1
|
Howells CL, Stocker AJ, Lea JN, Halcovitch NR, Patel H, Fletcher NC. Transition Metal Complexes with Appended Benzimidazole Groups for Sensing Dihydrogenphosphate. Chemistry 2024; 30:e202401385. [PMID: 38967595 DOI: 10.1002/chem.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Four new complexes [Ru(bpy)2(bbib)](PF6)2, [Ru(phen)2(bbib)](PF6)2, [Re(CO)3(bbib)(py)](PF6) and [Ir(ppy)2(bbib)](PF6) [where bbib=4,4'-bis(benzimidazol-2-yl)-2,2'-bipyridine] have been prepared and their photophysical properties determined. Their behaviour has been studied with a variety of anions in acetonitrile, DMSO and 10 % aquated DMSO. Acetate and dihydrogenphosphate demonstrate a redshift in the bbib ligand associated absorptions suggesting that the ligand is strongly interacting with these anions. The 3MLCT emissive state is sensitive to the introduction of small quantities of anion (sub-stoichiometric quantities) and significant quenching is typically observed with acetate, although this is less pronounced in the presence of water. The emissive behaviour with dihydrogenphosphate is variable, showing systematic changes as anion concentration increases with several distinct interactions evident. 1H- and 31P-NMR titrations in a 10 % D2O-DMSO-D6 mixture suggest that with dihydrogenphosphate, the imidazole group is able to act as both a proton acceptor and donor. It appears that all four complexes can form a {[complex]2-H2PO4} "dimer", a one-to-one species (which the X-ray crystallography study suggests is dimeric in the solid-state), and a complex with a combined bis(dihydrogenphosphate) complex anion. The speciation relies on complex equilibria dependent on several factors including the complex charge, the hydrophobicity of the associated ligands, and the solvent.
Collapse
Affiliation(s)
- Chloe L Howells
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Andrew J Stocker
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Joshua N Lea
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Nathan R Halcovitch
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Humaira Patel
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Nicholas C Fletcher
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| |
Collapse
|
2
|
K N, Shetty AN, Trivedi DR. Colorimetric differentiation of arsenite and arsenate anions using a bithiophene sensor with two binding sites: DFT studies and application in food and water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4960-4970. [PMID: 38973603 DOI: 10.1039/d4ay00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Chemosensor N7R1 with two acidic binding sites was synthesized, and the ability of the sensor to differentiate arsenite and arsenate in the organo-aqueous medium was evaluated using colorimetric sensing methods. N7R1 distinguished arsenite with a peacock blue color and arsenate with a pale green color in a DMSO/H2O (9 : 1, v/v) solvent mixture. The specific selectivity for arsenite was achieved in DMSO/H2O (7 : 3, v/v). The sensor demonstrated stability over a pH range of 5 to 12. The computed high binding constant of 9.3176 × 1011 M-2 and a lower detection limit of 11.48 ppb for arsenite exposed the chemosensor's higher potential for arsenite detection. The binding mechanism with a 1 : 2 binding process is confirmed using UV-Vis and 1H NMR titrations, electrochemical studies, mass spectral analysis and DFT calculations. Practical applications were demonstrated by utilizing test strips and molecular logic gates. Chemosensor N7R1 successfully detected arsenite in real water samples, as well as honey and milk samples.
Collapse
Affiliation(s)
- Nagaraj K
- Department of Chemistry, Material Science Laboratory, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India
- Department of Chemistry, Supramolecular Chemistry Laboratory, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India.
| | - A Nityananda Shetty
- Department of Chemistry, Material Science Laboratory, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India
| | - Darshak R Trivedi
- Department of Chemistry, Supramolecular Chemistry Laboratory, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India.
| |
Collapse
|
3
|
Guo H, Zhang H, Sun T, Wang X, Gong P. Research on Key Technologies of Dual-Light-Type Photoelectric Colorimetric Method for Phosphate Determination. MICROMACHINES 2024; 15:821. [PMID: 39064332 PMCID: PMC11279197 DOI: 10.3390/mi15070821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Phosphate plays a crucial role in microbial proliferation, and the regulation of the phosphate concentration can modulate the fermentation efficiency. In this study, based on Lambert-Beer's Law and the selective absorption characteristics of substances under light, a dual-light-type photoelectric colorimetric device for phosphate determination was designed. The device's main components, such as the excitation light path and incubation stations, were modeled and simulated. The primary performance of the instrument was verified, and comparative experiments with a UV-1780 spectrophotometer were conducted to validate its performance. The experimental results demonstrate that this device exhibits a high degree of linearity with an R2 value of 0.9956 and a repeatability of ≤1.72%. The average temperature rise rate at the incubation stations was measured at 0.44 °C/s, with a temperature uniformity ≤ ±0.1 °C (temperature set at 37.3 °C). Consistently observed trends in the measurement of 23 CHO cell suspensions using the UV-1780 spectrophotometer further validated the accuracy and reliability of the device's detection results.
Collapse
Affiliation(s)
- Hongzhuang Guo
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (H.G.); (T.S.)
| | - Hao Zhang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China;
| | - Tingting Sun
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (H.G.); (T.S.)
| | - Xin Wang
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (H.G.); (T.S.)
