1
|
Xiao Y, Dong X, Chen C, Cui Y, Chu T, Li X, Wang A. An integrated method for IgG N-glycans enrichment and analysis: Understanding the role of IgG glycosylation in diabetic foot ulcer. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1233:123983. [PMID: 38163392 DOI: 10.1016/j.jchromb.2023.123983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Diabetic foot ulcer (DFU) is the most common and serious complication of diabetes, and its incidence, disability, and mortality rates are increasing worldwide. The pathogenesis of DFU is associated with dysregulated inflammation mediated by abnormal immunoglobulin G (IgG) glycosylation. In this study, we developed a comprehensive method for IgG N-linked glycosylation in the serum of DFU patients. Through analysis, we identified 31 IgG1 glycans, 32 IgG2 glycans, and 30 IgG4 glycans in the DFU serum. Furthermore, 13 IgG1 glycans, 12 IgG2 glycans, and 5 IgG4 glycans in the DFU groups were found to be significantly different from those of the control groups (p < 0.05). Of these, compared with the control group, one glycan was unique to DFU patients, and seven glycans were not detected in the DFU group. In terms of glycan characteristics, we observed a substantial decrease in galactosylation, sialylation and bisecting GlcNAcylation, and a significant increase in agalactosylation. Abnormal IgG N-glycosylation modifications were significantly associated with the chronic inflammation that is characteristic of DFU. Further, this is the first comprehensive analysis of subclass-specific IgG N-glycosylation in DFU patients, which not only fills the gap of DFU in terms of the pathological mechanisms related to IgG glycosylation but also may provide valuable clues for the immunotherapeutic pathway of DFU.
Collapse
Affiliation(s)
- Yanwei Xiao
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Xuefang Dong
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| | - Cheng Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yun Cui
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| | - Tongbin Chu
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China.
| | - Aoxue Wang
- The Second Hospital of Dalian Medical University, Dalian 116023, China.
| |
Collapse
|
2
|
Rastegari B, Ghamar Talepoor A, Khosropanah S, Doroudchi M. In Vitro Targeted Delivery of Simvastatin and Niacin to Macrophages Using Mannan-Grafted Magnetite Nanoparticles. ACS OMEGA 2024; 9:658-674. [PMID: 38222576 PMCID: PMC10785661 DOI: 10.1021/acsomega.3c06389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Atherosclerosis, a leading cause of mortality worldwide, involves various subsets of macrophages that contribute to its initiation and progression. Current treatment approaches focus on systemic, long-term administration of cholesterol-lowering antioxidants such as statins and certain vitamins, which unfortunately come with prolonged side effects. To overcome these drawbacks, a mannose-containing magnetic nanoparticle (NP) is introduced as a drug delivery system to specifically target macrophages in vitro using simvastatin or niacin and a combinational therapy approach that reduces local inflammation while avoiding unwanted side effects. The synthesized NPs exhibited superparamagnetic behavior, neutrally charged thin coating with a hydrodynamic size of 77.23 ± 13.90 nm, and a metallic core ranging from 15 to 25 nm. Efficient loading of niacin (87.21%) and simvastatin (75.36%) on the NPs was achieved at respective weights of 20.13 and 5.03 (w/w). In the presence of a mannan hydrolyzing enzyme, 79.51% of simvastatin and 67.23% of niacin were released from the NPs within 90 min, with a leakage rate below 19.22%. Additionally, the coated NPs showed no destructive effect on J774A macrophages up to a concentration of 200 μg/mL. Simvastatin-loaded NPs exhibited a minimal increase in IL-6 expression. The low dosage of simvastatin decreased both IL-6 and ARG1 expressions, while niacin and combined simvastatin/niacin increased the level of ARG1 expression significantly. Toxicity evaluations on human umbilical vein endothelial cells and murine liver cells revealed that free simvastatin administration caused significant toxicity, whereas the encapsulated forms of simvastatin, niacin, and a combination of simvastatin/niacin at equivalent concentrations exhibited no significant toxicity. Hence, the controlled release of the encapsulated form of simvastatin and niacin resulted in the effective modulation of macrophage polarization. The delivery system showed suitability for targeting macrophages to atherosclerotic plaque.
Collapse
Affiliation(s)
- Banafsheh Rastegari
- Diagnostic
Laboratory Sciences and Technology Research Center, School of Paramedical
Sciences, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Atefe Ghamar Talepoor
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
- Immunology
Center for Excellence, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Shahdad Khosropanah
- Department
of Cardiology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Mehrnoosh Doroudchi
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
- Immunology
Center for Excellence, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| |
Collapse
|
3
|
Salman Sajid M, Saleem S, Jabeen F, Waqas Ishaq M, Najam-Ul-Haq M, Ressom HW. Mapping the low abundant plasma glycoproteome using Ranachrome-5 immobilized magnetic terpolymer as improved HILIC sorbent. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1227:123846. [PMID: 37567067 PMCID: PMC10528939 DOI: 10.1016/j.jchromb.2023.123846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
HILIC (hydrophilic interaction liquid chromatography) materials enrich glycopeptides. The non-specific interactions because of support material and inadequate hydrophilicity render loss of less abundant glycopeptides in SPE-based enrichments. In this work, magnetic terpolymer (Fe3O4@MAA/DVB/1,2-Epoxy-5-hexene) is functionalized with Ranachrome-5 to generate enhanced hydrophilicity. Amine, carboxylic, and amide groups of ranachrome-5 provide zwitterionic chemistry. Material's magnetic core contributes to ease of operation while higher surface area 97.0711 m2 g-1 immobilizes better quantities of Ranachrome-5. Homogeneous morphology, nano-size, and super hydrophilicity enhance enrichment. Ranachrome-5 functionalized polymeric core-shell beads enrich 25, 18 and 16 N-linked glycopeptides via SPE strategy from tryptic digests of model glycoproteins i.e., immunoglobulin G (IgG), horseradish peroxidase (HRP) and chicken avidin, respectively. Zwitterionic chemistry of ranachrome-5 helps in achieving higher selectivity (1:250, HRP / Bovine Serum Albumin), and lower detection limit (100 attomole, HRP digest) with complete glycosylation profile of each standard digest. High binding capacity (137.1 mg/g) and reuse of affinity material up to seven cycles reduce the cost and amount of affinity material for complex sample analysis. A recovery of 91.76% and relative standard deviation (RSD) values less than 1 define the application of HILIC beads for complex samples like plasma. 508 N-linked intact low abundant glycopeptides corresponding to 50 glycoproteins are identified from depleted human plasma samples via nano-Liquid Chromatography-Tandem Mass Spectrometry (nLC-MS/MS). Using Single Nucleotide Variances (BioMuta) for low abundant plasma glycoproteins, the potential association of proteins to four cancers, i.e., breast, lung, uterine, and melanoma is evaluated. Via the bottom-up approach, HILIC beads can analyze clinically important low-abundant glycoproteins.
