1
|
André C, Duy SV, Sauvé S, Gagné F. Comparative toxicity of urban wastewater and rainfall overflow in caged freshwater mussel Elliptio complanata. Front Physiol 2023; 14:1233659. [PMID: 37637140 PMCID: PMC10449329 DOI: 10.3389/fphys.2023.1233659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/05/2023] [Indexed: 08/29/2023] Open
Abstract
Municipal effluents are well-recognized as disrupting sexual differentiation and reproduction in mussels. However, the contribution to this problem made by rainfall combined with sewer overflow (increased by rain due to climate change) is not well understood. The purpose of this study was to compare the neuroendocrine effects of municipal discharge and rainfall overflow on caged endemic mussel Elliptio complanata. To this end, mussels were experimentally caged and placed for 3 months at a municipal effluent dispersion plume site and at overflow sites. Data revealed that downstream surface water contained some pharmaceuticals (caffeine and carbamazepine) and accumulated significant levels of heterotrophic bacteria, but these effects were not observed at the overflow sites. The principal effects observed at the downstream site were increased soft tissue mass (and gonad index), inflammation, and Vtg proteins in male mussels as determined by a novel immunostaining methodology. The rainfall overflow sites had no effects on these markers, but were specifically associated with reduced Vtg proteins in females, dopamine (Dop), gonad lipids, and DNA strand breaks, with increased metallothioneins. In conclusion, the observed feminizing effects of municipal effluent were not additionally observed in mussels caged at rainfall overflow sites, although the latter exhibited a different pattern of toxicity.
Collapse
Affiliation(s)
- C. André
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC, Canada
| | - S. V. Duy
- Chemistry Department, Montreal University, Montréal, QC, Canada
| | - S. Sauvé
- Chemistry Department, Montreal University, Montréal, QC, Canada
| | - F. Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC, Canada
| |
Collapse
|
2
|
Segura PA, Guillaumain C, Eysseric E, Boudrias J, Moreau M, Guérette C, Clémencin R, Beaudry F. Ultrafast analysis of peptides by laser diode thermal desorption-triple quadrupole mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9373. [PMID: 35933590 DOI: 10.1002/rcm.9373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE The COVID-19 pandemic demonstrated the importance of high-throughput analysis for public health. Given the importance of surface viral proteins for interactions with healthy tissue, they are targets of interest for mass spectrometry-based analysis. For that reason, the possibility of detecting and quantifying peptides using a high-throughput technique, laser diode thermal desorption-triple quadrupole mass spectrometry (LDTD-QqQMS), was explored. METHODS Two peptides used as models for small peptides (leu-enkephalin and endomorphin-2) and four tryptic peptides (GVYYPDK, NIDGYFK, IADYNYK, and QIAPGQTGK) specific to the SARS-CoV-2 Spike protein were employed. Target peptides were analyzed individually in the positive mode by LDTD-QqQMS. Peptides were quantified by internal calibration using selected reaction monitoring transitions in pure solvents and in samples spiked with 20 μg mL-1 of a bovine serum albumin tryptic digest to represent real analysis conditions. RESULTS Low-energy fragment ions (b and y ions) as well as high-energy fragment ions (c and x ions) and some of their corresponding water or ammonia losses were detected in the full mass spectra. Only for the smallest peptides, leu-enkephalin and endomorphin-2, were [M + H]+ ions observed. Product ion spectra confirmed that, with the experimental conditions used in the present study, LDTD transfers a considerable amount of energy to the target peptides. Quantitative analysis showed that it was possible to quantify peptides using LDTD-QqQMS with acceptable calibration curve linearity (R2 > 0.99), precision (RSD < 18.2%), and trueness (bias < 8.3%). CONCLUSIONS This study demonstrated for the first time that linear peptides can be qualitatively and quantitatively analyzed using LDTD-QqQMS. Limits of quantification and dynamic ranges are still inadequate for clinical applications, but other applications where higher levels of proteins must be detected could be possible with LDTD. Given the high-throughput capabilities of LDTD-QqQMS (>15 000 samples in less than 43 h), more studies are needed to improve the sensitivity for peptide analysis of this technique.