| | - Ping Gong
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China;
| |
Collapse
|
4
|
Sharma D, Wangoo N, Sharma RK. Ultrasensitive NIR fluorometric assay for inorganic pyrophosphatase detection via Cu 2+-PPi interaction using bimetallic Au-Ag nanoclusters. Anal Chim Acta 2024; 1305:342584. [PMID: 38677840 DOI: 10.1016/j.aca.2024.342584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Inorganic pyrophosphatase (PPase) is key enzyme playing a key role in biochemical transformations such as biosynthesis of DNA and RNA, bone formation, metabolic pathways associated with lipid, carbohydrate and phosphorous. It has been reported that lung adenocarcinomas, colorectal cancer, and hyperthyroidism disorders can result from abnormal level of PPase. Therefore, it is of notable significance to develop simple and effective real time assay for PPase enzyme activity monitoring for screening of many metabolic pathways as well as for early disease diagnosis. RESULT The fluorometric detection of PPase enzyme in near infrared region-1 (NIR-1) has been carried out using bimetallic nanoclusters (LA@AuAg NCs). The developed sensing strategy was based on quenching of fluorescence intensity of LA@AuAg NCs upon interaction with copper (Cu2+) ions. The off state of LA@AuAg_Cu2+ ensemble was turned on upon addition of pyrophosphate anion (PPi) due to strong binding interaction between PPi and Cu2+. The catalytic conversion of PPi into phosphate anion (Pi) in the presence of PPase led to liberation of Cu2+ ions, and again quenched off state was retrieved due to interaction of free Cu2+ with LA@AuAg NCs. The ultrasensitive detection of PPase was observed in the linear range of 0.06-250 mU/mL with LOD as 0.0025 mU/mL. The designed scheme showed good selectivity towards PPase enzyme in comparison to other bio-substrates, along with good percentage recovery for PPase detection in real human serum samples. SIGNIFICANCE The developed NIR based assay is ultrasensitive, highly selective and robust for PPase enzyme and can be safely employed for other enzymes detection. This highly sensitive nature of biosensor was result of involvement of fluorescence-based technique and synergistic effect of dual metal in NIR based bimetallic NCs. Moreover, owing to the emission in NIR domain, in future, these nanoclusters can be safely employed for many biomedical applications for In vivo studies.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering and Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh, 160014, India
| | - Rohit K Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Wei H, Pan D, Liang Y, Fan X, Gai G. New insights into estimation of bioavailable inorganic phosphorus in natural coastal seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169751. [PMID: 38176548 DOI: 10.1016/j.scitotenv.2023.169751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Considering the impact of the high salinity and high turbidity of coastal seawater on phosphorus forms, a new method was proposed to determine bioavailable inorganic phosphorus (BIP). The phosphorus most relevant to eutrophication is BIP, and traditional analysis methods may underestimate the degree of eutrophication. In this study, a microelectrode of multigold (AuμE) was fabricated for direct voltammetric determination of BIP without filtration, and BIP environmental characteristics including distribution and correlation relationships with environmental factors in typical coastal seawater of Northern China were analyzed. The proposed AuμE showed a low detection limit of 0.03 μM. The surface and bottom BIP concentrations ranged from 1.00 to 2.13 and from 0.88 to 2.05 μM, respectively. BIP dominated the total P (TP) accounting for 48.5-67.5 % in the surface layer samples, and 32.6-92.7 % in the bottom layer samples, respectively. The concentrations of BIP were obviously higher than those of DIP, indicating that DIP may underestimate the probability of eutrophication occurring. And BIP was positively correlated with dissolved oxygen (DO) (P < 0.05). BIP may be a promising indicator of eutrophication potential in coastal areas with high salinity and high turbidity. The proposed reliable voltammetry method provides a new indicator for environmental assessment and represents a significant step in the comprehensive analysis of P species.
Collapse
Affiliation(s)
- Hong Wei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Dawei Pan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yan Liang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xia Fan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guowei Gai
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257347, PR China
| |
Collapse
|
6
|
Kuhl GM, Banning DH, Fargher HA, Davis WA, Howell MM, Zakharov LN, Pluth MD, Johnson DW. Benchmarking the placement of hydrosulfide in the Hofmeister series using a bambus[6]uril-based ChemFET sensor. Chem Sci 2023; 14:10273-10279. [PMID: 37772108 PMCID: PMC10530170 DOI: 10.1039/d3sc03616b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/30/2023] Open
Abstract
Hydrosulfide (HS-) is the conjugate base of gasotransmitter hydrogen sulfide (H2S) and is a physiologically-relevant small molecule of great interest in the anion sensing community. However, selective sensing and molecular recognition of HS- in water remains difficult because, in addition to the diffuse charge and high solvation energy of anions, HS- is highly nucleophilic and readily oxidizes into other reactive sulfur species. Moreover, the direct placement of HS- in the Hofmeister series remains unclear. Supramolecular host-guest interactions provide a promising platform on which to recognize and bind hydrosulfide, and characterizing the placement of HS- in the Hofmeister series would facilitate the future design of selective receptors for this challenging anion. Few examples of supramolecular HS- binding have been reported, but the Sindelar group reported HS- binding in water using bambus[6]uril macrocycles in 2018. We used this HS- binding platform as a starting point to develop a chemically-sensitive field effect transistor (ChemFET) to facilitate assigning HS- to a specific place in the Hofmeister series. Specifically, we prepared dodeca-n-butyl bambus[6]uril and incorporated it into a ChemFET as the HS- receptor motif. The resultant device provided an amperometric response to HS-, and we used this device to measure the response of other anions, including SO42-, F-, Cl-, Br-, NO3-, ClO4-, and I-. Using this response data, we were able to experimentally determine that HS- lies between Cl- and Br- in the Hofmeister series, which matches recent theoretical computational work that predicted a similar placement. Taken together, these results highlight the potential of using molecular recognition coupled with ChemFET architectures to develop new approaches for direct and reversible HS- detection and measurement in water and further advance our understanding of different recognition approaches for this challenging anion.
Collapse
Affiliation(s)
- Grace M Kuhl
- Department of Chemistry & Biochemistry, Materials Science Institute, University of Oregon 97403-1253 Eugene OR USA https://www.dwjlab.com/
| | - Douglas H Banning
- Department of Chemistry & Biochemistry, Materials Science Institute, University of Oregon 97403-1253 Eugene OR USA https://www.dwjlab.com/
| | - Hazel A Fargher
- Department of Chemistry & Biochemistry, Materials Science Institute, University of Oregon 97403-1253 Eugene OR USA https://www.dwjlab.com/
| | - Willow A Davis
- Department of Chemistry & Biochemistry, Materials Science Institute, University of Oregon 97403-1253 Eugene OR USA https://www.dwjlab.com/
| | - Madeline M Howell
- Department of Chemistry & Biochemistry, Materials Science Institute, University of Oregon 97403-1253 Eugene OR USA https://www.dwjlab.com/
| | - Lev N Zakharov
- Department of Chemistry & Biochemistry, Materials Science Institute, University of Oregon 97403-1253 Eugene OR USA https://www.dwjlab.com/
| | - Michael D Pluth
- Department of Chemistry & Biochemistry, Materials Science Institute, University of Oregon 97403-1253 Eugene OR USA https://www.dwjlab.com/
| | - Darren W Johnson
- Department of Chemistry & Biochemistry, Materials Science Institute, University of Oregon 97403-1253 Eugene OR USA https://www.dwjlab.com/
| |
Collapse
|
7
|
Xu F, Leng W, Lu Q, Li K, Zhang Y, Liu J, Xu L, Sheng G. Ratiometric fluorescent sensing of phosphate ion in environmental water samples using flavin mononucleotide-functionalized Fe 3O 4 particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159249. [PMID: 36220471 DOI: 10.1016/j.scitotenv.2022.159249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Phosphate ion (PO43-) serves as an important nutrient carrier to support the growth of aquatic animals and plants in aquatic systems. However, excess concentrations of PO43- are the key factor responsible for eutrophication, resulting in rapid deterioration of water quality. Therefore, accurate determination of PO43- is of great significance in water quality and security. In this study, flavin mononucleotide (FMN), an intracellular form of vitamin B2, was used as fluorophore. A novel "off-on" fluorescent sensing platform (FMN@Fe3O4) was fabricated for selective and sensitive detection of PO43-, and showed excellent fluorescence response and good selectivity for PO43- detection. With the addition of PO43-, the fluorescence intensity restored is proportional to PO43- concentration in the quantification range of 50 nM-0.75 μM with a limit of detection as low as 20 nM (0.62 μg.L-1, calculated by P element). An adsorption/desorption sensing mechanism via an in-depth analysis of the interfacial interaction between PO43- and FMN@Fe3O4 is proposed. FMN is first adsorbed by its terminal phosphate group on Fe3O4 particles to quench fluorescence. Free PO43- replaces the adsorbed FMN and restores the quenched fluorescence to achieve the aim of PO43- detection. In addition, this sensing system has been successfully validated in real water sample analysis and all reagents involved are nontoxic, environmentally benign, and easily-available. Therefore, this assay has great applicability in water quality monitoring.
