1
|
Dinali LF, da Silva ATM, Borges KB. Silver Core Coated with Molecularly Imprinted Polymer as Adsorbent in Pipet-Tip Solid Phase Extraction for Neonicotinoids Determination from Coconut Water. ACS MEASUREMENT SCIENCE AU 2024; 4:556-567. [PMID: 39430962 PMCID: PMC11487786 DOI: 10.1021/acsmeasuresciau.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 10/22/2024]
Abstract
In this work, we report an innovative adsorbent named Ag-MPS@MIP that has a core@shell structure, i.e., silver nanoparticles modified with 3-methacryloxypropyltrimethoxysilane as the core and molecularly imprinted polymer based on methacrylic acid as its shell. Thiamethoxam, imidacloprid, and acetamiprid were extracted from coconut water samples using Ag-MPS@MIP in pipet-tip solid phase, prior to high-performance liquid chromatography analysis. The separation was carried out on isocratic mode using a mobile phase consisting of C18 column (Phenomenex, 150 mm × 4.6 mm, 5 μm), ultrapure water acidified with 0.3% phosphoric acid:acetonitrile (78:22, v/v), flow rate at 1.0 mL min-1, injection volume of 10 μL, temperature of 25 °C, and wavelength at 260 nm. The adsorbent and precursor materials were properly characterized by different instrumental techniques. The main factors affecting the recovery of analytes from coconut water samples by pipet-tip solid phase were optimized, such as sample volume (250 μL), sample pH (pH = 5.0), ionic strength (1%, m/v), washing solvent (300 μL ultrapure water), volume and type of eluent (500 μL methanol), amount of adsorbent (15 mg), cycle of percolation-dispensing (1×), and reuse (5×). Thereby, the neonicotinoids presented extraction recoveries between 82.80 and 96.36%, enrichment factor of 5, linearity ranged from 15 to 4000 ng mL-1, correlation coefficient (r) > 0.99, limit of detection of 5 ng mL-1, satisfactory selectivity, stability, and proper precision (RSD%: 0.52-9.64%) and accuracy (RE%: -5.19-6.45%). The method was successfully applied to real samples of coconut water.
Collapse
Affiliation(s)
- Laíse
Aparecida Fonseca Dinali
- Departamento de Ciências
Naturais, Universidade Federal de São
João del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Anny Talita Maria da Silva
- Departamento de Ciências
Naturais, Universidade Federal de São
João del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Keyller Bastos Borges
- Departamento de Ciências
Naturais, Universidade Federal de São
João del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| |
Collapse
|
2
|
Chen Y, Tian JH, Tian HW, Ma R, Wang ZH, Pan YC, Hu XY, Guo DS. Calixarene-Based Supramolecular Sensor Array for Pesticide Discrimination. SENSORS (BASEL, SWITZERLAND) 2024; 24:3743. [PMID: 38931527 PMCID: PMC11207328 DOI: 10.3390/s24123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The identification and detection of pesticides is crucial to protecting both the environment and human health. However, it can be challenging to conveniently and rapidly differentiate between different types of pesticides. We developed a supramolecular fluorescent sensor array, in which calixarenes with broad-spectrum encapsulation capacity served as recognition receptors. The sensor array exhibits distinct fluorescence change patterns for seven tested pesticides, encompassing herbicides, insecticides, and fungicides. With a reaction time of just three minutes, the sensor array proves to be a rapid and efficient tool for the discrimination of pesticides. Furthermore, this supramolecular sensing approach can be easily extended to enable real-time and on-site visual detection of varying concentrations of imazalil using a smartphone with a color scanning application. This work not only provides a simple and effective method for pesticide identification and quantification, but also offers a versatile and advantageous platform for the recognition of other analytes in relevant fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Silva FWL, de Oliveira GB, Archanjo BS, Braz BF, Santelli RE, Ribeiro ES, Cincotto FH. Development of an electrochemical sensor based on ternary oxide SiO 2/Al 2O 3/SnO 2 modified with carbon black for direct determination of clothianidin in environmental and food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3874-3884. [PMID: 37498592 DOI: 10.1039/d3ay00732d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
This study presents the development of an electrochemical sensor, denoted as GCE/CB/SiAlSn, based on the modification of a glassy carbon electrode surface with the ternary oxide SiO2/Al2O3/SnO2 associated with carbon black, for direct determination of the neonicotinoid pesticide clothianidin in different matrices, such as environmental and food samples. Morphological characterization by the scanning electron microscopy technique, electroanalytical analyses using the cyclic voltammetry technique and differential pulse voltammetry are presented which demonstrated that the developed electrochemical platform presents high sensitivity in the electroanalytical clothianidin determination. The linear range studied was from 2.99 × 10-7 to 6.04 × 10-5 mol L-1, with an LOD of 2.47 nmol L-1. This high sensitivity was explained using the synergistic relationship between carbon black and ternary oxide that maximized the electroactive surface area of the GCE/CB/SiAlSn sensor. Interferent studies were performed that showed high selectivity of the sensor to the pesticide in the presence of Ca2+, K+, Na+, and Mg2+ and carbendazim, glyphosate, imidacloprid and thiamethoxam pesticides. The sensor was applied to real samples of tap water and apple juice obtaining recoveries from 91.0% to 103.0%.
Collapse
Affiliation(s)
- Francisco Walison Lima Silva
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Guilherme Barros de Oliveira
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Braulio Soares Archanjo
- National Institute of Metrology, Quality and Technology, Inmetro-Xerém, Duque de Caxias, Brazil
| | - Bernardo Ferreira Braz
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Ricardo Erthal Santelli
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- National Institute of Science & Technology of Bioanalytics (INCTBio), Campinas, Brazil
| | - Emerson Schwingel Ribeiro
- Department of Inorganic Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Toxicological Assessment and Removal of Micro Pollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, National Institute of Alternative Technologies for Detection, Araraquara, SP, Brazil
| | - Fernando Henrique Cincotto
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- National Institute of Science & Technology of Bioanalytics (INCTBio), Campinas, Brazil
| |
Collapse
|
4
|
Xiao Z, Wang J, Cao Y, Yao T, Wang S, Liu J, Suo D, Tian J, Jia Z, Li Y, Fan X. Quick and high-throughput quantification of 22 β-agonists residues in animal-derived foods using enzymatic probe sonication. Food Chem 2023; 408:135262. [PMID: 36571879 DOI: 10.1016/j.foodchem.2022.135262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/27/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
A high demand exists in veterinary drug residual analysis for rapid, automatic and high-throughput analytical techniques that produce data simultaneous and faster. Here, we describe a combined automated solid-phase extraction (SPE) and enzymatic probe sonication (EPS), subsequently ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the quick extraction, automated clean-up as well as simultaneous quantification of 22 β-agonists residues in animal-derived foods. Enhanced by the ultrasonic probe, only 2 min was needed for exhaustively extraction of β-agonists from foods of animal-origin; whereas traditional enzymatic digestion methods require hours or even days, which making it more appropriate for high-throughput biomonitoring. Moreover, the clean-up and pre-concentration procedures were conducted on the automatic SPE, which allowed 36 samples being performed simultaneously within 30 min. The method was successfully applied for analyzing 56 animal-derived food samples, 53.6 % of which contained detectable levels of at least one kind of β-agonists. Interestingly, both the detection rate and residual level of β-agonists in the ruminants (bovine and sheep) were higher as compared with the swine. Concerning the real food samples analyzed, the findings of this study suggest that stricter measures should be adopted to control the illegal usage of β-agonists on the farm animals, particularly for the ruminants.
