1
|
Malecka-Baturo K, Grabowska I. Efficiency of electrochemical immuno- vs. apta(geno)sensors for multiple cancer biomarkers detection. Talanta 2025; 281:126870. [PMID: 39298804 DOI: 10.1016/j.talanta.2024.126870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The interest in biosensors technology has been constantly growing over the last few years. It is still the biggest challenge to design biosensors able to detect two or more analytes in a single measurement. Electrochemical methods are frequently used for this purpose, mainly due to the possibility of applying two or more different redox labels characterized by independent and distinguished electrochemical signals. In addition to antibodies, nucleic acids (aptamers) have been increasingly used as bioreceptors in the construction of such sensors. Within this review paper, we have collected the examples of electrochemical immuno- and geno(apta)sensors for simultaneous detection of multiple analytes. Based on many published literature examples, we have emphasized the recent application of multiplexed platforms for detection of cancer biomarkers. It has allowed us to compare the progress in design strategies, including novel nanomaterials and amplification of signals, to get as low as possible limits of detection. We have focused on multi-electrode and multi-label strategies based on redox-active labels, such as ferrocene, anthraquinone, methylene blue, thionine, hemin and quantum dots, or metal ions such as Ag+, Pb2+, Cd2+, Zn2+, Cu2+ and others. We have finally discussed the possible way of development, challenges and prospects in the area of multianalyte electrochemical immuno- and geno(apta)sensors.
Collapse
Affiliation(s)
- Kamila Malecka-Baturo
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
2
|
O’Brien C, Khor CK, Ardalan S, Ignaszak A. Multiplex electrochemical sensing platforms for the detection of breast cancer biomarkers. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1360510. [PMID: 38425422 PMCID: PMC10902167 DOI: 10.3389/fmedt.2024.1360510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Herein, advancements in electroanalytical devices for the simultaneous detection of diverse breast cancer (BC) markers are demonstrated. This article identifies several important areas of exploration for electrochemical diagnostics and highlights important factors that are pivotal for the successful deployment of novel bioanalytical devices. We have highlighted that the limits of detection (LOD) reported for the multiplex electrochemical biosensor can surpass the sensitivity displayed by current clinical standards such as ELISA, FISH, and PCR. HER-2; a breast cancer marker characterised by increased metastatic potential, more aggressive development, and poor clinical outcomes; can be sensed with a LOD of 0.5 ng/ml using electrochemical multiplex platforms, which falls within the range of that measured by ELISA (from picogram/ml to nanogram/ml). Electrochemical multiplex biosensors are reported with detection limits of 0.53 ng/ml and 0.21 U/ml for MUC-1 and CA 15-3, respectively, or 5.8 × 10-3 U/ml for CA 15-3 alone. The sensitivity of electrochemical assays is improved when compared to conventional analysis of MUC-1 protein which is detected at 11-12 ng/ml, and ≤30 U/ml for CA 15-3 in the current clinical blood tests. The LOD for micro-ribonucleic acid (miRNA) biomarkers analyzed by electrochemical multiplex assays were all notedly superior at 9.79 × 10-16 M, 3.58 × 10-15 M, and 2.54 × 10-16 M for miRNA-155, miRNA-21, and miRNA-16, respectively. The dogma in miRNA testing is the qRT-PCR method, which reports ranges in the ng/ml level for the same miRNAs. Breast cancer exosomes, which are being explored as a new frontier of biosensing, have been detected electrochemically with an LOD of 103-108 particles/mL and can exceed detection limits seen by the tracking and analysis of nanoparticles (∼ 107 particles/ml), flow cytometry, Western blotting and ELISA, etc. A range of concentration at 78-5,000 pg/ml for RANKL and 16-1,000 pg/ml for TNF is reported for ELISA assay while LOD values of 2.6 and 3.0 pg/ml for RANKL and TNF, respectively, are demonstrated by the electrochemical dual immunoassay platform. Finally, EGFR and VEGF markers can be quantified at much lower concentrations (0.01 and 0.005 pg/ml for EGFR and VEGF, respectively) as compared to their ELISA assays (EGRF at 0.31-20 ng/ml and VEGF at 31.3-2,000 pg/ml). In this study we hope to answer several questions: (1) Are the limits of detection (LODs) reported for multiplex electrochemical biosensors of clinical relevance and how do they compare to well-established methods like ELISA, FISH, or PCR? (2) Can a single sensor electrode be used for the detection of multiple markers from one blood drop? (3) What mechanism of electrochemical biosensing is the most promising, and what technological advancements are needed to utilize these devices for multiplex POC detection? (4) Can nanotechnology advance the sensitive and selective diagnostics of multiple BC biomarkers? (5) Are there preferred receptors (antibody, nucleic acid or their combinations) and preferred biosensor designs (complementary methods, sandwich-type protocols, antibody/aptamer concept, label-free protocol)? (6) Why are we still without FDA-approved electrochemical multiplex devices for BC screening?
Collapse
Affiliation(s)
- Connor O’Brien
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Chun Keat Khor
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| | - Sina Ardalan
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| | - Anna Ignaszak
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
3
|
Kiio LK, Onyatta JO, Ndangili PM, Oloo F, Santamaria C, Montuenga LM, Mbui DN. Ultrasensitive immunosensor for multiplex detection of cancer biomarkers carcinoembryonic antigen (CEA) and yamaguchi sarcoma viral oncogene homolog 1 (YES1) based on eco-friendly synthesized gold nanoparticles. Talanta 2024; 266:124934. [PMID: 37454512 DOI: 10.1016/j.talanta.2023.124934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Cancer is one of the most extensive diseases with the highest mortality rate, accounting for almost 10 million deaths in 2020. The most common cancers are breast, lung, colon and rectum and prostate cancers. Of these, lung cancer, accounted for about 1.8 million of all cancer deaths (25%) in 2020. Detection of cancer relies on presence of biomarkers such as DNA molecules, proteins and metabolites released by cancerous cells into the circulation. Carcinoembryonic antigen (CEA) is one of the biomarkers that has been used for the detection of lung cancer. However, CEA is not specific to lung cancer since it is also manifested in gastric cancer, pancreatic cancer, colorectal cancer, and breast cancer. Recently, v-YES1 Yamaguchi sarcoma viral oncogene homolog 1 (YES1) was described as a specific biomarker for lung cancer. The detection of both CEA and YES1 would give more precise and authentic information for detecting lung cancer. This is because detection of a single tumor marker usually limits the precision in tumor diagnosis, due to the fact that several cancers have more than one marker linked with their prevalence. Whereas traditional methods have been used for the detection of CEA, electrochemical immunosensors have attracted considerable attention owing to their profound advantages, including fast response, miniaturization, high selectivity, low sample requirements and magnificent sensitivity. The fabrication of a multiplex and simultaneous immunosensor is met with challenge of preparation of distinguishable immunoprobes with different redox activities. This can be addressed by incorporation of electroactive Nano metals into the sensing platform. In this study, gold nanoparticles were used for the fabrication of an ultrasensitive sandwich electrochemical multiplex immunosensor for simultaneous detection of CEA and YES1. Under optimized conditions, the electrochemical immunosensor detection limit for YES1 and CEA was found to be 0.0022 and 0.0034 ng/mL respectively within a linear range of 0.1-50 ng/mL. The proposed immunosensor proved to be stable for up to 2 weeks and had negligible cross reactivity towards various interfering compounds in human plasma. This study reports that gold nanoparticles can be bio synthesized using shade dried Mangifera indica leaves extract. The bio-synthesized gold nanoparticles coupled with thiolated protein G can be used for fabrication of a multiplex immunosensor for detection of CEA and YES1. The proposed immunosensor can provide a new approach for early diagnosis of circulating cancer biomarkers and holds great promise for application in clinical diagnosis.