Collapse
Affiliation(s)
- Fang Xu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Wei Leng
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qinwei Lu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kunpeng Li
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yukuai Zhang
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jingyu Liu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liqiang Xu
- Department of Resource Science and Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guoping Sheng
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
8
|
A Sensitive, Fast, Selective, and Reusable Enzyme-Free Simultaneous Determination of Glucose and Environmental Monitoring of Phosphorus Sensor Based on Ag@Li Dual Shell Hallow Nanospheres. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Sedhu N, Jagadeesh Kumar J, Sivaguru P, Raj V. Electrochemical detection of riboflavin in pharmaceutical and food samples using in situ electropolymerized glycine coated pencil graphite electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Zhang X, Wang J, Juan Y, Yang H, Wei W, Zhao J. A novel fluorescence method for detection of phosphate anions based on porphyrin metalation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121136. [PMID: 35299095 DOI: 10.1016/j.saa.2022.121136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In this work, a novel fluorescence method for the detection of phosphate anions (PO43-) was developed based on porphyrin metalation. Through catalysis by G-quadruplex (G4), Cu2+ could insert into the porphyrins to quench their fluorescence. G4 simultaneously improved the fluorescence of the porphyrins but not that of Cu2+-porphyrin. In the absence of PO43-, the porphyrins were metallized by Cu2+, and no fluorescence was observed. In the presence of PO43-, PO43- could coordinate with Cu2+ to prevent porphyrin metalation. Free porphyrin could bind with G4 to emit strong fluorescence. By comparing four common porphyrins, we found that G4 had the greatest effect on increasing the fluorescence intensity of N-methylmesoporphyrin IX (NMM). Thus, NMM/G4 was chosen for the design of a biosensor. Under optimal experimental conditions, this method showed high sensitivity and satisfactory selectivity for PO43- with a detection limit of 44 nM in a linear range of 0.01-1.0 μM. The recovery experiments showed recovery rates of 93.75-106.00%, suggesting a great potential for measuring PO43- in real samples.
Collapse
Affiliation(s)
- Xingping Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China; School of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Jiujun Wang
- School of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yewen Juan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China; School of Life Sciences, Nanjing University, Nanjing, China
| | - Hualin Yang
- School of Life Science, Yangtze University, Jingzhou, Hubei, China.
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China; School of Life Sciences, Nanjing University, Nanjing, China; Shenzhen Research Institute, Nanjing University, Shenzhen, China.
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China; Shenzhen Research Institute, Nanjing University, Shenzhen, China.
| |
Collapse
|
11
|
Sensitive and selective voltammetric determination of ciprofloxacin using screen‐printed electrodes modified with carbon black and magnetic‐molecularly imprinted polymer. ELECTROANAL 2022. [DOI: 10.1002/elan.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
SERS Determination of Trace Phosphate in Aquaculture Water Based on a Rhodamine 6G Molecular Probe Association Reaction. BIOSENSORS 2022; 12:bios12050319. [PMID: 35624620 PMCID: PMC9139008 DOI: 10.3390/bios12050319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/17/2022]
Abstract
Although phosphate (Pi) is a necessary nutrient for the growth of aquatic organisms, the presence of excess Pi leads to water eutrophication; thus, it is necessary to accurately determine the content of Pi in water. A method for the determination of trace Pi in aquaculture water was developed based on surface-enhanced Raman spectroscopy (SERS) combined with rhodamine 6G (R6G)-modified silver nanoparticles (AgNPs) as the active substrate. The adsorption of R6G on the AgNP surfaces led to a strong SERS signal. However, in the presence of Pi and ammonium molybdate, phosphomolybdic acid formed, which further associated with R6G to form a stable R6G-PMo12O403− association complex, thereby hindering the adsorption of R6G on the AgNPs, and reducing the SERS intensity; this sequence formed the basis of Pi detection. The decrease in the SERS intensity was linear with respect to the Pi concentration (0.2–20 μM), and the limit of detection was 29.3 nM. Upon the application of this method to the determination of Pi in aquaculture water, a recovery of 94.4–107.2% was obtained (RSD 1.77–6.18%). This study provides an accurate, rapid, and sensitive method for the trace determination of Pi in aquaculture water, which is suitable for on-site detection.
Collapse
|
13
|
Advances in Technological Research for Online and In Situ Water Quality Monitoring—A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14095059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Monitoring water quality is an essential tool for the control of pollutants and pathogens that can cause damage to the environment and human health. However, water quality analysis is usually performed in laboratory environments, often with the use of high-cost equipment and qualified professionals. With the progress of nanotechnology and the advance in engineering materials, several studies have shown, in recent years, the development of technologies aimed at monitoring water quality, with the ability to reduce the costs of analysis and accelerate the achievement of results for management and decision-making. In this work, a review was carried out on several low-cost developed technologies and applied in situ for water quality monitoring. Thus, new alternative technologies for the main physical (color, temperature, and turbidity), chemical (chlorine, fluorine, phosphorus, metals, nitrogen, dissolved oxygen, pH, and oxidation–reduction potential), and biological (total coliforms, Escherichia coli, algae, and cyanobacteria) water quality parameters were described. It was observed that there has been an increase in the number of publications related to the topic in recent years, mainly since 2012, with 641 studies being published in 2021. The main new technologies developed are based on optical or electrochemical sensors, however, due to the recent development of these technologies, more robust analyses and evaluations in real conditions are essential to guarantee the precision and repeatability of the methods, especially when it is desirable to compare the values with government regulatory standards.
