1
|
Chipangura YE, Spindler BD, Bühlmann P, Stein A. Design Criteria for Nanostructured Carbon Materials as Solid Contacts for Ion-Selective Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309778. [PMID: 38105339 DOI: 10.1002/adma.202309778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/05/2023] [Indexed: 12/19/2023]
Abstract
The ability to miniaturize ion-selective sensors that enable microsensor arrays and wearable sensor patches for ion detection in environmental or biological samples requires all-solid-state sensors with solid contacts for transduction of an ion activity into an electrical signal. Nanostructured carbon materials function as effective solid contacts for this purpose. They can also contribute to improved potential signal stability, reducing the need for frequent sensor calibration. In this Perspective, the structural features of various carbon-based solid contacts described in the literature and their respective abilities to reduce potential drift during long-term, continuous measurements are compared. These carbon materials include nanoporous carbons with various architectures, carbon nanotubes, carbon black, graphene, and graphite-based solid contacts. The effects of accessibility of ionophores, ionic sites, and other components of an ion-selective membrane to the internal or external carbon surfaces are discussed, because this impacts double-layer capacitance and potential drift. The effects of carbon composition on water-layer formation are also considered, which is another contributor to potential drift during long-term measurements. Recommendations regarding the selection of solid contacts and considerations for their characterization and testing in solid-contact ion-selective electrodes are provided.
Collapse
Affiliation(s)
- Yevedzo E Chipangura
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Brian D Spindler
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| |
Collapse
|
2
|
Dai HH, Cai X, Liu ZH, Xia RZ, Zhao YH, Liu YZ, Yang M, Li PH, Huang XJ. Ion-Electron Transduction Layer of the SnS 2-MoS 2 Heterojunction to Elevate Superior Interface Stability for All-Solid Sodium-Ion Selective Electrode. ACS Sens 2024; 9:415-423. [PMID: 38154098 DOI: 10.1021/acssensors.3c02185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The high selectivity and fast ion response of all-solid sodium ion selective electrodes were widely applied in human sweat analysis. However, the potential drift due to insufficient interfacial capacitance leads to the deterioration of its stability and ultimately affects the potential accuracy of ion analysis. Designing a novel ion-electron transduction layer between the electrode and the ion selective membrane is an effective method to stabilize the interfacial potential. Herein, the SnS2-MoS2 heterojunction material was constructed by doping Sn in MoS2 nanosheets and used as the ion electron transduction layers of an all-solid sodium ion selective electrode for the first time, achieving the stable and efficient detection of Na+ ions. The proposed electrode exhibited a Nernst slope of 57.86 mV/dec for the detection of Na+ ions with a detection limit of 10-5.7 M in the activity range of 10-6-10-1 M. Via the electronic interaction at the heterojunction interfaces between SnS2 and MoS2 materials, the micro-nanostructure of the SnS2-MoS2 heterojunction was changed and SnS2-MoS2 as the ion-electron transduction layer acquired excellent capacitance (699 μF) and hydrophobicity (132°), resulting in a long-term potential stability of 1.37 μV/h. It was further proved that the large capacitance and high hydrophobicity of the ion-electron transduction layer are primary reasons for the excellent stability of the all-solid sodium ion selective electrode toward Na+ ions.
Collapse
Affiliation(s)
- Hai-Hua Dai
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Cai
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Hao Liu
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Rui-Ze Xia
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Huan Zhao
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Zhi Liu
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Thi Dieu Thuy N, Zhao G, Wang X, Awuah E, Zhang L. Potassium ion‐selective electrode with a sensitive ion‐to‐electron transducer composed of porous laser‐induced graphene and MoS<sub>2</sub> fabricated by one‐step direct laser writing. ELECTROANAL 2022. [DOI: 10.1002/elan.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Elashery SE, Attia NF, Oh H. Design and fabrication of novel flexible sensor based on 2D Ni-MOF nanosheets as a preliminary step toward wearable sensor for onsite Ni (II) ions detection in biological and environmental samples. Anal Chim Acta 2022; 1197:339518. [DOI: 10.1016/j.aca.2022.339518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
|
5
|
Aref M, Ranjbari E, García-Guzmán JJ, Hu K, Lork A, Crespo GA, Ewing AG, Cuartero M. Potentiometric pH Nanosensor for Intracellular Measurements: Real-Time and Continuous Assessment of Local Gradients. Anal Chem 2021; 93:15744-15751. [PMID: 34783529 PMCID: PMC8637545 DOI: 10.1021/acs.analchem.1c03874] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
We present a pH nanosensor
conceived for single intracellular measurements.
