高效液相色谱-三重四极杆质谱联用技术对提取物中的雌激素进行定量分析。以乙腈和5 mmol/L的乙酸铵溶液作为流动相进行梯度洗脱,经C18色谱柱分离,采用电喷雾离子源、质谱多反应监测和负离子扫描模式,实现了蜂蜜样品中5种雌激素的快速定性定量分析。在最佳条件下,方法验证结果中雌三醇、β-雌二醇和炔雌醇的线性范围为1~500 ng/g,雌二醇和己烯雌酚的线性范围为0.1~100 ng/g,相关系数(r)为0.9934~0.9972。检出限(S/N=3)为0.01~0.30 ng/g,定量限(S/N=10)为0.05~0.95 ng/g。添加50 ng/g 5种雌激素进行重复性实验,日内精密度相对标准偏差(RSD)为3.2%~6.6%,日间精密度RSD为4.2%~7.9%。基于IL-COF-1的固相萃取-液相色谱-串联质谱法具有快速准确、灵敏度高等特点,适用于蜂蜜中雌激素的分析和检测。将该方法应用于4个实际蜂蜜样品中雌激素的检测,均未检出目标物;在低中高3个水平下,5种雌激素的加标回收率为80.1%~115.2%,结果令人满意。
Collapse
|
6
|
Tian L, Zheng J, Pineda M, Yargeau V, Furlong D, Chevrier J, Bornman R, Obida M, Gates Goodyer C, Bayen S. Targeted screening of 11 bisphenols and 7 plasticizers in food composites from Canada and South Africa. Food Chem 2022; 385:132675. [PMID: 35305432 DOI: 10.1016/j.foodchem.2022.132675] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/07/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022]
Abstract
A sensitive method based on ultrasound-assisted liquid extraction coupled with liquid chromatography was applied to screen 18 plastic-related contaminants in 168 food composites (namely fish fillets, chicken breast, canned tuna, leafy vegetables, bread and butter) collected in Montreal (Canada), Pretoria and Vhembe (South Africa). Bisphenol A (BPA), bisphenol S (BPS) and seven plasticizers (di-n-butyl phthalate (DBP), diethyl phthalate (DEP), (2-ethylhexyl) phthalate (DEHP), di-(2-ethylhexyl) adipate (DEHA), di-isononyl phthalate (DINP), di-(isononyl)-cyclohexane-1,2-dicarboxylate (DINCH)) were detected in different foods from both countries. DBP and DEP were the most frequently detected contaminants in food collected in Montreal (75% for both) and DINP was the most frequently detected contaminant in food from South Africa (67%). DEHA concentration in packaged fish were significantly higher than the values for non-packaged fish (p < 0.01) suggesting that the packaging film can be one source of DEHA in fish.
Collapse
Affiliation(s)
- Lei Tian
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Jingyun Zheng
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Marco Pineda
- Department of Chemical Engineering, McGill University, 3610 University, Montreal, QC H3A 0C5, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, 3610 University, Montreal, QC H3A 0C5, Canada
| | - Daniel Furlong
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 2001 McGill College Avenue, Montreal, H3A 1G1, Canada
| | - Riana Bornman
- Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Muvhulawa Obida
- Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Cindy Gates Goodyer
- Department of Medicine, Division of Experimental Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
7
|
Kinetic Study of 17α-Estradiol Activity in Comparison with 17β-Estradiol and 17α-Ethynylestradiol. Catalysts 2021. [DOI: 10.3390/catal11050634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
17α-estradiol (αE2), an endogenous stereoisomer of the hormone 17β-estradiol (E2), is capable of binding to estrogen receptors (ER). We aimed to mathematically describe, using experimental data, the possible interactions between αE2 and sperm ER during the process of sperm capacitation and to develop a kinetic model. The goal was to compare the suggested kinetic model with previously published results of ER interactions with E2 and 17α-ethynylestradiol (EE2). The HPLC-MS/MS method was developed to monitor the changes of αE2 concentration during capacitation. The calculated relative concentrations Bt were used for kinetic analysis. Rate constants k and molar ratio n were optimized and used for the construction of theoretical B(t) curves. Modifications in αE2–ER interactions were discovered during comparison with models for E2 and EE2. These new interactions displayed autocatalytic formation of an unstable adduct between the hormone and the cytoplasmic receptors. αE2 accumulates between the plasma membrane lipid bilayer with increasing potential, and when the critical level is reached, αE2 penetrates through the inner layer of the plasma membrane into the cytoplasm. It then rapidly reacts with the ER and creates an unstable adduct. The revealed dynamics of αE2–ER action may contribute to understanding tissue rejuvenation and the cancer-related physiology of αE2 signaling.
Collapse
|
8
|
Hoshyar SA, Barzani HA, Yardım Y, Şentürk Z. The effect of CTAB, a cationic surfactant, on the adsorption ability of the boron-doped diamond electrode: Application for voltammetric sensing of Bisphenol A and Hydroquinone in water samples. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Endocrine Disrupting Compounds Removal Methods from Wastewater in the United Kingdom: A Review. SCI 2021. [DOI: 10.3390/sci3010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Endocrine disrupting compounds (EDCs) are contaminants with estrogenic or androgenic activity that negatively impact human and animal communities. These compounds have become one of the most significant concerns for wastewater treatment in recent decades. Several studies have evaluated EDC removal methods from wastewater across the globe, including the United Kingdom (UK). Accordingly, the current study reviews EDC removal methods from municipal/domestic wastewater in the United Kingdom (UK) for the period of 2010–2017. The current study analysed original research articles (250), review articles (52), short communication (43), and other associated documents via the ScienceDirect.com database. A total of 25 published articles, which covered EDC removal methods from UK wastewaters, were reviewed rigorously. The research highlights that despite the relative efficacy of existing chemical and physical methods for removing certain EDCs from wastewater, there is emerging evidence supporting the need for more widespread application of nature-based and biological approaches, particularly the use of biofilms. The analysis reveals that there have been relatively few research studies on EDC removal methods carried out in the UK in the 2010–2017 period. Only four papers addressed the removal of specific endocrine disrupting compounds from UK municipal wastewater, and none of the studies addressed EDC removal by using direct biofilms. Finally, this review suggests that more research is needed to remove EDCs, particularly through the application of biofilms, from municipal wastewater in current scenarios.