Collapse
|
14
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
Farshbaf S, Dey K, Mochida W, Kanakubo M, Nishiyabu R, Kubo Y, Anzenbacher P. Detection of phosphates in water utilizing a Eu 3+-mediated relay mechanism. NEW J CHEM 2022. [DOI: 10.1039/d1nj04578d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent carboxyamidoquinolines form ensembles with Eu3+ that can be successfully leveraged in sensing of phosphates showing off–on fluorescence signaling.
Collapse
Affiliation(s)
- Sepideh Farshbaf
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Kaustav Dey
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Wakana Mochida
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Masashi Kanakubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Pavel Anzenbacher
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
16
|
Kaur J, Singh PK. Nanomaterial based advancement in the inorganic pyrophosphate detection methods in the last decade: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
|
18
|
Topcu C, Coldur F, Caglar B, Ozdokur KV, Cubuk O. Solid‐state Electrochemical Sensor Based on a Cross‐linked Copper(II)‐doped Copolymer and Carbon Nanotube Material for Selective and Sensitive Detection of Monohydrogen Phosphate. ELECTROANAL 2021. [DOI: 10.1002/elan.202100340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cihan Topcu
- Department of Biomedical Engineering Faculty of Engineering Samsun University Samsun Turkey
| | - Fatih Coldur
- Department of Chemistry Faculty of Arts and Sciences Erzincan Binali Yildirim University Erzincan Turkey
| | - Bulent Caglar
- Department of Chemistry Faculty of Arts and Sciences Erzincan Binali Yildirim University Erzincan Turkey
| | - K. Volkan Ozdokur
- Department of Chemistry Faculty of Arts and Sciences Erzincan Binali Yildirim University Erzincan Turkey
| | - Osman Cubuk
- Department of Chemistry Faculty of Arts and Sciences Erzincan Binali Yildirim University Erzincan Turkey
| |
Collapse
|
19
|
Lu Y, Lan Q, Zhang C, Liu B, Wang X, Xu X, Liang X. Trace-Level Sensing of Phosphate for Natural Soils by a Nano-Screen-Printed Electrode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13093-13102. [PMID: 34550673 DOI: 10.1021/acs.est.1c05363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phosphate as one of the most essential components of living systems, robust analytical techniques available for phosphate sensing in natural waters and soils are essential for monitoring and predicting water quality and agronomic evaluation of phosphate. Using cyclic voltammetry, a point-of-use electrochemical sensor zirconium dioxide/zinc oxide/multiple-wall carbon nanotubes/ammonium molybdate tetrahydrate/screen printed electrode (ZrO2/ZnO/MWCNTs/AMT/SPE) was applied to explore the electro-redox reaction of phosphomolybdate complexes on the surface of electrode, which produced a quantitative electrochemical response of phosphate anions. The modification of the electrode surface with ZrO2/ZnO/MWCNTs nanocomposites is able to generate the electroactive species via chemical reaction between molybdenum (Mo(VI)) and the targeted phosphate anions, leading to a sensitive detection technique for trace phosphate with a lower detection limit (LOD = 2.0 × 10-8 mol L-1), higher reproducibility, anti-interference, and precision in different soil sources. This system will be of great potential to advance the trace-level understanding of phosphate especially in field environmental analysis.
Collapse
Affiliation(s)
- Yuanyuan Lu
- College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
- Key Laboratory of Water Pollution Control and Environmental Security Technology, 310058 Hangzhou, Zhejiang Province, China
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, U.K
| | - Qingwen Lan
- College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
- Key Laboratory of Water Pollution Control and Environmental Security Technology, 310058 Hangzhou, Zhejiang Province, China
| | - Chuxuan Zhang
- College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
- Key Laboratory of Water Pollution Control and Environmental Security Technology, 310058 Hangzhou, Zhejiang Province, China
| | - Boyi Liu
- College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
- Key Laboratory of Water Pollution Control and Environmental Security Technology, 310058 Hangzhou, Zhejiang Province, China
| | - Xiaochun Wang
- College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
- Key Laboratory of Water Pollution Control and Environmental Security Technology, 310058 Hangzhou, Zhejiang Province, China
| | - Xiangyang Xu
- College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
- Key Laboratory of Water Pollution Control and Environmental Security Technology, 310058 Hangzhou, Zhejiang Province, China
| | - Xinqiang Liang
- College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
- Key Laboratory of Water Pollution Control and Environmental Security Technology, 310058 Hangzhou, Zhejiang Province, China
| |
Collapse
|
20
|
Abstract
We report a novel amperometric sensor for aqueous phosphate ions in freshwater systems based on the reductive square wave voltammetry of molybdate(VI) anions immobilized within a chitosan matrix deposited on a glassy carbon electrode. A sensitivity of 4.4 ± 0.1 μA/μM was realized together with a LOD of 0.15 μM. The sensor was insensitive to chloride and nitrate ions below a threshold concentration of 1.0 mM. Analytical measurements were successfully made in authentic samples of tap and pond water.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, U.K
| | - Xiuting Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Danlei Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, U.K
| | - Richard G. Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
21
|
Wei H, Pan D, Zhou Z, Han H, Zhu R. On-site electrochemical determination of phosphate with high sensitivity and anti-interference ability in turbid coastal waters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112444. [PMID: 34174734 DOI: 10.1016/j.ecoenv.2021.112444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Phosphate is considered to be an important biogenic element and responsible for eutrophication in aquatic ecosystems, existing in both dissolved and absorbed forms. Due to the complex matrix of coastal seawater, a high sensitivity and anti-interference method for phosphate detection is required for environmental protection. In this study, a novel electrochemical method was proposed based on reduced graphene oxide-ordered mesoporous carbon screen-printed electrode (rGO-OMC/SPE) analysis, allowing sensitivity and reliable determination of phosphate in turbid coastal waters. Combining the good absorption capacity of OMC with the excellent electroconductivity of rGO, the fabricated electrode exhibits improved signal responses, enhanced by up to 43-fold. The platform was evaluated using turbidity interference test with good recovery percentages comprised between 96% and 105% in different phosphate concentration, and salinity interference test between 92% and 105%, respectively. A linear range from 0.2 to 150 μM phosphate was achieved, with a detection limit of 0.05 μM (s/n = 3). The fabricated platform was successfully used for on-site analysis of phosphate in turbid coastal waters. This reliable and effective method for the analysis of phosphate in turbid coastal waters allows for sensitivity and anti-interference determination, while also representing a significant step towards comprehensive and convenient analysis of phosphorus species.