Collapse
Affiliation(s)
- Pedro A Segura
- Department of Chemistry, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Cédric Guillaumain
- Department of Chemistry, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emmanuel Eysseric
- Department of Chemistry, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Judith Boudrias
- Department of Chemistry, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mégane Moreau
- Department of Chemistry, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Cassandra Guérette
- Department of Chemistry, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Rémi Clémencin
- Department of Chemistry, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Ding X, Liu K, Shi Z. LASER DESORPTION/ABLATION POSTIONIZATION MASS SPECTROMETRY: RECENT PROGRESS IN BIOANALYTICAL APPLICATIONS. MASS SPECTROMETRY REVIEWS 2021; 40:566-605. [PMID: 32770707 DOI: 10.1002/mas.21649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Lasers have long been used in the field of mass spectrometric analysis for characterization of condensed matter. However, emission of neutrals upon laser irradiation surpasses the number of ions. Typically, only one in about one million analytes ejected by laser desorption/ablation is ionized, which has fueled the quest for postionization methods enabling ionization of desorbed neutrals to enhance mass spectrometric detection schemes. The development of postionization techniques can be an endeavor that integrates multiple disciplines involving photon energy transfer, electrochemistry, gas discharge, etc. The combination of lasers of different parameters and diverse ion sources has made laser desorption/ablation postionization (LD/API) a growing and lively research community, including two-step laser mass spectrometry, laser ablation atmospheric pressure photoionization mass spectrometry, and those coupled to ambient mass spectrometry. These hyphenated techniques have shown potentials in bioanalytical applications, with major inroads to be made in simultaneous location and quantification of pharmaceuticals, toxins, and metabolites in complex biomatrixes. This review is intended to provide a timely comprehensive view of the broadening bioanalytical applications of disparate LD/API techniques. We also have attempted to discuss these applications according to the classifications based on the postionization methods and to encapsulate the latest achievements in the field of LD/API by highlighting some of the very best reports in the 21st century. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Xuelu Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Kun Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Zhenyan Shi
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
4
|
Overview of Sample Preparation and Chromatographic Methods to Analysis Pharmaceutical Active Compounds in Waters Matrices. SEPARATIONS 2021. [DOI: 10.3390/separations8020016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the environment, pharmaceutical residues are a field of particular interest due to the adverse effects to either human health or aquatic and soil environment. Because of the diversity of these compounds, at least 3000 substances were identified and categorized into 49 different therapeutic classes, and several actions are urgently required at multiple steps, the main ones: (i) occurrence studies of pharmaceutical active compounds (PhACs) in the water cycle; (ii) the analysis of the potential impact of their introduction into the aquatic environment; (iii) the removal/degradation of the pharmaceutical compounds; and, (iv) the development of more sensible and selective analytical methods to their monitorization. This review aims to present the current state-of-the-art sample preparation methods and chromatographic analysis applied to the study of PhACs in water matrices by pinpointing their advantages and drawbacks. Because it is almost impossible to be comprehensive in all PhACs, instruments, extraction techniques, and applications, this overview focuses on works that were published in the last ten years, mainly those applicable to water matrices.
Collapse
|
5
|
Pulicharla R, Proulx F, Behmel S, Sérodes JB, Rodriguez MJ. Occurrence and seasonality of raw and drinking water contaminants of emerging interest in five water facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141748. [PMID: 32889468 DOI: 10.1016/j.scitotenv.2020.141748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
The goal of this work was to investigate the occurrence of contaminants of emerging interest (CEI) in source surface water (SW; river water) and drinking water (DW; tap water) from five drinking water treatment plants (DWTPs) in the Province of Québec, Canada. A total of 28 sampling campaigns were conducted to collect SW and DW samples from each DWTP from June 2016 to July 2017. The seven targeted CEI, including acetaminophen, salicylic acid, caffeine, carbamazepine, ibuprofen, sulfamethoxazole and drospirenone, were analyzed using solid-phase extraction-ultra pressure liquid chromatography-mass spectrometry (SPE-UPLC-MS/MS) for all collected water samples. The selected CEI were detected in all SW and DW samples, with the exception of drospirenone, which occurred in amounts that were below the limit of detection in one DWTP in June and July 2016. In all the SW samples, caffeine was detected and had the highest median concentration range (12.3-91.0 ng/L), followed by acetaminophen (7.9-85.0 ng/L) and salicylic acid (21.6-39.0 ng/L). In the DW samples, salicylic acid was detected and had the highest median concentration range (20.5-50 ng/L), followed by caffeine (5.2-21.8 ng/L), and acetaminophen (5.0-7.7 ng/L). Carbamazepine, ibuprofen, and sulfamethoxazole primarily occurred in amounts between the limit of detection and limit of quantification in SW and occurred below the limit of detection in DW. All the DWTPs exhibited a similar trend in the removal of CEI, which include acetaminophen (≤97.6%), followed by caffeine (71.0-86.5%) and salicylic acid (<50.0%). Varying levels of efficiencies were observed among the removal strategies for CEI under study, which were mainly associated with the contaminant concentration in SW in the case of acetaminophen, and with the treatment processes in the case of caffeine and salicylic acid.