Collapse
|
10
|
Li Z, Hu J, Xiao Y, Zha Q, Zeng L, Zhu M. Surfactant assisted Cr-metal organic framework for the detection of bisphenol A in dust from E-waste recycling area. Anal Chim Acta 2020; 1146:174-183. [PMID: 33461714 DOI: 10.1016/j.aca.2020.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Due to their highly porous structures, metal organic framework materials are widely used in analytic areas. In this paper, Cr-metal organic framework (MIL-101(Cr)) modified electrode was prepared and then was used as electrochemical sensor for the detection of bisphenol A (BPA). By using one kind of surfactant of cetyltrimethylammonium bromide (CTAB), the analytic performances of MIL-101 (Cr) towards BPA detection were greatly improved. Compared with pure MIL-101 (Cr), the differential pulse voltammetry (DPV) behavior of CTAB/MIL-101 (Cr) was improved 3.0 times in the presence of BPA. The hydrophobic long chain alkanes of CTAB can improve the enrichment and electrochemical oxidation for BPA. The CTAB/MIL-101 (Cr) sensor exhibited a linear range from 20 to 350 nM and a low detection limit of 9.95 nM (LOD = 3sb/S) and showed good reproducibility, stability and selectivity. Finally, real samples of dusts from E-waste recycling area in South China were collected and the CTAB/MIL-101 (Cr) sensor demonstrated satisfactory results for BPA detection from these dust samples.
Collapse
Affiliation(s)
- Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, PR China
| | - Jiayue Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, PR China
| | - Yongguang Xiao
- Institute of Photonics Technology, Jinan University, Guangzhou, 511443, PR China
| | - Qingbing Zha
- Department of Fetal Medicine, First Affiliated Hospital of Jinan University, Guangzhou, 510630, PR China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, PR China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, PR China.
| |
Collapse
|
11
|
Glineur A, Nott K, Carbonnelle P, Ronkart S, Purcaro G. Development And Validation Of A Method For Determining Estrogenic Compounds In Surface Water At The Ultra-Trace Level Required By The EU Water Framework Directive Watch List. J Chromatogr A 2020; 1624:461242. [DOI: 10.1016/j.chroma.2020.461242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
|
12
|
Li YY, He W, Liu WX, Yang B, He QS, Yang C, Xu FL. Impacts of anthropogenic activities on spatial variations of phthalate esters in water and suspended particulate matter from China's lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138281. [PMID: 32272409 DOI: 10.1016/j.scitotenv.2020.138281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
In the largest developing country, China, plastic has become a serious environmental issue because of its overuse and non-treatment. In fact, plasticizers, such as phthalate esters (PAEs), are more toxic than plastic, and their global awareness is rising. To determine the response of sensitive PAE congeners to the anthropogenic activities in a typical lake ecosystem of China, in the present study, 12 PAEs in the water and the suspended particulate matter (SPM) phases of 46 lakes in China were measured. The concentrations of all the Σ12 PAEs in water and SPM phases ranged from 3.647 to 65.618 μg/L and 0.175 to 10.921 μg/L, respectively. Di-n-butyl phthalate (DnBP) was the predominant PAEs in the water phase, whereas diisobutyl phthalate (DIBP), DnBP, and bis(2-ethylhexyl) phthalate (DEHP) were the dominating PAEs in the SPM phase. Forty-six lakes were divided into four groups based on the anthropogenic activity intensities. The PAEs in both the water and SPM phases had increasing tendency along the human activity gradient. DIBP appears to be a sensitive PAE indicator that could distinguish the lake regions with different human industrial and agricultural activities. Dimethyl phthalate (DMP) and diethyl phthalate (DEP) are intensely affected by industrial development. DnBP and DEHP were positively correlated with agricultural activities, including the use of films and pesticides. It is suggested to control the addition and usage of PAEs in agricultural activities and improve their removal rates in industrial wastewater to reduce the PAE pollution in the water bodies in the environment management of China.
Collapse
Affiliation(s)
- Yu-Yan Li
- MOE Key Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei He
- MOE Key Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wen-Xiu Liu
- MOE Key Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Bin Yang
- MOE Key Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Qi-Shuang He
- MOE Key Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Chen Yang
- MOE Key Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Fu-Liu Xu
- MOE Key Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Phthalate acid esters (PAEs) in highly acidic juice packaged in polyethylene terephthalate (PET) container: Occurrence, migration and estrogenic activity-associated risk assessment. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104719] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
HPLC-MS/MS multiclass determination of steroid hormones in environmental waters after preconcentration on the carbonaceous sorbent HA-C@silica. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
15
|
Ullah A, Pirzada M, Jahan S, Ullah H, Razak S, Rauf N, Khan MJ, Mahboob SZ. Prenatal BPA and its analogs BPB, BPF, and BPS exposure and reproductive axis function in the male offspring of Sprague Dawley rats. Hum Exp Toxicol 2020; 38:1344-1365. [PMID: 31514588 DOI: 10.1177/0960327119862335] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in the past has indicated associated long-term and low levels of exposure of bisphenol A (BPA) in early life and neuroendocrine disorders, such as obesity, precocious puberty, diabetes, and hypertension. BPA and its analogs bisphenol B (BPB), bisphenol F (BPF), and bisphenol S (BPS) have been reported to have similar or even more toxic effect as compared to BPA. Exposure of rats to BPA and its analogs BPB, BPF, and BPS resulted in decreased sperm production, testosterone secretion, and histological changes in the reproductive tissues of male rats. In the present study, BPA, BPB, BPF, and BPS were administered in drinking water at concentrations of (5, 25, and 50 μg/L) from pregnancy day (PD) 1 to PD 21. Body weight (BW), hormonal concentrations, antioxidant enzymes, and histological changes were determined in the reproductive tissues. BPA and its analogs prenatal exposure to female rats induced significant statistical difference in the antioxidant enzymes, plasma testosterone, and estrogen concentrations in the male offspring when compared with the control. Histological parameters of both testis and epididymis revealed prominent changes in the reproductive tissues. The present study suggests that BPA and its analogs BPB, BPF, and BPS different concentrations led to marked alterations in the development of the male reproductive system.