Collapse
Affiliation(s)
- Hong Wei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dawei Pan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Zhengwen Zhou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haitao Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Rilong Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
22
|
Chen Q, Sun S, Ran G, Wang C, Gu W, Song Q. Electrochemical Detection of Phosphate Ion in Body Fluids with a Magnesium Phosphate Modified Electrode. ANAL SCI 2021; 37:1247-1252. [PMID: 33612555 DOI: 10.2116/analsci.20p415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An electrochemical sensor for phosphate detection in body fluids was developed based on the hydration transition of magnesium hydrogen phosphate (newberyite, MgHPO4·3H2O). The sensor was fabricated through incubation of a multi-walled carbon nanotube/Nafion (MWCNT/Nafion) modified glassy carbon electrode (GCE) in magnesium phosphate solution, where MgHPO4·3H2O was self-assembled on the electrode surface (denoted as MgP/MWCNT/Nafion). An electrooxidation peak at 1.0 V vs. Ag/AgCl was observed when the as-prepared electrode was subjected to a differential pulse voltammetry (DPV) scan in the presence of phosphate in acetate solution. When the DPV scan was performed in 0.4 - 1.3 V vs. Ag/AgCl, a linear relationship was observed between the peak height and the phosphate concentration in the range from 0.01 to 25 μM in the presence of 0.1 mM Mg2+ in the acetate solution with a limit of detection of 32 nM. And the sensor was successfully applied for phosphate detection in human urine and saliva samples with recoveries of 94.7 - 104.4 and 96 - 103.3%, respectively.
Collapse
Affiliation(s)
- Qixuan Chen
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
| | - Shuquan Sun
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
| | - Guoxia Ran
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
| | - Chan Wang
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
| | - Wenxiu Gu
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
| | - Qijun Song
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
| |
Collapse
|
23
|
Wu T, Xia D, Xu J, Ye C, Zhang D, Deng D, Zhang J, Huang G. Sequential injection-square wave voltammetric sensor for phosphate detection in freshwater using silanized multi-walled carbon nanotubes and gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Electrochemical detection of riboflavin using tin-chitosan modified pencil graphite electrode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Gong C, Li Z, Liu G, Pu S. Ratiometric fluorescent sensing for phosphate based on Eu/Ce/UiO-66-(COOH) 2 nanoprobe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119493. [PMID: 33556795 DOI: 10.1016/j.saa.2021.119493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/26/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The sensing of phosphate anion (PO43-) is an important subject for human health and environmental monitoring. Herein, a unique ratiometric fluorescent nanoprobe based on postsynthetic modification of metal-organic frameworks (MOF) UiO-66-(COOH)2 with Eu3+ and Ce3+ ions toward PO43- was proposed (designated as Eu/Ce/Uio-66-(COOH)2). The Eu/Ce/Uio-66-(COOH)2 nanoprobe exhibits three emission peaks at 377 nm, 509 nm, and 621 nm with the single excitation wavelength at 250 nm, respectively. The strong coordinating interaction between Ce3+ and O atoms in the PO43- group can result in the fluorescence quenching at 377 nm, while the fluorescence of 621 nm almost remains unchanged. Such a useful phenomenon is exploited for the construction of a ratiometric fluorescence platform for the detection of PO43-. The assay exhibited a good linear response in the 0.3-20 μM concentration range with the detection limit of 0.247 μM. In addition, this ratiometric fluorescent sensing method not only can be applied to read out PO43- concentration in real water samples, but also shows higher sensitivity, easier preparation and sensing procedures than other detection strategies.
Collapse
Affiliation(s)
- Congcong Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; YuZhang Normal University, Nanchang 330013, PR China.
| |
Collapse
|
26
|
Prasad A, Sahu SP, Figueiredo Stofela SK, Chaichi A, Hasan SMA, Bam W, Maiti K, McPeak KM, Liu GL, Gartia MR. Printed Electrode for Measuring Phosphate in Environmental Water. ACS OMEGA 2021; 6:11297-11306. [PMID: 34056285 PMCID: PMC8153944 DOI: 10.1021/acsomega.1c00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Phosphate is a major nonpoint source pollutant in both the Louisiana local streams as well as in the Gulf of Mexico coastal waters. Phosphates from agricultural run-off have contributed to the eutrophication of global surface waters. Phosphate environmental dissemination and eutrophication problems are not yet well understood. Thus, this study aimed to monitor phosphate in the local watershed to help identify potential hot spots in the local community (Mississippi River, Louisiana) that may contribute to nutrient loading downstream (in the Gulf of Mexico). An electrochemical method using a physical vapor deposited cobalt microelectrode was utilized for phosphate detection using cyclic voltammetry and amperometry. The testing results were utilized to evaluate the phosphate distribution in river water and characterize the performance of the microsensor. Various characterizations, including the limit of detection, sensitivity, and reliability, were conducted by measuring the effect of interferences, including dissolved oxygen, pH, and common ions. The electrochemical sensor performance was validated by comparing the results with the standard colorimetry phosphate detection method. X-ray photoelectron spectroscopy (XPS) measurements were performed to understand the phosphate sensing mechanism on the cobalt electrode. This proof-of-concept sensor chip could be utilized for on-field monitoring using a portable, hand-held potentiostat.
Collapse
Affiliation(s)
- Alisha Prasad
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sushant P. Sahu
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Ardalan Chaichi
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Syed Mohammad Abid Hasan
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Wokil Bam
- Department
of Oceanography and Coastal Sciences, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| | - Kanchan Maiti
- Department
of Oceanography and Coastal Sciences, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| | - Kevin M. McPeak
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Gang Logan Liu
- Department
of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Manas Ranjan Gartia
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
27
|
|
28
|
Jin Y, Qi T, Ge Y, Chen J, Liang L, Ju J, Zhao J. Ultrasensitive electrochemical determination of phosphate in water by using hydrophilic TiO 2 modified glassy carbon electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:996-1002. [PMID: 33533760 DOI: 10.1039/d0ay01854f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, ultrasensitive electrochemical determination of phosphate in water is achieved by using hydrophilic TiO2 modified glassy carbon electrodes for the first time. The differential pulse voltammetry (DPV) method is proposed to measure phosphate in water as pulse techniques offer higher sensitivity compared with the conventional cyclic voltammetry (CV) method. Hydrophilic TiO2 films were obtained upon ultraviolet (UV) illumination after TiO2 precursor emulsions were coated on the surfaces of glassy carbon electrodes, and used for phosphate determination. Contact angle measurements (around 23.4°) proved the good hydrophilicity of the TiO2 modified surface upon UV illumination. A detection limit of 0.1 μg L-1 is obtained, and a linear relationship (R2 = 0.99) between the phosphate concentration (ranging from 0.1 μg L-1 to 1 μg L-1) and the peak current was observed.