Collapse
Affiliation(s)
- Muhammad Salman Sajid
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shafaq Saleem
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Fahmida Jabeen
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Habtom W Ressom
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
4
|
Wan P, Yang X, Feng Q, Shi S, Deng B, Zhang L. Biodegradable Chitosan-Based Membranes for Highly Effective Separation of Emulsified Oil/Water. ENVIRONMENTAL ENGINEERING SCIENCE 2022; 39:907-917. [PMID: 36636559 PMCID: PMC9807252 DOI: 10.1089/ees.2022.0254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/17/2023]
Abstract
Efficient separation of oil droplets from oil/water emulsions is necessary for many energy and food industrial processes and for industrial wastewater treatment. Membrane microfiltration has been explored to address this issue because it is simple to operate and low in cost. However, filtration of oil droplets with a size around or less than 1 μm is still a major challenge. Furthermore, the fabrication process for polymeric membranes often uses hazardous organic solvents and petroleum-derived and nonbiodegradable raw materials, which pose additional environmental health and safety risk. In this study, we examined the use of chitosan-based membranes to efficiently remove oil droplets with an average diameter of ∼1 μm. The membranes were fabricated based on the rapid dissolution of chitosan in an alkaline/urea solvent system at a low temperature, thus avoiding the use of any toxic organic solvent. The chitosan membranes were further modified by dopamine and tannic acid (TA). The as-prepared membrane was characterized in terms of surface morphology, pore size distribution, and mechanical strength. The membrane performance was evaluated on a custom-designed crossflow filtration system. The results showed that the modified chitosan membrane with dopamine and TA had a water flux of 230.9 LMH at 1bar transmembrane pressure and oil droplet rejection of 99%. This water flux represented an increase of more than 10 times when compared with the original chitosan membrane without modification. The study also demonstrated excellent antifouling properties of the modified membrane that could achieve near 100% water flux recovery.
Collapse
Affiliation(s)
- Peng Wan
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
- Guangdong Provincial Engineering and Technology Research Center for Water Affairs, Big Data and Water Ecology, Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen, China
| | - Xuanning Yang
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qinhua Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Shuyu Shi
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Baolin Deng
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, USA
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Xie Z, Feng Q, Zhang S, Yan Y, Deng C, Ding CF. Advances in proteomics sample preparation and enrichment for phosphorylation and glycosylation analysis. Proteomics 2022; 22:e2200070. [PMID: 36100958 DOI: 10.1002/pmic.202200070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
As the common and significant chemical modifications, post-translational modifications (PTMs) play a key role in the functional proteome. Affected by the signal interference, low concentration, and insufficient ionization efficiency of impurities, the direct detection of PTMs by mass spectrometry (MS) still faces many challenges. Therefore, sample preparation and enrichment are an indispensable link before MS analysis of PTMs in proteomics. The rapid development of functionalized materials with diverse morphologies and compositions provides an avenue for sample preparation and enrichment for PTMs analysis. In this review, we summarize recent advances in the application of novel functionalized materials in sample preparation for phosphoproteomes and glycoproteomes analysis. In addition, this review specifically discusses the design and preparation of functionalized materials based on different enrichment mechanisms, and proposes research directions and potential challenges for proteomic PTMs research.
Collapse
Affiliation(s)
- Zehu Xie
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Shun Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China.,Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chunhui Deng
- Department of Chemistry, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China.,Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Ganea IV, Nan A, Roba C, Neamțiu I, Gurzău E, Turcu R, Filip X, Baciu C. Development of a New Eco-Friendly Copolymer Based on Chitosan for Enhanced Removal of Pb and Cd from Water. Polymers (Basel) 2022; 14:polym14183735. [PMID: 36145880 PMCID: PMC9504173 DOI: 10.3390/polym14183735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Worldwide, concerns about heavy metal contamination from manmade and natural sources have increased in recent decades. Metals released into the environment threaten human health, mostly due to their integration into the food chain and persistence. Nature offers a large range of materials with different functionalities, providing also a source of inspiration for scientists working in the field of material synthesis. In the current study, a new type of copolymer is introduced, which was synthesized for the first time by combining chitosan and poly(benzofurane-co-arylacetic acid), for use in the adsorption of toxic heavy metals. Such naturally derived materials can be easily and inexpensively synthesized and separated by simple filtration, thus becoming an attractive alternative solution for wastewater treatment. The new copolymer was investigated by solid-state nuclear magnetic resonance, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photon electron microscopy. Flame atomic absorption spectrometry was utilized to measure heavy metal concentrations in the investigated samples. Equilibrium isotherms, kinetic 3D models, and artificial neural networks were applied to the experimental data to characterize the adsorption process. Additional adsorption experiments were performed using metal-contaminated water samples collected in two seasons (summer and winter) from two former mining areas in Romania (Roșia Montană and Novăț-Borșa). The results demonstrated high (51–97%) adsorption efficiency for Pb and excellent (95–100%) for Cd, afttr testing on stock solutions and contaminated water samples. The recyclability study of the copolymer indicated that the removal efficiency decreased to 89% for Pb and 58% for Cd after seven adsorption–desorption cycles.
Collapse
Affiliation(s)
- Iolanda-Veronica Ganea
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele, 400294 Cluj-Napoca, Romania
- Development of Isotopic and Molecular Technologies, National Institute for Research, 67-103 Donath, 400293 Cluj-Napoca, Romania
| | - Alexandrina Nan
- Development of Isotopic and Molecular Technologies, National Institute for Research, 67-103 Donath, 400293 Cluj-Napoca, Romania
- Correspondence: (A.N.); (C.B.)
| | - Carmen Roba
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele, 400294 Cluj-Napoca, Romania
| | - Iulia Neamțiu
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele, 400294 Cluj-Napoca, Romania
- Environmental Health Center, 58 Busuiocului, 400240 Cluj-Napoca, Romania
| | - Eugen Gurzău
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele, 400294 Cluj-Napoca, Romania
- Environmental Health Center, 58 Busuiocului, 400240 Cluj-Napoca, Romania
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babeș-Bolyai University, 7 Pandurilor, 400095 Cluj-Napoca, Romania
| | - Rodica Turcu
- Development of Isotopic and Molecular Technologies, National Institute for Research, 67-103 Donath, 400293 Cluj-Napoca, Romania
| | - Xenia Filip
- Development of Isotopic and Molecular Technologies, National Institute for Research, 67-103 Donath, 400293 Cluj-Napoca, Romania
| | - Călin Baciu
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele, 400294 Cluj-Napoca, Romania
- Correspondence: (A.N.); (C.B.)
| |
Collapse
|
7
|
Zhao B, Xu W, Ma J, Jia Q. Design and fabrication of highly hydrophilic magnetic material by anchoring L-cysteine onto chitosan for efficient enrichment of glycopeptides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Sajid MS, Saleem S, Jabeen F, Fatima B, Zulfikar M, Ashiq MN, Ressom HW, Pukala TL, Najam-Ul-Haq M. Iminodiacetic acid (IDA)-generated mesoporous nanopolymer: a template to relate surface area, hydrophilicity, and glycopeptides enrichment. Mikrochim Acta 2021; 188:417. [PMID: 34762162 PMCID: PMC10165959 DOI: 10.1007/s00604-021-05074-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
A three-step strategy is introduced to develop inherent iminodiacetic (IDA)-functionalized nanopolymer. SEM micrographs show homogenous spherical beads with a particle size of 500 nm. Further modification to COOH-functionalized 1,2-epoxy-5-hexene/DVB mesoporous nanopolymer enriches glycopeptides via hydrophilic interactions followed by their MS determination. Significantly high BET surface area 433.4336 m2 g-1 contributes to the improved surface hydrophilicity which is also shown by high concentration of ionizable carboxylic acids, 14.59 ± 0.25 mmol g-1. Measured surface area is the highest among DVB-based polymers and in general much higher in comparison to the previously reported BET surface areas of co-polymers, terpolymers, MOFs, and graphene-based composites. Thirty-one, 19, and 16 N-glycopeptides are enriched/identified by nanopolymer beads from tryptic digests of immunoglobulin G, horseradish peroxidase, and chicken avidin, respectively, without additional desalting steps. Material exhibits high selectivity (1:400 IgG:BSA), sensitivity (down to 0.1 fmol), regeneration ability up to three cycles, and batch-to-batch reproducibility (RSD > 1%). Furthermore, from 1 μL of digested human serum, 343 N-glycopeptide characteristics of 134 glycoproteins including 30 FDA-approved serum biomarkers are identified via nano-LC-MS/MS. The developed strategy to self-generate IDA on polymeric surface with improved surface area, porosity, and ordered morphology is insignia of its potential as chromatographic tool contributing to future developments in large-scale biomedical glycoproteomics studies.