The sensing architecture consisted of a two-electrode system evaluated
in the potentiometric mode. We used solid-contact carbon nanopipette
electrodes tailored to produce both the indicator (pH nanosensor)
and reference electrodes. The indicator electrode was a membrane-based
ion-selective electrode containing a receptor for hydrogen ions that
provided a favorable selectivity for intracellular measurements. The
analytical features of the pH nanosensor revealed a Nernstian response
(slope of −59.5 mV/pH unit) with appropriate repeatability
and reproducibility (variation coefficients of <2% for the calibration
parameters), a fast response time (<5 s), adequate medium-term
drift (0.7 mV h–1), and a linear range of response
including physiological and abnormal cell pH levels (6.0–8.5).
In addition, the position and configuration of the reference electrode
were investigated in cell-based experiments to provide unbiased pH
measurements, in which both the indicator and reference electrodes
were located inside the same cell, each of them inside two neighboring
cells, or the indicator electrode inside the cell and the reference
electrode outside of (but nearby) the studied cell. Finally, the pH
nanosensor was applied to two cases: (i) the tracing of the pH gradient
from extra-to intracellular media over insertion into a single PC12
cell and (ii) the monitoring of variations in intracellular pH in
response to exogenous administration of pharmaceuticals. It is anticipated
that the developed pH nanosensor, which is a label-free analytical
tool, has high potential to aid in the investigation of pathological
states that manifest in cell pH misregulation, with no restriction
in the type of targeted cells.
Collapse
Affiliation(s)
- Mohaddeseh Aref
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Elias Ranjbari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Juan José García-Guzmán
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Keke Hu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Alicia Lork
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Gaston A Crespo
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Maria Cuartero
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| |
Collapse
|
6
|
Semi-empirical treatment of ionophore-assisted ion-transfers in ultrathin membranes coupled to a redox conducting polymer. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
García-Guzmán JJ, Pérez-Ràfols C, Cuartero M, Crespo GA. Toward In Vivo Transdermal pH Sensing with a Validated Microneedle Membrane Electrode. ACS Sens 2021; 6:1129-1137. [PMID: 33566575 PMCID: PMC8023800 DOI: 10.1021/acssensors.0c02397] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
We present herein the most complete characterization of microneedle (MN) potentiometric sensors for pH transdermal measurements for the time being. Initial in vitro assessment demonstrated suitable analytical performances (e.g., Nernstian slope, linear range of response from 8.5 to 5.0, and fast response time) in both buffer media and artificial interstitial fluid (ISF). Excellent repeatability and reproducibility together with adequate selectivity and resiliency facilitate the appropriateness of the new pH MN sensor for transdermal ISF analysis in healthcare. The ability to resist skin insertions was evaluated in several ex vivo setups using three different animal skins (i.e., chicken, pork, and rat). The developed pH MN sensor was able to withstand from 5 to 10 repetitive insertions in all the skins considered with a minimal change in the calibration graph (<3% variation in both slope and intercept after the insertions). Ex vivo pH measurements were validated by determining the pH with the MN sensor and a commercial pH electrode in chicken skin portions previously conditioned at several pH values, obtaining excellent results with an accuracy of <1% and a precision of <2% in all cases. Finally, pH MN sensors were applied for the very first time to transdermal measurements in rats together with two innovative validation procedures: (i) measuring subcutaneous pH directly with a commercial pH microelectrode and (ii) collecting ISF using hollow MNs and then the pH measurement of the sample with the pH microelectrode. The pH values obtained with pH MN sensors were statistically more similar to subcutaneous measurements, as inferred by a paired sample t-test at 95% of confidence level. Conveniently, the validation approaches could be translated to other analytes that are transdermally measured with MN sensors.