Collapse
Affiliation(s)
- Rama Pulicharla
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, bureau 1616, 2325, rue des Bibliothèques, Université Laval, Québec, QC G1V 0A6, Canada.
| | - François Proulx
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, bureau 1616, 2325, rue des Bibliothèques, Université Laval, Québec, QC G1V 0A6, Canada.
| | | | - Jean-B Sérodes
- Département de Génie civil et génie des eaux, Pavillon Pouliot, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Manuel J Rodriguez
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, bureau 1616, 2325, rue des Bibliothèques, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
6
|
Pereira A, Silva L, Laranjeiro C, Lino C, Pena A. Selected Pharmaceuticals in Different Aquatic Compartments: Part I-Source, Fate and Occurrence. Molecules 2020; 25:molecules25051026. [PMID: 32106570 PMCID: PMC7179177 DOI: 10.3390/molecules25051026] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
Potential risks associated with releases of human pharmaceuticals into the environment have become an increasingly important issue in environmental health. This concern has been driven by the widespread detection of pharmaceuticals in all aquatic compartments. Therefore, 22 pharmaceuticals, 6 metabolites and transformation products, belonging to 7 therapeutic groups, were selected to perform a systematic review on their source, fate and occurrence in different aquatic compartments, important issues to tackle the Water Framework Directive (WFD). The results obtained evidence that concentrations of pharmaceuticals are present, in decreasing order, in wastewater influents (WWIs), wastewater effluents (WWEs) and surface waters, with values up to 14 mg L−1 for ibuprofen in WWIs. The therapeutic groups which presented higher detection frequencies and concentrations were anti-inflammatories, antiepileptics, antibiotics and lipid regulators. These results present a broad and specialized background, enabling a complete overview on the occurrence of pharmaceuticals in the aquatic compartments.
Collapse
|
7
|
Ultrafast laser diode thermal desorption method for analysis of representative pharmaceuticals in soil leachate samples. Talanta 2020; 208:120382. [PMID: 31816693 DOI: 10.1016/j.talanta.2019.120382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023]
Abstract
We developed and evaluated a novel analytical method combining ambient ionization technique - laser diode thermal desorption with chemical ionization (LDTD-APCI) and tandem mass spectrometry detection. The LDTD/APCI-MS/MS method was developed for determination of representative pharmaceuticals from different classes (carbamazepine, sulfamethoxazole, irbesartan, fexofenadine) in leachate samples from soil sorption experimentation. We then optimized laser pattern, laser energy and spiked sample volume, which are crucial parameters for this LDTD/APCI-MS/MS method. We further identified utility of a chelating agent (Na2-EDTA) to obtain the highest achievable and reproducible signal of target analytes. Achieved method performance parameters (LODs, LOQs, trueness and precision) were comparable with those obtained from LC-MS/MS. However, application of this novel LDTD/APCI-MS/MS method reduced analysis time by two orders of magnitude (to 12 s), compared to more conventional LC-MS/MS approaches, without use of organic solvents. We expect this novel method will reduce costs and increase throughput for future analyses of pharmaceuticals in the environment while advancing a timely principle of green chemistry.
Collapse
|
8
|
Gravel A, Guérette C, Fortin D, Auger S, Picard P, Segura PA. Further studies on the signal enhancement effect in laser diode thermal desorption-triple quadrupole mass spectrometry using microwell surface coatings. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:948-956. [PMID: 31652386 DOI: 10.1002/jms.4455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/06/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
The laser diode thermal desorption (LDTD) ionization source allows ultrafast and sensitive analysis of small molecules by mass spectrometry. Signal enhancement in LDTD has been observed when coating the surface of sample microwells with a solution of ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid. Here we present a quantitative analysis of signal enhancement using solutions of diverse commercial proteins (lysozyme, immunoglobulin G, albumin, and fibrinogen) as coatings. Results showed that compounds with polar chemical functions such as carboxylic acid, sulfonyl, and nitro had signal enhancement factors, in most cases higher than 10, when using any of the tested proteins as coating agent. Analysis of variance revealed that immunoglobulin G and fibrinogen gave the best results. However, the signal enhancement factors obtained with these proteins were not superior to those observed with EDTA. To explain the signal enhancement effect of proteins, analysis by scanning electron microscopy of dried samples on the microwell sample plates was carried out. Images showed that salicylic acid, one of the compounds with the highest observed signal enhancement, formed a thick layer when applied directly on the uncoated surface, but it formed small crystals (<1 μm) in the presence of protein or EDTA coatings. Further crystallographic studies using powder X-ray diffraction showed that the crystalline form of salicylic acid is modified in the presence of EDTA. Salicylic acid when mixed with EDTA had a higher percentage of amorphous phase (38.1%) than without EDTA (23.1%). These results appear to confirm that the diminution of crystal size of analytes and the increase of amorphous phase are implicated in signal enhancement effect observed in LDTD using microwell surface coatings. To design better coatings and completely elucidate the signal enhancement effect in LDTD, more studies are necessary to understand the effects of coatings on the ionization of analytes.