Collapse
Affiliation(s)
- Zhiming Xiao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Wang
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Ying Cao
- Shanghai Institute for Veterinary Drugs and Feeds Control, Shanghai 201103, China
| | - Ting Yao
- Beijing Veterinary Drug and Feed Monitoring Center, Beijing 102200, China
| | - Shi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Liu
- Beijing Veterinary Drug and Feed Monitoring Center, Beijing 102200, China
| | - Decheng Suo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Tian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng Jia
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Fan
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Aryl ketones-derived porous organic polymer for enrichment and sensitive detection of phenylurea herbicides in water, tea drink and mushroom samples. J Chromatogr A 2022; 1685:463621. [DOI: 10.1016/j.chroma.2022.463621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
6
|
Li S, Li Z, Ma S, Hao L, Liu W, Wang Q, Wang C, Wang Z, Wu Q. Synthesis of nitrogen-rich magnetic hypercrosslinked polymer as robust adsorbent for the detection of neonicotinoids in honey, tomatoes, lettuce and Chinese cabbage. J Chromatogr A 2022; 1677:463326. [PMID: 35853425 DOI: 10.1016/j.chroma.2022.463326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/11/2023]
Abstract
In this study, a novel nitrogen-rich magnetic hypercrosslinked polymer (Fe3O4@Ph-HCP) was fabricated via a facile one-pot reaction of 1,3,5-triphenylbenzene, 2,4-dichloropyrimidine and phenyl-functionalized magnetic Fe3O4 nanoparticles. The Fe3O4@Ph-HCP possessed high specific surface, abundant nanopores and good stability. Especially, Fe3O4@Ph-HCP exhibited excellent adsorption capability with fast adsorption rate to neonicotinoid insecticides. It was applied as a superior magnetic adsorbent for rapid enrichment and isolation of four neonicotinoid insecticides (thiamethoxam, imidacloprid, acetamiprid and thiacloprid) from honey, tomato, lettuce and Chinese cabbage samples prior to high performance liquid chromatography-diode array detection. Under the optimized conditions, the good linearity was obtained in the range of 1-1000 ng g-1 for honey, tomato, lettuce and Chinese cabbage samples, and the detection limits (S/N = 3) were 0.30-0.67 ng g-1 for honey, 1-1.5 ng g-1 for tomato, lettuce and Chinese cabbage. The spiked recoveries were 80.1-111%, and relative standard deviations were less than 10.0%. These results demonstrate that the developed method can be used as a good alternative method for sensitive determination of neonicotinoid insecticides in complex samples.
Collapse
Affiliation(s)
- Shuofeng Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Sicheng Ma
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
7
|
Development of an isotope dilution liquid chromatography/tandem mass spectrometry method for the accurate determination of neonicotinoid pesticides, imidacloprid, clothianidin, and thiamethoxam in kimchi cabbage reference materials. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00319-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractA method based on isotope dilution liquid chromatography/tandem mass spectrometry (ID-LC/MS/MS) was established as a candidate reference method for accurate determination of neonicotinoid pesticides, imidacloprid, clothianidin, and thiamethoxam in kimchi cabbage. Their deuterated isotopes, imidacloprid-d4, chlothianidin-d3, and thiamethoxam-d4 were used as internal standards. The combination of HLB and Carb solid-phase extraction (SPE) cartridges was used to clean-up kimchi cabbage extracts. The ID-LC/MS/MS conditions were optimized with fortified kimchi cabbage samples for validation. Imidacloprid in the ERM-BC403 cucumber sample (0.627 ± 0.026) mg/kg was analyzed with the developed method, and the measured value (0.604 ± 0.028) mg/kg agreed within their uncertainties. The developed method was employed for the certification of kimchi cabbage reference materials prepared in this laboratory. The measured values of imidacloprid, clothianidin, and thiamethoxam are (0.860 ± 0.020) mg/kg, (0.524 ± 0.012) mg/kg, (0.787 ± 0.014) mg/kg, respectively. The standard deviation of the measured values for ten bottles was < 1%, and the measured values after one year agreed with their first measurements indicating reliable repeatability and reproducibility of the developed method.
Collapse
|
8
|
Xiao Z, Wang S, Suo D, Wang R, Huang Y, Su X. Enzymatic probe sonication for quick extraction of total bisphenols from animal-derived foods: Applicability to occurrence and exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118457. [PMID: 34742818 DOI: 10.1016/j.envpol.2021.118457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
A high demand exists in bisphenols (BPs) screening studies for quick, reliable and straightforward analytical methods that generate data faster and simultaneously. Herein, we describe a combination of enzymatic probe sonication (EPS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for quick extraction and simultaneous quantification of eight important BPs in animal-derived foods. Results obtained demonstrated that the ultrasonic probe power could not only enhance the enzymatic hydrolysis efficiency, but also accelerate the liquid-liquid extraction procedure. Under optimized EPS parameters, one sample could be exhaustively extracted within 120 s, as compared with 12 h needed for the conventional enzymatic extraction which is more suitable for high-throughput analysis. The method was successfully applied to analyze residual BPs in animal-derived foods collected from Beijing, China. Widespread occurrence of BPA, BPS, BPF, BPAF, BPP, and BPB were found, with detection frequencies of 65.2%, 42.4%, 33.7%, 29.4%, 28.3%, and 27.2%, respectively. The highest total concentration levels of BPs (sum of the eight BPs analyzed, ΣBPs) were found in chicken liver (mean 12.2 μg/kg), followed by swine liver (6.37 μg/kg), bovine muscle (3.24 μg/kg), egg (2.03 μg/kg), sheep muscle (2.03 μg/kg), chicken muscle (1.45 μg/kg), swine muscle (1.42 μg/kg), and milk (1.17 μg/kg). The estimated daily intake (EDI) of BPs, based on the mean and 95th percentile concentrations and daily food consumptions, was estimated to be 5.687 ng/kg bw/d and 22.71 ng/kg bw/d, respectively. The human health risk assessment in this work suggests that currently BPs do not pose significant risks to the consumers because the hazard index (HI) was <1.
Collapse
Affiliation(s)
- Zhiming Xiao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Decheng Suo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruiguo Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Huang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoou Su
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
9
|
Yang Y, Su L, Huang Y, Zhang X, Li C, Wang J, Fan L, Wang S, Zhao YH. Bio-uptake, tissue distribution and metabolism of a neonicotinoid insecticide clothianidin in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118317. [PMID: 34634407 DOI: 10.1016/j.envpol.2021.118317] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Neonicotinoids have been often detected in aquatic environment with high concentrations; however, little is known about their risk and fate to/in fish. This study systematically investigated the bio-uptake, tissue distribution and metabolism of neonicotinoids in zebrafish, taking clothianidin (CLO) as an example. The results revealed the uptake and elimination kinetics of CLO in whole fish and different tissues was very similar, and its bioconcentration factor (<1) indicates the low bioaccumulation potential in zebrafish. The highest accumulative tissues for CLO were found to be intestine and liver. Eight biotransformation products were identified in intestine and liver, and the metabolic pathways were found to be N-demethylation and nitro-reduction. The metabolic kinetics of two products (desmethyl clothianidin and clothianidin urea) revealed the metabolism of CLO mainly occurred in liver and intestine. This suggested that the hepatobiliary system played an important role in the metabolism and elimination of CLO. This study provides a comprehensive evaluation of the toxicokinetics of CLO in zebrafish, and these results can contribute to its ecological risk assessment.
Collapse
Affiliation(s)
- Yi Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Limin Su
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Ying Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Xiao Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China.
| | - Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Lingyun Fan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Shuo Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| |
Collapse
|
10
|
Yarita T, Hasegawa A, Tada H. Applicability of Superheated Water Extraction for the Quantification of Pesticide Residues in Leafy Vegetables. ANAL SCI 2021; 37:1625-1628. [PMID: 33867400 DOI: 10.2116/analsci.21n003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Superheated water extraction (SWE) of pesticide residues in a cabbage sample was demonstrated. The recovery yields of several relatively polar pesticides (log Pow < 3) by the spike-and-recovery method at 100°C were acceptable. Increasing the extraction temperature up to 150°C led to enhanced extraction efficiency except for pesticides that induced degradation. The recovery yields of some target pesticides having log Pow values of 3.5 - 4 were effectively enhanced by increasing the number of extraction cycles. The observed concentration of fenitrothion in a cabbage sample was comparable with those by the official Japanese analytical method. These results suggested SWE is potentially suitable for the extraction of different relatively high-to-medium polarity pesticides.