Collapse
Affiliation(s)
- Yan Jin
- College of Sciences, Shanghai Institute of Technology, Shanghai 201418, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Alashkar N, Arca M, Alnasr H, Lutter M, Lippolis V, Jurkschat K. Water‐Soluble Organotin Compounds – Syntheses, Structures and Reactivity towards Fluoride Anions in Water. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nour Alashkar
- Lehrstuhl für Anorganische Chemie II Technische Universität Dortmund 44221 Dortmund Germany
| | - Massimiliano Arca
- Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari S.S. 554 Bivio per Sestu 09042 Monserrato (CA) Italy
| | - Hazem Alnasr
- Lehrstuhl für Anorganische Chemie II Technische Universität Dortmund 44221 Dortmund Germany
| | - Michael Lutter
- Lehrstuhl für Anorganische Chemie II Technische Universität Dortmund 44221 Dortmund Germany
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari S.S. 554 Bivio per Sestu 09042 Monserrato (CA) Italy
| | - Klaus Jurkschat
- Lehrstuhl für Anorganische Chemie II Technische Universität Dortmund 44221 Dortmund Germany
| |
Collapse
|
30
|
Abstract
Phthalocyanines are aromatic or macrocyclic organic compounds and attract great attention due to their numerous properties. They have many high-tech applications in different areas of the industry such as dyestuffs, thermal printing screens, photovoltaic solar cells, membrane catalytic reactors, semiconductor materials and gas sensors. In the last decade, electrochemical sensor studies have accelerated with the catalytic lighting. It plays a dominant role in the development and implementation of new generation sensors. The aim of this study is to review the electrochemical methods based on electrode modification with phthalocyanines and to shed light on new application areas of phthalocyanines. The focal point was based on the sensor applications of phthalocyanines in the determination of drugs, pesticides, organic materials and metals etc. by electrochemical methods. Experimental conditions and some validation parameters of the sensor applications such as metal phthalocyanine types, indicator electrodes, selectivity, working ranges, detection limits, and analytical applications were discussed. Consequently, this is the first review dealing with the applications of phthalocyanines in electrochemical sensors for the sensitive determination of analytes in a variety of matrices.
Collapse
Affiliation(s)
- Ersin Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Hulya Silah
- Department of Chemistry, Faculty of Art & Science, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
31
|
Abstract
Abstract
In this work, the possibility of flow coulometry application as coulometric titration was studied. The method was used to analyze phosphates in wastewater samples. The principle of the determination consisted in the formation of molybdophosphate and its subsequent one-electron electrolytic reduction. The present method is applicable under optimal conditions in the concentration range of 1.5 × 10−6 to 5.5 × 10−5 mol/dm3. Detection limit of the method is 3.42 × 10−7 mol/dm3. Mineralization step has been proved a problem in total phosphate content determination. If mineralization was not carried out, only inorganic soluble phosphates were determined. It is a new method characterized by its simplicity of instrumentation and handling, which is a prerequisite for its further use in the field of trace analysis.
Collapse
|
32
|
Arvas MB, Gorduk O, Gencten M, Sahin Y. Differential Pulse Voltammetric (DPV) Determination of Phosphomolybdenum Complexes by a Poly(Vinyl Chloride) Coated Molybdenum Blue Modified Pencil Graphite Electrode (PVC-MB-PGE). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1772806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Melih Besir Arvas
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| | - Ozge Gorduk
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| | - Metin Gencten
- Department of Metallurgy and Materials Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Yucel Sahin
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
33
|
Zhu X, Ma J. Recent advances in the determination of phosphate in environmental water samples: Insights from practical perspectives. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Racicot JM, Mako TL, Olivelli A, Levine M. A Paper-Based Device for Ultrasensitive, Colorimetric Phosphate Detection in Seawater. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2766. [PMID: 32408677 PMCID: PMC7294414 DOI: 10.3390/s20102766] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 02/01/2023]
Abstract
High concentrations of certain nutrients, including phosphate, are known to lead to undesired algal growth and low dissolved oxygen levels, creating deadly conditions for organisms in marine ecosystems. The rapid and robust detection of these nutrients using a colorimetric, paper-based system that can be applied on-site is of high interest to individuals monitoring marine environments and others affected by marine ecosystem health. Several techniques for detecting phosphate have been reported previously, yet these techniques often suffer from high detection limits, reagent instability, and the need of the user to handle toxic reagents. In order to develop improved phosphate detection methods, the commonly used molybdenum blue reagents were incorporated into a paper-based, colorimetric detection system. This system benefited from improved stabilization of the molybdenum blue reagent as well as minimal user contact with toxic reagents. The colorimetric readout from the paper-based devices was analyzed and quantified using RGB analyses (via ImageJ), and resulted in the detection of phosphate at detection limits between 1.3 and 2.8 ppm in various aqueous media, including real seawater.
Collapse
Affiliation(s)
- Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI 02881, USA; (J.M.R.); (T.L.M.); (A.O.)
| | - Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI 02881, USA; (J.M.R.); (T.L.M.); (A.O.)
| | - Alexander Olivelli
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI 02881, USA; (J.M.R.); (T.L.M.); (A.O.)
| | - Mindy Levine
- Department of Chemical Sciences, Ariel University, 65 Ramat HaGolan St, Ariel 40700, Israel
| |
Collapse
|
35
|
Ding Y, Zhao M, Yu J, Zhang X, Li Z, Li H. Using the interfacial barrier effects of p-n junction on electrochemistry for detection of phosphate. Analyst 2020; 145:3217-3221. [PMID: 32211694 DOI: 10.1039/c9an02579k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel type of electrochemical sensor for detection of phosphate in water environment was developed by combining the interfacial barrier of p-n junction with the adsorption of phosphate. The electrochemical response was produced by the induced change of the barrier height, which was only caused by the specific adsorption of phosphate. Two linear concentration ranges (0-0.045 mg L-1 and 0.045-0.090 mg L-1) with two sensitivities (4.98 μA (μg L-1)-1 and 1.28 μA (μg L-1)-1) were found. The good performance made the sensor meet the requirements of the World Health Organization for drinking water (1 mg L-1 of phosphate). It is an approach to develop electrochemical sensors by employing the interfacial barrier effects on electrochemistry.