Collapse
Affiliation(s)
- Muhammad Salman Sajid
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.,Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Shafaq Saleem
- Department of Chemistry, The Women University, Kutchery Campus, L.M.Q. Road, Multan, 66000, Pakistan
| | - Fahmida Jabeen
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.,Department of Chemistry, The Women University, Kutchery Campus, L.M.Q. Road, Multan, 66000, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - M Zulfikar
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Muhammad Naeem Ashiq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Habtom W Ressom
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Tara Louise Pukala
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Muhammad Najam-Ul-Haq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
9
|
Kumari M, Tetala KKR. A review on recent advances in the enrichment of glycopeptides and glycoproteins by liquid chromatographic methods: 2016-Present. Electrophoresis 2021; 43:388-402. [PMID: 34757643 DOI: 10.1002/elps.202100172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/06/2023]
Abstract
Among various protein post-translational modifications (PTMs), glycosylation has received special attention due to its immense role in molecular interactions, cellular signal transduction, immune response, etc. Aberration in glycan moieties of a glycoprotein is associated with cancer, diabetes, and bacterial and viral infections. In biofluids (plasma, saliva, urine, milk, etc.), glycoproteins are low in abundance and are masked by the presence of high abundant proteins. Hence, prior to their identification using mass spectrometry methods, liquid chromatography (LC)-based approaches were widely used. A general enrichment strategy involves a protein digestion step, followed by LC-based enrichment and desorption of glycopeptides, and enzymatic excision of the glycans. The focus of this review article is to highlight the articles published since 2016 that dealt with different LC-based approaches for glycopeptide and glycoprotein enrichment. The preparation of stationary phases, their surface activation, and ligand immobilization strategies have been discussed in detail. Finally, the major developments and future trends in the field have been summarized.
Collapse
Affiliation(s)
- Mona Kumari
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| | - Kishore K R Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| |
Collapse
|
10
|
Lai Z, Zhang M, Zhou J, Chen T, Li D, Shen X, Liu J, Zhou J, Li Z. Fe 3O 4@PANI: a magnetic polyaniline nanomaterial for highly efficient and handy enrichment of intact N-glycopeptides. Analyst 2021; 146:4261-4267. [PMID: 34105527 DOI: 10.1039/d1an00580d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosylation of proteins plays important roles in the occurrence and development of chronic diseases. In this study, we report an enrichment method of intact N-glycopeptides using a magnetic polyaniline nanomaterial (Fe3O4@PANI). Under the synergistic effect of hydrogen bonding and electrostatic adsorption, Fe3O4@PANI can rapidly and easily enrich N-glycopeptides derived from standard protein (bovine fetuin and transferrin) tryptic digests and serum haptoglobin tryptic digests. Finally we have detected 63 glycopeptides in the glycosylation sites of both N204 and N211 from the serum haptoglobin beta chain using MALDI FTICR MS. Compared with non-magnetic materials, Fe3O4@PANI can achieve complete separation from complex biological samples, meeting the requirement of the high purity of samples for mass spectrometric detection. Overall, Fe3O4@PANI exhibits great application potential in the highly efficient enrichment of intact N-glycopeptides due to its stability and convenient preparation.
Collapse
Affiliation(s)
- Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tian Y, Tang R, Wang X, Zhou J, Li X, Ma S, Gong B, Ou J. Bioinspired dandelion-like silica nanoparticles modified with L-glutathione for highly efficient enrichment of N-glycopeptides in biological samples. Anal Chim Acta 2021; 1173:338694. [PMID: 34172155 DOI: 10.1016/j.aca.2021.338694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
The pretreatment of complicated biological samples to eliminate the interference of nonglycopeptides and improve the efficiency of glycopeptides detection is crucial in glycoproteomics research. Hydrophilic interaction chromatography (HILIC) has been adopted for enrichment of glycosylated peptides following identification with mass spectrometry, but it is still urgent to develop novel hydrophilic materials to save cost and improve enrichment efficiency. Scientists are pursuing to fabricate freestanding intelligent artificial materials. One promising approach is to use biomimic material. In our case, "one-pot" strategy was developed to prepare bioinspired nano-core-shell silica microspheres (CSSMs), employing tetrapropylorthosilicate as the silicon source and phenolic resin as the soft template. The pore structure of the obtained microspheres diverged from the center to the outside with diameter ranged from 150 to 340 nm, and shell layer ranged from 25 to 83 nm by adjusting the preparation parameters. Some of them showed dandelion-like morphology. After hydrophilic modification, these CSSMs exhibited great hydrophilicity and could be used as sorbents for enriching N-glycopeptides from complicated biological samples in HILIC. Up to 594 unique N-glycopeptides and 367 N-glycosylation sites from 182 N-glycoproteins were unambiguously identified from 2 μL of human serum, which was superior to the enrichment performance of many HILIC materials in reported papers, demonstrating great potential advantages in proteomic application.
Collapse
Affiliation(s)
- Yang Tian
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ruizhi Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xia Wang
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiahua Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Bolin Gong
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China.
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Zhang C, Jin X, Wang L, Jin C, Han X, Ma W, Li X, Teng G. Hollow MnFe 2O 4@C@APBA Nanospheres with Size Exclusion and pH Response for Efficient Enrichment of Endogenous Glycopeptides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9714-9728. [PMID: 33600144 DOI: 10.1021/acsami.0c22221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enrichment and detection of glycopeptides are an important clinical measure for the diagnosis of complex diseases. Enrichment materials play a key role in this process; they must have an effective sample-screening ability to eliminate the interference of nonglycopeptides. In this work, novel hollow MnFe2O4@C@APBA nanospheres (HMCAs) with magnetic and pH responsiveness were prepared for glycopeptide enrichment. The as-prepared composites have a suitable hollow structure and large specific surface area, and the boron hydroxyl group in their cavities can fix or disconnect the hydrophilic groups of the glycopeptides at different pH, so the glycopeptides can be adsorbed or desorbed in a controllable way. Enrichment results showed that the HMCAs exhibited an excellent enrichment performance: ultralow limit of detection (approximately 0.5 fmol μL-1), perfect size-exclusion effect (HRP/BSA, 1:800, w/w), favorable universality (HRP, IgG, and RNase B), and high binding capacity (150 mg/g). In order to verify the application of materials in practice, the HMCAs were used for the analysis of complex samples and it was found that 474 glycopeptides were identified from 210 glycoproteins in three replicate analyses of 2 μL of human serum. The results showed that the HMCAs could be used as a promising enrichment material for glycopeptide characterization in MS-based glycoproteomics and related fields.