Collapse
|
11
|
Watanabe E. Review of sample preparation methods for chromatographic analysis of neonicotinoids in agricultural and environmental matrices: From classical to state-of-the-art methods. J Chromatogr A 2021; 1643:462042. [PMID: 33761434 DOI: 10.1016/j.chroma.2021.462042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
This review specifically examines the development of sample preparation methods for residue analyses of neonicotinoid insecticides in agricultural and environmental matrices. Pesticide residue analysis is fundamentally important to ensure the safety of foods and processed foods of plant and animal origin, and to preserve the environment, particularly soil and water. For the development of pesticide residue analysis, the sample preparation process is an important key to maximizing the analytical performance of highly sensitive and accurate chromatographic instruments and to acquiring reliable analytical results. This review outlines sample preparation methods that have been proposed to date for extraction of neonicotinoids that might remain in a complicated sample matrix in quantitatively trace amounts, and for cleaning up, to the greatest extent possible, the interfering components that coexist in the sample extract.
Collapse
Affiliation(s)
- Eiki Watanabe
- Chemical Analysis Unit, Division of Hazardous Chemicals, Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8604, Japan.
| |
Collapse
|
12
|
Ajermoun N, Lahrich S, Farahi A, Bakasse M, Saqrane S, El Mhammedi MA. Electrodeposition of silver onto carbon graphite and their catalysis properties toward thiamethoxam reduction: application in food and beverage samples. Heliyon 2020; 6:e05784. [PMID: 33376826 PMCID: PMC7758523 DOI: 10.1016/j.heliyon.2020.e05784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
The purpose of this paper is the electrodeposition of silver particles on graphite electrode (Ag@GrCE) using chronoamperometry and the use of this electrode for the determination of thiamethoxam. The electrode was prepared by chronoamperometry and characterized by X-Ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), EDX analysis and electrochemical impedance spectroscopy. The obtained electrode exhibits excellent electrocatalytic activity toward thiamethoxam reduction. The voltammetric response was linear as function of TXM concentration with a limit of detection around to 1.92 × 10−6 mol L−1. The proposed electrode was successfully used to analyze thiamethoxam residue in some food samples including orange and tomato juices.
Collapse
Affiliation(s)
- N Ajermoun
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, Khouribga, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, Khouribga, Morocco
| | - A Farahi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, Khouribga, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Organic Micropollutants Analysis Team, Faculty of Sciences, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, Khouribga, Morocco
| |
Collapse
|
13
|
Kateshiya MR, Malek NI, Kailasa SK. Facile synthesis of highly blue fluorescent tyrosine coated molybdenum oxide quantum dots for the detection of imidacloprid pesticide. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Xiao Z, Wang R, Suo D, Li T, Su X. Trace analysis of bisphenol A and its analogues in eggs by ultra-performance liquid chromatography-tandem mass spectrometry. Food Chem 2020; 327:126882. [DOI: 10.1016/j.foodchem.2020.126882] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/05/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023]
|
15
|
Subhani Q, Muhammad N, Huang Z, Asif M, Hussain I, Zahid M, Hairong C, Zhu Y, Guo D. Simultaneous determination of acetamiprid and 6-chloronicotinic acid in environmental samples by using ion chromatography hyphenated to online photoinduced fluorescence detector. J Sep Sci 2020; 43:3921-3930. [PMID: 32844548 DOI: 10.1002/jssc.202000635] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 01/01/2023]
Abstract
This study aims to introduce a simple, sensitive, and cost-effective method for the simultaneous determination of acetamiprid and its main metabolite 6-chloronicotinic acid in environmental samples by using a nonsuppressed ion chromatography hyphenated with an online postcolumn photoinduced fluorescence detection system. The fluorescence detector wavelengths λex /λem = 257/382 nm was set for up to 6.0 min for acetamiprid, while λex /λem = 231/370 nm programmed for 6-chloronicotinic acid for the rest of the analysis time. Both samples were treated by applying miniaturized quick, easy, cheap, effective, rugged, and safe method before the separation of analytes on an IonPac® AS11-HC column by pumping 40 mM NaOH having minuscule content of acetonitrile (5%, v/v) as an eluent. Both intrinsically nonfluorescent analytes were turned-on by online postcolumn photoinduced derivatization, avoiding the need for complex chemical derivatization or addition of a postcolumn extra pump. The developed method was appraised for the analysis of environmental samples, exhibiting excellent linearity (0.050-10 μg/mL) with a correlation coefficient greater than 0.9993 for both analytes. Whereas, obtained limit of detection (0.025-0.0072 μg/mL), recoveries (98.02-116.00%), and inter- and intraday precision (≤3.02 %) were satisfactory for both compounds in environmental samples.
Collapse
Affiliation(s)
- Qamar Subhani
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, P. R. China.,Higher Education Department, Lahore, Punjab, Pakistan.,Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Nadeem Muhammad
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, P. R. China.,Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Zhouman Huang
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, P. R. China
| | - Muhammad Asif
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Irshad Hussain
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Cui Hairong
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, P. R. China
| | - Yan Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Dandan Guo
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China.,Ningbo University, Institution of drug discovery technology, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
16
|
Pérez-Fernández B, Costa-García A, Muñiz ADLE. Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. BIOSENSORS 2020; 10:E32. [PMID: 32252430 PMCID: PMC7236603 DOI: 10.3390/bios10040032] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Pesticides are among the most important contaminants in food, leading to important global health problems. While conventional techniques such as high-performance liquid chromatography (HPLC) and mass spectrometry (MS) have traditionally been utilized for the detection of such food contaminants, they are relatively expensive, time-consuming and labor intensive, limiting their use for point-of-care (POC) applications. Electrochemical (bio)sensors are emerging devices meeting such expectations, since they represent reliable, simple, cheap, portable, selective and easy to use analytical tools that can be used outside the laboratories by non-specialized personnel. Screen-printed electrodes (SPEs) stand out from the variety of transducers used in electrochemical (bio)sensing because of their small size, high integration, low cost and ability to measure in few microliters of sample. In this context, in this review article, we summarize and discuss about the use of SPEs as analytical tools in the development of (bio)sensors for pesticides of interest for food control. Finally, aspects related to the analytical performance of the developed (bio)sensors together with prospects for future improvements are discussed.
Collapse
Affiliation(s)
| | | | - Alfredo de la Escosura- Muñiz
- NanoBioAnalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
17
|
Wang H, Pan L, Liu Y, Ye Y, Yao S. Electrochemical sensing of nitenpyram based on the binary nanohybrid of hydroxylated multiwall carbon nanotubes/single-wall carbon nanohorns. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Wang Z, Chen J, Zhan T, He X, Wang B. Simultaneous determination of eight neonicotinoid insecticides, fipronil and its three transformation products in sediments by continuous solvent extraction coupled with liquid chromatography-tandem mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110002. [PMID: 31825794 DOI: 10.1016/j.ecoenv.2019.110002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Neonicotinoids (NEOs) and fipronil (FIP) are insecticides that are widely used in modern agriculture and have received considerable attention in recent years due to their adverse effects on non-target organisms in the environment. In the present study, a new method to simultaneously detect eight common NEO insecticides and FIP and its three transformation products (FIPs) in sediments was developed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) based on a combined pretreatment of continuous solvent extraction (CSE) and solid phase extraction (SPE). Under optimized conditions, 5.0 g of freeze-dried sediment samples were initially extracted with methanol (20 mL)-methanol (15 mL)-water (20 mL) in sequence, and then the extract was cleaned with hydrophilic-lypophilic balance SPE cartridges, and HPLC-MS/MS analysis was conducted. The established method was validated to be sensitive, linear, accurate, and precise. The limits of detection (LOD) and limits of quantification (LOQ) of target compounds were 0.012-0.055 μg/kg d.w and 0.031-0.091 μg/kg d.w, respectively. Good linearity (R2 > 0.990) was observed between 4.0 × 10-2 and 20.0 μg/kg d.w. The recovery rates of all target insecticides were between 75.5% and 98.5%, and the relative standard deviations (RSD) were all less than 15.0% at the low, medium, and high spiked levels. Finally, the optimized method was applied to analyze 12 target insecticides in the sediments obtained from Jiaozhou Bay of China and its main inflow rivers. Acetamiprid, thiamethoxam, fipronil sulfide, and fipronil sulfone were detected in the river sediment samples at the concentration from <LOQ to 0.197 μg/kg d.w. Thus, the two types of studied insecticides can enter the sedimentary environment. Overall, the proposed method can be used to investigate the contamination status of typical NEOs and FIP insecticides in sediments and provide base data to comprehensively understand their environmental behavior, safety, and fate.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Junhui Chen
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Tianrong Zhan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiuping He
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Baodong Wang
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| |
Collapse
|
19
|
Lu J, Wang R, Luan J, Li Y, He X, Chen L, Zhang Y. A functionalized magnetic covalent organic framework for sensitive determination of trace neonicotinoid residues in vegetable samples. J Chromatogr A 2020; 1618:460898. [PMID: 32044125 DOI: 10.1016/j.chroma.2020.460898] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 01/19/2023]
Abstract
A functionalized magnetic covalent organic framework containing the nitro groups (Fe3O4@COF-(NO2)2) with core-shell structure was synthesized for magnetic solid phase extraction (MSPE) of six neonicotinoid insecticides residue in vegetable samples. The structure of Fe3O4@COF-(NO2)2 was investigated by various characterization techniques. The Fe3O4@COF-(NO2)2 exhibits the excellent thermal and chemical stability, high surface area (254.72 m2 g-1), total pore volume (0.19 cm3 g-1), high magnetic responsivity (27.7 emu g-1), which can be used as an ideal adsorbent for rapid isolation and enrichment of target analytes. A sensitive method was developed by using Fe3O4@COF-(NO2)2-based MSPE coupled with HPLC with UV detection. It offered good linearity within the range of 0.1-30 ng mL-1, low limits of detection (S/N = 3) of 0.02-0.05 ng mL-1. Furthermore, high enrichment factors of 170-250 for six neonicotinoid insecticides were obtained. The applicability of Fe3O4@COF-(NO2)2 is demonstrated for measuring trace neonicotinoid residues in vegetable samples with satisfactory recoveries, which ranged from 77.5 to 110.2%. The results indicated that the Fe3O4@COF-(NO2)2 microspheres offer great potential for efficient extraction of neonicotinoid insecticides from complex samples.