Collapse
Affiliation(s)
- Lucia K Kiio
- Program in Solid Tumors, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008, Pamplona, Spain; Department of Chemistry, University of Nairobi, 30197-00100, Nairobi, Kenya; School of Chemistry and Material Science, The Technical University of Kenya, 52428-00200, Nairobi, Kenya.
| | - John O Onyatta
- Department of Chemistry, University of Nairobi, 30197-00100, Nairobi, Kenya.
| | - Peter M Ndangili
- School of Chemistry and Material Science, The Technical University of Kenya, 52428-00200, Nairobi, Kenya.
| | - Florence Oloo
- School of Chemistry and Material Science, The Technical University of Kenya, 52428-00200, Nairobi, Kenya.
| | - Carolina Santamaria
- BIOMA Center, Department of Chemistry, School of Sciences University of Navarra, 31008, Pamplona, Spain.
| | - Luis M Montuenga
- Program in Solid Tumors, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Health Research Institute (IDISNA), Pamplona, Spain.
| | - Damaris N Mbui
- Department of Chemistry, University of Nairobi, 30197-00100, Nairobi, Kenya.
| |
Collapse
|
4
|
Xing J, Han Q, Liu J, Yan Z. Electrochemical aptasensor fabricated by anchoring recognition aptamers and immobilizing redox probes on bipolar silica nanochannel array for reagentless detection of carbohydrate antigen 15-3. Front Chem 2023; 11:1324469. [PMID: 38192499 PMCID: PMC10773802 DOI: 10.3389/fchem.2023.1324469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024] Open
Abstract
Timely, convenient, and efficient detection of carbohydrate antigen 15-3 (CA15-3) levels in serum holds significant importance in early screening, diagnostic assistance and prognosis prediction of breast cancer. The development of efficient and convenient electrochemical aptasensors with immobilized redox probes for label-free detection of CA15-3 is highly desirable. In this work, a bipolar silica nanochannel array film (bp-SNA) with two distinct functional domains including nanochannels and an outer surface was employed for the immobilization of recognition ligands and electrochemical redox probes, enabling the construction of a probe-integrated aptasensor for reagentless electrochemical detection of CA15-3. Cost-effective and readily available indium tin oxide (ITO) was used as the supporting electrode for sequential growth of a negatively charged inner layer (n-SNA) followed by a positively charged outer layer (p-SNA). The preparation process of bp-SNA is convenient. Functionalization of amino groups on the outer surface of bp-SNA was modified by aldehyde groups for covalent immobilization of recognition aptamers, further establishing the recognition interface. Within the nanochannels of bp-SNA, the electrochemical redox probe, tri (2,2'-dipyridyl) cobalt (II) (Co(bpy)3 2+) was immobilized, which experienced a dual effect of electrostatic attraction from n-SNA and electrostatic repulsion from p-SNA, resulting in high stability of the immobilized probes. The constructed aptasensor allowed for reagentless electrochemical detection of CA15-3 ranged from 0.001 U/mL to 500 U/mL with a low detection limit (DL), 0.13 mU/mL). The application of the constructed aptasensor for CA15-3 detection in fetal bovine serum was also validated. This sensor offers advantages of a simple and readily obtainable supporting electrode, easy bp-SNA fabrication, high probe stability and good stability.
Collapse
Affiliation(s)
- Jun Xing
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Qianqian Han
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiyang Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengzheng Yan
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongii Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Tejerina-Miranda S, Blázquez-García M, Serafín V, Montero-Calle A, Garranzo-Asensio M, Reviejo AJ, Pedrero M, Pingarrón JM, Barderas R, Campuzano S. Electrochemical biotool for the dual determination of epithelial mucins associated to prognosis and minimal residual disease in colorectal cancer. Int J Biol Macromol 2023; 248:125996. [PMID: 37499706 DOI: 10.1016/j.ijbiomac.2023.125996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
This work reports a dual immunoplatform for the simultaneous detection of two epithelial glycoproteins of the mucin family, mucin 1 (MUC1) and mucin 16 (MUC16), whose expression is related to adverse prognosis and minimal residual disease (MRD) in colorectal cancer (CRC). The developed immunoplatform involves functionalised magnetic microparticles (MBs), a set of specific antibody pairs (a capture antibody, cAb, and a biotinylated detector antibody b-dAb labelled with a streptavidin-horseradish peroxidase, Strep-HRP, polymer) for each target protein and amperometric detection at dual screen-printed carbon electrodes (SPdCEs) using the hydroquinone (HQ)/horseradish peroxidase (HRP)/H2O2 system. This dual immunoplatform allows, under the optimised experimental conditions, to achieve LOD values of 50 and 1.81 pg mL-1 (or mU mL-1) for MUC1 and MUC16, respectively, and adequate selectivity for the determination of the two targets in the clinic. The developed immunoplatform was employed to analyse CRC cell protein extracts (1.0 μg/determination) with different metastatic potential providing results in agreement with those obtained by blotting technologies but using affordable and applicable point-of-care instruments. This new biotool also emerges competitive in state-of-the-art electrochemical immunoplatforms seeking a compromise among simplicity, reduction of test time and analytical characteristics.
Collapse
Affiliation(s)
- Sandra Tejerina-Miranda
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - Marina Blázquez-García
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - Verónica Serafín
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Maria Garranzo-Asensio
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain
| | - A Julio Reviejo
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Zahraie N, Haghighi H, Salehi F, Daneshvar F, Tamaddon P, Sattarahmady N. Pulsed sonodynamic therapy of melanoma cancer cells using nanoparticles of and mesoporous platinum. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00205-3. [PMID: 37414634 DOI: 10.1016/j.ultrasmedbio.2023.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVE Noble metal nanomaterials have been introduced as ideal sonosensitizers for sonodynamic therapy (SDT) of cancer. In this research, platinum nanoparticles (PtNPs) and mesoporous platinum (MPt) were first synthesized and then evaluated as novel sonosensitizers. METHODS Ultrasound waves were radiated at two different power densities and two different pulse ratios to develop a pulsed radiation route for SDT of the malignant melanoma cell line C540 (B16/F10). Fluorescence emission was recorded as an indicator of intracellular reactive oxygen generation during the treatment. RESULTS Platinum nanoparticles had an average diameter of 12 ± 7 nm and a zeta potential of -17.6 mV; also, MPt had a sponge-like and highly porous structure with a pore size <11 nm and a zeta potential of -39.5 mV. Both PtNPs and MPt, particularly the latter, enhanced the rate of inhibition of tumor cell growth on ultrasound radiation at an output power density of 1.0 W cm-2 and pulse ratio of 30% over 10 min without intensifying temperature. CONCLUSION Use of the developed pulsed (rather than continuous) radiation in SDT and PtNPs or MPT, without hyperthermia, resulted in a new effective cancer treatment method based on the mechanisms of cavitation and/or ROS generation.