Collapse
Affiliation(s)
- A Ullah
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - M Pirzada
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - S Jahan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - H Ullah
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - S Razak
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - N Rauf
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - M J Khan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - S Z Mahboob
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
16
|
Wu D, Huang CJ, Jiao XF, Ding ZM, Zhang SX, Miao YL, Huo LJ. Bisphenol AF compromises blood-testis barrier integrity and sperm quality in mice. CHEMOSPHERE 2019; 237:124410. [PMID: 31362132 DOI: 10.1016/j.chemosphere.2019.124410] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/04/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The profound influence of environmental chemicals on human health including inducing life-threatening gene mutation has been publicly recognized. Being a substitute for the extensively used endocrine-disrupting chemical BPA, Bisphenol AF (BPAF) has been known as teratogen with developmental toxicities and therefore potentially putting human into the risk of biological hazards. Herein, we deciphered the detrimental effects of BPAF on spermatogenesis and spermiotiliosis in sexual maturity of mice exposing to BPAF (5, 20, 50 mg/kg/d) for consecutive 28 days. BPAF exposure significantly compromises blood-testis barrier integrity and sperm quantity and quality in a dose-dependent manner. Sperms from BPAF exposure mice are featured by severe DNA damage, altered SUMOylation and ubiquitination dynamics and interfered epigenetic inheritance with hypermethylation of H3K27me3 presumably due to the aggregation of cellular reactive oxygen species (ROS). Furthermore, BPAF treatment (50 μM for 24 h) compromises cytoskeleton architecture and tight junction permeability in primary cultured Sertoli cells evidenced by dysfunction of actin regulatory proteins (e.g. Arp3 and Palladin) via activation of ERK signaling, thereby perturbing the privilege microenvironment created by Sertoli cells for spermatogenesis. Overall, our study determines BPAF is deleterious for male fertility, leading to a better appreciation of its toxicological features in our life.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chun-Jie Huang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, 64110, USA
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
17
|
Effect of thermo-oxidation on loss of plasticizers, on crystalline features and on properties in a metallocene isotactic polypropylene. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Excitation-emission fluorescence-kinetic third-order/four-way data: Determination of bisphenol A and nonylphenol in food-contact plastics. Talanta 2019; 197:348-355. [DOI: 10.1016/j.talanta.2019.01.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/17/2022]
|
19
|
Park J, Park C, Gye MC, Lee Y. Assessment of endocrine-disrupting activities of alternative chemicals for bis(2-ethylhexyl)phthalate. ENVIRONMENTAL RESEARCH 2019; 172:10-17. [PMID: 30769184 DOI: 10.1016/j.envres.2019.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/17/2019] [Accepted: 02/01/2019] [Indexed: 05/28/2023]
Abstract
Plastic products are closely intertwined with modern life. Some plasticizers used in making plastics, such as phthalates, are reported to be endocrine-disrupting chemicals. Plasticizers can be released into the environment, and health risks related to plasticizer exposure have been reported. In addition, due to plastic waste that flows into the ocean, microplastics have been found in marine products, including non-biological seawater products such as sea salt. Plastics can affect the body via a variety of pathways, and therefore safer alternative chemicals are needed. Three chemicals were evaluated: acetyl tributyl citrate (ATBC), triethyl 2-acetylcitrate (ATEC), and trihexyl O-acetylacitrate (ATHC), replacing bis(2-ethylhexyl)phthalate (DEHP), a typical plasticizer. The endocrine-disrupting activities of each chemical, including estrogenic or anti-estrogenic activity (test guideline (TG) No. 455), androgenic or anti-androgenic activity (TG No. 458), steroidogenesis (TG No. 456), and estrogenic properties via a short-term screening test using the uterotrophic assay (TG No. 440), were assessed in accordance with the Organisation for Economic Co-operation and Development guidelines for chemical testing. Our results showed that DEHP, ATBC, ATEC, ATHC possess no estrogenic activity, whereas DEHP, ATBC and ATHC demonstrate anti-estrogenic activity and ATBC anti-androgenic activity. DEHP and ATHC exhibited a disruption in steroidogenesis activities. Additional tests are necessary, but our results suggest that ATEC is a good candidate plasticizer providing a suitable alternative to DEHP.
Collapse
Affiliation(s)
- Joonwoo Park
- Department of Integrative Bioscience and Biothecnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Republic of Korea
| | - Choa Park
- Department of Integrative Bioscience and Biothecnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Youngjoo Lee
- Department of Integrative Bioscience and Biothecnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Republic of Korea.
| |
Collapse
|
20
|
Kiani A, Ahmadloo M, Shariatifar N, Moazzen M, Baghani AN, Khaniki GJ, Taghinezhad A, Kouhpayeh A, Mousavi Khaneghah A, Ghajarbeygi P. Method development for determination of migrated phthalate acid esters from polyethylene terephthalate (PET) packaging into traditional Iranian drinking beverage (Doogh) samples: a novel approach of MSPE-GC/MS technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12728-12738. [PMID: 29470751 DOI: 10.1007/s11356-018-1471-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
In the current study, a novel magnetic solid phase extraction (MSPE) technique combined with a gas chromatography/mass spectroscopy (GC/MS) was developed to determine the phthalate ester content of bottled Doogh samples. Doogh is a yogurt-based drinking beverage, which is frequently consumed in Middle East and Balkans. It is produced by stirring yogurt in Chern separation machine and consists of substances such as water, yogurt, and salt in addition to aqueous extracts of native herbs. The magnetic multi-walled carbon nanotubes (MWCNT-Fe3O4) were used as adsorbents of phthalate acid esters (PAEs) due to a superior adsorption capability of hydrophobic compounds. In this context, the quantity of the extractable migrated phthalate esters (dibutyl phthalate (DBP), dimethyl phthalate (DMP), butyl benzyl phthalate (BBP), diethyl phthalate (DEP), di-N-octyl phthalate (DNOP), and bis (2-ethylhexyl) phthalate (DEHP)) from polyethylene terephthalate (PET) bottles into Doogh samples was measured. The correlation between the concentration of migrated PAEs and some factors such as the type of Doogh (gaseous and without gas), difference in brand (five brands), volume (1500 and 300 mL), and the storage time also was investigated. The migration level into Doogh samples was increased by incorporating of gas as well as increasing the volume of PET bottles. Also, with elaborating of storage time, the migration of some phthalates such as DEHP (the mean from 2419.85 ng L-1 in the first week to 2716.15 ng L-1 in the second month), DEP, and total phthalate was increased. However, no significant difference in concentrations of migrated phthalate esters among different examined brands was noted. Finally, the concentration of migrated PAEs from bottle into all the examined Doogh samples was below the defined standards by EPA; 6 μg/L for DEHP in drinking water. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Amin Kiani
- Department of Public Health, School of Public Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahsa Ahmadloo
- Department of Food Safety and Hygiene, School of Public Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Moazzen
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Norouzian Baghani
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - GholamReza Jahed Khaniki
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Taghinezhad
- Department of English Language, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato, 80. Caixa Postal: 6121, Campinas, São Paulo, CEP: 13083-862, Brazil.
| | - Peyman Ghajarbeygi
- Department of Food Safety and Hygiene, School of Public Health, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
21
|
Jin H, Zhu J, Chen Z, Hong Y, Cai Z. Occurrence and Partitioning of Bisphenol Analogues in Adults' Blood from China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:812-820. [PMID: 29243481 DOI: 10.1021/acs.est.7b03958] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Widespread human exposure and associated adverse health effects led to regulations on the usage of bisphenol A (BPA). Several bisphenol analogues (BPs) have been introduced as BPA alternatives in various applications. However, these BPs have been shown to exhibit similar or even stronger endocrine-disrupting activities compared with that of BPA. Currently, information on the human exposure to BPA alternatives remains limited. In this study, nine BPs were quantified in 81 pairs of plasma and red blood cell (RBC) samples from Chinese participants. In human plasma, the predominant BPs was BPA, bisphenol S (BPS), and bisphenol AF (BPAF), with the mean concentrations of 0.40, 0.15, and 0.073 ng/mL, respectively. BPA (accounting for 63% of total BPs) and BPS (18%) were the major BPs in the RBC fraction. Mass fractions in plasma (Fp) were found to be highest for BPS (mean, 0.78), followed by BPAF (0.71) and BPA (0.67), indicating strong partitioning to the plasma fraction. However, bisphenol AP was more frequently detected in the RBC fraction. Estimated total daily intake (EDI) of BPA was in the range of 0.0048-0.75 μg/kg bw/day for the participants, and adults aged >50 years had comparatively lower EDI. To our knowledge, this is the first study to assess the occurrence and partitioning of BPA alternatives in paired human plasma and RBCs from the Chinese general population.