Collapse
Affiliation(s)
- Junyu Lu
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; College of Chemistry and Biology Engineering, Hechi University, Yizhou 546300, China
| | - Rui Wang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Jingyi Luan
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| |
Collapse
|
20
|
Pérez-Fernández B, Mercader JV, Abad-Fuentes A, Checa-Orrego BI, Costa-García A, Escosura-Muñiz ADL. Direct competitive immunosensor for Imidacloprid pesticide detection on gold nanoparticle-modified electrodes. Talanta 2019; 209:120465. [PMID: 31892037 DOI: 10.1016/j.talanta.2019.120465] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022]
Abstract
A direct competitive immunosensor for the electrochemical determination of Imidacloprid (IMD) pesticide on gold nanoparticle-modified screen-printed carbon electrodes (AuNP-SPCE) is here reported for the first time. Self-obtained specific monoclonal antibodies are immobilized on the AuNP-SPCE taking advantage of the AuNPs biofunctionalization abilities. In our biosensor design, free IMD in the sample competes with IMD conjugated with horseradish peroxidase (IMD-HRP) for the recognition by the antibodies. After that, 3,3',5,5'-Tetramethylbenzidine (TMB) is enzymatically oxidized by HRP, followed by the oxidized TMB reduction back at the surface of the SPCE. This process gives an associated catalytic current (analytical signal) that is inversely proportional to the IMD amount. The main parameters affecting the analytical signal have been optimized, reaching a good precision (repeatability with a RSD of 6%), accuracy (relative error of 6%), stability (up to one month), selectivity and an excellent limit of detection (LOD of 22 pmol L-1), below the maximum levels allowed by the legislation, with a wide response range (50-10000 pmol L-1). The detection through antibodies also allows to have an excellent selectivity against other pesticides potentially present in real samples. Low matrix effects were found when analysing IMD in tap water and watermelon samples. The electrochemical immunosensor was also validated with HPLC-MS/MS, the reference method used in official laboratories for IMD analysis, through statistical tests. Our findings make the electrochemical immunosensor as an outstanding method for the rapid and sensitive determination of IMD at the point-of-use.
Collapse
Affiliation(s)
- Beatriz Pérez-Fernández
- NanoBioanalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Josep V Mercader
- IATA-CSIC, Avda Agustí Escardino 7, 46980, Paterna, Valencia, Spain
| | | | | | - Agustín Costa-García
- NanoBioanalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Alfredo de la Escosura-Muñiz
- NanoBioanalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain.
| |
Collapse
|
21
|
Nakamura K, Otake T, Hanari N. Evaluation of pressurized liquid extraction for the determination of neonicotinoid pesticides in green onion. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:640-646. [PMID: 31146636 DOI: 10.1080/03601234.2019.1621633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A pressurized liquid extraction (PLE) method was presented for the determination of six neonicotinoid pesticides, acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam in green onion. The critical parameters of PLE, e.g. extraction solvent, temperature, pressure, number of cycles, and static extraction time, were optimized by test on the spiked green onion with six neonicotinoids and the incurred green onion applied with four commercial neonicotinoid insecticide formulations (acetamiprid, dinotefuran, imidacloprid, and thiamethoxam). As a result, the recoveries of six neonicotinoids obtained by one cycle PLE with acetonitrile at 140 °C and 50 bar for 10 min were 94.7-99.5%. These results were acceptable according to the validation guideline for testing method of agricultural chemicals in food by Ministry of Health, Labour, and Welfare in Japan. PLE was also validated by the test on the incurred green onion. The analytical values of four neonicotinoids obtained by PLE were good agreement with those obtained by solid-liquid extraction with homogenizer, which is employed for Japanese official method for the analysis of pesticide residues in food (the ratios of analytical values obtained by PLE to those obtained by solid-liquid extraction were 99.7-101.2%). These results indicate that PLE is applicable for the determination of neonicotinoids in green onion.
Collapse
Affiliation(s)
- Keisuke Nakamura
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3 , Umezono , Tsukuba , Ibaraki , Japan
| | - Takamitsu Otake
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3 , Umezono , Tsukuba , Ibaraki , Japan
| | - Nobuyasu Hanari
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3 , Umezono , Tsukuba , Ibaraki , Japan
| |
Collapse
|
22
|
Nakamura K, Otake T, Hanari N, Takatsu A. Evaluation of the impact of matrix effects in LC/MS measurement on the accurate quantification of neonicotinoid pesticides in food by isotope-dilution mass spectrometry. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:467-474. [PMID: 31131696 DOI: 10.1080/03601234.2019.1607134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of isotope-labeled internal standards is the most widely accepted approach to overcome the matrix effects on quantification of pesticides in food by LC/MS. We evaluated the impact of the matrix effects on quantification of six neonicotinoid pesticides, acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam, in food by using deuterated internal standards. The calibration curves for each pesticide were obtained by using matrix-free and matrix-matched calibration solutions with blank brown rice, carrot, and green onion extracts. For brown rice and carrot, the matrix effects were not observed. In contrast, the slopes of calibration curves for each pesticide were influenced by presence of green onion extracts in calibration solutions (variability of the slopes was 4-9%), because the ratios of peak area for native pesticide to those for internal standards were influenced by matrix. The spike-and-recovery test with green onion was also performed. The analytical values obtained by using matrix-free calibration solution were biased from the spiked concentration, whereas those obtained by using matrix-matched calibration solution were comparable to the spiked concentration. These results indicate that matrix-matched calibration solution should be used for accurate quantification of neonicotinoid pesticides in food by LC/MS using deuterated internal standards.