Collapse
Affiliation(s)
- Juan José García-Guzmán
- Department of Chemistry, School of
Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Clara Pérez-Ràfols
- Department of Chemistry, School of
Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - María Cuartero
- Department of Chemistry, School of
Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Gastón A. Crespo
- Department of Chemistry, School of
Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Teknikringen 30, SE-100 44 Stockholm, Sweden
| |
Collapse
|
8
|
Melt Spinning of Highly Stretchable, Electrically Conductive Filament Yarns. Polymers (Basel) 2021; 13:polym13040590. [PMID: 33669330 PMCID: PMC7920307 DOI: 10.3390/polym13040590] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022] Open
Abstract
Electrically conductive fibers are required for various applications in modern textile technology, e.g., the manufacturing of smart textiles and fiber composite systems with textile-based sensor and actuator systems. According to the state of the art, fine copper wires, carbon rovings, or metallized filament yarns, which offer very good electrical conductivity but low mechanical elongation capabilities, are primarily used for this purpose. However, for applications requiring highly flexible textile structures, as, for example, in the case of wearable smart textiles and fiber elastomer composites, the development of electrically conductive, elastic yarns is of great importance. Therefore, highly stretchable thermoplastic polyurethane (TPU) was compounded with electrically conductive carbon nanotubes (CNTs) and subsequently melt spun. The melt spinning technology had to be modified for the processing of highly viscous TPU–CNT compounds with fill levels of up to 6 wt.% CNT. The optimal configuration was achieved at a CNT content of 5 wt.%, providing an electrical resistance of 110 Ωcm and an elongation at break of 400%.
Collapse
|
9
|
Kamarudin SF, Mustapha M, Kim JK. Green Strategies to Printed Sensors for Healthcare Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1729180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Siti Fatimah Kamarudin
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Mariatti Mustapha
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Jang-Kyo Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
10
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
11
|
Ezzat S, A Ahmed M, E Amr AEG, A Al-Omar M, H Kamel A, Khalifa NM. Single-Piece All-Solid-State Potential Ion-Selective Electrodes Integrated with Molecularly Imprinted Polymers (MIPs) for Neutral 2,4-Dichlorophenol Assessment. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2924. [PMID: 31510026 PMCID: PMC6766229 DOI: 10.3390/ma12182924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023]
Abstract
A novel single-piece all-solid-state ion-selective electrode (SC/ISE) based on carbon-screen printed is introduced. Polyaniline (PANI) is dissolved in a membrane cocktail that contains the same components used for making a conventional ion-selective polyvinyl chloride (PVC) matrix membrane. The membrane, having the PANI, is directly drop-casted on a carbon substrate (screen-printed-carbon electrode). PANI was added to act as an intermediary between the substrate and the membrane for the charge transfer process. Under non-equilibrium sensing mechanism, the sensors revealed high sensitivity towards 2,4-dichlorophenol (DCP) over the linearity range 0.47 to 13 µM and a detection limit 0.13 µm. The selectivity was measured by the modified separate solution method (MSSM) and showed good selectivity towards 2,4-DCP over the most commonly studied ions. All measurements were done in 30 mm Tris buffer solution at a pH 5.0. Using constant-current chronopotentiometry, the potential drift for the proposed electrodes was checked. Improvement in the potential stability of the SPE was observed after the addition of PANI in the sensing membrane as compared to the corresponding coated-wire electrode (membrane without PANI). The applicability of the sensor has been checked by measuring 2,4-DCP in different water samples and the results were compared with the standard HPLC method.
Collapse
Affiliation(s)
- Samar Ezzat
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt.