Collapse
Affiliation(s)
- Alexia Gravel
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Daniel Fortin
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, Canada
| | | | | | - Pedro A Segura
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
9
|
Paíga P, Ramos S, Jorge S, Silva JG, Delerue-Matos C. Monitoring survey of caffeine in surface waters (Lis River) and wastewaters located at Leiria Town in Portugal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33440-33450. [PMID: 31522398 DOI: 10.1007/s11356-019-06168-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Investigation during 11-month period was performed to study the presence of caffeine in the Lis River in Leiria Town in Portugal, and a monitoring during 9-month period was realized to check the contribution of the human pollution of two wastewater treatment plants (WWTPs) that discharge their effluents to the studied river. The samples were collected in five sampling points along the river and in two influents and two effluents of the studied WWTPs. Caffeine was detected in all ninety-one collected samples. The caffeine concentration ranged from 25.3 to 321 ng/L in the river samples, from 112 to 1927 ng/L in the WWTP effluents, and from 9478 to 83,901 ng/L in the WWTP influents. The highest concentration in the river was detected in the two sampling points located after the effluent discharge points and reached 315 and 321 ng/L. Risk assessment was performed for three trophic levels using the risk quotient calculation and revealed that caffeine do not cause toxic effect on Daphnia magna and on fish but could be possibly toxic to algae. The results proved that caffeine can be an effective indicator of human-born pollution.
Collapse
Affiliation(s)
- Paula Paíga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Sandra Ramos
- CEAUL, Universidade de Lisboa, Portugal and LEMA, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Sandra Jorge
- Águas do Centro Litoral, SA, Grupo Águas de Portugal, ETA da Boavista, Avenida Dr. Luís Albuquerque, 3030-410, Coimbra, Portugal
| | - Jaime Gabriel Silva
- Águas de Santo André, Cerca da Água, Rua dos Cravos, 7500-130, Vila Nova de Santo André, Portugal
- Departamento de Engenharia Civil, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
| |
Collapse
|
10
|
Mohapatra DP, Kirpalani DM. Advancement in treatment of wastewater: Fate of emerging contaminants. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23533] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dipti Prakash Mohapatra
- National Research Council of CanadaEnergy Mining and Environment Research Centre 1200 Montreal Road Ottawa ON K1A 0R6 Canada
| | - Deepak M. Kirpalani
- National Research Council of CanadaEnergy Mining and Environment Research Centre 1200 Montreal Road Ottawa ON K1A 0R6 Canada
| |
Collapse
|
11
|
Chai Y, Chen H, Liu X, Lu C. Degradation of the Neonicotinoid Pesticides in the Atmospheric Pressure Ionization Source. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:373-381. [PMID: 29260456 DOI: 10.1007/s13361-017-1832-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/01/2017] [Accepted: 10/01/2017] [Indexed: 05/21/2023]
Abstract
During the analysis of neonicotinoid pesticide standards (thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid) by mass spectrometry, the degradation of these pesticides (M-C=N-R is degraded into M-C=O, M is the skeleton moiety, and R is NO2 or CN) was observed in the atmospheric pressure ionization interfaces (ESI and APCI). In APCI, the degradation of all the five neonicotinoid pesticides studied took place, and the primary mechanism was in-source ion/molecule reaction, in which a molecule of water (confirmed by use of H218O) attacked the carbon of the imine group accompanying with loss of NH2R (R=NO2, CN). For the nitroguanidine neonicotinoid pesticides (R=NO2, including thiamethoxam, clothianidin, and imidacloprid), higher auxiliary gas heater temperature also contributed to their degradation in APCI due to in-source pyrolysis. The degradation of the five neonicotinoid pesticides studied in ESI was not significant. In ESI, only the nitroguanidine neonicotinoid pesticides could generate the degradation products through in-source fragmentation mechanism. The degradation of cyanoamidine neonicotinoid pesticides (R=CN, including acetamiprid and thiacloprid) in ESI was not observed. The degradation of neonicotinoid pesticides in the ion source of mass spectrometer renders some adverse consequences, such as difficulty interpreting the full-scan mass spectrum, reducing the sensitivity and accuracy of quantitative analysis, and misleading whether these pesticides have degraded in the real samples. Therefore, a clear understanding of these unusual degradation reactions should facilitate the analysis of neonicotinoid pesticides by atmospheric pressure ionization mass spectrometry. Graphical Abstract.