Collapse
Affiliation(s)
- Keisuke Nakamura
- a National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3 , Tsukuba , Ibaraki , Japan
| | - Takamitsu Otake
- a National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3 , Tsukuba , Ibaraki , Japan
| | - Nobuyasu Hanari
- a National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3 , Tsukuba , Ibaraki , Japan
| | - Akiko Takatsu
- a National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3 , Tsukuba , Ibaraki , Japan
| |
Collapse
|
23
|
Filigenzi MS, Graves EE, Tell LA, Jelks KA, Poppenga RH. Quantitation of neonicotinoid insecticides, plus qualitative screening for other xenobiotics, in small-mass avian tissue samples using UHPLC high-resolution mass spectrometry. J Vet Diagn Invest 2019; 31:399-407. [PMID: 30853007 DOI: 10.1177/1040638719834329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We developed and validated a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analytical method for quantitatively measuring pesticide concentrations in small-body avian tissue samples using homogenized 1-2-d-old chicken carcasses as the test matrix. We quantified the following key insecticides: sulfoxaflor (sulfoximine class) and the neonicotinoids dinotefuran, nitenpyram, thiamethoxam, acetamiprid, thiacloprid, clothianidin, and imidacloprid. We used fortified chick carcass samples to validate method accuracy (80-125% recoveries), precision (<20% relative standard deviation), and sensitivity (≤1.2 ppb) for these targeted analytes. This method also uses full-scan, high-resolution MS to screen for the presence of a wide variety of other xenobiotics in bird carcasses. The utility of our screening process was demonstrated by the detection of carbaryl in some samples. This sensitive LC-HRMS analytical method for insecticide detection in a matrix of homogenized carcass is ideal for evaluating small birds for insecticide exposure. This novel whole-carcass method may allow for research studies of small-bodied, free-ranging avian species, and could provide insight regarding their exposure to multiple classes of environmental contaminants.
Collapse
Affiliation(s)
- Michael S Filigenzi
- California Animal Health and Food Safety Laboratory (Filigenzi, Poppenga).,Department of Environmental Science and Policy (Graves).,Department of Medicine and Epidemiology, School of Veterinary Medicine (Tell, Jelks).,University of California at Davis, Davis, CA
| | - Emily E Graves
- California Animal Health and Food Safety Laboratory (Filigenzi, Poppenga).,Department of Environmental Science and Policy (Graves).,Department of Medicine and Epidemiology, School of Veterinary Medicine (Tell, Jelks).,University of California at Davis, Davis, CA
| | - Lisa A Tell
- California Animal Health and Food Safety Laboratory (Filigenzi, Poppenga).,Department of Environmental Science and Policy (Graves).,Department of Medicine and Epidemiology, School of Veterinary Medicine (Tell, Jelks).,University of California at Davis, Davis, CA
| | - Karen A Jelks
- California Animal Health and Food Safety Laboratory (Filigenzi, Poppenga).,Department of Environmental Science and Policy (Graves).,Department of Medicine and Epidemiology, School of Veterinary Medicine (Tell, Jelks).,University of California at Davis, Davis, CA
| | - Robert H Poppenga
- California Animal Health and Food Safety Laboratory (Filigenzi, Poppenga).,Department of Environmental Science and Policy (Graves).,Department of Medicine and Epidemiology, School of Veterinary Medicine (Tell, Jelks).,University of California at Davis, Davis, CA
| |
Collapse
|
24
|
Barbieri MV, Postigo C, Guillem-Argiles N, Monllor-Alcaraz LS, Simionato JI, Stella E, Barceló D, López de Alda M. Analysis of 52 pesticides in fresh fish muscle by QuEChERS extraction followed by LC-MS/MS determination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:958-967. [PMID: 30759621 DOI: 10.1016/j.scitotenv.2018.10.289] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 06/09/2023]
Abstract
Pesticide pollution in water has been well described; however, little is known on pesticide accumulation by aquatic organisms, and to date, most studies in this line have been focused on persistent organochlorine pesticides. For this reason, a method based on QuEChERS extraction and subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis has been developed and validated for the determination of 52 medium to highly polar pesticides in fresh fish muscle. Target pesticides were selected on the basis of use and occurrence in surface waters. Quantification is carried out following an isotope dilution approach. The method developed is satisfactory in terms of accuracy (relative recoveries between 71 and 120%), precision (relative standard deviations below 21%) and sensitivity (limits of determination in the pg/g or low ng/g f.w. range for most compounds). The application of the validated methodology to fish specimens collected from the Adige River (Italy) revealed the presence of trace levels of diazinon, dichlorvos and diuron, and measurable levels of metolachlor, quinoxyfen, irgarol, terbutryn, and acetamiprid, but in all cases at concentrations below the default maximum residue level of 10 ng/g established for pesticides not specifically regulated in fish intended for human consumption. Metolachlor and quinoxyfen were both the most ubiquitous and abundant pesticides, in agreement with their high potential for bioaccumulation. Both are toxic to aquatic organisms, and therefore, their potential effects on aquatic ecosystems should be further explored.
Collapse
Affiliation(s)
- Maria Vittoria Barbieri
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cristina Postigo
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-750 07 Uppsala, Sweden.
| | - Nuria Guillem-Argiles
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Luis Simon Monllor-Alcaraz
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Elisa Stella
- University of Trento, Department of Civil, Environmental and Mechanical Engineering, Via Mesiano 77, 38123 Trento, Italy
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Emili Grahit, 101, Edifici H2O, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain
| | - Miren López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
25
|
Pérez-Fernández B, Mercader JV, Checa-Orrego BI, de la Escosura-Muñiz A, Costa-García A. A monoclonal antibody-based immunosensor for the electrochemical detection of imidacloprid pesticide. Analyst 2019; 144:2936-2941. [DOI: 10.1039/c9an00176j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Imidacloprid (IMD) is one of the most used pesticides worldwide as a systemic insecticide as well as for pest control and seed treatment.
Collapse
Affiliation(s)
- Beatriz Pérez-Fernández
- NanoBioAnalysis Group-Department of Physical and Analytical Chemistry
- University of Oviedo
- Oviedo
- Spain
| | | | | | | | - Agustín Costa-García
- NanoBioAnalysis Group-Department of Physical and Analytical Chemistry
- University of Oviedo
- Oviedo
- Spain
| |
Collapse
|
26
|
Zoumenou BGYM, Aïna MP, Imorou Toko I, Igout A, Douny C, Brose F, Schiffers B, Gouda I, Chabi Sika K, Kestemont P, Scippo ML. Occurrence of Acetamiprid Residues in Water Reservoirs in the Cotton Basin of Northern Benin. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:7-12. [PMID: 30374586 DOI: 10.1007/s00128-018-2476-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
An Ultra performance liquid chromatography (UPLC) coupled to UV detection method was developed to determine acetamiprid residues in water reservoirs of northern Benin, close to cotton fields. The quantification limit of this method was 0.2 µg L-1 acetamiprid in water, its precision ranged between 8% and 22%, and its trueness between 99% and 117% (for concentrations ranging from 0.2 to 5.0 µg L-1). Acetamiprid residues were determined in water samples collected in four reservoirs from northern Benin during the phytosanitary treatment period of cotton. The minimum and maximum concentrations of acetamiprid residues in water were 0.2 and 7.7 µg L-1, respectively. These levels do not represent any risk for human consumption of this water, but indicate a regular use of acetamiprid, possibly together with other pesticides which could be more harmful for both humans and aquatic species.
Collapse
Affiliation(s)
- Berny's G Y M Zoumenou
- Laboratory of Food Analysis, Department of Food Science, FARAH-Veterinary Public Health, University of Liège, Liège, Belgium
- Laboratoire des Sciences et Techniques de l'Eau, Ecole Polytechnique d'Abomey-Calavi, Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Martin P Aïna
- Laboratoire des Sciences et Techniques de l'Eau, Ecole Polytechnique d'Abomey-Calavi, Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Ibrahim Imorou Toko
- Laboratoire de recherche en aquaculture et écotoxicologie aquatique (LaRAEAq), Faculté d'Agronomie, Université de Parakou, Parakou, Benin
| | - Ahmed Igout
- Department of biomedical and preclinical sciences, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Science, FARAH-Veterinary Public Health, University of Liège, Liège, Belgium
| | - François Brose
- Laboratory of Food Analysis, Department of Food Science, FARAH-Veterinary Public Health, University of Liège, Liège, Belgium
| | - Bruno Schiffers
- Laboratoire de Phytopharmacie, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Ibrachi Gouda
- Laboratoire de recherche en aquaculture et écotoxicologie aquatique (LaRAEAq), Faculté d'Agronomie, Université de Parakou, Parakou, Benin
- Laboratoire de Phytopharmacie, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Kisito Chabi Sika
- Laboratoire Central de sécurité Sanitaire des Aliments (LCSSA), Cotonou, Benin
| | - Patrick Kestemont
- Unit of Research in Environmental and Evolutionary Biology, Laboratory of Ecophysiology and Ecotoxicology, University of Namur, Namur, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Science, FARAH-Veterinary Public Health, University of Liège, Liège, Belgium.