Collapse
Affiliation(s)
- Chun Zhang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Xiaodong Jin
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Liping Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Chengzhao Jin
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Xiaoqian Han
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Weigang Ma
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xingang Li
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
- Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guixiang Teng
- College of Life Science, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
13
|
Salman Sajid M, Jovcevski B, Mittal P, Fatima B, Hussain D, Jabeen F, Naeem Ashiq M, Louise Pukala T, Najam-ul-Haq M. Glycosylation heterogeneity and low abundant serum glycoproteins MS analysis by boronic acid immobilized Fe3O4@1,2-Epoxy-5-Hexene/DVB magnetic core shell nanoparticles. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Kurmangazhy G, Tazhibayeva S, Musabekov K, Sydykbayeva S, Zhakipbaev B. Magnetite-gaize composite stabilized with polyacrylic acid. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2020. [DOI: 10.15328/cb1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The surface-active substances stabilization are used to prevent aggregation of magnetite sorbents in the solvent, to protect against oxygen oxidation in the air as well as to combine several components with their specific properties in one material. In this work, the Elmore method synthesized a composite of magnetite-gaize stabilized with polyelectrolyte - anionic polymer polyacrylic acid. The stabilized gaize-magnetite composite is considered by physical and chemical methods. When studying a stabilized magnetite-gaize composite using transmission electron microscopy, a change in the size of magnetite particles in the structure of a clay space with a molding form is observed. Stabilization with polyacrylic acid reduces the value of the ζ-potential of composites from -18.5 mV to -19.9 mV. The effect of medium pH on the potential work of the magnetite-gaizecomposite and stabilized composite was observed. Increasing of the pH value leads to decreasing of the ζ-potential of gaize-magnetite composite from 4.2 mV to -32.6 mV and from 11.9 mV to -35.5 mV in the cause of stabilized composite. The effect of the stabilization of the composite on the adsorption was characterized using methylene blue was observed. Processing of adsorption by Langmuir and Freundlichmodels shows the effectiveness of stabilization. The maximum adsorption of methylene blue by Langmuir is 152.73 mg/g. The Freundlich constant 1/n shows that there is high compatibility between the adsorbat and the adsorbent.
Collapse
|
15
|
Khan FSA, Mubarak NM, Khalid M, Walvekar R, Abdullah EC, Mazari SA, Nizamuddin S, Karri RR. Magnetic nanoadsorbents' potential route for heavy metals removal-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24342-24356. [PMID: 32306264 DOI: 10.1007/s11356-020-08711-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Due to the rapid growth in the heavy metal-based industries, their effluent and local dumping have created significant environmental issues. In the past, typically, removal of heavy metals was handled by reverse osmosis and ion exchange techniques, but these methods have many disadvantages. Therefore, extensive work into the development of improved techniques has increased, especially for heavy metal removal. Many countries are currently researching new materials and techniques based on nanotechnology for various applications that involve extracting heavy metals from different water sources such as wastewater, groundwater, drinking water and surface water. Nanotechnology provides the possibility of enhancing existing techniques to tackle problems more efficiently. The development in nanotechnology has led to the discovery of many new materials such as magnetic nanoparticles. These nanoparticles demonstrate excellent properties such as surface-volume ratio, higher surface area, low toxicity and easy separation. Besides, magnetic nanoparticles can be easily and efficiently recovered after adsorption compared with other typical adsorbents. This review mainly emphasises on the efficiency of heavy metal removal using magnetic nanoadsorbent from aqueous solution. In addition, an in-depth analysis of the synthesis, characterisation and modification approaches of magnetic nanoparticles is systematically presented. Furthermore, future opportunities and challenges of using magnetic particles as an adsorbent for the removal of heavy metals are also discussed.
Collapse
Affiliation(s)
- Fahad Saleem Ahmed Khan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia.
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Shaukat A Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, Pakistan
| | | | - Rama Rao Karri
- Petroleum, and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
16
|
Zou Y, Hu J, Jie J, Lai J, Li M, Liu Z, Zou X. Comprehensive analysis of human IgG Fc N-glycopeptides and construction of a screening model for colorectal cancer. J Proteomics 2020; 213:103616. [DOI: 10.1016/j.jprot.2019.103616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 01/19/2023]
|
17
|
Bi C, Yuan Y, Tu Y, Wu J, Liang Y, Li Y, He X, Chen L, Zhang Y. Facile synthesis of hydrophilic magnetic graphene nanocomposites via dopamine self-polymerization and Michael addition for selective enrichment of N-linked glycopeptides. Sci Rep 2020; 10:71. [PMID: 31919391 PMCID: PMC6952460 DOI: 10.1038/s41598-019-56944-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
The development of methods to effectively capture N-glycopeptides from the complex biological samples is crucial to N-glycoproteome profiling. Herein, the hydrophilic chitosan–functionalized magnetic graphene nanocomposites (denoted as Fe3O4-GO@PDA-Chitosan) were designed and synthesized via a simple two-step modification (dopamine self-polymerization and Michael addition). The Fe3O4-GO@PDA-Chitosan nanocomposites exhibited good performances with low detection limit (0.4 fmol·μL−1), good selectivity (mixture of bovine serum albumin and horseradish peroxidase tryptic digests at a molar ration of 10:1), good repeatability (4 times), high binding capacity (75 mg·g−1). Moreover, Fe3O4-GO@PDA-Chitosan nanocomposites were further utilized to selectively enrich glycopeptides from human renal mesangial cell (HRMC, 200 μg) tryptic digest, and 393 N-linked glycopeptides, representing 195 different glycoproteins and 458 glycosylation sites were identified. This study provides a feasible strategy for the surface functionalized novel materials for isolation and enrichment of N-glycopeptides.
Collapse
Affiliation(s)
- Changfen Bi
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Ye Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Yuran Tu
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jiahui Wu
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yulu Liang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Yukui Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
18
|
Yang L, Zhang Q, Huang Y, Lin L, Schlüter H, Wang K, Zhang C, Yang P, Yu H. Boronic acid-functionalized mesoporous magnetic particles with a hydrophilic surface for the multimodal enrichment of glycopeptides for glycoproteomics. Analyst 2020; 145:5252-5259. [PMID: 32617538 DOI: 10.1039/d0an00648c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Boronic acid-functionalized mesoporous magnetic particles with a hydrophilic surface for multimodal enrichment of glycopeptides for glycoproteomics.