Collapse
Affiliation(s)
- Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, 310008, People's Republic of China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Tea (Hangzhou), Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, People's Republic of China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, 310008, People's Republic of China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Tea (Hangzhou), Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, People's Republic of China
| | - Xin Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, 310008, People's Republic of China.
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, People's Republic of China.
- Laboratory of Quality and Safety Risk Assessment for Tea (Hangzhou), Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, People's Republic of China.
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, 310008, People's Republic of China.
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, People's Republic of China.
- Laboratory of Quality and Safety Risk Assessment for Tea (Hangzhou), Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, People's Republic of China.
| |
Collapse
|
12
|
Poole JJ, Gómez-Ríos GA, Boyaci E, Reyes-Garcés N, Pawliszyn J. Rapid and Concomitant Analysis of Pharmaceuticals in Treated Wastewater by Coated Blade Spray Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12566-12572. [PMID: 28990769 DOI: 10.1021/acs.est.7b03867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The widespread use of pharmaceuticals in both human and animal populations, and the resultant contamination of surface waters from the outflow of water treatment facilities is an issue of growing concern. This has raised the need for analytical methods that can both perform rapid sample analysis and overcome the limitations of conventional analysis procedures, such as multistep workflows and tedious procedures. Coated blade spray (CBS) is a solid-phase microextraction based technique that enables the direct-to-mass-spectrometry analysis of extracted compounds via the use of limited organic solvent to desorb analytes and perform electrospray ionization. This paper documents how CBS can be applied for the concomitant tandem mass spectrometric (MS/MS) analysis of nine pharmaceuticals in treated wastewater. The total analysis times of less than 11 min provided limits of detection lower than 50 ng L-1 for all target compounds in river water. The CBS methodology was then compared to a conventional solid-phase extraction technique for the analysis of the final effluent of six wastewater treatment facilities. The experimental results strongly suggest that CBS offers scientists a viable alternative method for analyzing water samples that is both rapid and relatively solvent-free.
Collapse
Affiliation(s)
- Justen J Poole
- Department of Chemistry, University of Waterloo , Waterloo, Ontario, Canada , N2L 3G1
| | - German A Gómez-Ríos
- Department of Chemistry, University of Waterloo , Waterloo, Ontario, Canada , N2L 3G1
| | - Ezel Boyaci
- Department of Chemistry, University of Waterloo , Waterloo, Ontario, Canada , N2L 3G1
| | - Nathaly Reyes-Garcés
- Department of Chemistry, University of Waterloo , Waterloo, Ontario, Canada , N2L 3G1
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo , Waterloo, Ontario, Canada , N2L 3G1
| |
Collapse
|
13
|
Pérez-Fernández V, Mainero Rocca L, Tomai P, Fanali S, Gentili A. Recent advancements and future trends in environmental analysis: Sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta 2017; 983:9-41. [DOI: 10.1016/j.aca.2017.06.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
|
14
|
Roy-Lachapelle A, Solliec M, Bouchard MF, Sauvé S. Detection of Cyanotoxins in Algae Dietary Supplements. Toxins (Basel) 2017; 9:E76. [PMID: 28245621 PMCID: PMC5371831 DOI: 10.3390/toxins9030076] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022] Open
Abstract
Algae dietary supplements are marketed worldwide as natural health products. Although their proprieties have been claimed as beneficial to improve overall health, there have been several previous reports of contamination by cyanotoxins. These products generally contain non-toxic cyanobacteria, but the methods of cultivation in natural waters without appropriate quality controls allow contamination by toxin producer species present in the natural environment. In this study, we investigated the presence of total microcystins, seven individual microcystins (RR, YR, LR, LA, LY, LW, LF), anatoxin-a, dihydroanatoxin-a, epoxyanatoxin-a, cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine in 18 different commercially available products containing Spirulina or Aphanizomenon flos-aquae. Total microcystins analysis was accomplished using a Lemieux oxidation and a chemical derivatization using dansyl chloride was needed for the simultaneous analysis of cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine. Moreover, the use of laser diode thermal desorption (LDTD) and ultra-high performance liquid chromatography (UHPLC) both coupled to high resolution mass spectrometry (HRMS) enabled high performance detection and quantitation. Out of the 18 products analyzed, 8 contained some cyanotoxins at levels exceeding the tolerable daily intake values. The presence of cyanotoxins in these algal dietary supplements reinforces the need for a better quality control as well as consumer's awareness on the potential risks associated with the consumption of these supplements.
Collapse
Affiliation(s)
| | - Morgan Solliec
- Department of Chemistry, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Maryse F Bouchard
- Department of Environmental and Occupational Health, Université de Montréal, Montréal, QC H3T 1A8, Canada.