| |
Collapse
|
27
|
Zhang Q, Wang X, Li Z, Jin H, Lu Z, Yu C, Huang YF, Zhao M. Simultaneous determination of nine neonicotinoids in human urine using isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:647-652. [PMID: 29772515 DOI: 10.1016/j.envpol.2018.04.144] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Neonicotinoids (neonics), a class of systemic insecticides, have been frequently detected in pollen, vegetables, and fruits. Recently, an increasing concern has been aroused for human exposure to neonics. However, biological monitoring for quantifying body burden of neonics has rarely been reported. In this study, we developed an isotope-dilution ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) method to simultaneously quantify nine neonics, including acetamiprid (ACE), thiamethoxam (THIAM), imidacloprid (IMIP), clothianidin (CLO), flonicamid (FLO), thiacloprid (THIAC), dinotefuran (DIN), nitenpyram (NIT), and imidaclothiz (IMIT) in urine. The limits of quantification were 0.1 μg/L for ACE, FLO, DIN, NIT and IMIT, and 0.2 μg/L for THIAM, IMIP, CLO, and THIAC. The overall recoveries were 80.8-103%, 81.5-91.7% and 83.0-92.3% for QA/QC samples fortifying at 1, 25, and 100 μg/L levels, respectively. UPLC/MS/MS method was used to analyze urine samples obtained from 10 children in Hangzhou, China. The detection frequencies were 80% for ACE and IMIP, 70% for THIAM and CLO, 20% for DIN and IMIT and 10% for THIAC. FLO and NIT were not detected in those urine samples. The data provided here will be helpful for conducting biological monitoring of neonics exposure in the future.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China.
| | - Ximing Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Zhe Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Zhengbiao Lu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Chang Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Yu-Fang Huang
- Department of Safety Health and Environmental Engineering, National United University, Miaoli 36003, Taiwan, ROC
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China.
| |
Collapse
|
28
|
Meng B, Yu Y, Zhang Q, Wang S, Hu D, Zhang K. Simultaneous determination of residues of thiamethoxam and its metabolite clothianidin in tobacco leaf and soil using liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2018; 32:e4225. [PMID: 29498755 DOI: 10.1002/bmc.4225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 11/09/2022]
Abstract
A simple analytical method was developed to simultaneously determine thiamethoxam and its metabolite, clothianidin, in fresh tobacco leaf, soil and cured tobacco leaf using liquid chromatography with tandem mass spectrometry. Thiamethoxam and clothianidin in tobacco and soil samples were extracted with acetonitrile containing 0.1% formic acid and purified using an NH2 -SPE column. The optimized method provided good linearity with coefficients of determination R2 ≥ 0.9981. The limits of detection and quantification were between 0.006-0.12 and 0.02-0.4 mg/kg, respectively. Intra- and inter-day recovery assays were used to validate the established method. The average recoveries of thiamethoxam and clothianidin in fresh tobacco leaf, soil and cured tobacco leaf were 75.04-100.47%, 75.86-86.40% and 89.83-99.39%, respectively. The intra- and inter-day relative standard deviations were all <9%. The developed method was successfully applied for the analysis of thiamethoxam and clothianidin residues in actual tobacco and soil samples. The results indicated that the established method met the requirements for the analysis of trace amounts of thiamethoxam and clothianidin in fresh tobacco leaf, soil and cured tobacco leaf.
Collapse
Affiliation(s)
- Banghua Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yurong Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Qingtao Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shouyi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Kankan Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
29
|
Zhang Q, Li Z, Chang CH, Lou JL, Zhao MR, Lu C. Potential human exposures to neonicotinoid insecticides: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:71-81. [PMID: 29414376 DOI: 10.1016/j.envpol.2017.12.101] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/21/2017] [Accepted: 12/25/2017] [Indexed: 05/19/2023]
Abstract
Due to their systemic character and high efficacy to insect controls, neonicotinoid insecticides (neonics) have been widely used in global agriculture since its introduction in early 1990. Recent studies have indicated that neonics may be ubiquitous, have longer biological half-lives in the environment once applied, and therefore implicitly suggested the increasing probability for human exposure to neonics. Despite of neonics' persistent characters and widespread uses, scientific literature in regard of pathways in which human exposure could occur is relatively meager. In this review, we summarized results from peer-reviewed articles published prior to 2017 that address potential human exposures through ingestion and inhalation, as well as results from human biomonitoring studies. In addition, we proposed the use of relative potency factor approach in order to facilitate the assessment of concurrent exposure to a mixture of neonics with similar chemical structures and toxicological endpoints. We believe that the scientific information that we presented in this review will aid to future assessment of total neonic exposure and subsequently human health risk characterization.
Collapse
Affiliation(s)
- Q Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Providence, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - Z Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Providence, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - C H Chang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - J L Lou
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - M R Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Providence, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - C Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA; College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
30
|
Lu C, Chang CH, Palmer C, Zhao M, Zhang Q. Neonicotinoid Residues in Fruits and Vegetables: An Integrated Dietary Exposure Assessment Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3175-3184. [PMID: 29380592 DOI: 10.1021/acs.est.7b05596] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Neonicotinoids have become the most widely used insecticides in the world since introduced in the mid 1990s, yet the extent of human exposure and health impacts is not fully understood. In this study, the residues were analyzed of seven neonicotinoids in fruit and vegetable samples collected from two cross-sectional studies: the U.S. Congressional Cafeteria study (USCC) and the Hangzhou China (HZC) study. We then employed a relative potency factor method to integrate all neonicotinoids in each food sample using the respective reference dose values as the basis for summation. The findings were compared with data published by the U.S. Department of Agriculture Pesticide Data Program (USDA/PDP). Imidacloprid and thiamethoxam were the most commonly detected neonicotinoids in fruits and vegetables with 66 and 51% detection in the HZC study and 52 and 53% detection in the USCC study, respectively. The overall frequency of detection for neonicotinoids in the USDA/PDP samples was much lower than those reported here for the USCC or HZC studies, with imidacloprid being the most frequently detected neonicotinoid at 7.3%. The high frequencies of neonicotinoid detection in fruits and vegetables in the USCC and HZC studies give us a snapshot of the ubiquity of neonicotinoid use in global agriculture and make it clear that neonicotinoids have become part of the dietary staple, with possible health implications for individuals.