Collapse
Affiliation(s)
- Hangbiao Jin
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , Hong Kong SAR, China
- HKBU Institute for Research and Continuing Education , Shenzhen 518057, China
| | - Jing Zhu
- Clinical Laboratory, Zhejiang Cancer Hospital , Hangzhou, Zhejiang 310022, China
| | - Zhongjian Chen
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province , Hangzhou, Zhejiang 310022, China
| | - Yanjun Hong
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , Hong Kong SAR, China
- HKBU Institute for Research and Continuing Education , Shenzhen 518057, China
| | - Zongwei Cai
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , Hong Kong SAR, China
- HKBU Institute for Research and Continuing Education , Shenzhen 518057, China
| |
Collapse
|
22
|
Zhang K, Fent K. Determination of two progestin metabolites (17α-hydroxypregnanolone and pregnanediol) and different classes of steroids (androgens, estrogens, corticosteroids, progestins) in rivers and wastewaters by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1164-1172. [PMID: 31096410 DOI: 10.1016/j.scitotenv.2017.08.114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 05/04/2023]
Abstract
A highly sensitive and robust method was developed for routine analysis of two progestin metabolites, 17α-hydroxypregnanolone (17OH-Δ5P) and pregnanediol (PD), and 31 other natural and synthetic steroids and related metabolites (estrogens, androgens, corticosteroids, progestins) in river water, as well as influents and effluents of municipal wastewater treatment plants (WWTP) using HPLC-MS/MS combined with solid-phase extraction. For the various matrixes considered, the optimized method showed satisfactory performance with recoveries of 70-120% for most of target steroids. The method detection limits (MDLs) ranged from 0.01 to 3ng/L for river water, 0.02 to 10ng/L for WWTP effluents, and 0.1 to 40ng/L for influents with good linearity and reproducibility. The developed method was successfully applied for the analysis of steroids in rivers and WWTP influent and effluents. WWTP influents concentrations of 17OH-Δ5P and PD were 51-256ng/L and up to 400ng/L, respectively, along with androstenedione (concentration range: 38-220ng/L), testosterone (11-26ng/L), estrone (2.3-37ng/L), 17β-estradiol (N.D.-8.7ng/L), 17α-hydroxyprogesterone (N.D.-66ng/L), medroxyprogesterone acetate (N.D.-5.3ng/L), and progesterone (2.0-22ng/L), while only androstenedione (ADD), estrone (E1), and estriol (E3) were detected in effluent with concentrations ranging up to 1.7ng/L, 0.90ng/L and 0.8ng/L, respectively. In river water samples, only ADD and E1 were detected with concentrations up to 1.0ng/L and 0.91ng/L. Our procedure represents the first method for analyzing 17OH-Δ5P and PD in environmental samples along with a large series of steroids.
Collapse
Affiliation(s)
- Kun Zhang
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Science, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich, Switzerland.
| |
Collapse
|
23
|
Wei W, Wang J, Tian CB, Du SW, Wu KC. A highly hydrolytically stable lanthanide organic framework as a sensitive luminescent probe for DBP and chlorpyrifos detection. Analyst 2018; 143:5481-5486. [DOI: 10.1039/c8an01606b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of isostructural 3D Ln-MOFs with exceptional hydrolytic stability were synthesized. The Tb3+ compound showed excellent sensing ability towards DBP and chlorpyrifos.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Jian Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Chong-Bin Tian
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Shao-Wu Du
- Center for Advanced Marine Materials and Smart Sensors
- Minjiang University
- Fuzhou
- China
| | - Ke-Chen Wu
- Center for Advanced Marine Materials and Smart Sensors
- Minjiang University
- Fuzhou
- China
| |
Collapse
|
24
|
Moazzen M, Mahvi AH, Shariatifar N, Jahed Khaniki G, Nazmara S, Alimohammadi M, Ahmadkhaniha R, Rastkari N, Ahmadloo M, Akbarzadeh A, Dobaradaran S, Norouzian Baghani A. Determination of phthalate acid esters (PAEs) in carbonated soft drinks with MSPE/GC–MS method. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1378234] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Mojtaba Moazzen
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Jahed Khaniki
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ahmadkhaniha
- Department of Human Ecology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Rastkari
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Ahmadloo
- Department of Public Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Arash Akbarzadeh
- Department of Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Dobaradaran
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Science Research Institute, Department of Environmental Health Engineering, Faculty of Health Bushehr, University of Medical Sciences, Bushehr, Iran
| | - Abbas Norouzian Baghani
- Department of Human Ecology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Emerging Estrogenic Pollutants in the Aquatic Environment and Breast Cancer. Genes (Basel) 2017; 8:genes8090229. [PMID: 28914763 PMCID: PMC5615362 DOI: 10.3390/genes8090229] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
The number and amount of man-made chemicals present in the aquatic environment has increased considerably over the past 50 years. Among these contaminants, endocrine-disrupting chemicals (EDCs) represent a significant proportion. This family of compounds interferes with normal hormonal processes through multiple molecular pathways. They represent a potential risk for human and wildlife as they are suspected to be involved in the development of diseases including, but not limited to, reprotoxicity, metabolic disorders, and cancers. More precisely, several studies have suggested that the increase of breast cancers in industrialized countries is linked to exposure to EDCs, particularly estrogen-like compounds. Estrogen receptors alpha (ERα) and beta (ERβ) are the two main transducers of estrogen action and therefore important targets for these estrogen-like endocrine disrupters. More than 70% of human breast cancers are ERα-positive and estrogen-dependent, and their development and growth are not only influenced by endogenous estrogens but also likely by environmental estrogen-like endocrine disrupters. It is, therefore, of major importance to characterize the potential estrogenic activity from contaminated surface water and identify the molecules responsible for the hormonal effects. This information will help us understand how environmental contaminants can potentially impact the development of breast cancer and allow us to fix a maximal limit to the concentration of estrogen-like compounds that should be found in the environment. The aim of this review is to provide an overview of emerging estrogen-like compounds in the environment, sum up studies demonstrating their direct or indirect interactions with ERs, and link their presence to the development of breast cancer. Finally, we emphasize the use of in vitro and in vivo methods based on the zebrafish model to identify and characterize environmental estrogens.