Collapse
Affiliation(s)
- Lujie Yang
- Institutes of Biomedical Sciences & Minhang hospital
- Fudan University
- Shanghai
- China
| | - Quanqing Zhang
- Institutes of Biomedical Sciences & Minhang hospital
- Fudan University
- Shanghai
- China
- Department of Chemistry and Environmental Toxicology Graduate Program
| | - Yuanyu Huang
- Institutes of Biomedical Sciences & Minhang hospital
- Fudan University
- Shanghai
- China
| | - Ling Lin
- Institutes of Biomedical Sciences & Minhang hospital
- Fudan University
- Shanghai
- China
| | - Hartmut Schlüter
- Institute of Clinical Chemistry & Laboratory Medicine
- University Medical Center Hamburg-Eppendorf
- Hamburg
- Germany
| | - Ke Wang
- Institutes of Biomedical Sciences & Minhang hospital
- Fudan University
- Shanghai
- China
| | - Cuiping Zhang
- Institutes of Biomedical Sciences & Minhang hospital
- Fudan University
- Shanghai
- China
| | - Pengyuan Yang
- Institutes of Biomedical Sciences & Minhang hospital
- Fudan University
- Shanghai
- China
| | - Hongxiu Yu
- Institutes of Biomedical Sciences & Minhang hospital
- Fudan University
- Shanghai
- China
| |
Collapse
|
19
|
Barui AK, Oh JY, Jana B, Kim C, Ryu J. Cancer‐Targeted Nanomedicine: Overcoming the Barrier of the Protein Corona. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900124] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ayan Kumar Barui
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jun Yong Oh
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Batakrishna Jana
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Chaekyu Kim
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Ja‐Hyoung Ryu
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
20
|
Sun S, Hu Y, Ao M, Shah P, Chen J, Yang W, Jia X, Tian Y, Thomas S, Zhang H. N-GlycositeAtlas: a database resource for mass spectrometry-based human N-linked glycoprotein and glycosylation site mapping. Clin Proteomics 2019; 16:35. [PMID: 31516400 PMCID: PMC6731604 DOI: 10.1186/s12014-019-9254-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND N-linked glycoprotein is a highly interesting class of proteins for clinical and biological research. The large-scale characterization of N-linked glycoproteins accomplished by mass spectrometry-based glycoproteomics has provided valuable insights into the interdependence of glycoprotein structure and protein function. However, these studies focused mainly on the analysis of specific sample type, and lack the integration of glycoproteomic data from different tissues, body fluids or cell types. METHODS In this study, we collected the human glycosite-containing peptides identified through their de-glycosylated forms by mass spectrometry from over 100 publications and unpublished datasets generated from our laboratory. A database resource termed N-GlycositeAtlas was created and further used for the distribution analyses of glycoproteins among different human cells, tissues and body fluids. Finally, a web interface of N-GlycositeAtlas was created to maximize the utility and value of the database. RESULTS The N-GlycositeAtlas database contains more than 30,000 glycosite-containing peptides (representing > 14,000 N-glycosylation sites) from more than 7200 N-glycoproteins from different biological sources including human-derived tissues, body fluids and cell lines from over 100 studies. CONCLUSIONS The entire human N-glycoproteome database as well as 22 sub-databases associated with individual tissues or body fluids can be downloaded from the N-GlycositeAtlas website at http://nglycositeatlas.biomarkercenter.org.
Collapse
Affiliation(s)
- Shisheng Sun
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
- College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Minghui Ao
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Jing Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Xingwang Jia
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Stefani Thomas
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| |
Collapse
|
21
|
Huan W, Zhang J, Qin H, Huan F, Wang B, Wu M, Li J. A magnetic nanofiber-based zwitterionic hydrophilic material for the selective capture and identification of glycopeptides. NANOSCALE 2019; 11:10952-10960. [PMID: 31139800 DOI: 10.1039/c9nr01441a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-performance affinity materials are highly required in the sample preparation process in mass spectrometry-based glycoproteomics studies. In this research, a novel magnetic nanofiber-based zwitterionic hydrophilic material is prepared for glycopeptide enrichment and identification. The one-dimensional hydroxyapatite nanofiber (HN) acted as the supporting substance for immobilizing both Fe3O4 nanoparticles and Au nanoparticles, following the surface modification with a zwitterionic tripeptide l-glutathione (GSH) via the affinity interactions between the thiol group in GSH and both Au and Fe3O4 to form the magHN/Au-GSH nanofiber. Owing to the unique structural features, excellent hydrophilicity, abundant zwitterionic molecules, and strong magnetic responsiveness, the as-prepared magHN/Au-GSH nanofiber possesses satisfactory specificity for glycopeptide enrichment. As a result, the magHN/Au-GSH nanofiber demonstrated great detection sensitivity (2 fmol), satisfying enrichment recovery (89.65%), large binding capacity (100 mg g-1), and high enrichment selectivity (1 : 100) toward glycopeptides. Furthermore, 246 N-glycosylated peptides corresponding to 104 N-glycosylated proteins were identified from only 1 μL human serum, revealing the great potential of this affinity nanofiber for glycopeptide enrichment and glycoproteomics research.
Collapse
Affiliation(s)
- Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an District, Hangzhou 311300, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Facile fabrication of zwitterionic magnetic composites by one-step distillation-precipitation polymerization for highly specific enrichment of glycopeptides. Anal Chim Acta 2019; 1053:43-53. [DOI: 10.1016/j.aca.2018.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 11/22/2022]
|
23
|
Chen Y, Sheng Q, Hong Y, Lan M. Hydrophilic Nanocomposite Functionalized by Carrageenan for the Specific Enrichment of Glycopeptides. Anal Chem 2019; 91:4047-4054. [DOI: 10.1021/acs.analchem.8b05578] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Wang J, Li J, Yan G, Gao M, Zhang X. Preparation of a thickness-controlled Mg-MOFs-based magnetic graphene composite as a novel hydrophilic matrix for the effective identification of the glycopeptide in the human urine. NANOSCALE 2019; 11:3701-3709. [PMID: 30742181 DOI: 10.1039/c8nr10074h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The highly effective analysis of glycopeptides from complex biological samples is an attractive and critical topic all the time. In this study, a novel thickness-controlled hydrophilic Mg-metal organic frameworks (Mg-MOFs) coating-functionalized magnetic graphene composite (MagG@Mg-MOFs-1C) was prepared for the capture of the glycopeptides. The as-synthesized composite exhibits an ultralow limit of detection (0.1 fmol μL-1), a perfect size-exclusion effect (HRP digests/BSA protein/HRP protein, 1 : 500 : 500, w/w/w), and a high binding capacity (150 mg g-1), satisfying reusability and high recovery in the recognition of glycopeptides due to its outstanding characteristics including strong magnetic property, large surface area (617 m2 g-1), plenty of affinity sites, and excellent hydrophilicity. Furthermore, the MagG@Mg-MOFs-1C composite was successfully applied to selectively enriched glycopeptides in human urine. More excitingly, 406 N-glycosylation peptides corresponding to 185 glycoproteins were identified in the urine of the bladder cancer patients, in which these identified glycoproteins include the potential biomarkers (α-2-macroglobulin, complement C4-B, and α-1-antitrypsin) for the bladder cancer. This study suggests that the hydrophilic porous MOFs-functionalized composite has a great potential in the large-scale characterization of the low-abundance biomolecules in urine, opening a new avenue for the rapid and convenient diagnosis of the disease.
Collapse
Affiliation(s)
- Jiaxi Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | | | | | | | | |
Collapse
|
25
|
Sun N, Wu H, Chen H, Shen X, Deng C. Advances in hydrophilic nanomaterials for glycoproteomics. Chem Commun (Camb) 2019; 55:10359-10375. [PMID: 31414669 DOI: 10.1039/c9cc04124a] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to the formidable challenge posed by microheterogeneities in glycosylation sites, macroheterogeneity of the modification number of glycans, and low abundance and ionization efficiency of glycosylation, the crucial premise for conducting in-depth profiling of the glycoproteome is to develop highly efficient technology for separation and enrichment. The appearance of hydrophilic interaction chromatography (HILIC) has considerably accelerated the progress in glycoproteomics. In particular, additional hydrophilic nanomaterials have been developed for glycoproteomics research in the recent years. In this review, we mainly summarize the recent progresses made in the design and synthesis of different hydrophilic nanomaterials, as well as their applications in glycoproteomics, according to the classification of the main hydrophilic functional molecules on the surface. Further, we briefly illustrate the potential retention mechanism of the HILIC mode and discuss the limits and barriers of hydrophilic nanomaterials in glycoproteomics, as well as propose their possible development trends in the future.