Collapse
Affiliation(s)
- Chensheng Lu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment , Zhejiang University of Technology , 18 Chaowang Road , Hangzhou , Zhejiang 310032 , PR China
- Department of Environmental Health , Harvard T. H. Chan School of Public Health , Boston , Massachusetts 02215 , United States
| | - Chi-Hsuan Chang
- Department of Environmental Health , Harvard T. H. Chan School of Public Health , Boston , Massachusetts 02215 , United States
| | - Cynthia Palmer
- American Bird Conservancy , Washington , District of Columbia 20008 , United States
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment , Zhejiang University of Technology , 18 Chaowang Road , Hangzhou , Zhejiang 310032 , PR China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment , Zhejiang University of Technology , 18 Chaowang Road , Hangzhou , Zhejiang 310032 , PR China
- Department of Environmental Health , Harvard T. H. Chan School of Public Health , Boston , Massachusetts 02215 , United States
| |
Collapse
|
31
|
Evaluation of on-line concentration coupled to liquid chromatography tandem mass spectrometry for the quantification of neonicotinoids and fipronil in surface water and tap water. Anal Bioanal Chem 2018; 410:2765-2779. [DOI: 10.1007/s00216-018-0957-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 12/20/2022]
|
32
|
Muhammad N, Wang F, Subhani Q, Zhao Q, Qadir MA, Cui H, Zhu Y. Comprehensive two-dimensional ion chromatography (2D-IC) coupled to a post-column photochemical fluorescence detection system for determination of neonicotinoids (imidacloprid and clothianidin) in food samples. RSC Adv 2018; 8:9277-9286. [PMID: 35541852 PMCID: PMC9078649 DOI: 10.1039/c7ra12555k] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
There are increasing concerns about the dietary risks of neonicotinoids (NNIs); therefore their sensitive and accurate determination in dietary products is indispensable. However, the complex composition of agricultural food matrixes makes their extraction and quantitative determination a challenging task. Realizing this need, we herein report a simple, cost-effective, selective and sensitive fluorescence analytical workflow for analyses of two non-fluorescent neonicotinoids imidacloprid (IMI) and clothianidin (CLT) in six complex food samples (honey, ginger, durian, apple, tomato, cucumber) by online clean-up of sample extracts using two-dimensional ion chromatography (2D-IC) and a subsequent online post column UV induced fluorescence detection system. This online clean-up setup has proven advantageous to improve the limit of detection, potentially diminish matrix effects, and reduce analysis time and labor. The developed method showed excellent analytical figures of merit including linearity, selectivity, repeatability, recovery, and resolution for analysis of IMI and CLT in food samples. A 2D-IC system was successfully fabricated for clean isocratic chromatographic separations and sensitive post column UV induced fluorescence determination of two NNIs in six complex food samples.![]()
Collapse
Affiliation(s)
- Nadeem Muhammad
- Department of Environmental Engineering
- Wuchang University of Technology
- Wuhan
- China
- Department of Chemistry
| | - Fenglian Wang
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Qamar Subhani
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Qiming Zhao
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | | | - Hairong Cui
- Department of Environmental Engineering
- Wuchang University of Technology
- Wuhan
- China
| | - Yan Zhu
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| |
Collapse
|
33
|
Tian J, Rustum A. Development and Validation of a Stability-indicating Reversed-phase UPLC-UV Method for the Assay of Imidacloprid and Estimation of its Related Compounds. J Chromatogr Sci 2017; 56:131-138. [DOI: 10.1093/chromsci/bmx091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 09/29/2017] [Indexed: 11/13/2022]
|
34
|
Hydrolysis of a neonicotinoid: a theoretical study on the reaction mechanism of dinotefuran. Struct Chem 2017. [DOI: 10.1007/s11224-017-1030-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Emerging Estrogenic Pollutants in the Aquatic Environment and Breast Cancer. Genes (Basel) 2017; 8:genes8090229. [PMID: 28914763 PMCID: PMC5615362 DOI: 10.3390/genes8090229] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
The number and amount of man-made chemicals present in the aquatic environment has increased considerably over the past 50 years. Among these contaminants, endocrine-disrupting chemicals (EDCs) represent a significant proportion. This family of compounds interferes with normal hormonal processes through multiple molecular pathways. They represent a potential risk for human and wildlife as they are suspected to be involved in the development of diseases including, but not limited to, reprotoxicity, metabolic disorders, and cancers. More precisely, several studies have suggested that the increase of breast cancers in industrialized countries is linked to exposure to EDCs, particularly estrogen-like compounds. Estrogen receptors alpha (ERα) and beta (ERβ) are the two main transducers of estrogen action and therefore important targets for these estrogen-like endocrine disrupters. More than 70% of human breast cancers are ERα-positive and estrogen-dependent, and their development and growth are not only influenced by endogenous estrogens but also likely by environmental estrogen-like endocrine disrupters. It is, therefore, of major importance to characterize the potential estrogenic activity from contaminated surface water and identify the molecules responsible for the hormonal effects. This information will help us understand how environmental contaminants can potentially impact the development of breast cancer and allow us to fix a maximal limit to the concentration of estrogen-like compounds that should be found in the environment. The aim of this review is to provide an overview of emerging estrogen-like compounds in the environment, sum up studies demonstrating their direct or indirect interactions with ERs, and link their presence to the development of breast cancer. Finally, we emphasize the use of in vitro and in vivo methods based on the zebrafish model to identify and characterize environmental estrogens.
Collapse
|
36
|
Sun B, Wang C, Wang Q, Chen L, Dang X, Huang J, Chen H. Preparation of Acryloyl β-Cyclodextrin Organic Polymer Monolithic Column and Its Application in Solid-Phase Microextraction and HPLC Analysis for Carbofuran and Carbaryl in Rice. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0931-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Zhang M, Zhang H, Zhai X, Yang X, Zhao H, Wang J, Dong A, Wang Z. Application of β-cyclodextrin–reduced graphene oxide nanosheets for enhanced electrochemical sensing of the nitenpyram residue in real samples. NEW J CHEM 2017. [DOI: 10.1039/c6nj02891h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Shi Z, Zhang S, Huai Q, Xu D, Zhang H. Methylamine-modified graphene-based solid phase extraction combined with UPLC-MS/MS for the analysis of neonicotinoid insecticides in sunflower seeds. Talanta 2017; 162:300-308. [DOI: 10.1016/j.talanta.2016.10.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/01/2016] [Accepted: 10/08/2016] [Indexed: 11/25/2022]
|
39
|
Bussy U, Li K, Li W. Application of liquid chromatography-tandem mass spectrometry in quantitative bioanalyses of organic molecules in aquatic environment and organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9459-79. [PMID: 26996906 DOI: 10.1007/s11356-016-6433-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 03/07/2016] [Indexed: 05/16/2023]
Abstract
Analytical methods using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of metabolites or contaminants (or both) in various tissues of aquatic organisms and in the aquatic environment have received increasing attention in the last few years. This review discusses the findings relevant to such procedures published between 2005 and 2015. The aim is to evaluate the advantages, restrictions, and performances of the procedures from sample preparation to mass spectrometry measurement. To support these discussions, a general knowledge on LC-MS/MS is also provided.
Collapse
Affiliation(s)
- Ugo Bussy
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, Room 13, Natural Resources Bldg., East Lansing, MI, 48824, USA
| | - Ke Li
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, Room 13, Natural Resources Bldg., East Lansing, MI, 48824, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, Room 13, Natural Resources Bldg., East Lansing, MI, 48824, USA.
| |
Collapse
|
40
|
Vichapong J, Burakham R, Santaladchaiyakit Y, Srijaranai S. A preconcentration method for analysis of neonicotinoids in honey samples by ionic liquid-based cold-induced aggregation microextraction. Talanta 2016; 155:216-21. [PMID: 27216676 DOI: 10.1016/j.talanta.2016.04.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/18/2022]
Abstract
A preconcentration approach based on ionic liquid-based cold-induced aggregation microextraction for determination of neonicotinoid insecticide residues in honey samples before high-performance liquid chromatographic analysis has been developed. Room temperature ionic liquid [C4MIM][PF6] (extraction solvent) and SDS (emulsifier) was used for extraction of the target analytes. The parameters affecting the extraction efficiency were optimized. The optimum microextraction conditions were 200µL room temperature ionic liquids [C4MIM][PF6] containing 0.05molL(-1) SDS, 0.75g sodium carbonate, vortex agitation speed of 1800rpm for 30s and centrifugation at 3500rpm for 10min. Under optimum conditions, the high enrichment factors of 200 could be obtained, leading to low limit of detection (0.01µgL(-1) for all analytes) with the relative standard deviations lower than 2.68% and 5.38% for retention time and peak area, respectively. Good recoveries for the spiked target neonicotinoids at three different concentrations of honey samples were obtained in 86-100% and relative standard deviations were lower than 8.1%. The results demonstrated that the proposed method can be used as an alternative powerful method for the simultaneous determination of the studied insecticides in real honey samples.
Collapse
Affiliation(s)
- Jitlada Vichapong
- Creative Chemistry and Innovation Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand.
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
| | - Supalax Srijaranai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
41
|
Development of a subcritical water extraction approach for trace analysis of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry tissues. J Chromatogr A 2015; 1418:29-35. [PMID: 26433266 DOI: 10.1016/j.chroma.2015.09.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 09/03/2015] [Accepted: 09/16/2015] [Indexed: 11/23/2022]
Abstract
Subcritical water extraction was investigated as a novel and alternative technology for the separation of trace amounts of chloramphenicol, thiamphenicol, florfenicol and its major metabolite florfenicol amine from poultry tissues and its results were compared with those of conventional shaking extraction, ultrasonic extraction, and pressurized liquid extraction. Decreasing the polarity of water by successively increasing the extraction temperature from 50°C to 200°C at the moderate pressure enabled selective, highly effective extractions to be performed. Rapid quantification of the target compounds was carried out by ultra-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS). The critical parameters of subcritical water extraction such as solvent modifier, temperature, pressure, extraction time, and static cycles were varied with control. The optimized extraction procedures using subcritical water as extraction solvent, were carried out on a pressurized liquid extractor operated at 150°C and 100bar, applying two static cycles for 3min. Average recoveries of the four analytes from fortified samples ranged between 86.8% and 101.5%, with relative standard deviations (RSDs) lower than 7.7%. The limits of detection (LODs) and quantification (LOQs) for the target compounds were in the ranges of 0.03-0.5μgkg(-1) and 0.1-2.0μgkg(-1), respectively. The proposed method is fast, sensitive, water-based thus more environmental acceptable, making it a suitable replacement for conventional organic solvent extraction in veterinary drug residue analysis.