Collapse
|
26
|
Pérez-Fernández V, Mainero Rocca L, Tomai P, Fanali S, Gentili A. Recent advancements and future trends in environmental analysis: Sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta 2017; 983:9-41. [DOI: 10.1016/j.aca.2017.06.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
|
27
|
Bagheri M, Taheri M, Farhadpour M, Rezadoost H, Ghassempour A, Aboul-Enein HY. Evaluation of hydrophilic interaction liquid chromatography stationary phases for analysis of opium alkaloids. J Chromatogr A 2017; 1511:77-84. [DOI: 10.1016/j.chroma.2017.06.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 11/26/2022]
|
28
|
Cheng L, Pan S, Ding C, He J, Wang C. Dispersive solid-phase microextraction with graphene oxide based molecularly imprinted polymers for determining bis(2-ethylhexyl) phthalate in environmental water. J Chromatogr A 2017; 1511:85-91. [PMID: 28693824 DOI: 10.1016/j.chroma.2017.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/12/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
Abstract
A novel graphene oxide-molecularly imprinted polymers (GO-MIPs) was prepared and applied for selective extraction and preconcentration of bis(2-ethylhexyl) phthalate (DEHP) in environmental water samples by using the dispersive solid-phase microextraction (DSPME) method. The GO-MIPs was synthesized via precipitation polymerization using GO, DEHP, methacrylic acid, and ethylene dimethacrylate as supporting materials, template molecules, functional monomer, and cross-linker, respectively. The prepared GO-MIPs were characterized by scanning electron microscope and Fourier transform infrared spectroscopy. The GO-MIPs-DSPME conditions including type and volume of elution solvents, adsorbents amount, initial concentration of DEHP, pH and ionic strength of water samples were investigated. Under optimized conditions, the DEHP was selectively and effectively extracted in real water samples and enrichment factors of over 100-fold were achieved. Good linearity was obtained with correlation coefficients (R2) over 0.999 and the detection limit (S/N=3) was 0.92ngmL-1. The average recoveries of the spiked samples at three concentration levels of DEHP ranged from 82% to 92% with the relative standard deviations less than 6.7%. The results indicated that the proposed GO-MIPs-DSPME extraction protocol combined with HPLC-UV determination could be applied for selective and sensitive analysis of trace DEHP phthalate in environmental water samples.
Collapse
Affiliation(s)
- Lidong Cheng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shuihong Pan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Chuyuan Ding
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jun He
- Department of Chemical and Environmental Engineering The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Chengjun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
29
|
Multiresidue determination of estrogens in different dairy products by ultra-high-performance liquid chromatography triple quadrupole mass spectrometry. J Chromatogr A 2017; 1496:58-67. [DOI: 10.1016/j.chroma.2017.03.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022]
|
30
|
Salgueiro-González N, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D. Trends in analytical methodologies for the determination of alkylphenols and bisphenol A in water samples. Anal Chim Acta 2017; 962:1-14. [DOI: 10.1016/j.aca.2017.01.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
|
31
|
Pellegrino Vidal RB, Ibañez GA, Escandar GM. Advantages of Data Fusion: First Multivariate Curve Resolution Analysis of Fused Liquid Chromatographic Second-Order Data with Dual Diode Array-Fluorescent Detection. Anal Chem 2017; 89:3029-3035. [DOI: 10.1021/acs.analchem.6b04720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rocío B. Pellegrino Vidal
- Instituto de Química
Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina
| | - Gabriela A. Ibañez
- Instituto de Química
Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina
| | - Graciela M. Escandar
- Instituto de Química
Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina
| |
Collapse
|
32
|
Zhang Y, Zhang J, Liu C, Yu M, Li S. Extraction, isolation, and aromatase inhibitory evaluation of low-polar ginsenosides from Panax ginseng leaves. J Chromatogr A 2016; 1483:20-29. [PMID: 28027838 DOI: 10.1016/j.chroma.2016.12.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/05/2016] [Accepted: 12/22/2016] [Indexed: 01/01/2023]
Abstract
A hyphenated accelerated solvent extraction (ASE) technique was elaborately coupled with centrifugal partition chromatography (CPC), ultra-high-performance liquid chromatography (UHPLC), and photo-diode array detector (PDA). This approach was applied to obtain low-polar ginsenoside fractions from the leaves of Panax ginseng. The CPC fractions were isolated and analyzed using the hyphenated technique, and followed by testing and evaluation of their aromatase inhibitory effects. Subsequently, the aromatase inhibition rates of the compositions in the CPC fractions were calculated using a multivariable linear regression model. A biphasic ethyl acetate/n-butanol/ethanol/water solvent system with respective volume ratios of 10:2:2:8 was used for the ASE and CPC separation of 200g of leaves of P. ginseng raw material. The (lower) aqueous phase of the abovementioned solvent system was used as the extraction solvent. The ginsenosides were subjected to ASE, and the extraction solution was pumped into the sample loop and then directly into the CPC column. The CPC fractions were collected and monitored by an online UHPLC/PDA system at 5-min intervals. The aromatase inhibitory activities of CPC fractions were analyzed by a fluorescence method, with mathematical calculations indicating that the inhibition rates of ginsenosides Rk1, Rg5, Rs5, 20R-Rg3, and Rs4 exceeded 50.00%; indicating that the aforementioned chemical compounds have potential for further development. The results were validated by comparison with authentic standards, indicating that the method used in this research was accurate and advantageous for matrix analysis.
Collapse
Affiliation(s)
- Yuchi Zhang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| | - Jianxu Zhang
- Department of Rehabilitation, Second Branch of the First Hospital of Jilin University, Erdao District, Changchun 130031, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China.
| | - Min Yu
- Department of Nephrology, Affiliated Hospital, Academy of Military Medical Sciences, No. 8 East Avenue, Fengtai District, Beijing 100071, China.