- Chemistry Department, College for Women, Ain Shams University, Heliopolis, 11751 Cairo, Egypt.
| | - Mona A Ahmed
- Chemistry Department, College for Women, Ain Shams University, Heliopolis, 11751 Cairo, Egypt.
| | - Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Center, 12622 Giza, Egypt.
| | - Mohamed A Al-Omar
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ayman H Kamel
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt.
| | - Nagy M Khalifa
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Center, 12622 Giza, Egypt.
| |
Collapse
|
12
|
Legner C, Kalwa U, Patel V, Chesmore A, Pandey S. Sweat sensing in the smart wearables era: Towards integrative, multifunctional and body-compliant perspiration analysis. SENSORS AND ACTUATORS A-PHYSICAL 2019. [DOI: 10.1016/j.sna.2019.07.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Parrilla M, Guinovart T, Ferré J, Blondeau P, Andrade FJ. A Wearable Paper-Based Sweat Sensor for Human Perspiration Monitoring. Adv Healthc Mater 2019; 8:e1900342. [PMID: 31293084 DOI: 10.1002/adhm.201900342] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/27/2019] [Indexed: 11/10/2022]
Abstract
The fabrication and performance of a wearable paper-based chemiresistor for monitoring perspiration dynamics (sweat rate and sweat loss) are detailed. A novel approach is introduced to measure the amount of aqueous solution in the order of microliters delivered to the sensor by monitoring a linear change in resistance along a conducting paper. The wearable sensor is based on a single-walled carbon nanotubes and surfactant (sodium dodecylbenzenesulfonate) nanocomposite integrated within cellulose fibers of a conventional filter paper. The analytical performance and the sensing mechanism are presented. Monitoring sweat loss in the human body while exercising is demonstrated using the integration of a wireless reader and a user-friendly interface. By addressing the barriers of cost, simplicity, and the truly in situ demanding measurements, this unique wearable sensor is expected to serve in the future in many different applications involving the on-body detection of biofluids, such as a monitoring tool of dehydration levels for athletes as well as a tool for enhancing the sport performance by providing an accurate recovery of the hydration status in daily exercises.
Collapse
Affiliation(s)
- Marc Parrilla
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
| | - Tomàs Guinovart
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
| | - Jordi Ferré
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
- Kamleon Ventures SL Av. Països Catalans 18 43007 Tarragona Spain
| | - Pascal Blondeau
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
| | - Francisco J. Andrade
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
| |
Collapse
|
14
|
Han T, Nag A, Afsarimanesh N, Mukhopadhyay SC, Kundu S, Xu Y. Laser-Assisted Printed Flexible Sensors: A Review. SENSORS 2019; 19:s19061462. [PMID: 30934649 PMCID: PMC6471508 DOI: 10.3390/s19061462] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022]
Abstract
This paper provides a substantial review of some of the significant research done on the fabrication and implementation of laser-assisted printed flexible sensors. In recent times, using laser cutting to develop printed flexible sensors has become a popular technique due to advantages such as the low cost of production, easy sample preparation, the ability to process a range of raw materials, and its usability for different functionalities. Different kinds of laser cutters are now available that work on samples very precisely via the available laser parameters. Thus, laser-cutting techniques provide huge scope for the development of prototypes with a varied range of sizes and dimensions. Meanwhile, researchers have been constantly working on the types of materials that can be processed, individually or in conjugation with one another, to form samples for laser-ablation. Some of the laser-printed techniques that are commonly considered for fabricating flexible sensors, which are discussed in this paper, include nanocomposite-based, laser-ablated, and 3D-printing. The developed sensors have been used for a range of applications, such as electrochemical and strain-sensing purposes. The challenges faced by the current printed flexible sensors, along with a market survey, are also outlined in this paper.
Collapse
Affiliation(s)
- Tao Han
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523106, China.
| | - Anindya Nag
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523106, China.
| | | | | | - Sudip Kundu
- CSIR-Central Mechanical Engineering Research Institute Durgapur, West Bengal 713209, India.
| | - Yongzhao Xu
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523106, China.