Collapse
Affiliation(s)
- Niloofar Zahraie
- Nanomedicine and Nanobiology Research Center and Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanieh Haghighi
- Nanomedicine and Nanobiology Research Center and Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Salehi
- Nanomedicine and Nanobiology Research Center and Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Daneshvar
- Nanomedicine and Nanobiology Research Center and Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Tamaddon
- Nanomedicine and Nanobiology Research Center and Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naghmeh Sattarahmady
- Nanomedicine and Nanobiology Research Center and Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Ouyang R, Zhang W, Liu J, Li Y, Zhang J, Jiang L, Zhao Y, Wang H, Dai C, Tamayo AIB, Liu B, Miao Y. Pt Nanodot Inlaid Mesoporous NaBiOF Nanoblackberry for Remarkable Signal Amplification Toward Biomarker Detection. Mikrochim Acta 2023; 190:214. [PMID: 37171612 DOI: 10.1007/s00604-023-05789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/09/2023] [Indexed: 05/13/2023]
Abstract
A new ultrasensitive sandwich-type electrochemical immunosensor has been successfully constructed to quantitatively detect carcinoembryonic antigen (CEA) using blackberry-like mesoporous bismuth-based nanospheres NaBiOF (NBOF NSs) inlaid with Pt nanodots (NDs) (BiPt NSs) as the antibody capture and signal-amplifying probe. The growth of Pt NDs inside the holes of NBOF NSs formed the nanozyme inlay outside NBOF NSs, greatly increasing the specific surface area and exposure of the catalytic active sites by minimizing the particle size of the Pt to nanodot scale. Such a blackberry-shaped heterojunction structure of BiPt NSs was well-suited to antibody capture and improved the catalytic performance of BiPt NSs in reducing H2O2, amplifying the signal, and yielding highly sensitive detection of CEA. The use of Au nanoparticle-modified multi-walled carbon nanotubes (Au@MWCNTs) as the electrode substrates significantly enhanced the electron transfer behavior over the electrode surface, further increasing the conductivity and sensitivity of the immunosensor. Remarkably, good compatibility with human body fluid was achieved using the newly developed BiPt-based immunosensor resulting from the favorable biocompatibility and stability of both BiPt NSs and Au@MWCNTs. Benefiting from the double signal amplification strategy and the high biocompatibility, the immunosensor responded linearly to CEA in a wide range from 50 fg/mL to 100 ng/ml with an extremely low detection limit of 3.52 fg/mL (S/N = 3). The excellent detection properties of this new immunosensor were evidenced by the satisfactory selectivity, reproducibility, and stability obtained, as well as the reliable and precise determination of CEA in actual human blood samples. This work provides a new strategy for the early clinical diagnosis of cancer. Novel blackberry-like mesoporous NaBiOF nanospheres with Pt nanodot inlay were successfully usedto construct a sandwich-type electrochemical immunosensor for the ultra-sensitive detection ofcarcinoembryonic antigen in human blood plasma based on a remarkable signal amplification strategy.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Weilun Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyao Liu
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jing Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lan Jiang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuefeng Zhao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hui Wang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chenyu Dai
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Abel Ibrahim Balbín Tamayo
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Faculty of Chemistry, University of Havana, 10400, Havana, Cuba
| | - Baolin Liu
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
8
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
9
|
Ferrofluids transport in bioinspired nanochannels: Application to electrochemical biosensing with magnetic-controlled detection. Biosens Bioelectron 2022; 201:113963. [PMID: 35007994 DOI: 10.1016/j.bios.2022.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/28/2021] [Accepted: 01/02/2022] [Indexed: 11/21/2022]
Abstract
Controllable transport of ions, molecules or fluids in bioinspired nanochannels is crucial to study biointeraction occurred in confined space and also develop biosensing platforms or devices. Herein, ferrofluids transport in biofunctionalized nanochannels was investigated and a novel electrochemical biosensing platform with the characteristic of label-free, high sensitivity and rapid response was constructed. The hydrophilic ferrofluids can flux swiftly through the antibody-immobilized nanochannels with the assistance of a permanent magnet. It was initially found that the presence of ferrofluids would depress the redox current of the electrochemical probe [Fe(CN)6]3-. The mechanism of the depressing effect was ascribed to the constrained diffusion of [Fe(CN)6]3- which lowered the concentration of it at the electrode surface and the weak adsorption of the ferrofluids which increased the charge transfer resistance of the interface. Therefore, redox current of the probe was applied to indicate the amount of the ferrofluids fluxing through the bioinspired nanochannels. The steric hindrance of the bioinspired nanochannels changed with the amount of the corresponding target being incubated, resulting in quantitative variation of the redox current. In this way, electrochemical biosensing platform based on ferrofluids transport was constructed. Using carbohydrate antigen 153 (CA153) as a model target, a low detection limit of 0.0013 U·mL-1 was acquired. This magnetic-controlled bioelectrochemical platform was expected to be expanded to other applications such as genetic testing, drug analysis, and molecular identification.
Collapse
|
10
|
Malathi S, Pakrudheen I, Kalkura SN, Webster T, Balasubramanian S. Disposable biosensors based on metal nanoparticles. SENSORS INTERNATIONAL 2022; 3:100169. [PMID: 35252890 PMCID: PMC8889882 DOI: 10.1016/j.sintl.2022.100169] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease2019 (COVID-19) pandemic has highlighted the need for disposable biosensors that can detect viruses in infected patients quickly due to fast response and also at a low cost.The present review provides an overview of the applications of disposable biosensors based on metal nanoparticles in enzymatic and non-enzymatic sensors with special reference to glucose and H2O2, immunosensors as well as genosensors (DNA biosensors in which the recognized event consists of the hybridization reaction)for point-of-care diagnostics. The disposable biosensors for COVID19 have also been discussed.
Collapse
Affiliation(s)
- S. Malathi
- Crystal Growth Centre, Anna University, Guindy, Chennai, 600025, India
| | - I. Pakrudheen
- Department of Chemistry, CMR Institute of Technology, Bengaluru, 560037, Karnataka, India
| | | | - T.J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - S. Balasubramanian
- Department of Inorganic Chemistry, University of Madras, Guindy, Chennai, 600025, India,Corresponding author
| |
Collapse
|
11
|
Koukouviti E, Kokkinos C. 3D printed enzymatic microchip for multiplexed electrochemical biosensing. Anal Chim Acta 2021; 1186:339114. [PMID: 34756268 DOI: 10.1016/j.aca.2021.339114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
The low-cost e-fabrication of specialized multianalyte biosensors within the point-of-care (POC) settings in a few minutes remains a great challenge. Unlike prefabricated biosensors, 3D printing seems to be able to meet this challenge, empowering the end user with the freedom to create on-demand devices adapted to immediate bioanalytical need. Here, we describe a novel miniature all-3D-printed 4-electrode biochip, capable of the simultaneous determination of different biomarkers in a single assay. The chip is utterly fabricated via an one-step 3D printing process and it is connected to a mini portable bi-potentiostant, permitting simultaneous measurements. The bioanalytical capability of the microchip is demonstrated through the simultaneous amperometric determination of two cardiac biomarkers (cholesterol and choline) in the same blood droplet, via enzymatic assays developed on its two tiny integrated electrodes. The simultaneous determination of cholesterol and choline is free from cross-talk phenomena and interferences offering limits of detection much lower than the cut-off levels of these biomarkers in blood for coronary syndromes. The biodevice is an easy-constructed, low-cost, sensitive and e-transferable POC chip with wide scope of applicability to other enzymatic bioassays.
Collapse
Affiliation(s)
- Eleni Koukouviti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece.
| |
Collapse
|
12
|
New Ultrasensitive Sandwich-Type Immunoassay of Dendritic Tri-Fan Blade-like PdAuCu Nanoparticles/Amine-Functionalized Graphene Oxide for Label-Free Detection of Carcinoembryonic Antigen. MICROMACHINES 2021; 12:mi12101256. [PMID: 34683307 PMCID: PMC8537010 DOI: 10.3390/mi12101256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/02/2023]
Abstract
The early detection of tumor markers has an effective role in the treatment of cancer. Here, a new sandwich-type electrochemical immunosensor for early label-free detection of the cancer biomarker carcinoembryonic antigen (CEA) was developed. Dendritic tri-fan blade-like PdAuCu nanoparticles (PdAuCu NPs)/amine functionalized graphene oxide (NH2-GO) were the label of secondary antibodies (Ab2), and Au nanoparticle-decorated polydopamines (Au/PDA) were immobilized on a screen-printed carbon electrode (SPCE) as the substrate materials. Dendritic tri-fan blade-like PdAuCu NPs/NH2-GO was synthesized according to a simple hydrothermal procedure and used to immobilize antibodies (Ab2) with large surfaces areas, increased catalytic properties and good adsorption to amplify the current signals. Subsequently, Ab2/PdAuCu NPs/NH2-GO catalyzed the reduction of H2O2 in the sandwich-type immunoreactions. Under optimal conditions, the immunosensor exhibited a satisfactory response to CEA with a limit detection of 0.07 pg mL−1 and a linear detection range from 0.1 pg mL−1 to 200 ng mL−1. The proposed immunosensor could be suitable enough for a real sample analysis of CEA, and has clinical value in the early diagnosis of cancer.