| | - Sainan Li
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| |
Collapse
|
33
|
Zhang Y, Shi C, Liu C, Yu M, Qi Y, Li S. Saponins from Panax bipinnatifidus Seem.: New strategy of extraction, isolation, and evaluation of tyrosinase inhibitory activity based on mathematical calculations. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1039:79-87. [DOI: 10.1016/j.jchromb.2016.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/21/2016] [Accepted: 10/30/2016] [Indexed: 02/01/2023]
|
34
|
Moon YJ, Myung SW. Determination of Estrogens in Environmental Aqueous Samples Using Dispersive Liquid-Liquid Microextraction and HPLC/UV-Vis System. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.11016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yeon-Joo Moon
- Department of Chemistry; Kyonggi University; Yeongtong-Gu Korea 16227
| | - Seung-Woon Myung
- Department of Chemistry; Kyonggi University; Yeongtong-Gu Korea 16227
| |
Collapse
|
35
|
Li J, Sheng N, Cui R, Feng Y, Shao B, Guo X, Zhang H, Dai J. Gestational and lactational exposure to bisphenol AF in maternal rats increases testosterone levels in 23-day-old male offspring. CHEMOSPHERE 2016; 163:552-561. [PMID: 27567155 DOI: 10.1016/j.chemosphere.2016.08.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
During prenatal and postnatal development, exposure to environmental chemicals with estrogenic activity, such as bisphenol AF (BPAF), may result in reproductive disorders. Currently, the mechanisms behind such disorders in male offspring induced by gestational and lactational exposure to BPAF remain poorly understood. Here, female rats from gestational day (GD) 3-19 were exposed to 100 mg BPAF/kg/day by oral gavage. On the day of birth (postnatal day (PD) 0), cross-fostering took place between treated and control litters, and cross-fostered mother rats were given BPAF 100 mg/kg/day during the postnatal period (PD 3 to PD 19). HPLC-MS/MS analysis showed that BPAF was transferred via cord blood and lactation, finally bio-accumulating in the offspring testes. Pups exposed to BPAF both prenatally and postnatally showed a significant increase in testis testosterone levels compared with that of the control, while all pups exposed to BPAF showed a significant decrease in testis inhibin B (INHB) levels. Compared with the control, RNA-seq revealed that 279 genes were significantly differentially expressed in the testes of pups exposed to BPAF both prenatally and postnatally, including genes involved in cell differentiation and meiosis. These results indicate that gestational and lactational exposure to BPAF in the mother can impair reproductive function in male offspring.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yixing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing, 100013, PR China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing, 100013, PR China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, PR China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
36
|
Jin H, Zhu L. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China. WATER RESEARCH 2016; 103:343-351. [PMID: 27486043 DOI: 10.1016/j.watres.2016.07.059] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/17/2016] [Accepted: 07/24/2016] [Indexed: 05/20/2023]
Abstract
Bisphenol analogues are widely used in the manufacture of polycarbonate plastics and epoxy resins, and the demand and production capacity of these compounds are growing rapidly in China. The occurrence and distribution of bisphenol analogues other than bisphenol A (BPA) in the aquatic environment is still poorly understood. In this study, nine bisphenol analogues were measured in water and sediment samples from Taihu Lake (TL), Liaohe River basin, including Liaohe River (LR) and Hunhe River (HR), China. Water samples from LR and HR contained much higher total bisphenols (∑BPs) concentrations. BPA and bisphenol S (BPS) were predominant with a summed contribution of 55, 75, and 75% to the ∑BPs in TL, LR, and HR waters, respectively. This suggests that BPA and BPS were the most widely used and manufactured bisphenols in these regions. In sediment, BPA was always predominant, with the next abundant compound bisphenol F (BPF) in TL and HR sediment, but BPS in LR sediment. The average field sediment-water partitioning coefficients (log Koc) were calculated for the first time for certain bisphenols and were determined to be 4.7, 4.6, 3.8, 3.7, and 3.5 mL/g for BPF, BPAP, BPA, BPAF, and BPS, respectively.
Collapse
Affiliation(s)
- Hangbiao Jin
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
37
|
Khedr A, Alahdal AM. Liquid chromatography-tandem mass spectrometric analysis of ten estrogen metabolites at sub-picogram levels in breast cancer women. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1031:181-188. [PMID: 27497156 DOI: 10.1016/j.jchromb.2016.07.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 11/18/2022]
Abstract
The measurement of estrogens at sub-picogram levels is essential for research on breast cancer and postmenopausal plasma. Heretofore, these concentration levels have rarely been achieved. However, it is possible through derivatization but still represent problems for monitoring catechol estrogens and 16α-hydroxyestrone (16α-OH-E1). Estrogens possess poor ionization efficiency in MS/MS, which results in insufficient sensitivity for analyzing samples at trace concentrations. The method presented here was used to extract ten estrogen metabolites (EMs) with a derivatization step involving a new adduct. The electrospray ionization (ESI) MS/MS sensitivity for the EMs was enhanced by derivatization with 3-bromomethyl-propyphenazone (BMP). The lower limits of quantification (LLOQ) of the EMs were 12-100 femtogram on-column, equivalent to 0.3-3.6pg/mL plasma, and the limits of detection (LOD) were 0.1-0.8pg/mL plasma. The percentage coefficient of variation (CV%) at the LLOQ was <20 for all investigated EMs. Ionization suppression was minimized by reacting the excess reagent, BMP, with methanol. The method was successfully applied for the determination of ten EMs in the plasma of fifty healthy postmenopausal and fifty ductal breast cancer women aged 47-65 years old. 16α-OH-E1 and three catechol estrogen metabolites, 4-OH-E1, 2-OH-E2 and 4-OH-E2, were successfully measured in the plasma of healthy and breast cancer women. The methyl-propyphenazone-EM derivatives exhibited better sensitivity in ESI-MS (7.5-fold) compared to the commonly used dansylation procedure.
Collapse
Affiliation(s)
- Alaa Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia.
| | - Abdulrahman M Alahdal
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| |
Collapse
|
38
|
Avar P, Zrínyi Z, Maász G, Takátsy A, Lovas S, G-Tóth L, Pirger Z. β-Estradiol and ethinyl-estradiol contamination in the rivers of the Carpathian Basin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:11630-11638. [PMID: 26936475 DOI: 10.1007/s11356-016-6276-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
17β-Estradiol (E2) and 17α-ethinyl estradiol (EE2), which are environmental estrogens, have been determined with LC-MS in freshwater. Their sensitive analysis needs derivatization and therefore is very hard to achieve in multiresidue screening. We analyzed samples from all the large and some small rivers (River Danube, Drava, Mur, Sava, Tisza, and Zala) of the Carpathian Basin and from Lake Balaton. Freshwater was extracted on solid phase and derivatized using dansyl chloride. Separation was performed on a Kinetex XB-C18 column. Detection was achieved with a benchtop orbitrap mass spectrometer using targeted MS analysis for quantification. Limits of quantification were 0.05 ng/L (MS1) and 0.1 ng/L (MS/MS) for E2, and 0.001 ng/L (MS1) and 0.2 ng/L (MS/MS) for EE2. River samples contained n.d.-5.2 ng/L E2 and n.d.-0.68 ng/L EE2. Average levels of E2 and EE2 were 0.61 and 0.084 ng/L, respectively, in rivers, water courses, and Lake Balaton together, but not counting city canal water. EE2 was less abundant, but it was still present in almost all of the samples. In beach water samples from Lake Balaton, we measured 0.076-0.233 E2 and n.d.-0.133 EE2. A relative high amount of EE2 was found in river Zala (0.68 ng/L) and in Hévíz-Páhoki canal (0.52 ng/L), which are both in the catchment area of Lake Balaton (Hungary).