| |
Collapse
|
15
|
Cuartero M, Parrilla M, Crespo GA. Wearable Potentiometric Sensors for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E363. [PMID: 30658434 PMCID: PMC6359219 DOI: 10.3390/s19020363] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 01/26/2023]
Abstract
Wearable potentiometric sensors have received considerable attention owing to their great potential in a wide range of physiological and clinical applications, particularly involving ion detection in sweat. Despite the significant progress in the manner that potentiometric sensors are integrated in wearable devices, in terms of materials and fabrication approaches, there is yet plenty of room for improvement in the strategy adopted for the sample collection. Essentially, this involves a fluidic sampling cell for continuous sweat analysis during sport performance or sweat accumulation via iontophoresis induction for one-spot measurements in medical settings. Even though the majority of the reported papers from the last five years describe on-body tests of wearable potentiometric sensors while the individual is practicing a physical activity, the medical utilization of these devices has been demonstrated on very few occasions and only in the context of cystic fibrosis diagnosis. In this sense, it may be important to explore the implementation of wearable potentiometric sensors into the analysis of other biofluids, such as saliva, tears and urine, as herein discussed. While the fabrication and uses of wearable potentiometric sensors vary widely, there are many common issues related to the analytical characterization of such devices that must be consciously addressed, especially in terms of sensor calibration and the validation of on-body measurements. After the assessment of key wearable potentiometric sensors reported over the last five years, with particular attention paid to those for medical applications, the present review offers tentative guidance regarding the characterization of analytical performance as well as analytical and clinical validations, thereby aiming at generating debate in the scientific community to allow for the establishment of well-conceived protocols.
Collapse
Affiliation(s)
- María Cuartero
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-10044 Stockholm, Sweden.
| | - Marc Parrilla
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-10044 Stockholm, Sweden.
| | - Gaston A Crespo
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-10044 Stockholm, Sweden.
| |
Collapse
|
16
|
Parrilla M, Cuartero M, Padrell Sánchez S, Rajabi M, Roxhed N, Niklaus F, Crespo GA. Wearable All-Solid-State Potentiometric Microneedle Patch for Intradermal Potassium Detection. Anal Chem 2019; 91:1578-1586. [PMID: 30543102 DOI: 10.1021/acs.analchem.8b04877] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new analytical all-solid-state platform for intradermal potentiometric detection of potassium in interstitial fluid is presented here. Solid microneedles are modified with different coatings and polymeric membranes to prepare both the potassium-selective electrode and reference electrode needed for the potentiometric readout. These microneedle-based electrodes are fixed in an epidermal patch suitable for insertion into the skin. The analytical performances observed for the potentiometric cell (Nernstian slope, limit of detection of 10-4.9 potassium activity, linear range of 10-4.2 to 10-1.1, drift of 0.35 ± 0.28 mV h-1), together with a fast response time, adequate selectivity, and excellent reproducibility and repeatability, are appropriate for potassium analysis in interstitial fluid within both clinical and harmful levels. The potentiometric response is maintained after several insertions into animal skin, confirming the resiliency of the microneedle-based sensor. Ex vivo tests based on the intradermal detection of potassium in chicken and porcine skin demonstrate that the microneedle patch is suitable for monitoring potassium changes inside the skin. In addition, the dimensions of the microneedles modified with the corresponding layers necessary to enhance robustness and provide sensing capabilities (1000 μm length, 45° tip angle, 15 μm thickness in the tip, and 435 μm in the base) agree with the required ranges for a painless insertion into the skin. In vitro cytotoxicity experiments showed that the patch can be used for at least 24 h without any side effect for the skin cells. Overall, the developed concept constitutes important progress in the intradermal analysis of ions related to an electrolyte imbalance in humans, which is relevant for the control of certain types of diseases.