Collapse
Affiliation(s)
- Yu Ding
- Department of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | | | | | | | | | | |
Collapse
|
36
|
Sun S, Chen Q, Sheth S, Ran G, Song Q. Direct Electrochemical Sensing of Phosphate in Aqueous Solutions Based on Phase Transition of Calcium Phosphate. ACS Sens 2020; 5:541-548. [PMID: 31951118 DOI: 10.1021/acssensors.9b02435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrochemical determination of phosphate in aqueous solutions attracts considerable interests in both biological and environmental fields. Because of the electrochemically inactive nature of phosphate, direct electrochemical detection of phosphate is still a highly challenging task. Herein, we reported a direct electrochemical approach for the determination of phosphate based on the oxidation of coordinated OH during the phase transition of calcium phosphates (CaPs). The mixture of amorphous CaPs and octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O), which acts as the starting material for hydroxyapatite (Ca10(PO4)6(OH)2), was self-assembled on a Nafion-modified glassy carbon electrode. The as-prepared electrode (CaPs/Nafion) showed a distinct oxidation peak at 1.0 V versus Ag/AgCl in phosphate solution. The peak heights were directly proportional to the concentration of phosphate from 0.1 to 10 μM in the presence of 1 mM Ca2+. After comprehensive characterization of the CaPs/Nafion electrode, it was understood that phosphate ions as a proton acceptor could stimulate the generation of coordinated OH from coordinated water (H2O) in CaP. The addition of Ca2+ could magnify the coordinated H2O source because of its hydration to H2O. The CaPs/Nafion electrode also displayed good selectivity as the electrochemical oxidization response was not affected by up to 10 μM of potentially competitive species like CO32-, NO3-, CH3COO-, SO42-, and Cl-. The results obtained in this work not only provided a new method for direct detection of phosphate in aqueous solution but also suggested that Ca2+ could be a promoter for electrochemical oxygen generation.
Collapse
Affiliation(s)
- Shuquan Sun
- School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, P. R. China
| | - Qixuan Chen
- School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, P. R. China
| | - Sujitraj Sheth
- School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, P. R. China
| | - Guoxia Ran
- School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, P. R. China
| | - Qijun Song
- School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, P. R. China
| |
Collapse
|
37
|
Xu K, Kitazumi Y, Kano K, Sasaki T, Shirai O. Fabrication of a Phosphate Ion Selective Electrode Based on Modified Molybdenum Metal. ANAL SCI 2020; 36:201-205. [PMID: 31527318 DOI: 10.2116/analsci.19p296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A phosphate ion-selective electrode using molybdenum metal was constructed. The modified molybdenum electrode responded to HPO42- in the presence of molybdenum dioxide and molybdophosphate (PMo12O403-) on the surface. The electrode exhibited a linear response to HPO42- in the concentration range between 1.0 × 10-5 and 1.0 × 10-1 M (mol dm-3) in the pH range from 8.0 to 9.5 with a detection limit of 1.0 × 10-6 M. The sensor showed near Nernstian characteristics (27.8 ± 0.5 mV dec-1) at pH 9.0. Since the responding potential was attributed to the activity of HPO42-, the potential at a given concentration of phosphate depended on the pH. The electrode indicated a good selectivity with respect to other common anions such as NO3-, SO42-, Cl-, HCO3- and CH3COO-. The modified molybdenum electrode can be continuously used for over a 1 month with good reproducibility. The feasibility of the electrochemical sensor was proved by successful for the detection of phosphate in real samples.
Collapse
Affiliation(s)
- Kebin Xu
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki Kitazumi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Takayuki Sasaki
- Department of Nuclear Engineering, Graduate School of Engineering and Faculty of Engineering, Kyoto University
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
38
|
Pal S, Ghosh TK, Ghosh R, Mondal S, Ghosh P. Recent advances in recognition, sensing and extraction of phosphates: 2015 onwards. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213128] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Subbarayan S, Natesan M, Chen SM. Simple synthesis of CoSn(OH)6 nanocubes for the rapid electrochemical determination of rutin in the presence of quercetin and acetaminophen. NEW J CHEM 2020. [DOI: 10.1039/d0nj01737j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic presentation of the synthesis of CoSn(OH)6 nanocubes modified with SPCE towards the electrochemical detection of rutin.
Collapse
Affiliation(s)
- Sumithra Subbarayan
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Manjula Natesan
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| |
Collapse
|
40
|
Wagh YB, Tayade KC, Kuwar A, Sahoo SK, Mayank, Singh N, Dalal DS. Exploration of highly selective fluorogenic 'on-off' chemosensor for H 2 PO 4 - ions: ICT-based sensing and ATPase activity profiling. LUMINESCENCE 2019; 35:379-384. [PMID: 31840919 DOI: 10.1002/bio.3737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/15/2019] [Accepted: 10/13/2019] [Indexed: 01/26/2023]
Abstract
In this study, the recognition contour of Chemosensor 1 was investigated using semiaqueous methanol (XH , mole fraction = 0.31) for a range of anions and bioactive species. Host-receptor signalling based on the internal charge transfer mechanism for Chemosensor 1 was explored and reported. Structure of Chemosensor 1 and its plausible anion coordination based on hydrogen bonding is complemented with density functional theory. Consequently, we investigated the applicability of the synthesized probe in blood plasma, urine, tap water samples, and for monitoring of ATP in lysosomes by apyrase enzyme.
Collapse
Affiliation(s)
- Yogesh B Wagh
- School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, (MS), India
| | - Kundan C Tayade
- Department of Chemistry and Analytical Chemistry, Rajarshi Shahu Mahavidyalaya (Autonomous), Latur, India
| | - Anil Kuwar
- School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, (MS), India
| | - Suban K Sahoo
- Department of Applied Chemistry, S. V National Institute Technology, 395007 Gujarat, Surat, India
| | - Mayank
- Department of Chemistry, Indian Institute of Technology, Ropar, Punjab, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology, Ropar, Punjab, India
| | - Dipak S Dalal
- School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, (MS), India
| |
Collapse
|
41
|
Zhang J, Bian Y, Liu D, Zhu Z, Shao Y, Li M. Detection of Phosphate in Human Blood Based on a Catalytic Hydrogen Wave at a Molybdenum Phosphide Modified Electrode. Anal Chem 2019; 91:14666-14671. [DOI: 10.1021/acs.analchem.9b03862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jinxuan Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yixuan Bian
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Di Liu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhiwei Zhu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yuanhua Shao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Meixian Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
42
|
Mayer M, Baeumner AJ. A Megatrend Challenging Analytical Chemistry: Biosensor and Chemosensor Concepts Ready for the Internet of Things. Chem Rev 2019; 119:7996-8027. [DOI: 10.1021/acs.chemrev.8b00719] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael Mayer
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Antje J. Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
43
|
Performance analysis of an oxidase/peroxidase-based mediatorless amperometric biosensor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Hydrophilic Truxene Derivative as a Fluorescent off-on Sensor for Copper (II) Ion and Phosphate Species. J Fluoresc 2019; 29:417-424. [DOI: 10.1007/s10895-019-02350-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/14/2019] [Indexed: 01/03/2023]
|
45
|
Sedaghat S, Jeong S, Zareei A, Peana S, Glassmaker N, Rahimi R. Development of a nickel oxide/oxyhydroxide-modified printed carbon electrode as an all solid-state sensor for potentiometric phosphate detection. NEW J CHEM 2019. [DOI: 10.1039/c9nj04502c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work describes the preparation, characterization and use of a nickel oxide/oxyhydroxide-printed carbon electrode as an efficient potentiometric phosphate sensor.