Collapse
|
42
|
Raina-Fulton R. Determination of neonicotinoid insecticides and strobilurin fungicides in particle phase atmospheric samples by liquid chromatography-tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5152-5162. [PMID: 25961332 DOI: 10.1021/acs.jafc.5b01347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A liquid chromatography-tandem mass spectrometry method has been developed for the determination of neonicotinoids and strobilurin fungicides in the particle phase fraction of atmosphere samples. Filter samples were extracted with pressurized solvent extraction, followed by a cleanup step with solid phase extraction. Method detection limits for the seven neonicotinoid insecticides and six strobilurin fungicides were in the range of 1.0-4.0 pg/m(3). Samples were collected from June to September 2013 at two locations (Osoyoos and Oliver) in the southern Okanagan Valley Agricultural Region of British Columbia, where these insecticides and fungicides are recommended for use on tree fruit crops (apples, pears, cherries, peaches, apricots) and vineyards. This work represents the first detection of acetamiprid, imidacloprid, clothianidin, kresoxim-methyl, pyraclostrobin, and trifloxystrobin in particle phase atmospheric samples collected in the Okanagan Valley in Canada. The highest particle phase atmospheric concentrations were observed for imidacloprid, pyraclostrobin, and trifloxystrobin at 360.0, 655.6, and 1908.2 pg/m(3), respectively.
Collapse
Affiliation(s)
- Renata Raina-Fulton
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
43
|
Ionic Liquid-Based Vortex-Assisted Liquid–Liquid Microextraction for Simultaneous Determination of Neonicotinoid Insecticides in Fruit Juice Samples. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0209-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
Determination of neonicotinoid insecticides and their metabolites in honey bee and honey by liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 990:132-40. [DOI: 10.1016/j.jchromb.2015.03.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/23/2015] [Accepted: 03/21/2015] [Indexed: 11/23/2022]
|
45
|
Yuan K, Kang H, Yue Z, Yang L, Lin L, Wang X, Luan T. Determination of 13 endocrine disrupting chemicals in sediments by gas chromatography-mass spectrometry using subcritical water extraction coupled with dispersed liquid-liquid microextraction and derivatization. Anal Chim Acta 2015; 866:41-47. [PMID: 25732691 DOI: 10.1016/j.aca.2015.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/29/2015] [Accepted: 02/08/2015] [Indexed: 10/24/2022]
Abstract
In this study, a sample pretreatment method was developed for the determination of 13 endocrine disrupting chemicals (EDCs) in sediment samples based on the combination of subcritical water extraction (SWE) and dispersed liquid-liquid microextraction (DLLME). The subcritical water that provided by accelerated solvent extractor (ASE) was the sample solution (water) for the following DLLME and the soluble organic modifier that spiked in the subcritical water was also used as the disperser solvent for DLLME in succession. Thus, several important parameters that affected both SWE and DLLME were investigated, such as the extraction solvent for DLLME (chlorobenzene), extraction time for DLLME (30s), selection of organic modifier for SWE (acetone), volume of organic modifier (10%) and extraction temperature for SWE (150 °C). In addition, good chromatographic behavior was achieved for GC-MS after derivatisation by using N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA). As a result, proposed method sensitive and reliable with the limits of detection (LODs) ranging from 0.006 ng g(-1) (BPA) to 0.639 ng g(-1) (19-norethisterone) and the relative standard deviations (RSDs) between 1.5% (E2) and 15.0% (DES). Moreover, the proposed method was compared with direct ASE extraction that reported previously, and the results showed that SWE-DLLME was more promising with recoveries ranging from 42.3% (dienestrol) to 131.3% (4,5α-dihydrotestosterone), except for diethylstilbestrol (15.0%) and nonylphenols (29.8%). The proposed method was then successfully applied to determine 13 EDCs sediment of Humen outlet of the Pearl River, 12 of target compounds could be detected, and 10 could be quantitative analysis with the total concentration being 39.6 ng g(-1), and which indicated that the sediment of Humen outlet was heavily contaminated by EDCs.
Collapse
Affiliation(s)
- Ke Yuan
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Haining Kang
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen 518045, PR China
| | - Zhenfeng Yue
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen 518045, PR China
| | - Lihua Yang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Li Lin
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiaowei Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
46
|
QIN Y, CHEN L, YANG X, LI S, WANG Y, TANG Y, LIU C. Multi-residue Method for Determination of Selected Neonicotinoid Insecticides in Traditional Chinese Medicine Using Modified Dispersive Solid-phase Extraction Combined with Ultra-performance Liquid Chromatography Tandem Mass Spectrometry. ANAL SCI 2015; 31:823-30. [DOI: 10.2116/analsci.31.823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yao QIN
- Central Laboratory, Changchun Normal University
| | - Lina CHEN
- Central Laboratory, Changchun Normal University
| | | | - Sainan LI
- Central Laboratory, Changchun Normal University
| | - Yumeng WANG
- Central Laboratory, Changchun Normal University
| | - Ying TANG
- Central Laboratory, Changchun Normal University
| | | |
Collapse
|
47
|
Zheng S, Wu H, Li Z, Wang J, Zhang H, Qian M. Ultrasound/microwave-assisted solid-liquid-solid dispersive extraction with high-performance liquid chromatography coupled to tandem mass spectrometry for the determination of neonicotinoid insecticides in Dendrobium officinale. J Sep Sci 2014; 38:121-7. [PMID: 25348589 DOI: 10.1002/jssc.201400872] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 11/11/2022]
Abstract
A one-step ultrasound/microwave-assisted solid-liquid-solid dispersive extraction procedure was used for the simultaneous determination of eight neonicotinoids (dinotefuran, nitenpyram, thiamethoxam, clothianidin, imidacloprid, acetamiprid, thiacloprid, imidaclothiz) in dried Dendrobium officinale by liquid chromatography combined with electrospray ionization triple quadrupole tandem mass spectrometry in multiple reaction monitoring mode. The samples were quickly extracted by acetonitrile and cleaned up by the mixed dispersing sorbents including primary secondary amine, C18 , and carbon-GCB. Parameters that could influence the ultrasound/microwave-assisted extraction efficiency such as microwave irradiation power, ultrasound irradiation power, temperature, and solvent were investigated. Recovery studies were performing well (70.4-113.7%) at three examined spiking levels (10, 50, and 100 μg/kg). Meanwhile, the limits of quantification for the neonicotinoids ranged from 0.87 to 1.92 μg/kg. The method showed good linearity in the concentration range of 1-100 μg/L with correlation coefficients >0.99. This quick and useful analytical method could provide a basis for monitoring neonicotinoid insecticide residues in herbs.
Collapse
Affiliation(s)
- Shuilian Zheng
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
48
|
Dong X, Jiang D, Liu Q, Han E, Zhang X, Guan X, Wang K, Qiu B. Enhanced amperometric sensing for direct detection of nitenpyram via synergistic effect of copper nanoparticles and nitrogen-doped graphene. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.09.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Yamamuro T, Ohta H, Aoyama M, Watanabe D. Simultaneous determination of neonicotinoid insecticides in human serum and urine using diatomaceous earth-assisted extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 969:85-94. [DOI: 10.1016/j.jchromb.2014.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 10/25/2022]
|
50
|
Capillary electrophoresis–mass spectrometry as a new approach to analyze neonicotinoid insecticides. J Chromatogr A 2014; 1359:317-24. [DOI: 10.1016/j.chroma.2014.07.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 11/19/2022]
|