Collapse
Affiliation(s)
- Marc Parrilla
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health , KTH Royal Institute of Technology , Teknikringen 30 , SE-100 44 Stockholm , Sweden
| | - María Cuartero
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health , KTH Royal Institute of Technology , Teknikringen 30 , SE-100 44 Stockholm , Sweden
| | - Sara Padrell Sánchez
- Department of Clinical Science, Intervention and Technology , Karolinska Institutet , K 57 , SE-141 86 Stockholm , Sweden.,Division of Obstetrics and Gynecology , Karolinska Universitetssjukhuset , 14186 Stockholm , Sweden
| | - Mina Rajabi
- Department of Micro and Nanosystems, School of Electrical Engineering and Computer Science , KTH Royal Institute of Technology , Malvinas väg 10 , SE-100 44 Stockholm , Sweden
| | - Niclas Roxhed
- Department of Micro and Nanosystems, School of Electrical Engineering and Computer Science , KTH Royal Institute of Technology , Malvinas väg 10 , SE-100 44 Stockholm , Sweden
| | - Frank Niklaus
- Department of Micro and Nanosystems, School of Electrical Engineering and Computer Science , KTH Royal Institute of Technology , Malvinas väg 10 , SE-100 44 Stockholm , Sweden
| | - Gastón A Crespo
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health , KTH Royal Institute of Technology , Teknikringen 30 , SE-100 44 Stockholm , Sweden
| |
Collapse
|
17
|
|
18
|
Sweilam MN, Varcoe JR, Crean C. Fabrication and Optimization of Fiber-Based Lithium Sensor: A Step toward Wearable Sensors for Lithium Drug Monitoring in Interstitial Fluid. ACS Sens 2018; 3:1802-1810. [PMID: 30095251 DOI: 10.1021/acssensors.8b00528] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A miniaturized, flexible fiber-based lithium sensor was fabricated from low-cost cotton using a simple, repeatable dip-coating technique. This lithium sensor is highly suited for ready-to-use wearable applications and can be used directly without the preconditioning steps normally required with traditional ion-selective electrodes. The sensor has a stable, rapid, and accurate response over a wide Li+ concentration range that spans over the clinically effective and the toxic concentration limits for lithium in human serum. The sensor is selective to Li+ in human plasma even in the presence of a high concentration of Na+ ions. This novel sensor concept represents a significant advance in wearable sensor technology which will target lithium drug monitoring from under the skin.
Collapse
Affiliation(s)
- Mona N. Sweilam
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - John R. Varcoe
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Carol Crean
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
19
|
Zhen XV, Rousseau CR, Bühlmann P. Redox Buffer Capacity of Ion-Selective Electrode Solid Contacts Doped with Organometallic Complexes. Anal Chem 2018; 90:11000-11007. [DOI: 10.1021/acs.analchem.8b02595] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xue V. Zhen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Celeste R. Rousseau
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Hoekstra R, Blondeau P, Andrade FJ. Distributed electrochemical sensors: recent advances and barriers to market adoption. Anal Bioanal Chem 2018; 410:4077-4089. [PMID: 29806065 DOI: 10.1007/s00216-018-1104-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
Despite predictions of their widespread application in healthcare and environmental monitoring, electrochemical sensors are yet to be distributed at scale, instead remaining largely confined to R&D labs. This contrasts sharply with the situation for physical sensors, which are now ubiquitous and seamlessly embedded in the mature ecosystem provided by electronics and connectivity protocols. Although chemical sensors could be integrated into the same ecosystem, there are fundamental issues with these sensors in the three key areas of analytical performance, usability, and affordability. Nevertheless, advances are being made in each of these fields, leading to hope that the deployment of automated and user-friendly low-cost electrochemical sensors is on the horizon. Here, we present a brief survey of key challenges and advances in the development of distributed electrochemical sensors for liquid samples, geared towards applications in healthcare and wellbeing, environmental monitoring, and homeland security. As will be seen, in many cases the analytical performance of the sensor is acceptable; it is usability that is the major barrier to commercial viability at this moment. Were this to be overcome, the issue of affordability could be addressed. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rafael Hoekstra
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, c/. Marcel·lí Domingo, 1, 43007, Tarragona, Spain
| | - Pascal Blondeau
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, c/. Marcel·lí Domingo, 1, 43007, Tarragona, Spain
| | - Francisco J Andrade
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, c/. Marcel·lí Domingo, 1, 43007, Tarragona, Spain.