Collapse
Affiliation(s)
- Sotoudeh Sedaghat
- Birck Nanotechnology Center
- Purdue University
- West Lafayette
- USA
- School of Materials Engineering
| | - Sookyoung Jeong
- Birck Nanotechnology Center
- Purdue University
- West Lafayette
- USA
- School of Materials Engineering
| | - Amin Zareei
- Birck Nanotechnology Center
- Purdue University
- West Lafayette
- USA
- School of Materials Engineering
| | - Samuel Peana
- School of Electrical and Computer Engineering
- Purdue University
- West Lafayette
- USA
| | | | - Rahim Rahimi
- Birck Nanotechnology Center
- Purdue University
- West Lafayette
- USA
- School of Materials Engineering
| |
Collapse
|
46
|
Chandra Rao P, Mandal S. Europium-Based Metal-Organic Framework as a Dual Luminescence Sensor for the Selective Detection of the Phosphate Anion and Fe 3+ Ion in Aqueous Media. Inorg Chem 2018; 57:11855-11858. [PMID: 30232885 DOI: 10.1021/acs.inorgchem.8b02017] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new three-dimensional europium-based metal-organic framework has been synthesized with the newly designed ligand L (6-[1-(4-carboxyphenyl)-1 H-1,2,3-triazol-4-yl]nicotinic acid). This compound acts as a dual sensor for the phosphate anion and Fe3+ ion in aqueous media. The mechanistic aspect of this selectivity and sensitivity was explored through several spectroscopic methods and then correlated with the corresponding structure.
Collapse
Affiliation(s)
- Purna Chandra Rao
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Thiruvananthapuram , Kerala 695551 , India
| | - Sukhendu Mandal
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Thiruvananthapuram , Kerala 695551 , India
| |
Collapse
|
47
|
Izadyar A, Hershberger JC, Rogers R. Voltammetric Assessment of Ions Transfer at Ionophore-Graphene Based Polymeric Membranes. ELECTROANAL 2018. [DOI: 10.1002/elan.201800535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anahita Izadyar
- Department of Chemistry and Physics; Arkansas State University; PO Box 419 State University, AR 72467 USA
| | - John C. Hershberger
- Department of Chemistry and Physics; Arkansas State University; PO Box 419 State University, AR 72467 USA
| | - Robert Rogers
- Department of Chemistry and Physics; Arkansas State University; PO Box 419 State University, AR 72467 USA
| |
Collapse
|
48
|
Kopiec G, Starzec K, Kochana J, Kinnunen-Skidmore TP, Schuhmann W, Campbell WH, Ruff A, Plumeré N. Bioelectrocatalytic and electrochemical cascade for phosphate sensing with up to 6 electrons per analyte molecule. Biosens Bioelectron 2018; 117:501-507. [PMID: 29982120 DOI: 10.1016/j.bios.2018.06.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/09/2018] [Accepted: 06/24/2018] [Indexed: 01/08/2023]
Abstract
Despite the availability of numerous electroanalytical methods for phosphate quantification, practical implementation in point-of-use sensing remains virtually nonexistent because of interferences from sample matrices or from atmospheric O2. In this work, phosphate determination is achieved by the purine nucleoside phosphorylase (PNP) catalyzed reaction of inosine and phosphate to produce hypoxanthine which is subsequently oxidized by xanthine oxidase (XOx), first to xanthine and then to uric acid. Both PNP and XOx are integrated in a redox active Os-complex modified polymer, which not only acts as supporting matrix for the bienzymatic system but also shuttles electrons from the hypoxanthine oxidation reaction to the electrode. The bienzymatic cascade in this second generation phosphate biosensor selectively delivers four electrons for each phosphate molecule present. We introduced an additional electrochemical process involving uric acid oxidation at the underlying electrode. This further enhances the anodic current (signal amplification) by two additional electrons per analyte molecule which mitigates the influence of electrochemical interferences from the sample matrix. Moreover, while the XOx catalyzed reaction is sensitive to O2, the uric acid production and therefore the delivery of electrons through the subsequent electrochemical process are independent of the presence of O2. Consequently, the electrochemical process counterbalances the O2 interferences, especially at low phosphate concentrations. Importantly, the electrochemical uric acid oxidation specifically reports on phosphate concentration since it originates from the product of the bienzymatic reactions. These advantageous properties make this bioelectrochemical-electrochemical cascade particularly promising for point-of-use phosphate measurements.
Collapse
Affiliation(s)
- Gabriel Kopiec
- Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Karolina Starzec
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-060 Krakow, Poland
| | - Jolanta Kochana
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-060 Krakow, Poland
| | | | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Wilbur H Campbell
- The Nitrate Elimination Co., Inc. (NECi), Lake Linden, MI 49945, United States
| | - Adrian Ruff
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| | - Nicolas Plumeré
- Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| |
Collapse
|
49
|
Ebuele VO, Congrave DG, Gwenin CD, Fitzsimmons-Thoss V. Development of a Cobalt Electrode for the Determination of Phosphate in Soil Extracts and Comparison with Standard Methods. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1360899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Daniel G. Congrave
- School of Chemistry, Bangor University, Bangor, Wales, UK
- Department of Chemistry, Durham University, Durham, UK
| | | | | |
Collapse
|
50
|
Feng H, Wang Y, Jia H, Zhang R, Han Q, Meng Q, Zhang Z. Selective detection of inorganic phosphates in live cells based on a responsive fluorescence probe. NEW J CHEM 2017. [DOI: 10.1039/c7nj01983a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new activatable fluorescence probe has been designed and synthesized for inorganic phosphate detection in buffer and live cells.
Collapse
Affiliation(s)
- Huan Feng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Yue Wang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Hongmin Jia
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Run Zhang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
- Australian Institute for Bioengineering and Nanotechnology
| | - Qian Han
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Qingtao Meng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| |
Collapse
|