Collapse
|
13
|
Kuntamung K, Jakmunee J, Ounnunkad K. A label-free multiplex electrochemical biosensor for the detection of three breast cancer biomarker proteins employing dye/metal ion-loaded and antibody-conjugated polyethyleneimine-gold nanoparticles. J Mater Chem B 2021; 9:6576-6585. [PMID: 34279016 DOI: 10.1039/d1tb00940k] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new electrochemical immunosensor is developed for the label-free simultaneous detection of mucin1 (MUC1), cancer antigen 15-3 (CA15-3), and human epidermal growth factor receptor 2 (HER2) early breast cancer biomarkers. The biosensor is simply designed using the deposition of three different systems of redox species-antibody-conjugated polyethylenimine coated-gold nanoparticles (PEI-AuNPs), for the first time. The screen-printed carbon electrode (SPCE) comprising a three-working electrode array is modified with the conjugated PEI-AuNPs. Multiplex sensing is performed by utilizing the distinguishable electrochemical responses of the redox-active species; anthraquinone-2-carboxylic acid (AQ), thionine chloride (TH), and AgNO3 (Ag+) on the PEI-AuNPs conjugates for the detection of MUC1, CA15-3, and HER2, respectively. The single-run determination of the biomarkers by the proposed immunosensor is carried out by measuring the decrease (%) in the oxidation peak currents due to the formation of three kinds of antibody-antigen complexes. The decreased currents are logarithmically proportional to the antigen concentrations in the ranges of 0.10-100 U mL-1 CA15-3 and 0.10-100 ng mL-1 MUC1 and HER2 with detection limits of 0.21 U mL-1, 0.53 ng mL-1 and 0.50 ng mL-1, respectively, which are significantly lower than the clinically relevant cut-off levels. The sensor reveals high selectivity and satisfactory reproducibility. After storing for two weeks, the sensor retains the responses with ca. 90% of the initial currents. The immunosensor is successfully applied to detect three tumor markers in human serum and can provide a new technological platform for the development of low-cost, highly stable, sensitive, selective, and point-of-care (POC) diagnosis.
Collapse
Affiliation(s)
- Kulrisa Kuntamung
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | | |
Collapse
|
14
|
Romanholo PVV, Razzino CA, Raymundo-Pereira PA, Prado TM, Machado SAS, Sgobbi LF. Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosens Bioelectron 2021; 185:113242. [PMID: 33915434 DOI: 10.1016/j.bios.2021.113242] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
The urge to meet the ever-growing needs of sensing technology has spurred research to look for new alternatives to traditional analytical methods. In this scenario, the glucometer is the flagship of commercial electrochemical sensing platforms, combining selectivity, reliability and portability. However, other types of enzyme-based biosensors seldom achieve the market, in spite of the large and increasing number of publications. The reasons behind their commercial limitations concern enzyme denaturation, and the high costs associated with procedures for their extraction and purification. In this sense, biomimetic materials that seek to imitate the desired properties of natural enzymes and biological systems have come out as an appealing path for robust and sensitive electrochemical biosensors. We herein portray the historical background of these biomimicking materials, covering from their beginnings until the most impactful applications in the field of electrochemical sensing platforms. Throughout the discussion, we present and critically appraise the major benefits and the most significant drawbacks offered by the bioinspired systems categorized as Nanozymes, Synzymes, Molecularly Imprinted Polymers (MIPs), Nanochannels, and Metal Complexes. Innovative strategies of fabrication and challenging applications are further reviewed and evaluated. In the end, we ponder over the prospects of this emerging field, assessing the most critical issues that shall be faced in the coming decade.
Collapse
Affiliation(s)
- Pedro V V Romanholo
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Claudia A Razzino
- Instituto de Pesquisa e Desenvolvimento, Universidade Do Vale Do Paraíba, São José Dos Campos, SP, 12244-000, Brazil
| | | | - Thiago M Prado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Sergio A S Machado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Livia F Sgobbi
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
15
|
Ma X, Deng D, Xia N, Hao Y, Liu L. Electrochemical Immunosensors with PQQ-Decorated Carbon Nanotubes as Signal Labels for Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1757. [PMID: 34361143 PMCID: PMC8308108 DOI: 10.3390/nano11071757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
Nanocatalysts are a promising alternative to natural enzymes as the signal labels of electrochemical biosensors. However, the surface modification of nanocatalysts and sensor electrodes with recognition elements and blockers may form a barrier to direct electron transfer, thus limiting the application of nanocatalysts in electrochemical immunoassays. Electron mediators can accelerate the electron transfer between nanocatalysts and electrodes. Nevertheless, it is hard to simultaneously achieve fast electron exchange between nanocatalysts and redox mediators as well as substrates. This work presents a scheme for the design of electrochemical immunosensors with nanocatalysts as signal labels, in which pyrroloquinoline quinone (PQQ) is the redox-active center of the nanocatalyst. PQQ was decorated on the surface of carbon nanotubes to catalyze the electrochemical oxidation of tris(2-carboxyethyl)phosphine (TCEP) with ferrocenylmethanol (FcM) as the electron mediator. With prostate-specific antigen (PSA) as the model analyte, the detection limit of the sandwich-type immunosensor was found to be 5 pg/mL. The keys to success for this scheme are the slow chemical reaction between TCEP and ferricinum ions, and the high turnover frequency between ferricinum ions, PQQ. and TCEP. This work should be valuable for designing of novel nanolabels and nanocatalytic schemes for electrochemical biosensors.
Collapse
Affiliation(s)
- Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
| | - Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
| | - Lin Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| |
Collapse
|
16
|
Metal Nanoparticle and Quantum Dot Tags for Signal Amplification in Electrochemical Immunosensors for Biomarker Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the increasing importance of healthcare and clinical diagnosis, as well as the growing demand for highly sensitive analytical instruments, immunosensors have received considerable attention. In this review, electrochemical immunosensor signal amplification strategies using metal nanoparticles (MNPs) and quantum dots (Qdots) as tags are overviewed, focusing on recent developments in the ultrasensitive detection of biomarkers. MNPs and Qdots can be used separately or in combination with other nanostructures, while performing the function of nanocarriers, electroactive labels, or catalysts. Thus, different functions of MNPs and Qdots as well as recent advances in electrochemical signal amplification are discussed. Additionally, the methods most often used for antibody immobilization on nanoparticles, immunoassay formats, and electrochemical methods for indirect biomarker detection are overviewed.
Collapse
|
17
|
Bungon T, Haslam C, Damiati S, O'Driscoll B, Whitley T, Davey P, Siligardi G, Charmet J, Awan SA. Graphene FET Sensors for Alzheimer's Disease Protein Biomarker Clusterin Detection. Front Mol Biosci 2021; 8:651232. [PMID: 33869287 PMCID: PMC8044944 DOI: 10.3389/fmolb.2021.651232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/04/2021] [Indexed: 01/02/2023] Open
Abstract
We report on the fabrication and characterisation of graphene field-effect transistor (GFET) biosensors for the detection of Clusterin, a prominent protein biomarker of Alzheimer’s disease (AD). The GFET sensors were fabricated on Si/SiO2 substrate using photolithographic patterning and metal lift-off techniques with evaporated chromium and sputtered gold contacts. Raman Spectroscopy was performed on the devices to determine the quality of the graphene. The GFETs were annealed to improve their performance before the channels were functionalized by immobilising the graphene surface with linker molecules and anti-Clusterin antibodies. Concentration of linker molecules was also independently verified by absorption spectroscopy using the highly collimated micro-beam light of Diamond B23 beamline. The detection was achieved through the binding reaction between the antibody and varying concentrations of Clusterin antigen from 1 to 100 pg/mL, as well as specificity tests using human chorionic gonadotropin (hCG), a glycoprotein risk biomarker of certain cancers. The GFETs were characterized using direct current (DC) 4-probe electrical resistance (4-PER) measurements, which demonstrated a limit of detection of the biosensors to be ∼ 300 fg/mL (4 fM). Comparison with back-gated Dirac voltage shifts with varying concentration of Clusterin show 4-PER measurements to be more accurate, at present, and point to a requirement for further optimisation of the fabrication processes for our next generation of GFET sensors. Thus, we have successfully fabricated a promising set of GFET biosensors for the detection of Clusterin protein biomarker. The developed GFET biosensors are entirely generic and also have the potential to be applied to a variety of other disease detection applications such as Parkinson’s, cancer, and cardiovascular.