| |
Collapse
|
21
|
Hoekstra R, Blondeau P, Andrade FJ. IonSens: A Wearable Potentiometric Sensor Patch for Monitoring Total Ion Content in Sweat. ELECTROANAL 2018. [DOI: 10.1002/elan.201800128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rafael Hoekstra
- Department of Analytical Chemistry and Organic Chemistry; Universitat Rovira i Virgili (URV), Campus Sescelades, c/.; Marcel⋅lí Domingo, 1 Tarragona 43007 Spain
| | - Pascal Blondeau
- Department of Analytical Chemistry and Organic Chemistry; Universitat Rovira i Virgili (URV), Campus Sescelades, c/.; Marcel⋅lí Domingo, 1 Tarragona 43007 Spain
| | - Francisco J. Andrade
- Department of Analytical Chemistry and Organic Chemistry; Universitat Rovira i Virgili (URV), Campus Sescelades, c/.; Marcel⋅lí Domingo, 1 Tarragona 43007 Spain
| |
Collapse
|
22
|
|
23
|
Crespo GA. Recent Advances in Ion-selective membrane electrodes for in situ environmental water analysis. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.159] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Montiel L, Delgado JA, Novell M, Andrade FJ, Claver C, Blondeau P, Godard C. A Simple and Versatile Approach for the Fabrication of Paper-Based Nanocatalysts: Low Cost, Easy Handling, and Catalyst Recovery. ChemCatChem 2016. [DOI: 10.1002/cctc.201600666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Laura Montiel
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; C/Marceli Domingo 1 43007 Tarragona Spain
| | - Jorge A. Delgado
- Centre Tecnologic de la Química; C/Marceli Domingo 43007 Tarragona Spain
| | - Marta Novell
- Departament de Química Analítica i Química Orgànica; Universitat Rovira i Virgili; C/Marceli Domingo 1 43007 Tarragona Spain
| | - Francisco J. Andrade
- Departament de Química Analítica i Química Orgànica; Universitat Rovira i Virgili; C/Marceli Domingo 1 43007 Tarragona Spain
| | - Carmen Claver
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; C/Marceli Domingo 1 43007 Tarragona Spain
- Centre Tecnologic de la Química; C/Marceli Domingo 43007 Tarragona Spain
| | - Pascal Blondeau
- Departament de Química Analítica i Química Orgànica; Universitat Rovira i Virgili; C/Marceli Domingo 1 43007 Tarragona Spain
| | - Cyril Godard
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; C/Marceli Domingo 1 43007 Tarragona Spain
- Centre Tecnologic de la Química; C/Marceli Domingo 43007 Tarragona Spain
| |
Collapse
|
25
|
Parrilla M, Ferré J, Guinovart T, Andrade FJ. Wearable Potentiometric Sensors Based on Commercial Carbon Fibres for Monitoring Sodium in Sweat. ELECTROANAL 2016. [DOI: 10.1002/elan.201600070] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Hu J, Stein A, Bühlmann P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.004] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Belade E, Chrusciel S, Armand L, Simon-Deckers A, Bussy C, Caramelle P, Gagliolo JM, Boyer L, Lanone S, Pairon JC, Kermanizadeh A, Boczkowski J. The role of p53 in lung macrophages following exposure to a panel of manufactured nanomaterials. Arch Toxicol 2014; 89:1543-56. [PMID: 25098341 DOI: 10.1007/s00204-014-1324-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
Manufactured nanomaterials (MNMs) have the potential to improve everyday life as they can be utilised in numerous medical applications and day-to-day consumer products. However, this increased use has led to concerns about the potential environmental and human health impacts. The protein p53 is a key transcription factor implicated in cellular defence and reparative responses to various stress factors. Additionally, p53 has been implicated in cellular responses following exposure to some MNMs. Here, the role of the MNM mediated p53 induction and activation and its downstream effects following exposure to five well-characterised materials [namely two types of TiO2, two carbon black (CB), and one single-walled carbon nanotube (SWCNT)] were investigated. MNM internalisation, cellular viability, p53 protein induction and activation, oxidative stress, inflammation and apoptosis were measured in murine cell line and primary pulmonary macrophage models. It was observed that p53 was implicated in the biological responses to MNMs, with oxidative stress associated with p53 activation (only following exposure to the SWCNT). We demonstrate that p53 acted as an antioxidant and anti-inflammatory in macrophage responses to SWCNT and CB NMs. However, p53 was neither involved in MNM-induced cellular toxicity, nor in the apoptosis induced by these MNMs. Moreover, the physicochemical characteristics of MNMs seemed to influence their biological effects-SWCNT the materials with the largest surface area and a fibrous shape were the most cytotoxic in this study and were capable of the induction and activation of p53.
Collapse
Affiliation(s)
- Esther Belade
- University Paris est Val de Marne (UPEC), Créteil, 94000, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|