1
|
Iram S, Nazar Z, Sajid M, William Chamberlain T, Furqan Nawaz M, Mahboob Ahmed M, Kashif M. In-tube solid phase extraction with graphitic-based polyurethane sponge as a superhydrophobic sorbent and determination of drug residues in foodstuffs using high-performance liquid chromatography. Food Chem 2024; 448:139022. [PMID: 38522298 DOI: 10.1016/j.foodchem.2024.139022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024]
Abstract
Veterinary drugs used in animal husbandry raise public health concerns due to their residues in the bodies of animals. This study employs a simple and quick sample preparation technique, in-tube solid phase extraction, to extract drug residues from foodstuffs, including eggs, honey, and water. This technique utilizes the synergy of graphitic-based materials and polyurethane sponges (PU) combined through dip coating method to make reusable sorbents for extracting drugs, including amoxicillin, paracetamol, ciprofloxacin, and cefixime. These prepared sorbents were characterized using FTIR, SEM, and XRD. HPLC analysis assessed the extraction efficiency, considering various parameters such as analyte concentration, sample solution pH, extraction time, type of eluting solvent, and graphitic-based polyurethane sponge reusability and stability. The proposed method exhibited a linear response for all three sorbents in the range of 0.03-1000 µg mL-1, with LOD 0.03-1.60 µg mL-1 and LOQ 0.18-4.84 µg mL-1. The % RSD ranged from 1.3 to 9.3 %, with recoveries of up to 98.42 %.
Collapse
Affiliation(s)
- Sidra Iram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zahra Nazar
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Sajid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Thomas William Chamberlain
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Muhammad Furqan Nawaz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Muhammad Kashif
- Department of Chemistry, Emerson University, Multan 60000, Pakistan
| |
Collapse
|
2
|
Wani HMUD, Huang CY, Singhania RR, Patel AK, Giri BS, Chen CW, Dong CD. Assessing and optimizing the bioactivities of diverse enzyme-derived protein hydrolysates from Porphyra yezoensis: unlocking the health potential. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1609-1619. [PMID: 38966797 PMCID: PMC11219659 DOI: 10.1007/s13197-024-05935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 07/06/2024]
Abstract
The interest in algae-derived bioactive compounds has grown due to their potential therapeutic efficacy against a range of diseases. These compounds, derived from proteins, exhibit diverse functions and profound pharmacological effects. Recent research has highlighted the extensive health benefits of algae-derived bioactive compounds, positioning them as potential natural antioxidants in the food, pharmaceutical, and cosmetic industries. This study focuses on extracting proteins from Porphyra yezoensis using innovative physical pre-treatment methods such as stirring, ball milling, and homogenization, under various acidic and alkaline conditions. Enzymatic hydrolysis, employing commercial enzymes at optimal temperature, pH, and enzyme-substrate ratios, produced distinct fractions according to molecular weight. Pepsin demonstrated the highest hydrolysis rate, with the fraction above 10 kDa identified as the most bioactive hydrolysate. Antioxidant activity was evaluated through DPPH, ABTS, ferrous ion chelation, and reducing power assays, demonstrating high antioxidant potential and the ability to mitigate oxidative stress. The 10 kDa fraction of pepsin hydrolysate exhibited 82.6% DPPH activity, 77.5% ABTS activity, 88.4% ferrous ion chelation activity, and higher reducing power potential (0.84 absorbance at 700 nm). Further exploration of mechanisms, amino acid profiles, and potential in vivo benefits is essential to fully exploit the medicinal potential of these algae-derived hydrolysates.