Collapse
Affiliation(s)
- Theodore Bungon
- Wolfson Nanomaterials and Devices Laboratory, School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Carrie Haslam
- Wolfson Nanomaterials and Devices Laboratory, School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Samar Damiati
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Benjamin O'Driscoll
- Wolfson Nanomaterials and Devices Laboratory, School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Toby Whitley
- Wolfson Nanomaterials and Devices Laboratory, School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Paul Davey
- Wolfson Nanomaterials and Devices Laboratory, School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Giuliano Siligardi
- Diamond Light Source, Rutherford Appleton Laboratory, Oxfordshire, United Kingdom
| | - Jerome Charmet
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, United Kingdom
| | - Shakil A Awan
- Wolfson Nanomaterials and Devices Laboratory, School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
18
|
Karimzadeh Z, Hasanzadeh M, Isildak I, Khalilzadeh B. Multiplex bioassaying of cancer proteins and biomacromolecules: Nanotechnological, structural and technical perspectives. Int J Biol Macromol 2020; 165:3020-3039. [PMID: 33122068 DOI: 10.1016/j.ijbiomac.2020.10.191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
Since the specific proteins (carbohydrate antigens, ligands and interleukins) get raised up in body tissue or fluids in cancer cases, early detection of them will provide an effective treatment and survival rate. Sensitive and accurate determination of multiple cancer proteins can be engaged in chorus by simultaneous/multiplex detection in the biomedical fields. Bioassaying technology is one of the non-invasive, high-sensitive, and economical methods. Currently, extensive application of nanomaterial (biocompatible polymers, metallic and metal oxide) in bioassays resulted in ultra-high sensitive and selective diagnosis. This review article focuses on types of multiplex bioassays for delicate and specific determination of cancer proteins for diagnostic aims. It also covers two modes of multiplex bioassays as multi labeled bioassays and spatially-separated test zones (multi-electrode mode). In this review, the nanotechnological, structural, and technical perspectives in the multiplex analysis of cancer proteins were discussed. Finally, the use of different types of nanomaterials, polysaccharides, biopolymers and their advantages in signal amplification are discussed.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, 34220 Istanbul, Turkey
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biosensor Sciences and Technologies Research Center (BSTRC), Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
19
|
Ranjan P, Parihar A, Jain S, Kumar N, Dhand C, Murali S, Mishra D, Sanghi SK, Chaurasia JP, Srivastava AK, Khan R. Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: A comprehensive review. Anal Biochem 2020; 610:113996. [PMID: 33080213 DOI: 10.1016/j.ab.2020.113996] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Pushpesh Ranjan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026, India
| | - Arpana Parihar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Surbhi Jain
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Neeraj Kumar
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026, India
| | - Chetna Dhand
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - S Murali
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Deepti Mishra
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Sunil K Sanghi
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - J P Chaurasia
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India.
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India.
| |
Collapse
|
20
|
Multiplexed label-free electrochemical immunosensor for breast cancer precision medicine. Anal Chim Acta 2020; 1130:60-71. [DOI: 10.1016/j.aca.2020.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 01/05/2023]
|
21
|
Jing A, Xu Q, Feng W, Liang G. An Electrochemical Immunosensor for Sensitive Detection of the Tumor Marker Carcinoembryonic Antigen (CEA) Based on Three-Dimensional Porous Nanoplatinum/Graphene. MICROMACHINES 2020; 11:mi11070660. [PMID: 32635249 PMCID: PMC7407820 DOI: 10.3390/mi11070660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Carcinoembryonic antigen (CEA) is an important broad-spectrum tumor marker. The quantitative detection of a low concentration of CEA has important medical significance. In this study, three-dimensional porous graphene-oxide-supported platinum metal nanoparticles (3DPt/HGO) composites were prepared by a wet chemical method and modified on an electrode with enhanced conductivity, a large surface area, and good adsorption of immobilizing antibodies (Ab1). Horseradish peroxidase (HRP)-functionalized Au nanoparticles were fabricated to label the secondary antibodies (Ab2). The proposed immunosensor showed a good linear relationship in the range of 0.001–150 ng/mL for CEA and a detection limit of 0.0006 ng/mL. The immunosensor had high sensitivity, good stability and reproducibility, and has great application prospects for the clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Aihua Jing
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (A.J.); (Q.X.); (W.F.)
| | - Qiong Xu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (A.J.); (Q.X.); (W.F.)
| | - Wenpo Feng
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (A.J.); (Q.X.); (W.F.)
| | - Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang 471023, China
- Correspondence: ; Tel.: (+86)-0379-64162573
| |
Collapse
|
22
|
Mohammadpour Z, Majidzadeh-A K. Applications of Two-Dimensional Nanomaterials in Breast Cancer Theranostics. ACS Biomater Sci Eng 2020; 6:1852-1873. [PMID: 33455353 DOI: 10.1021/acsbiomaterials.9b01894] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer is the leading cause of cancer-related mortality among women. Early stage diagnosis and treatment of this cancer are crucial to patients' survival. In addition, it is important to avoid severe side effects during the process of conventional treatments (surgery, chemotherapy, hormonal therapy, and targeted therapy) and increase the patients' quality of life. Over the past decade, nanomaterials of all kinds have shown excellent prospects in different aspects of oncology. Among them, two-dimensional (2D) nanomaterials are unique due to their physical and chemical properties. The functional variability of 2D nanomaterials stems from their large specific surface area as well as the diversity of composition, electronic configurations, interlayer forces, surface functionalities, and charges. In this review, the current status of 2D nanomaterials in breast cancer diagnosis and therapy is reviewed. In this respect, sensing of the tumor biomarkers, imaging, therapy, and theranostics are discussed. The ever-growing 2D nanomaterials are building blocks for the development of a myriad of nanotheranostics. Accordingly, there is the possibility to explore yet novel properties, biological effects, and oncological applications.
Collapse
Affiliation(s)
- Zahra Mohammadpour
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1315685981, Iran
| | - Keivan Majidzadeh-A
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1315685981, Iran
| |
Collapse
|
23
|
Salehi F, Daneshvar F, Karimi M, Dehdari Vais R, Mosleh-Shirazi MA, Sattarahmady N. Enhanced melanoma cell-killing by combined phototherapy/radiotherapy using a mesoporous platinum nanostructure. Photodiagnosis Photodyn Ther 2019; 28:300-307. [PMID: 31606514 DOI: 10.1016/j.pdpdt.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/01/2019] [Accepted: 10/04/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Metal nanomaterials have a significant potential as photosensitizer and radiosensitizer. The purpose of this study was to evaluate the cytotoxicity of a platinum mesoporous nanostructure (Pt MN) toward a melanoma cancer cell line upon combined laser radiation (808 nm, 1 and 1.5 W cm-2) and X-ray irradiation (6 MV, 2, 4, and 6 Gy). METHODS Pt MN was synthesized by a simple procedure and characterized by field emission scanning and transmission electron microscopy. A mouse malignant melanoma cell line C540 (B16/F10) was treated with Pt MN, laser light and/or X-ray. RESULTS Pt MN had a mesoporous structure with a sponge-resemble shape comprised of ensembles of very small adhered particles of <11 nm and about 5-nm pores. While Pt MN represented a low toxicity toward and considerable uptake into the cell line in a concentration range of 10-100 μg mL-1, laser light radiation alone was also not toxic, and X-ray irradiation alone induced a limited toxicity, Pt MN was toxic against the cells in a dose dependent manner upon laser light radiation, X-ray irradiation, or their combined exposure. The killing efficacy of Pt MN upon X-ray irradiation was more obvious at 72 h post-treatment. The combined exposure (laser radiation followed by X-ray irradiation) led to a deep cell killing and a very low melanoma cell viability (∼1%). Significant melanoma cancer cell killing of Pt MN was due to reactive oxygen species (ROS) production upon combined exposure of laser and X-ray, while cell killing upon laser light radiation was due to heat generation. CONCLUSION Pt MN was introduced as a supreme laser/X-ray sensitizer for treatment of cancer with a high ability to produce ROS and a potent impact on decreasing cell viability.
Collapse
Affiliation(s)
- F Salehi
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - F Daneshvar
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Karimi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R Dehdari Vais
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M A Mosleh-Shirazi
- Physics Unit, Department of Radio-Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
24
|
Abrao Nemeir I, Saab J, Hleihel W, Errachid A, Jafferzic-Renault N, Zine N. The Advent of Salivary Breast Cancer Biomarker Detection Using Affinity Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2373. [PMID: 31126047 PMCID: PMC6566681 DOI: 10.3390/s19102373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
Breast Cancer is one of the world's most notorious diseases affecting two million women in 2018 worldwide. It is a highly heterogeneous disease, making it difficult to treat. However, its linear progression makes it a candidate for early screening programs, and the earlier its detection the higher the chance of recovery. However, one key hurdle for breast cancer screening is the fact that most screening techniques are expensive, time-consuming, and cumbersome, making them impractical for use in several parts of the world. One current trend in breast cancer detection has pointed to a possible solution, the use of salivary breast cancer biomarkers. Saliva is an attractive medium for diagnosis because it is readily available in large quantities, easy to obtain at low cost, and contains all the biomarkers present in blood, albeit in lower quantities. Affinity sensors are devices that detect molecules through their interactions with biological recognition molecules. Their low cost, high sensitivity, and selectivity, as well as rapid detection time make them an attractive alternative to traditional means of detection. In this review article, we discuss the current status of breast cancer diagnosis, its salivary biomarkers, as well as the current trends in the development of affinity sensors for their detection.