Collapse
Affiliation(s)
- Nianrong Sun
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| | | | | | | | | |
Collapse
|
26
|
Fabrication of hydrophilic multilayer magnetic probe for salivary glycopeptidome analysis. J Chromatogr A 2018; 1587:24-33. [PMID: 30502035 DOI: 10.1016/j.chroma.2018.11.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/23/2022]
Abstract
Variations in salivary components are closely associated with the predisposition and state of disease, the abnormal changes of salivary glycopeptidome are usually discovered as perilous singals of serious disease. Therefore, the monitoring and analyzing of salivary glycopeptidome are of even more overriding importance. In this work, a low-cost layer-by-layer assembly strategy was adopted to fabricate a hydrophilic multilayer magnetic probe (dubbed Mag-m-G6P) for salivary glycopeptidome analysis. The successful construction of multilayer structure not only guaranteed the good dispersal of probe by protecting magnetic core from itself aggregation tendency, but also endowed the probe with multiple advantages including the good hydrophilicity, uniform mesopore size and strong magnetic responsiveness, etc. As expected, with the optimized experimental conditions, the multifunctional probe showed high enrichemnt sensitivity, unbiased enrichment ability, excellent size-exclusion ability and reusability and so on in the process of standard sample analysis. At last, the Mag-m-G6P was successfully applied to salivary glycopeptidome analysis on further combination with LC-MS/MS analysis, a total of 53 endogenous glycopeptides were identified from human saliva.
Collapse
|
27
|
Rodrigues GR, López-Abarrategui C, de la Serna Gómez I, Dias SC, Otero-González AJ, Franco OL. Antimicrobial magnetic nanoparticles based-therapies for controlling infectious diseases. Int J Pharm 2018; 555:356-367. [PMID: 30453018 DOI: 10.1016/j.ijpharm.2018.11.043] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 01/07/2023]
Abstract
In the last years, the antimicrobial resistance against antibiotics has become a serious health issue, arise as global threat. This has generated a search for new strategies in the progress of new antimicrobial therapies. In this context, different nanosystems with antimicrobial properties have been studied. Specifically, magnetic nanoparticles seem to be very attractive due to their relatively simple synthesis, intrinsic antimicrobial activity, low toxicity and high versatility. Iron oxide NPs (IONPs) was authorized by the World Health Organization for human used in biomedical applications such as in vivo drug delivery systems, magnetic guided therapy and contrast agent for magnetic resonance imaging have been widely documented. Furthermore, the antimicrobial activity of different magnetic nanoparticles has recently been demonstrated. This review elucidates the recent progress of IONPs in drug delivery systems and focuses on the treatment of infectious diseases and target the possible detrimental biological effects and associated safety issues.
Collapse
Affiliation(s)
- Gisele Regina Rodrigues
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil
| | | | - Inés de la Serna Gómez
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil
| | - Simoni Campos Dias
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil
| | | | - Octavio Luiz Franco
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil; S-Inova Biotech, Post-Graduate in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil.
| |
Collapse
|
28
|
Lin H, Shao X, Lu Y, Deng C. Preparation of iminodiacetic acid functionalized silica capillary trap column for on-column selective enrichment of N-linked glycopeptides. Talanta 2018; 188:499-506. [DOI: 10.1016/j.talanta.2018.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/03/2018] [Accepted: 06/09/2018] [Indexed: 12/22/2022]
|
29
|
Chatterjee B, Thakur SS. Investigation of post-translational modifications in type 2 diabetes. Clin Proteomics 2018; 15:32. [PMID: 30258344 PMCID: PMC6154926 DOI: 10.1186/s12014-018-9208-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
The investigation of post-translational modifications (PTMs) plays an important role for the study of type 2 diabetes. The importance of PTMs has been realized with the advancement of analytical techniques. The challenging detection and analysis of post-translational modifications is eased by different enrichment methods and by high throughput mass spectrometry based proteomics studies. This technology along with different quantitation methods provide accurate knowledge about the changes happening in disease conditions as well as in normal conditions. In this review, we have discussed PTMs such as phosphorylation, N-glycosylation, O-GlcNAcylation, acetylation and advanced glycation end products in type 2 diabetes which have been characterized by high throughput mass spectrometry based proteomics analysis.
Collapse
Affiliation(s)
- Bhaswati Chatterjee
- 1Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500 037 India
| | - Suman S Thakur
- 2Proteomics and Cell Signaling, Lab E409, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| |
Collapse
|
30
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
31
|
Hong Y, Zhao H, Pu C, Zhan Q, Sheng Q, Lan M. Hydrophilic Phytic Acid-Coated Magnetic Graphene for Titanium(IV) Immobilization as a Novel Hydrophilic Interaction Liquid Chromatography-Immobilized Metal Affinity Chromatography Platform for Glyco- and Phosphopeptide Enrichment with Controllable Selectivity. Anal Chem 2018; 90:11008-11015. [PMID: 30136585 DOI: 10.1021/acs.analchem.8b02614] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, multifunctional Ti4+-immobilized phytic acid-modified magnetic graphene (denoted as MagG@PEI@PA-Ti4+) nanocomposites were fabricated through a facile route for simultaneous/respective enrichment of N-glyco- and phosphopeptides. Phytic acid (PA), with six phosphate groups, possesses excellent hydrophilicity and metal ion coordination ability, which endowed the MagG@PEI@PA-Ti4+ with combined properties of immobilized metal ion affinity chromatography (IMAC)- and hydrophilic interaction liquid chromatography (HILIC)-based materials. On the basis of the different binding ability of N-glyco- and phosphopeptides on MagG@PEI@PA-Ti4+, the MagG@PEI@PA-Ti4+ nanocomposites could enrich N-glyco- and phosphopeptides simultaneously or respectively by using different enrichment conditions, achieving controllable selective enrichment of N-glyco- and phosphopeptides. The proposed nanocomposites demonstrated an outstanding performance for selective enrichment of N-glycopeptides (selectivity, 1:1000 molar ratios of IgG/BSA; sensitivity, 0.5 fmol/μL IgG; loading capacity, 300 mg g-1; recovery, >90%) and phosphopeptides (selectivity, 1:5000 molar ratios of α-casein/BSA; sensitivity, 0.1 fmol/μL α-casein; loading capacity, 100 mg g-1; recovery, >90%). Taking advantage of these merits, a total of 393 N-glycopeptides derived from 259 glycoproteins and 574 phosphopeptides derived from 341 phosphoproteins were identified from 200 μg of HeLa cell extracts through a single-step enrichment using MagG@PEI@PA-Ti4+.