Collapse
Affiliation(s)
- Henna Mohi ud din Wani
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Balendu Sheker Giri
- University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007 India
| | - Chiu-wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Singh R, Rawat H, Kumar A, Gandhi Y, Kumar V, Mishra SK, Narasimhaji CV. Graphene and its hybrid nanocomposite: A Metamorphoses elevation in the field of tissue engineering. Heliyon 2024; 10:e33542. [PMID: 39040352 PMCID: PMC11261797 DOI: 10.1016/j.heliyon.2024.e33542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/24/2024] Open
Abstract
In this discourse, we delve into the manifold applications of graphene-based nanomaterials (GBNs) in the realm of biomedicine. Graphene, characterized by its two-dimensional planar structure, superconductivity, mechanical robustness, chemical inertness, extensive surface area, and propitious biocompatibility, stands as an exemplary candidate for diverse biomedical utility. Graphene include various distinctive characteristics of its two-dimensional planar structure, enormous surface area, mechanical and chemical stability, high conductivity, and exceptional biocompatibility. We investigate graphene and its diverse derivatives, which include reduced graphene oxides (rGOs), graphene oxides (GOs), and graphene composites, with a focus on elucidating the unique attributes relevant to their biomedical utility. In this review article it highlighted the unique properties of graphene, synthesis methods of graphene and functionalization methods of graphene. In the quest for novel materials to advance regenerative medicine, researchers have increasingly turned their attention to graphene-based materials, which have emerged as a prominent innovation in recent years. Notably, it highlights their applications in the regeneration of various tissues, including nerves, skeletal muscle, bones, skin, cardiac tissue, cartilage, and adipose tissue, as well as their influence on induced pluripotent stem cells, marking significant breakthroughs in the field of regenerative medicine. Additionally, this review article explores future prospects in this evolving area of study.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Hemant Rawat
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Ashwani Kumar
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Yashika Gandhi
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Vijay Kumar
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Sujeet K. Mishra
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | | |
Collapse
|
4
|
Bezerra de Araujo CM, Rios AG, Ghislandi MG, Ferreira AFP, Alves da Motta Sobrinho M, Rodrigues AE. Separation of the heme protein cytochrome C using a 3D structured graphene oxide bionanocomposite as an adsorbent. SOFT MATTER 2024; 20:1475-1485. [PMID: 38263875 DOI: 10.1039/d3sm01053h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Proteins are of great importance for medicine and the pharmaceutical and food industries. However, proteins need to be purified prior to their application. This work investigated the application of a hydrogel bionanocomposite based on agar and graphene oxide (GO) for capturing cytochrome C (Cyto C) heme protein by adsorption from aqueous solutions with other proteins. Although applications of GO-based materials in adsorption are widely studied, the focus on semi-continuous processes remains limited. Adsorption experiments were carried out in batch and fixed bed columns. The effect of pH and ionic strength on adsorption was investigated, and there is evidence that electrostatic interactions between Cyto C and the nanocomposite were favoured at pH = 7; the adsorption capacity decreased as NaCl and KCl concentrations increased, ascribed to the weak electrostatic interaction between the protein and GO active sites in the bionanocomposite. All adsorption isotherm models (Langmuir, Freundlich, Sips) used gave suitable adjustments to the equilibrium experimental data and the kinetic models applied. The maximum adsorption capacity predicted by the Langmuir isotherm was ∼400 mgCytoC gadsorbent,dry-1, and the adsorption thermodynamics indicated a physisorption process. Tests were performed to evaluate the co-adsorption in batch, and the composite was effective in adsorbing Cyto C in solution with bovine serum albumin (BSA) and L-phenylalanine. Fixed bed tests were performed, and although protein adsorption onto nanoparticles can be challenging, the Cyto C adsorbed could be successfully recovered after desorption. Overall, the GO-based hydrogel was an effective method for cytochrome C adsorption, exhibiting a notorious potential for applications in protein separation processes.
Collapse
Affiliation(s)
| | - Albertina Gonçalves Rios
- Faculty of Engineering, University of Porto, s/n, R. Dr Roberto Frias, 4200-465, Porto, Portugal.
| | - Marcos Gomes Ghislandi
- Federal Rural University of Pernambuco, R. Cento e Sessenta e Três, 300, Cabo de Santo Agostinho, PE, Brazil
| | | | | | - Alírio Egídio Rodrigues
- Faculty of Engineering, University of Porto, s/n, R. Dr Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
5
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
6
|
Yin H, Yuan Y, Xin L, Hang Q, Zhao L, Qin F, Xiong Z. pH-responsive magnetic graphene oxide composite as an adsorbent with high affinity for rapid capture of nucleosides. Mikrochim Acta 2023; 190:365. [PMID: 37612484 DOI: 10.1007/s00604-023-05945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023]
Abstract
A novel pH-responsive magnetic graphene oxide composite (MGO@PEI-BA) is proposed for the first time as an adsorbent for the rapid capture and detection of nucleosides (cytidine, uridine, guanosine, and adenosine). The morphology, structure, and magnetic properties of the composite were evaluated using various characterization techniques. The results indicated that the composite was successfully fabricated. A series of parameters that affect extraction and elution were optimized through one-factor-at-a-time and Box-Behnken design of response surface methodology (BBD-RSM). The unique layered structures and easily accessible active sites of the composite facilitated molecular transport, resulting in instantaneous equilibrium of nucleosides adsorption within 5 min. Based on this study, a magnetic dispersive micro-solid-phase extraction (MD-μ-SPE) method assisted by the MGO@PEI-BA was developed in combination with UHPLC-UV analysis for the determination of nucleosides in rat urine. Under the optimum conditions, a wide linear range (10-2000 ng mL-1), good linearity (r > 0.99), low detection limits (1-3 ng mL-1), low relative standard deviations (RSDs ≤ 3.9%), and satisfactory recoveries (82.7-96.3%) were achieved. These results demonstrate that the MGO@PEI-BA is an excellent adsorbent for extracting nucleosides from biological samples.