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
15
|
Loos G, Van Schepdael A, Cabooter D. Quantitative mass spectrometry methods for pharmaceutical analysis. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150366. [PMID: 27644982 PMCID: PMC5031633 DOI: 10.1098/rsta.2015.0366] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 05/04/2023]
Abstract
Quantitative pharmaceutical analysis is nowadays frequently executed using mass spectrometry. Electrospray ionization coupled to a (hybrid) triple quadrupole mass spectrometer is generally used in combination with solid-phase extraction and liquid chromatography. Furthermore, isotopically labelled standards are often used to correct for ion suppression. The challenges in producing sensitive but reliable quantitative data depend on the instrumentation, sample preparation and hyphenated techniques. In this contribution, different approaches to enhance the ionization efficiencies using modified source geometries and improved ion guidance are provided. Furthermore, possibilities to minimize, assess and correct for matrix interferences caused by co-eluting substances are described. With the focus on pharmaceuticals in the environment and bioanalysis, different separation techniques, trends in liquid chromatography and sample preparation methods to minimize matrix effects and increase sensitivity are discussed. Although highly sensitive methods are generally aimed for to provide automated multi-residue analysis, (less sensitive) miniaturized set-ups have a great potential due to their ability for in-field usage.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Glenn Loos
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium
| | - Ann Van Schepdael
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium
| | - Deirdre Cabooter
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Orbitrap Mass Spectrometry. APPLICATIONS OF TIME-OF-FLIGHT AND ORBITRAP MASS SPECTROMETRY IN ENVIRONMENTAL, FOOD, DOPING, AND FORENSIC ANALYSIS 2016. [DOI: 10.1016/bs.coac.2016.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Cormier G, Barbeau B, Arp HPH, Sauvé S. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:2051-2065. [PMID: 26565064 DOI: 10.1039/c5em00338e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model. This information can be used to model degradation prior to water treatment.
Collapse
Affiliation(s)
- Guillaume Cormier
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, CanadaH3C 3J7.
| | - Benoit Barbeau
- NSERC Industrial Chair on Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montréal, C.P. 6079, Succursale Centre-Ville, Montréal, QC, Canada H3C 3A7.
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevål Stadion, N-0806 Oslo, Norway
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, CanadaH3C 3J7.
| |
Collapse
|
18
|
Munoz G, Vo Duy S, Budzinski H, Labadie P, Liu J, Sauvé S. Quantitative analysis of poly- and perfluoroalkyl compounds in water matrices using high resolution mass spectrometry: Optimization for a laser diode thermal desorption method. Anal Chim Acta 2015; 881:98-106. [DOI: 10.1016/j.aca.2015.04.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/11/2015] [Accepted: 04/03/2015] [Indexed: 11/26/2022]
|
19
|
Marube LC, Caldas SS, Soares KL, Primel EG. Dispersive liquid-liquid microextraction with solidification of floating organic droplets for simultaneous extraction of pesticides, pharmaceuticals and personal care products. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1507-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Morissette MF, Vo Duy S, Arp HPH, Sauvé S. Sorption and desorption of diverse contaminants of varying polarity in wastewater sludge with and without alum. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:674-682. [PMID: 25672802 DOI: 10.1039/c4em00620h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Sewage sludge sorption and desorption measurements were conducted for nine diverse contaminants of varying polarity: caffeine, sulfamethoxazole, carbamazepine, atrazine, estradiol, ethinylestradiol, diclofenac, and, for the first time desethylatrazine and norethindrone. Two types of sorption behaviour were observed. Compounds with a log octanol-water partition coefficient, log Kow, below 3 showed little or no sorption over 48 hours of shaking, while compounds with log Kow over 3 showed 30 to 90% sorption within the first few minutes. After 6 hours of shaking, mass loss through suspected biotransformation became evident for some compounds. At the pH range considered (5.7-6.7), diclofenac (pKa 4.0, log Kow 4.5) was the only compound in which pH dependent sorption could be quantified. The log sewage sludge-water distribution coefficients, log Kd, ranged from 0.2 to 2.9, and, as expected, increased with increasing log Kow of the compound and organic carbon (OC) content of the sewage sludge. A sewage sludge precipitated with alum had a substantially lower Kd values, as well as lower OC content, compared to alum-free sludge. Desorption was studied by sequentially replacing supernatant water. With each water replacement, log Kd values tended to either remain similar (following a linear isotherm) or in some cases increase (following a Freundlich-type isotherm). The length of time required to restore equilibrium increased with each rinsing step. A literature review of reported Kd values compared well with the alum-free sludge data, but not the alum-sludge data. Sewage sludge Kd across the literature appear more consistent with increasing Kow.