Collapse
Affiliation(s)
- Imad Abrao Nemeir
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Joseph Saab
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
| | - Walid Hleihel
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
| | - Abdelhamid Errachid
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Nicole Jafferzic-Renault
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Nadia Zine
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
25
|
Employing AgNPs doped amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers for target induced strand displacement-based electrochemical aptasensing of CA125 in ovarian cancer patients. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:679-687. [PMID: 30678956 DOI: 10.1016/j.msec.2018.12.108] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 11/30/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022]
Abstract
In this study, a high-performance biosensing nanoplatform based on amidoxime-modified polyacrylonitrile nanofibers decorated with Ag nanoparticles (AgNPs-PAN-oxime NFs) is described. The AgNPs-PAN-oxime NFs were prepared by the combination of electrospinning technique and chemical modification of nitrile group in the PAN. The proposed signal amplifiying nanoplatform was applied in the fabrication of an electrochemical aptasensor for the sensitive detection of CA 125 based on aptamer-cDNA duplex and target induced strand displacement recognition mechanism. The aptasensing interface offers high sensitivity and selectivity for detection of tumor marker due to inherent advantages such as high specific surface area of NFs, good conductivity by doping AgNPs into the polymer NFs and especially the ideal selectivity of anti CA 125 aptamer to its target. The electrochemical aptasensor revealed a wide dynamic linear range (DLR) from 0.01 to 350 U mL-1 with a correlation coefficient of 0.991 and limit of detection (LOD) of 0.0042 U mL-1. Additionally, the designed aptasensor showed acceptable selectivity, reproducibility, repeatability and stability. The satisfactory results for determination of CA 125 in serum samples compared to ELISA method (p-value > 0.05) indicated the potential application of aptasensor in clinical monitoring of tumor biomarker for early diagnosis and management of ovarian cancer.
Collapse
|
26
|
Pei F, Wang P, Ma E, Yang Q, Yu H, Gao C, Li Y, Liu Q, Dong Y. A sandwich-type electrochemical immunosensor based on RhPt NDs/NH 2-GS and Au NPs/PPy NS for quantitative detection hepatitis B surface antigen. Bioelectrochemistry 2018; 126:92-98. [PMID: 30530260 DOI: 10.1016/j.bioelechem.2018.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
In this work, a sandwich-type electrochemical immunosensor was fabricated to quantitatively detect hepatitis B surface antigen (HBsAg). The immunosensor was based on Rh core and Pt shell nanodendrites loaded onto amino group functionalized graphene nanosheet (RhPt NDs/NH2-GS) as label and gold nanoparticles loaded onto polypyrrole nanosheet (Au NPs/PPy NS) as platform. RhPt NDs with abundant catalytic active sites because of the branched core-shell structure, RhPt NDs/NH2-GS as the label displayed high catalytic activity, amplifying the current signal of the immunosensor. Additionally, Au NPs/PPy NS enhanced the electron transfer and provided a good microenvironment to immobilize antibodies effectively, thus improving the sensitivity of the immunosensor. Based on above advantages, the immunosensor emerged a linear concentration ranging from 0.0005 to 10 ng/mL, a low detection limit of 166 fg/mL for HBsAg (S/N = 3) and good stability, selectivity, reproducibility. Furthermore, the satisfactory accuracy in analysis of actual serum samples implied the immunosensor had promising prospect in clinical analysis applications.
Collapse
Affiliation(s)
- Fubin Pei
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China.
| | - Enhui Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Qingshan Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Haoxuan Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Chunxiao Gao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China.
| |
Collapse
|
27
|
Simultaneous biosensing of CA125 and CA15-3 tumor markers and imaging of OVCAR-3 and MCF-7 cells lines via bi-color FRET phenomenon using dual blue-green luminescent carbon dots with single excitation wavelength. Int J Biol Macromol 2018; 118:617-628. [DOI: 10.1016/j.ijbiomac.2018.06.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 01/11/2023]
|
28
|
Recent Advances in Enhancement Strategies for Electrochemical ELISA-Based Immunoassays for Cancer Biomarker Detection. SENSORS 2018; 18:s18072010. [PMID: 29932161 PMCID: PMC6069457 DOI: 10.3390/s18072010] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Electrochemical enzyme-linked immunosorbent assay (ELISA)-based immunoassays for cancer biomarker detection have recently attracted much interest owing to their higher sensitivity, amplification of signal, ease of handling, potential for automation and combination with miniaturized analytical systems, low cost and comparative simplicity for mass production. Their developments have considerably improved the sensitivity required for detection of low concentrations of cancer biomarkers present in bodily fluids in the early stages of the disease. Recently, various attempts have been made in their development and several methods and processes have been described for their development, amplification strategies and testing. The present review mainly focuses on the development of ELISA-based electrochemical immunosensors that may be utilized for cancer diagnosis, prognosis and therapy monitoring. Various fabrication methods and signal enhancement strategies utilized during the last few years for the development of ELISA-based electrochemical immunosensors are described.
Collapse
|
29
|
Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. J Pharm Biomed Anal 2018; 147:185-210. [DOI: 10.1016/j.jpba.2017.07.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
30
|
Lu W, Xu R, Zhang X, Shen J, Li C. Electrochemical immunoassay of E. coli in urban sludge using electron mediator-mediated enzymatic catalysis and gold nanoparticles for signal amplification. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7254-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Zhang B, Ma W, Li F, Gao W, Zhao Q, Peng W, Piao J, Wu X, Wang H, Gong X, Chang J. Fluorescence quenching-based signal amplification on immunochromatography test strips for dual-mode sensing of two biomarkers of breast cancer. NANOSCALE 2017; 9:18711-18722. [PMID: 29165496 DOI: 10.1039/c7nr06781j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recently, immunochromatography test strips (ICTS) have been fully developed for point-of-care testing (POCT). However, the intrinsic limitations including non-quantitative detection of colloidal gold ICTS and low sensitivity of fluorescence ICTS (FICTS) significantly restrict their further application in clinical diagnosis. Taking advantages of rapid colorimetric qualitative detection and fluorescence quantitation, we designed a kind of sensitive and dual-mode magnetic FICTS (mFICTS) based on PLGA@Fe3O4 super-paramagnetic nanosphere (SPMN) probes quenching multiplex fluorescer on the test line through sandwich immunoreactions. Owing to the large number of Fe3O4 nanoparticles (about 47) encapsulated in one SPMN, about 2680 Cy5 molecules were quenched by one SPMN on the test line such that to significantly improve the analytical sensitivity as well as the detection of whole blood samples via magnetic separation. Moreover, the aggregation of black SPMN on the test line enabled a quick naked-eye screening in 3 min. For high accuracy breast cancer diagnosis, combined determination of carcinoembryonic antigen (CEA) and carbohydrate antigen (CA153) was performed on one mFICTS with the limits of detection of about 0.06 ng mL-1 and 0.09 U mL-1, respectively. Then, more than 50 clinical serum samples were investigated for high-resolution screening by mFICTS, and the results were coincident with those obtained by electrochemiluminescence immunoassay (ECLIA). Thus, the designed mFICTS is suitable for point-of-care diagnostics.