Collapse
Affiliation(s)
- Yayun Hong
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Chenlu Pu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Qiliang Zhan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Qianying Sheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China.,State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| |
Collapse
|
32
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
33
|
Núñez C, Chantada-Vázquez MDP, Bravo SB, Vázquez-Estévez S. Novel functionalized nanomaterials for the effective enrichment of proteins and peptides with post-translational modifications. J Proteomics 2018; 181:170-189. [DOI: 10.1016/j.jprot.2018.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
|
34
|
Zhang Q, Huang Y, Jiang B, Hu Y, Xie J, Gao X, Jia B, Shen H, Zhang W, Yang P. In Situ Synthesis of Magnetic Mesoporous Phenolic Resin for the Selective Enrichment of Glycopeptides. Anal Chem 2018; 90:7357-7363. [PMID: 29851350 DOI: 10.1021/acs.analchem.8b00708] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Quanqing Zhang
- Department of Chemistry and the State Key Laboratory of Molecular Engineering, Fudan University, Shanghai 200433, People’s Republic of China
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Yuanyu Huang
- Department of Chemistry and the State Key Laboratory of Molecular Engineering, Fudan University, Shanghai 200433, People’s Republic of China
| | - Biyun Jiang
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Yajun Hu
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Juanjuan Xie
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Xing Gao
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Bin Jia
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Huali Shen
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Weijia Zhang
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Pengyuan Yang
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| |
Collapse
|
35
|
Rastegari B, Karbalaei-Heidari HR, Zeinali S, Sheardown H. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: Synthesis, characterization and cytotoxicity studies. Colloids Surf B Biointerfaces 2017; 158:589-601. [DOI: 10.1016/j.colsurfb.2017.07.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 12/14/2022]
|
36
|
He XM, Liang XC, Chen X, Yuan BF, Zhou P, Zhang LN, Feng YQ. High Strength and Hydrophilic Chitosan Microspheres for the Selective Enrichment of N-Glycopeptides. Anal Chem 2017; 89:9712-9721. [DOI: 10.1021/acs.analchem.7b01283] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao-Mei He
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Xi-Chao Liang
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Xi Chen
- Wuhan Institute of Biotechnology, Wuhan 430072, P.R. China
| | - Bi-Feng Yuan
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Ping Zhou
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Li-Na Zhang
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Yu-Qi Feng
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
37
|
Ma W, Xu L, Li X, Shen S, Wu M, Bai Y, Liu H. Cysteine-Functionalized Metal-Organic Framework: Facile Synthesis and High Efficient Enrichment of N-Linked Glycopeptides in Cell Lysate. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19562-19568. [PMID: 28537384 DOI: 10.1021/acsami.7b02853] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cysteine-functionalized metal-organic framework (MOF) was synthesized via a common and facile two-step method of in situ loading of Au nanoparticles on amino-derived MOF followed by l-cysteine (Cys) immobilization. Owing to the large specific surface area and ultrahigh hydrophilicity of this nanocomposite, excellent performance was observed in the enrichment of N-linked glycopeptides in both model glycoprotein and HeLa cell lysate. By using this nanocomposite, 16 and 31 glycopeptides were efficiently extracted from digest of horseradish peroxidase (HRP) and human serum immunoglobulin G (IgG), respectively. The short incubation time (5 min), large binding capacity (150 mg/g, IgG digest to material), good selectivity (1:50, molar ratio of IgG and bovine serum albumin (BSA) digest), high recovery (over 80%), and low detection limit (1 fmol) ensure the effectiveness and robustness of MIL-101(NH2)@Au-Cys in complex HeLa cell lysate. As a result, 1123 N-glycosylation sites corresponding to 1069 N-glycopeptides and 614 N-glycoproteins were identified from the lysate. Compared with those of previously reported hydrophilic methods, to our knowledge, it was the best result. This work paves a new way for fast functionalization of MOF and also provides a novel idea for material design in sample preparation, especially in glycoproteome and related analysis.
Collapse
Affiliation(s)
- Wen Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, P. R. China
| | - Linnan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, P. R. China
| | - Xianjiang Li
- Division of Metrology in Chemistry and Analytical Science, National Institute of Metrology , Beijing 100029, P. R. China
| | - Sensen Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, P. R. China
| | - Mei Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, P. R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, P. R. China
| |
Collapse
|
38
|
Jiao F, Gao F, Wang H, Deng Y, Zhang Y, Qian X, Zhang Y. Ultrathin Au nanowires assisted magnetic graphene-silica ZIC-HILIC composites for highly specific enrichment of N-linked glycopeptides. Anal Chim Acta 2017; 970:47-56. [DOI: 10.1016/j.aca.2017.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 10/19/2022]
|
39
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
40
|
Facile preparation of polysaccharide functionalized macroporous adsorption resin for highly selective enrichment of glycopeptides. J Chromatogr A 2017; 1498:72-79. [DOI: 10.1016/j.chroma.2016.12.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/18/2016] [Accepted: 12/15/2016] [Indexed: 12/28/2022]
|
41
|
Sun N, Wang J, Yao J, Deng C. Hydrophilic Mesoporous Silica Materials for Highly Specific Enrichment of N-Linked Glycopeptide. Anal Chem 2017; 89:1764-1771. [DOI: 10.1021/acs.analchem.6b04054] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nianrong Sun
- Department of Chemistry and
Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Jiawen Wang
- Department of Chemistry and
Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Jizong Yao
- Department of Chemistry and
Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Chunhui Deng
- Department of Chemistry and
Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
42
|
Wang H, Jiao F, Gao F, Huang J, Zhao Y, Shen Y, Zhang Y, Qian X. Facile synthesis of magnetic covalent organic frameworks for the hydrophilic enrichment of N-glycopeptides. J Mater Chem B 2017; 5:4052-4059. [DOI: 10.1039/c7tb00700k] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Magnetic covalent organic frameworks were synthesized as novel hydrophilic materials for specific enrichment of glycopeptides.
Collapse
Affiliation(s)
- Heping Wang
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Fenglong Jiao
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Fangyuan Gao
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Junjie Huang
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Yan Zhao
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| |
Collapse
|
43
|
Banazadeh A, Veillon L, Wooding KM, Zabet-Moghaddam M, Mechref Y. Recent advances in mass spectrometric analysis of glycoproteins. Electrophoresis 2016; 38:162-189. [PMID: 27757981 DOI: 10.1002/elps.201600357] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/13/2022]
Abstract
Glycosylation is one of the most common posttranslational modifications of proteins that plays essential roles in various biological processes, including protein folding, host-pathogen interaction, immune response, and inflammation and aberrant protein glycosylation is a well-known event in various disease states including cancer. As a result, it is critical to develop rapid and sensitive methods for the analysis of abnormal glycoproteins associated with diseases. Mass spectrometry (MS) in conjunction with different separation methods, such as capillary electrophoresis (CE), ion mobility (IM), and high performance liquid chromatography (HPLC) has become a popular tool for glycoprotein analysis, providing highly informative fragments for structural identification of glycoproteins. This review provides an overview of the developments and accomplishments in the field of glycomics and glycoproteomics reported between 2014 and 2016.