Collapse
Affiliation(s)
- M-F Morissette
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC H3C 3J7, Canada.
| | | | | | | |
Collapse
|
21
|
Edwards QA, Kulikov SM, Garner-O'Neale LD. Caffeine in surface and wastewaters in Barbados, West Indies. SPRINGERPLUS 2015; 4:57. [PMID: 25729634 PMCID: PMC4339322 DOI: 10.1186/s40064-015-0809-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/12/2015] [Indexed: 12/03/2022]
Abstract
Caffeine, a purine alkaloid drug, has been recognized as a contaminant of water bodies in various climatic regions, however, these environmental caffeine concentrations are the first to be reported in the tropical Caribbean. The major objective of this study was to develop an improved method to extract caffeine from surface and wastewaters in the warm Caribbean environment and measure caffeine concentrations in highly populated areas in Barbados. Caffeine was extracted from water via solid phase extraction (SPE); the acidified water samples were loaded onto C-18 cartridges and eluted with pure chloroform. The extracted caffeine was quantified using gas chromatography - mass spectroscopy - multiple reaction monitoring (GC-MS/MS-MRM). Method detection limits of 0.2 ng L−1 from 1 L water samples were achieved. Caffeine was detected in all environmental water samples investigated. The concentrations of caffeine in surface waters were detected in the range 0.1 - 6.9 μg L−1. The two wastewater treatment plants, primary and secondary treatment systems, significantly differed in their ability to eliminate caffeine in the raw sewage (38% and 99% caffeine removal efficiencies respectively). Thus, it may be essential to employ secondary treatment to effectively remove caffeine from wastewater systems in Barbados. Caffeine in water bodies are principally attributed to anthropogenic sources as caffeine-producing plants are not commonly grown on the island of Barbados. The study also shows the recalcitrance of caffeine to hydrolytic degradation.
Collapse
Affiliation(s)
- Quincy A Edwards
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, PO BOX 64 Bridgetown, West Indies Barbados
| | - Sergei M Kulikov
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, PO BOX 64 Bridgetown, West Indies Barbados
| | - Leah D Garner-O'Neale
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, PO BOX 64 Bridgetown, West Indies Barbados
| |
Collapse
|
22
|
Roy-Lachapelle A, Solliec M, Sinotte M, Deblois C, Sauvé S. High resolution/accurate mass (HRMS) detection of anatoxin-a in lake water using LDTD-APCI coupled to a Q-Exactive mass spectrometer. Talanta 2014; 132:836-44. [PMID: 25476385 DOI: 10.1016/j.talanta.2014.10.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
A new innovative analytical method combining ultra-fast analysis time with high resolution/accurate mass detection was developed to eliminate the misidentification of anatoxin-a (ANA-a), a cyanobacterial toxin, from the natural amino acid phenylalanine (PHE). This was achieved by using the laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) coupled to the Q-Exactive, a high resolution/accurate mass spectrometer (HRMS). This novel combination, the LDTD-APCI-HRMS, allowed for an ultra-fast analysis time (<15 s/sample). A comparison of two different acquisition modes (full scan and targeted ion fragmentation) was made to determine the most rigorous analytical method using the LDTD-APCI interface. Method development focused toward selectivity and sensitivity improvement to reduce the possibility of false positives and to lower detection limits. The Q-Exactive mass spectrometer operates with resolving powers between 17500 and 140000 FWHM (m/z 200). Nevertheless, a resolution of 17500FWHM is enough to dissociate ANA-a and PHE signals. Mass accuracy was satisfactory with values below 1 ppm reaching precision to the fourth decimal. Internal calibration with standard addition was achieved with the isotopically-labeled (D5) phenylalanine with good linearity (R(2)>0.999). Enhancement of signal to noise ratios relative to a standard triple-quadrupole method was demonstrated with lower detection and quantification limit values of 0.2 and 0.6 μg/L using the Q-Exactive. Accuracy and interday/intraday relative standard deviations were below 15%. The new method was applied to 8 different lake water samples with signs of cyanobacterial blooms. This work demonstrates the possibility of using an ultra-fast LDTD-APCI sample introduction system with an HRMS hybrid instrument for quantitative purposes with high selectivity in complex environmental matrices.