Collapse
Affiliation(s)
- Bo Zhang
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hasanzadeh M, Shadjou N, de la Guardia M. Non-invasive diagnosis of oral cancer: The role of electro-analytical methods and nanomaterials. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Elgqvist J. Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer. Int J Mol Sci 2017; 18:E1102. [PMID: 28531102 PMCID: PMC5455010 DOI: 10.3390/ijms18051102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022] Open
Abstract
Prostate and breast cancer are the second most and most commonly diagnosed cancer in men and women worldwide, respectively. The American Cancer Society estimates that during 2016 in the USA around 430,000 individuals were diagnosed with one of these two types of cancers, and approximately 15% of them will die from the disease. In Europe, the rate of incidences and deaths are similar to those in the USA. Several different more or less successful diagnostic and therapeutic approaches have been developed and evaluated in order to tackle this issue and thereby decrease the death rates. By using nanoparticles as vehicles carrying both diagnostic and therapeutic molecular entities, individualized targeted theranostic nanomedicine has emerged as a promising option to increase the sensitivity and the specificity during diagnosis, as well as the likelihood of survival or prolonged survival after therapy. This article presents and discusses important and promising different kinds of nanoparticles, as well as imaging and therapy options, suitable for theranostic applications. The presentation of different nanoparticles and theranostic applications is quite general, but there is a special focus on prostate cancer. Some references and aspects regarding breast cancer are however also presented and discussed. Finally, the prostate cancer case is presented in more detail regarding diagnosis, staging, recurrence, metastases, and treatment options available today, followed by possible ways to move forward applying theranostics for both prostate and breast cancer based on promising experiments performed until today.
Collapse
Affiliation(s)
- Jörgen Elgqvist
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| |
Collapse
|
34
|
Pan M, Gu Y, Yun Y, Li M, Jin X, Wang S. Nanomaterials for Electrochemical Immunosensing. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1041. [PMID: 28475158 PMCID: PMC5469646 DOI: 10.3390/s17051041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/10/2017] [Accepted: 05/03/2017] [Indexed: 01/02/2023]
Abstract
Electrochemical immunosensors resulting from a combination of the traditional immunoassay approach with modern biosensors and electrochemical analysis constitute a current research hotspot. They exhibit both the high selectivity characteristics of immunoassays and the high sensitivity of electrochemical analysis, along with other merits such as small volume, convenience, low cost, simple preparation, and real-time on-line detection, and have been widely used in the fields of environmental monitoring, medical clinical trials and food analysis. Notably, the rapid development of nanotechnology and the wide application of nanomaterials have provided new opportunities for the development of high-performance electrochemical immunosensors. Various nanomaterials with different properties can effectively solve issues such as the immobilization of biological recognition molecules, enrichment and concentration of trace analytes, and signal detection and amplification to further enhance the stability and sensitivity of the electrochemical immunoassay procedure. This review introduces the working principles and development of electrochemical immunosensors based on different signals, along with new achievements and progress related to electrochemical immunosensors in various fields. The importance of various types of nanomaterials for improving the performance of electrochemical immunosensor is also reviewed to provide a theoretical basis and guidance for the further development and application of nanomaterials in electrochemical immunosensors.
Collapse
Affiliation(s)
- Mingfei Pan
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Ying Gu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Yaguang Yun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Min Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Xincui Jin
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| |
Collapse
|
35
|
Multiplexed Electrochemical Immunosensors for Clinical Biomarkers. SENSORS 2017; 17:s17050965. [PMID: 28448466 PMCID: PMC5464191 DOI: 10.3390/s17050965] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 01/10/2023]
Abstract
Management and prognosis of disease requires the accurate determination of specific biomarkers indicative of normal or disease-related biological processes or responses to therapy. Moreover since multiple determinations of biomarkers have demonstrated to provide more accurate information than individual determinations to assist the clinician in prognosis and diagnosis, the detection of several clinical biomarkers by using the same analytical device hold enormous potential for early detection and personalized therapy and will simplify the diagnosis providing more information in less time. In this field, electrochemical immunosensors have demonstrated to offer interesting alternatives against conventional strategies due to their simplicity, fast response, low cost, high sensitivity and compatibility with multiplexed determination, microfabrication technology and decentralized determinations, features which made them very attractive for integration in point-of-care (POC) devices. Therefore, in this review, the relevance and current challenges of multiplexed determination of clinical biomarkers are briefly introduced, and an overview of the electrochemical immunosensing platforms developed so far for this purpose is given in order to demonstrate the great potential of these methodologies. After highlighting the main features of the selected examples, the unsolved challenges and future directions in this field are also briefly discussed.
Collapse
|
36
|
Pu Q, Li J, Qiu J, Yang X, Li Y, Yin D, Zhang X, Tao Y, Sheng S, Xie G. Universal ratiometric electrochemical biosensing platform based on mesoporous platinum nanocomposite and nicking endonuclease assisted DNA walking strategy. Biosens Bioelectron 2017; 94:719-727. [PMID: 28395255 DOI: 10.1016/j.bios.2017.03.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 01/21/2023]
Abstract
The occurrence and development of many complex diseases are associated with various molecules, whose contents are rarely in the early stage of the disease. Thus a universal platform for the ultrasensitive detection of multilevel biomarkers should be developed. In this study, we introduced an electrochemical biosensing system based on nicking endonuclease (Nt.BbvCI) assisted DNA walking strategy. We successfully constructed a universal signal-off-on ratiometric electrochemical biosensor for various biomolecules, including small molecules, nucleic acids, and proteins, by progressively optimizing the schematics (schemes 1, 2, and 3). The MB-hairpin probes (MB-HPs) acted as a signal-off probe, and nanocomposites (MPNs@DOX@DNA2) acted as a conventional signal-on probe (scheme 3). With the aid of the MPNs@DOX@DNA2 and Nt.BbvCI assisted DNA walking mechanism, the designed ratiometric electrochemical biosensor showed a high sensitivity and broad detection range. In addition, the proposed method can be utilized to detect diverse targets quantitatively by changing the sequence of aptamers under optimum experimental conditions. Furthermore, it has been widely proved to realize well-accepted signal response in identifying complex samples, thereby resulting in an wide prospect for bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Qinli Pu
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlong Li
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Juhui Qiu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Xuanhua Yang
- Department of Gastrointestinal Surgery, Second Clinical Medical Institution of North Sichuan Medical College. Nanchong Central Hospital, Nanchong, Sichuan 637000, PR China
| | - Yi Li
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Dan Yin
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinyuan Zhang
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yiyi Tao
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Shangchun Sheng
- The No.2 Peoples' Hospital of Yibin, Sichuan 644000, PR China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
37
|
Rama EC, Costa-García A. Screen-printed Electrochemical Immunosensors for the Detection of Cancer and Cardiovascular Biomarkers. ELECTROANAL 2016. [DOI: 10.1002/elan.201600126] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Estefanía Costa Rama
- Departamento de Química Física y Analítica, Facultad de Química; Universidad de Oviedo; 33006 Oviedo Spain
| | - Agustín Costa-García
- Departamento de Química Física y Analítica, Facultad de Química; Universidad de Oviedo; 33006 Oviedo Spain
| |
Collapse
|
38
|
Fenzl C, Hirsch T, Baeumner AJ. Nanomaterials as versatile tools for signal amplification in (bio)analytical applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.10.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Wang J, Wang X, Wu S, Song J, Zhao Y, Ge Y, Meng C. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay. Anal Chim Acta 2016; 906:80-88. [DOI: 10.1016/j.aca.2015.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/07/2015] [Accepted: 12/12/2015] [Indexed: 01/03/2023]
|
40
|
Lim SA, Ahmed MU. Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Adv 2016. [DOI: 10.1039/c6ra00333h] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, tremendous advances have been made in biosensors based on nanoscale electrochemical immunosensors for use in the fields of agriculture, food safety, biomedicine, quality control, and environmental and industrial monitoring.
Collapse
Affiliation(s)
- Syazana Abdullah Lim
- Environmental and Life Sciences Programme
- Faculty of Science
- Universiti Brunei Darussalam
- Gadong
- Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Biotechnology Laboratory
- Chemical Science Programme
- Faculty of Science
- Universiti Brunei Daruusalam
- Gadong
| |
Collapse
|
41
|
Torrente-Rodríguez RM, Campuzano S, Ruiz-Valdepeñas Montiel V, Gamella M, Pingarrón JM. Electrochemical bioplatforms for the simultaneous determination of interleukin (IL)-8 mRNA and IL-8 protein oral cancer biomarkers in raw saliva. Biosens Bioelectron 2015; 77:543-8. [PMID: 26474095 DOI: 10.1016/j.bios.2015.10.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
The development of electrochemical magnetobiosensors for the simultaneous determination of two biomarkers associated with salivary oral cancer, protein IL-8 and its messenger RNA (IL-8 mRNA) associated, in undiluted human saliva samples is reported in this work. The implemented methodology involves the use of functionalized magnetic beads, specific antibodies against IL-8 protein, a specific hairpin DNA sequence for IL-8 mRNA and amperometric detection at disposable dual screen printed carbon electrodes. This methodology exhibits high sensitivity and selectivity for the target analytes providing detection limits of 0.21 nM for IL-8 mRNA and 72.4 pgmL(-1) (far below the clinical established cut-off of 600 pgmL(-1)) for IL-8 protein in undiluted saliva samples. The dual amperometric magnetobiosensor was applied to the direct determination of both biomarkers in spiked raw saliva samples and to determine the endogenous content of IL-8 protein in saliva samples from 7 healthy individuals. The obtained results were statistically in agreement with those provided by a commercial ELISA kit.