Collapse
Affiliation(s)
- Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kerry M Wooding
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.,Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
44
|
Xu D, Yan G, Gao M, Deng C, Zhang X. Highly selective SiO2–NH2@TiO2 hollow microspheres for simultaneous enrichment of phosphopeptides and glycopeptides. Anal Bioanal Chem 2016; 409:1607-1614. [DOI: 10.1007/s00216-016-0101-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/30/2016] [Accepted: 11/14/2016] [Indexed: 01/01/2023]
|
45
|
Nazarabady MM, Farzi GA. Tunable morphology for silica/poly(acrylic acid) hybrid nanoparticles via facile one-pot synthesis. Macromol Res 2016. [DOI: 10.1007/s13233-016-4101-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Liu J, Yang K, Shao W, Li S, Wu Q, Zhang S, Qu Y, Zhang L, Zhang Y. Synthesis of Zwitterionic Polymer Particles via Combined Distillation Precipitation Polymerization and Click Chemistry for Highly Efficient Enrichment of Glycopeptide. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22018-22024. [PMID: 27498760 DOI: 10.1021/acsami.6b06343] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Because of the low abundance of glycopeptide in natural biological samples, methods for efficient and selective enrichment of glycopeptides play a significant role in mass spectrometry (MS)-based glycoproteomics. In this study, a novel kind of zwitterionic hydrophilic interaction chromatography polymer particles, namely, poly(N,N-methylenebisacrylamide-co-methacrylic acid)@l-Cys (poly(MBAAm-co-MAA)@l-Cys), for the enrichment of glycopeptides was synthesized by a facile and efficient approach that combined distillation precipitation polymerization (DPP) and "thiol-ene" click reaction. In the DPP approach, residual vinyl groups explored outside the core with high density, then the functional ligand cysteine was immobilized onto the surface of core particles by highly efficient thiol-ene click reaction. Taking advantage of the unique structure of poly(MBAAm-co-MAA)@l-Cys, the resulting particles possess remarkable enrichment selectivity for glycopeptides from the tryptic digested human immunoglobulin G. The polymer particles were successfully employed for the analysis of human plasma, and 208 unique glycopeptides corresponding to 121 glycoproteins were reliably identified in triple independent nano-LC-MS/MS runs. The selectivity toward glycopeptides of these particles poly(MBAAm-co-MAA)@l-Cys is ∼2 times than that of the commercial beads. These results demonstrated that these particles had great potential for large-scale glycoproteomics research. Moreover, the strategy with the combination of DPP and thiol-ene click chemistry might be a facile method to produce functional polymer particles for bioenrichment application.
Collapse
Affiliation(s)
- Jianxi Liu
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- College of Environment Science and Engineering, Fujian Normal University , Fuzhou 350007, China
| | - Kaiguang Yang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Wenya Shao
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Senwu Li
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Qi Wu
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Shen Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Yanyan Qu
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Lihua Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Yukui Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
47
|
Song P, Huang P, Huang T, Li H, Chen W, Lin L, Feng S, Tian R. Facile synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles for selective enrichment of glycopeptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:190-195. [PMID: 27539437 DOI: 10.1002/rcm.7626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE Selective enrichment of glycopeptides prior to mass spectrometry (MS) analysis is essential due to the low abundance of the modified glycopeptides in complex samples, ion suppression effects during MS ionization and detection caused by the co-presence of non-glycosylated peptides, etc. Among different enrichment approaches, hydrophilic interaction liquid chromatography (HILIC)-based magnetic separation has become one of the most popular methods in recent years, due to its high efficiency and selectivity for glycopeptide enrichment. METHODS Herein, novel carboxymethyl-β-cyclodextrin (CMCD)-modified magnetic nanoparticles (MNPs) were synthesized via a carbodiimide activation method. CMCD was covalently bonded with the -OH group on the surface of MNPs through carbodiimide, and the proposed procedure provides a rapid and efficient alternative for glycopeptide enrichment due to its stable interaction, time-saving, and easy operation. RESULTS The prepared absorbents with a mean diameter of 15 nm demonstrated a strong magnetic response to an externally applied magnetic field. The results of thermogravimetric analysis showed the content of bound CMCD was 3 wt%. The outer CMCD layer conjugated on the Fe3 O4 core showed high hydrophilic surface property. In the analysis of a complex mouse liver sample, a total of 666 unique N-glycosylation sites corresponding to 494 glycosylated proteins were identified successfully. CONCLUSIONS The study demonstrated an easy-to-use CMCD-modified MNPs-based approach with high selectivity and high capacity in the enrichment of low-abundance glycopeptides from complex biological samples. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Peipei Song
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Peiwu Huang
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Tengjun Huang
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Hua Li
- Materials Characterization & Preparation Center, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Wendong Chen
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Lin Lin
- Materials Characterization & Preparation Center, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Shun Feng
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Ruijun Tian
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, 518055, China
| |
Collapse
|
48
|
Charpentier TVJ, Neville A, Lanigan JL, Barker R, Smith MJ, Richardson T. Preparation of Magnetic Carboxymethylchitosan Nanoparticles for Adsorption of Heavy Metal Ions. ACS OMEGA 2016; 1:77-83. [PMID: 31457118 PMCID: PMC6640732 DOI: 10.1021/acsomega.6b00035] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/20/2016] [Indexed: 05/07/2023]
Abstract
The remediation of metal and heavy metal contaminants from water ecosystems is a long-standing problem in the field of water management. The development of efficient, cost effective, and environmentally friendly natural polymer-based adsorbents is reported here. Magnetic chitosan (CS) and carboxymethylchitosan (CMC) nanocomposites have been synthesized by a simple one-step chemical coprecipitation method. The nanoparticles were assessed for the removal of Pb2+, Cu2+, and Zn2+ ions from aqueous solution. Kinetic and thermodynamic models were used to describe and understand the adsorption process of the ions onto the nanomaterials. The interactions between the ions and the biopolymer-based composites are reversible, which means that the nanoparticles can be regenerated in weakly acidic or EDTA containing solution without losing their activity and stability for water cleanup applications.
Collapse
Affiliation(s)
- Thibaut V. J. Charpentier
- Institute
of Functional Surfaces, Mechanical Engineering, Leeds University, Woodhouse
Lane, Leeds LS2 9JT, U.K.
- E-mail:
| | - Anne Neville
- Institute
of Functional Surfaces, Mechanical Engineering, Leeds University, Woodhouse
Lane, Leeds LS2 9JT, U.K.
| | - Joseph L. Lanigan
- Institute
of Functional Surfaces, Mechanical Engineering, Leeds University, Woodhouse
Lane, Leeds LS2 9JT, U.K.
| | - Richard Barker
- Institute
of Functional Surfaces, Mechanical Engineering, Leeds University, Woodhouse
Lane, Leeds LS2 9JT, U.K.
| | - Margaret J. Smith
- Centre
for Textile Conservation and Technical Art History, University of Glasgow, Robertson Building, Dumbarton Road, Glasgow G11 6AQ, U.K.
| | | |
Collapse
|
49
|
Tolmacheva VV, Apyari VV, Kochuk EV, Dmitrienko SG. Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds. JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1134/s1061934816040079] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Plomp R, Bondt A, de Haan N, Rombouts Y, Wuhrer M. Recent Advances in Clinical Glycoproteomics of Immunoglobulins (Igs). Mol Cell Proteomics 2016; 15:2217-28. [PMID: 27009965 PMCID: PMC4937499 DOI: 10.1074/mcp.o116.058503] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 11/06/2022] Open
Abstract
Antibody glycosylation analysis has seen methodological progress resulting in new findings with regard to antibody glycan structure and function in recent years. For example, antigen-specific IgG glycosylation analysis is now applicable for clinical samples because of the increased sensitivity of measurements, and this has led to new insights in the relationship between IgG glycosylation and various diseases. Furthermore, many new methods have been developed for the purification and analysis of IgG Fc glycopeptides, notably multiple reaction monitoring for high-throughput quantitative glycosylation analysis. In addition, new protocols for IgG Fab glycosylation analysis were established revealing autoimmune disease-associated changes. Functional analysis has shown that glycosylation of IgA and IgE is involved in transport across the intestinal epithelium and receptor binding, respectively.
Collapse
Affiliation(s)
- Rosina Plomp
- From the ‡Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Albert Bondt
- From the ‡Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands; §Leiden University Medical Center, Department of Rheumatology, Leiden, The Netherlands
| | - Noortje de Haan
- From the ‡Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Yoann Rombouts
- ¶Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| | - Manfred Wuhrer
- From the ‡Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands;
| |
Collapse
|