Collapse
Affiliation(s)
- Huawen Yin
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, People's Republic of China
| | - Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, People's Republic of China
| | - Ling Xin
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, People's Republic of China
| | - Qian Hang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, People's Republic of China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, People's Republic of China
| | - Feng Qin
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, People's Republic of China.
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, People's Republic of China.
| |
Collapse
|
7
|
Xing X, Han Y, Cheng H. Biomedical applications of chitosan/silk fibroin composites: A review. Int J Biol Macromol 2023; 240:124407. [PMID: 37060984 DOI: 10.1016/j.ijbiomac.2023.124407] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Natural polymers have been used in the biomedical fields for decades, mainly derived from animals and plants with high similarities with biomacromolecules in the human body. As an alkaline polysaccharide, chitosan (CS) attracts much attention in tissue regeneration and drug delivery with favorable biocompatibility, biodegradation, and antibacterial activity. However, to overcome its mechanical properties and degradation behavior drawbacks, a robust fibrous protein-silk fibroin (SF) was introduced to prepare the CS/SF composites. Not only can CS be combined with SF via the amide and hydrogen bond formation, but also their functions are complementary and tunable with the blending ratio. To further improve the performances of CS/SF composites, natural (e.g., hyaluronic acid and collagen) and synthetic biopolymers (e.g., polyvinyl alcohol and hexanone) were incorporated. Also, the CS/SF composites acted as slow-release carriers for inorganic non-metals (e.g., hydroxyapatite and graphene) and metal particles (e.g., silver and magnesium), which could enhance cell functions, facilitate tissue healing, and inhibit bacterial growth. This review presents the state-of-the-art and future perspectives of different biomaterials combined with CS/SF composites as sponges, hydrogels, membranes, particles, and coatings. Emphasis is devoted to the biological potentialities of these hybrid systems, which look rather promising toward a multitude of applications.
Collapse
Affiliation(s)
- Xiaojie Xing
- Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
| | - Yu Han
- Division of Craniofacial Development and Regeneration, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hui Cheng
- Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian 350002, China.
| |
Collapse
|
8
|
Khataminezhad ES, Hajihassan Z, Razi Astaraei F. Magnetically purification/immobilization of poly histidine-tagged proteins by PEGylated magnetic graphene oxide nanocomposites. Protein Expr Purif 2023; 207:106264. [PMID: 36921811 DOI: 10.1016/j.pep.2023.106264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/25/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023]
Abstract
Carbon-based nanomaterials have many applications in biomedicine due to their unique mechanical, chemical, and biological properties. Among them, graphene has received special attention due to its very high specific surface area, high flexibility, and chemical stability. In this study, graphene oxide was first functionalized with amine groups (GO-NH2) and then Fe3O4 nanoparticles were deposited on it using the hydrothermal method. In addition, polyethylene glycol (PEG) was attached to the magnetic graphene nanoparticles to increase their stability and solubility. Finally, PEGylated magnetic graphene nanocomposites were functionalized with nickel-nitrilotriacetic acid (NTA-Ni+2) to bind to the poly-histidine tag in recombinant proteins. The resulting nanocomposites (MG-PEG-NTA-Ni+2) were then used for magnetic immobilization and purification of recombinant β-NGF as a protein with his-tag sequence. Binding and purification were confirmed by FTIR and SDS-PAGE techniques, respectively. Importantly, differentiation of the PC12 cell line into neurons demonstrated that the purified β-NGF was fully functional. Our results suggest that MG-PEG-NTA-Ni+2 nanocomposites may be a suitable alternative to commercial resins for rapid and specific protein immobilization and purification.