Collapse
Affiliation(s)
- Péter Avar
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs, Pécs, 7624, Hungary.
| | - Zita Zrínyi
- Adaptive Neuroethology, Department of Experimental Zoology, Tihany, 8237, Hungary
| | - Gábor Maász
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs, Pécs, 7624, Hungary
- Adaptive Neuroethology, Department of Experimental Zoology, Tihany, 8237, Hungary
| | - Anikó Takátsy
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs, Pécs, 7624, Hungary
| | - Sándor Lovas
- Adaptive Neuroethology, Department of Experimental Zoology, Tihany, 8237, Hungary
| | - László G-Tóth
- Department of Hydrozoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany, 8237, Hungary
| | - Zsolt Pirger
- Adaptive Neuroethology, Department of Experimental Zoology, Tihany, 8237, Hungary
| |
Collapse
|
39
|
Wang Y, Xing F, Zhang H, Lou K. Experimental and theoretical investigation on the interaction of carboxylic multi-walled carbon nanotubes with bisphenol AF. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Yi F, Zheng Y, Wang T, Liu L, Yu Q, Xu S, Ma H, Cheng R, Ye J, Chu Q. Simultaneous Determination of Phenolic Endocrine Disruptors in Water Samples by Poly(sodium 4-styrenesulfonate) Modified CE Coupled with Hollow-Fiber Liquid-Phase Microextraction. Chromatographia 2016. [DOI: 10.1007/s10337-016-3073-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Tahmasebi E, Masoomi MY, Yamini Y, Morsali A. Application of a Zn(ii) based metal–organic framework as an efficient solid-phase extraction sorbent for preconcentration of plasticizer compounds. RSC Adv 2016. [DOI: 10.1039/c6ra06560k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A solid-phase extraction (SPE) sorbent, a Zn(ii) based metal–organic framework, was prepared via a simple, solventless, green and a low-cost mechanosynthesis process.
Collapse
Affiliation(s)
- Elham Tahmasebi
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Mohammad Yaser Masoomi
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Yadollah Yamini
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| |
Collapse
|
42
|
Saini G, Pant S, Alam T, Kazmi AA. Occurrence and fate of endocrine disrupting chemicals in ASP based sewage treatment plant in Hardwar. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:1039-1050. [PMID: 27642823 DOI: 10.2166/wst.2016.238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The occurrence of emerging contaminants such as endocrine disrupting chemicals (EDCs) in our water resources is of prime concern. With this context, fate and seasonal variation of six EDCs (testosterone, T; progesterone, P; diethyl phthalate, DEP; dibutyl phthalate, DBP; propyl-paraben, PP and butyl-paraben, BP) were assessed throughout the year, i.e. in rainy, winter, spring and summer seasons in the raw, treated wastewater and activated sludge in an activated sludge process (ASP) based sewage treatment plant (STP) located in Haridwar, India. Qualitative and quantitative measurements were performed by gas chromatography-mass spectrometry (GC-MS) analysis. Results indicate that in summer, the examined STP could effectively remove 82.9% of T, 86.4% of P, 95.5% of DEP, 92.4% of DBP, 91.5% of PP, and 89.9% of BP from the wastewater. Among the EDCs considered, higher removal efficiencies were achieved for phthalates in the summer season. GC-MS analysis showed that a small fraction of EDCs was sorbed on the solid fraction of activated sludge. Scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transformation infrared spectroscopy analysis were also performed to investigate the occurrence of EDCs in biomass samples. Results of this study also demonstrated that removal efficiency, assessed in terms of physicochemical and microbiological parameters, was maximum in summer and reached minimum in rainy season.
Collapse
Affiliation(s)
- Gita Saini
- Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India E-mail:
| | - Shalini Pant
- S. S. D. P. C. Girls P. G. College, Roorkee, Uttarakhand 246174, India
| | - Tanveer Alam
- K. L. D. A. V. P. G. College, Roorkee, Uttarakhand 246174, India
| | - A A Kazmi
- Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India E-mail:
| |
Collapse
|
43
|
Backe WJ. An Ultrasensitive (Parts-Per-Quadrillion) and SPE-Free Method for the Quantitative Analysis of Estrogens in Surface Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14311-8. [PMID: 26580084 DOI: 10.1021/acs.est.5b04949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An analytical method is presented here that is sensitive to the parts-per-quadrillion (pg/L) for estrogens in surface water. The estrogens included for study were estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, and equilin. The method consisted of the small-scale liquid-liquid extraction of surface water followed by derivation with dansyl chloride. Analyte separation and detection were performed by high-pressure liquid-chromatography and tandem mass-spectrometry. A large volume (100 μL) of the sample was injected on-column to increase the analyte mass sent to the detector. The detection limits of the method were 0.045 ng/L for estrone, 0.086 ng/L for 17β-estradiol, 0.030 ng/L for estriol, 0.049 ng/L for 17α-ethinylestradiol, and 0.13 ng/L for equilin. The whole-method accuracy ranged from 93 ± 5.8% to 105 ± 4.5% for all the analytes at two different spike levels. Similarly, the precision of the method was less than 8.0% relative standard deviation. The final method was used to analyze a series of samples from the Mississippi River spanning 51 river miles. Estrone was detected in all of the samples and 17β-estradiol was detected in one. Concentrations of estrone ranged from between the detection and quantification limits up to 0.63 ng/L. Increases in the concentration of estrone could be observed downstream from potential sources including a drinking water treatment plant. 17β-estradiol was detected below its quantitation limit in a sample taken downstream from a wastewater treatment plant.
Collapse
Affiliation(s)
- Will J Backe
- Public Health Laboratory, Minnesota Department of Health , 601 Robert St. N., P.O. Box 64899, , Saint Paul, Minnesota 55164-0899, United States
| |
Collapse
|
44
|
Baghdady YZ, Schug KA. Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry. J Sep Sci 2015; 39:102-14. [DOI: 10.1002/jssc.201501003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Yehia Z. Baghdady
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; Arlington TX USA
| | - Kevin A. Schug
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; Arlington TX USA
| |
Collapse
|
45
|
Yamaguchi A, Ishibashi H, Arizono K, Tominaga N. In vivo and in silico analyses of estrogenic potential of bisphenol analogs in medaka (Oryzias latipes) and common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:198-205. [PMID: 26086576 DOI: 10.1016/j.ecoenv.2015.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 05/19/2023]
Abstract
Various studies have demonstrated the estrogenic effect of bisphenol A (BPA), a member of bisphenol analogs (BPs), in in vitro and in vivo assays. However, limited data are available on the estrogenic potentials and risks of other BPs in aquatic organisms. In addition, the estrogenic effect of chemicals is known to have species-specific responses in teleost fish. The objective of this study was to evaluate the potential estrogenic effects of BPs on the medaka (Oryzias latipes) and common carp (Cyprinus carpio) using in vivo and in silico assays. Our quantitative real-time PCR analyses revealed that the expression levels of several hepatic estrogen-responsive biomarker genes in male medaka responded to various types and concentrations of BPs in a dose-response manner. The order of in vivo estrogenic potencies of BPs was as follows: BPC≈BPAF>BPB>BPA⋙BPP. To further investigate the interaction potential of BPs with medaka estrogen receptor α (ERα) in silico, a three-dimensional model of the ERα ligand-binding domain (LBD) was built and docking simulations were performed. The docking simulation analysis revealed that BPC interaction potential for medaka ERα LBD was the most potent, followed by BPAF and BPA. Comparing this with carp ERα LBD revealed that the interaction potentials of these BPs to medaka ERα LBD were more stable than to carp ERα LBD. Furthermore, we identified key amino acid residues in medaka ERα LBD that interacted with BPC (Glu356, Arg397, and Cys533), BPAF (Thr350 and Glu356), and BPA (Glu356 and Met424), and found some differences in these key amino acid residues between medaka and carp ERα LBDs. These results of in vivo and in silico analyses showed potential estrogenic effects of BPs in teleost fish, and they also indicated that the differences in interaction potentials and key amino acid residues between medaka and carp ERα LBDs may be due to the differences between the species and estrogenic potencies of the selected BPs.