Collapse
Affiliation(s)
- R M Torrente-Rodríguez
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - S Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - V Ruiz-Valdepeñas Montiel
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - M Gamella
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - J M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
42
|
Tang J, Tang D. Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1567-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Duangkaew P, Tapaneeyakorn S, Apiwat C, Dharakul T, Laiwejpithaya S, Kanatharana P, Laocharoensuk R. Ultrasensitive electrochemical immunosensor based on dual signal amplification process for p16(INK4a) cervical cancer detection in clinical samples. Biosens Bioelectron 2015. [PMID: 26201985 DOI: 10.1016/j.bios.2015.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The p16(INK4a) (p16) is a cyclin-dependent kinase inhibitor, which has been evaluated in several studies as a diagnostic marker of cervical cancer. Immunostaining using p16 specific antibody has confirmed an over-expression of p16 protein in cervical cancer cells and its association with disease progression. This article reports an ultrasensitive electrochemical immunosensor for specific detection of p16 and demonstrates its performance for detection of solubilized p16 protein in cell lysates obtained from patients. Sandwich-based immunoreaction couple with double signal amplification strategy based on catalytic enlargement of particle tag was used for high sensitivity and specificity. The conditions were optimized to create an immunoassay protocol. Disposable screen-printed electrode modified with capture antibodies (Ab1) was selected for further implementation towards point-of-care diagnostics. Small gold nanoparticles (15 nm diameter) conjugated with detection antibodies (Ab2) were found to better serve as a detection label due to limited interference with antigen-antibody interaction. Double signal enhancement was performed by sequential depositions of gold and silver layers. This gave the sensitivity of 1.78 μA mL(ng GST-p16)(-1) cm(-2) and detection limit of 1.3 ng mL(-1) for GST-p16 protein which is equivalent to 0.49 ng mL(-1) for p16 protein and 28 cells for HeLa cervical cancer cells. In addition to purified protein, the proposed immunosensor effectively detected elevated p16 level in cervical swab samples obtained from 10 patients with positive result from standard Pap smear test, indicating that an electrochemical immunosensors hold an excellent promise for detection of cervical cancer in clinical setting.
Collapse
Affiliation(s)
- Pattasuda Duangkaew
- Nanostructures and Functional Assembly Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Satita Tapaneeyakorn
- Nanomolecular Target Discovery Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chayachon Apiwat
- Nanomolecular Target Discovery Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Tararaj Dharakul
- Nanomolecular Target Discovery Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; Department of Immunology and Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somsak Laiwejpithaya
- Department of Immunology and Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Proespichaya Kanatharana
- Trace Analysis and Biosensor Research Center, Department of Chemistry, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Rawiwan Laocharoensuk
- Nanostructures and Functional Assembly Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| |
Collapse
|
44
|
Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron 2015; 68:688-698. [DOI: 10.1016/j.bios.2015.01.066] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/12/2015] [Accepted: 01/28/2015] [Indexed: 01/16/2023]
|
45
|
Johari-Ahar M, Rashidi MR, Barar J, Aghaie M, Mohammadnejad D, Ramazani A, Karami P, Coukos G, Omidi Y. An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients. NANOSCALE 2015; 7:3768-79. [PMID: 25644549 DOI: 10.1039/c4nr06687a] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Effective treatment of ovarian cancer depends upon the early detection of the malignancy. Here, we report on the development of a new nanostructured immunosensor for early detection of cancer antigen 125 (CA-125). A gold electrode was modified with mercaptopropionic acid (MPA), and then consecutively conjugated with silica coated gold nanoparticles (AuNP@SiO2), CdSe quantum dots (QDs) and anti-CA-125 monoclonal antibody (mAb). The engineered MPA|AuNP@SiO2|QD|mAb immunosensor was characterised using transmission electron microscopy (TEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Successive conjugation of AuNP@SiO2, CdSe QD and anti-CA-125 mAb onto the gold electrode resulted in sensitive detection of CA-125 with a limit of detection (LOD) of 0.0016 U mL(-1) and a linear detection range (LDR) of 0-0.1 U mL(-1). Based on the high sensitivity and specificity of the immunosensor, we propose this highly stable and reproducible biosensor for the early detection of CA-125.
Collapse
Affiliation(s)
- M Johari-Ahar
- Research Centre for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
An electrochemical immunosensing method for detecting melanoma cells. Biosens Bioelectron 2015; 68:508-515. [PMID: 25636023 DOI: 10.1016/j.bios.2015.01.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/09/2015] [Indexed: 01/06/2023]
Abstract
An electrochemical immunosensing method was developed to detect melanoma cells based on the affinity between cell surface melanocortin 1 receptor (MC1R) antigen and anti-MC1R antibody (MC1R-Ab). The MC1R-Abs were immobilized in amino-functionalized silica nanoparticles (n-SiNPs)-polypyrrole (PPy) nanocomposite modified on working electrode surface of screen-printed electrode (SPE). Cyclic voltammetry was employed, with the help of redox mediator ([Fe(CN)6](3-)), to measure the change in anodic oxidation peak current arising due to the specific interaction between MC1R antigens and MC1R-Abs when the target melanoma cells are present in the sample. Various factors affecting the sensor performance, such as the amount of MC1R-Abs loaded, incubation time with the target melanoma cells, the presence of interfering non-melanoma cells, were tested and optimized over different expected melanoma cell loads in the range of 50-7500 cells/2.5 mL. The immunosensor is highly sensitive (20 cells/mL), specific, and reproducible, and the antibody-loaded electrode in ready-to-use stage is stable over two weeks. Thus, in conjunction with a microfluidic lab-on-a-chip device our electrochemical immunosensing approach may be suitable for highly sensitive, selective, and rapid detection of circulating tumor cells (CTCs) in blood samples.
Collapse
|
47
|
Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 2015; 132:162-74. [DOI: 10.1016/j.talanta.2014.08.063] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
|
48
|
Functionalized gold nanorod-based labels for amplified electrochemical immunoassay of E. coli as indicator bacteria relevant to the quality of dairy product. Talanta 2015; 132:600-5. [DOI: 10.1016/j.talanta.2014.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/25/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022]
|
49
|
Luo X, Xu Q, James T, Davis JJ. Redox and Label-Free Array Detection of Protein Markers in Human Serum. Anal Chem 2014; 86:5553-8. [DOI: 10.1021/ac5010037] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiliang Luo
- Key
Laboratory of Biochemical Analysis, Ministry of Education, College
of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| | - Qiao Xu
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| | - Tim James
- Department
of Clinical Biochemistry, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, U.K
| | - Jason J. Davis
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| |
Collapse
|
50
|
Ren X, Yan T, Zhang S, Zhang X, Gao P, Wu D, Du B, Wei Q. Ultrasensitive dual amplification sandwich immunosensor for breast cancer susceptibility gene based on sheet materials. Analyst 2014; 139:3061-8. [DOI: 10.1039/c4an00099d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A new electrochemical dual amplification sandwich immunosensor (DASI) was designed for ultrasensitive and accurate detection of the breast cancer susceptibility gene based on the combination of N-doped graphene, hydroxypropyl chitosan and Co3O4 mesoporous nanosheets.
Collapse
Affiliation(s)
- Xiang Ren
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| | - Tao Yan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| | - Sen Zhang
- School of Resources and Environmental Sciences
- University of Jinan
- Jinan 250022, P.R. China
| | - Xiaoyue Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| | - Picheng Gao
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| | - Dan Wu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| | - Bin Du
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
- School of Resources and Environmental Sciences
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| |
Collapse
|