Collapse
Affiliation(s)
| | - Morgan Solliec
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Marc Sinotte
- Direction du Suivi de l'État de l'Environnement (DSEE), Ministère du développement durable, de l'environnement et de lutte aux changements climatiques (MDDELCC), Québec, QC, Canada
| | - Christian Deblois
- Centre d'expertise en analyse environnementale (CEAEQ), Ministère du développement durable, de l'environnement et de lutte aux changements climatiques (MDDELCC), Québec, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
23
|
Bynum ND, Moore KN, Grabenauer M. Evaluation of Laser Diode Thermal Desorption–Tandem Mass Spectrometry (LDTD–MS-MS) in Forensic Toxicology. J Anal Toxicol 2014; 38:528-35. [DOI: 10.1093/jat/bku084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Solliec M, Massé D, Sauvé S. Analysis of trimethoprim, lincomycin, sulfadoxin and tylosin in swine manure using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry. Talanta 2014; 128:23-30. [DOI: 10.1016/j.talanta.2014.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
|
25
|
Darwano H, Duy SV, Sauvé S. A new protocol for the analysis of pharmaceuticals, pesticides, and hormones in sediments and suspended particulate matter from rivers and municipal wastewaters. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 66:582-593. [PMID: 24563021 DOI: 10.1007/s00244-014-0007-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
We developed a protocol to quantify 12 emerging contaminants (ECs) (pharmaceuticals and hormones) and pesticides extracted from suspended particulate matter (SPM) of river water and municipal wastewaters samples as well as river sediments. The separation of suspended solids was realized using filtration of water samples. We tested a series of six different filter types. The effect of filtration on the concentrations of dissolved contaminants was evaluated to minimize losses of target compounds. The river sediment samples were lyophilized, and both SPM and sediment samples were subjected to ultrasonic extraction combined with C18 cartridge clean-up. Quantifications were realized using mass spectrometry. The method recoveries of all compounds ranged from 38 to 112 % in all studied matrices; poorer recoveries were achieved for sulfamethoxazole and diclofenac (as low as 38 %), whereas the recoveries for all other compounds in the wastewater treatment plant (WWTP) samples were between 68 and 111 %. The detection limits in sediments and SPM from river samples for the 12 analytes varied from 0.7 to 9.4 ng g(-1) and from 21 to 92 ng g(-1) for WWTP SPM samples. All targeted ECs were detected with concentrations ranging from 3 to 5,440 ng g(-1) in the studied matrices with the highest concentrations observed in WWTP SPM samples. A significant portion of the contaminants in a water sample is clearly associated with the suspended particulates. Optimization of water-treatment processes and environmental fate must absolutely consider the fraction of contaminants that is particulate-bound if one hopes to have a reasonable mass balance.
Collapse
Affiliation(s)
- Hicham Darwano
- Department of Chemistry, Université de Montréal, CP 6128, Succursale Centre-Ville, Montreal, QC, H3C 3J7, Canada
| | | | | |
Collapse
|
26
|
Roy-Lachapelle A, Fayad PB, Sinotte M, Deblois C, Sauvé S. Total microcystins analysis in water using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry. Anal Chim Acta 2014; 820:76-83. [DOI: 10.1016/j.aca.2014.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
|
27
|
Jourdil JF, Picard P, Meunier C, Auger S, Stanke-Labesque F. Ultra-fast cyclosporin A quantitation in whole blood by Laser Diode Thermal Desorption – Tandem Mass Spectrometry; comparison with High Performance Liquid Chromatography–Tandem Mass Spectrometry. Anal Chim Acta 2013; 805:80-6. [DOI: 10.1016/j.aca.2013.10.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/24/2013] [Accepted: 10/29/2013] [Indexed: 01/24/2023]
|
28
|
Grammou A, Samaras P, Papadimitriou C, Papadopoulos AI. A test for adequate wastewater treatment based on glutathione S transferase isoenzyme profile. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 90:46-51. [PMID: 23313117 DOI: 10.1016/j.ecoenv.2012.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 11/28/2012] [Accepted: 12/11/2012] [Indexed: 05/23/2023]
Abstract
Discharge to the environment of treated or non-treated municipal wastewater imposes several threats to coastal and estuarine ecosystems which are difficult to assess. In our study we evaluate the use of the isoenzyme profile of glutathione S transferase (GST) in combination with the kinetic characteristics of the whole enzyme and of heme peroxidase, as a test of adequate treatment of municipal wastewater. For this reason, Artemia nauplii were incubated in artificial seawater prepared by wastewater samples, such as secondary municipal effluents produced by a conventional activated sludge unit and advanced treated effluents produced by the employment of coagulation, activated carbon adsorption and chlorination as single processes or as combined ones. Characteristic changes of the isoenzyme pattern and the enzymes' kinetic properties were caused by chlorinated secondary municipal effluent or by secondary non-chlorinated effluent. Advanced treatment by combination of coagulation and/or carbon adsorption resulted to less prominent changes, suggesting more adequate treatment. Our results suggest that GST isoenzyme profile in combination with the kinetic properties of the total enzyme family is a sensitive test for the evaluation of the adequateness of the treatment of reclaimed wastewater and the reduction of potentially harmful compounds. Potentially, it may offer a 'fingerprint' characteristic of a particular effluent and probably of the treatment level it has been subjected.
Collapse
Affiliation(s)
- A Grammou
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | | | |
Collapse
|