Collapse
Affiliation(s)
- Akemi Yamaguchi
- Department of Chemical and Biological Engineering, Ariake National College of Technology, 150 Higashi-hagio-machi, Omuta, Fukuoka 836-8585, Japan
| | - Hiroshi Ishibashi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Kumamoto 862-8502, Japan
| | - Nobuaki Tominaga
- Department of Chemical and Biological Engineering, Ariake National College of Technology, 150 Higashi-hagio-machi, Omuta, Fukuoka 836-8585, Japan.
| |
Collapse
|
46
|
Zhu B, Ben W, Yuan X, Zhang Y, Yang M, Qiang Z. Simultaneous detection of endocrine disrupting chemicals including conjugates in municipal wastewater and sludge with enhanced sample pretreatment and UPLC-MS/MS. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:1377-1385. [PMID: 26161687 DOI: 10.1039/c5em00139k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The co-existence of free and conjugated estrogens and the interference from complex matrices often lead to largely variable detected concentrations and sometimes even negative removal efficiencies of typical endocrine disrupting chemicals (EDCs) in wastewater treatment plants (WWTPs). In this study, a highly selective and sensitive method was developed for simultaneous extraction, elution, and detection of 12 EDCs (i.e., 4 free estrogens, 6 conjugated estrogens, and 2 phenolic compounds) in municipal wastewater and sludge. Sample pretreatment and ultra-performance liquid chromatography-tandem mass spectrometry detection were optimized to improve the detection selectivity and sensitivity. The results indicate that the additional purification process was highly effective in reducing the matrix interference, and the limits of quantification reached as low as 0.04-2.2 ng L(-1) in wastewater and 0.05-4.9 ng g(-1) in sludge for all target EDCs. The developed method was successfully applied to explore the behavior of target EDCs in a local WWTP. The conjugates occupied a considerable portion (4.3-76.9% in molar ratio) of each related estrogen in the influent. Most of the target EDCs could not be completely removed in WWTPs, thus posing a potential threat to aquatic ecosystems.
Collapse
Affiliation(s)
- Bing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| | | | | | | | | | | |
Collapse
|
47
|
Chang L, Bi P, Li X, Wei Y. Study of solvent sublation for concentration of trace phthalate esters in plastic beverage packaging and analysis by gas chromatography–mass spectrometry. Food Chem 2015; 177:127-33. [DOI: 10.1016/j.foodchem.2015.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/14/2014] [Accepted: 01/03/2015] [Indexed: 10/24/2022]
|
48
|
Socas-Rodríguez B, Hernández-Borges J, Salazar P, Martín M, Rodríguez-Delgado MÁ. Core–shell polydopamine magnetic nanoparticles as sorbent in micro-dispersive solid-phase extraction for the determination of estrogenic compounds in water samples prior to high-performance liquid chromatography–mass spectrometry analysis. J Chromatogr A 2015; 1397:1-10. [DOI: 10.1016/j.chroma.2015.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/05/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
|
49
|
Chemometrics-assisted cyclodextrin-enhanced excitation-emission fluorescence spectroscopy for the simultaneous green determination of bisphenol A and nonylphenol in plastics. Talanta 2015; 143:162-168. [PMID: 26078144 DOI: 10.1016/j.talanta.2015.05.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022]
Abstract
The aim of this work was to quantify two relevant priority chemicals, bisphenol A (BPA) and 4-nonylphenol (NP), coupling the sensitivity of fluorescence in organized media and the selectivity of multivariate calibration, measuring excitation-emission fluorescence matrices in an aqueous methyl-β-cyclodextrin solution. The studied priority pollutants are two of the most frequently found xenoestrogens in the environment, and are therefore of public health concern.The data were successfully processed by applying unfolded partial least-squares coupled to residual bilinearization (U-PLS/RBL), which provided the required selectivity for overcoming the severe spectral overlapping among the analyte spectra and also those for the interferents present in real samples. A rigorous International Union of Pure and Applied Chemistry (IUPAC)-consistent approach was applied for the calculation of the limits of detection. Values in the ranges of 1-2 and 4-14 ng mL(-1) were obtained in validation samples for BPA and NP, respectively. On the other hand, low relative prediction errors between 3% and 8% were achieved. The proposed method was successfully applied to the determination of BPA and NP in different plastics. In positive samples, after an easy treatment with a small volume of ethanol at 35°C, concentrations were found to range from 26 to 199 ng g(-1) for BPA, and from 95 to 30,000 ng g(-1) for NP.
Collapse
|
50
|
Ruan A, Zhao Y, Liu C, Zong F, Yu Z. Effects of 17β-estradiol on emissions of greenhouse gases in simulative natural water body. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:977-982. [PMID: 25639264 DOI: 10.1002/etc.2882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/17/2014] [Accepted: 12/31/2015] [Indexed: 06/04/2023]
Abstract
Environmental estrogens are widely spread across the world and are increasingly thought of as serious contaminators. The present study looks at the influence of different concentrations of 17β-estradiol on greenhouse gas emissions (CO2 , CH4 , and N2 O) in simulated systems to explore the relationship between environmental estrogen-pollution and greenhouse gas emissions in natural water bodies. The present study finds that 17β-estradiol pollution in simulated systems has significant promoting effects on the emissions of CH4 and CO2 , although no significant effects on N2 O emissions. The present study indicates that 17β-estradiol has different effects on the different elements cycles; the mechanism of microbial ecology is under review.
Collapse
Affiliation(s)
- Aidong Ruan
- State Key Laboratory of Hydrology-Water Resources and hydraulic Engineering, Hohai University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | |
Collapse
|