Collapse
Affiliation(s)
- Ehteram Sadat Khataminezhad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Zahra Hajihassan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Fatemeh Razi Astaraei
- Department of Renewable Energies and Environment, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Fan L, Cai X, Wang H, Ye J, Feng Y, Huang Z, Qu C. Topological defects and nanoholes in graphene oxide/hexagonal boron nitride heterostructures: stress buildup and accumulation. RSC Adv 2022; 12:33988-34005. [PMID: 36544995 PMCID: PMC9706512 DOI: 10.1039/d2ra06581a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
The built-in distorted stress field of graphene (Gr) and its derivatives in defective state will induce local geometrical buckling due to the geometry of monatomic layer. The random distribution and types of functional groups (FGOs) and defects will have a significant impact on the stress accumulation and geometrical deformation of two-dimensional (2D) materials. By using molecular dynamics (MD), structure design and nonlinear mechanics theory, a new model (combining both planar 2D heterostructures and graphene oxide (GO)) was established to study geometrical effects, stress accumulation, bonding energies and mechanical properties of 2D interface (key point) at stress distortion field and accumulated stress field. The results show that grain boundaries (GBs), nanoholes and FGOs have different effects on the mechanical properties and out-of-plane deformation of 2D materials. By using Von-mises stresses and statistical mechanics, the geometrical effects, built-in distortion stress transfer and attenuation appeared in the each domain of 2D materials during the order-disorder transition processes. Moreover, there are two opposite aspects of stress accumulation, transmission, attenuation and geometrical effects of grain boundary (GBs), FGOs and nanoholes with distance. The ratio of strain energy (bond length and angle) is very sensitive to each domain of 2D materials. Finally, the 2D planar configuration gradually changes to a negative Gaussian surface, and the softening and weakening effects induced by GBs, nanoholes and FGOs are gradually enhanced. It is hoped that the current results can be used as a guide to adjust the geometry and stress accumulation of 2D materials in the new growth point.
Collapse
Affiliation(s)
- Lei Fan
- School of Civil Engineering and Architecture, Zhejiang University of Science & TechnologyHangzhouChina
| | - Xinyu Cai
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Hongwei Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science & TechnologyHangzhouChina
| | - Jian Ye
- School of Civil Engineering and Architecture, Zhejiang University of Science & TechnologyHangzhouChina
| | - Yong Feng
- School of Civil Engineering and Architecture, Zhejiang University of Science & TechnologyHangzhouChina
| | - Zhuye Huang
- School of Civil Engineering and Architecture, Zhejiang University of Science & TechnologyHangzhouChina
| | - Chen Qu
- School of Civil Engineering and Architecture, Zhejiang University of Science & TechnologyHangzhouChina
| |
Collapse
|
10
|
Pseudo-mercaptoethyl pyridine functionalized polyhedral oligomeric silsesquioxane-graphene composite via thiol-ene click reaction for highly selective purification of antibody. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123408. [DOI: 10.1016/j.jchromb.2022.123408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022]
|
11
|
Graphene Oxide and Fluorescent-Aptamer-Based Novel Aptasensors for Detection of Metastatic Colorectal Cancer Cells. Polymers (Basel) 2022; 14:polym14153040. [PMID: 35956554 PMCID: PMC9370758 DOI: 10.3390/polym14153040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Early diagnosis of metastatic colorectal cancer (mCRC) is extremely critical to improve treatment and extend survival. W3 is an aptamer that can specifically bind to mCRC cells with high affinity. Graphene oxide (GO) is a two-dimensional graphitic carbon nanomaterial, which has widely used in constructing biosensors. In this study, we have developed a no-wash fluorescent aptasensor for one-step and sensitive detection of mCRC LoVo cells. It is based on fluorescence resonance energy transfer (FRET) between GO and the W3 aptamer labeled with 5-carboxyfluorescein (FAM). GO can quench the green fluorescence of the FAM-labeled W3 (FAM-W3). In the presence of the target cells, FAM-W3 preferentially binds the target cells and detaches from the surface of GO, leading to the fluorescence of FAM recovery. It was demonstrated that the fluorescence recovery increases linearly in a wide range of 0~107 cells/mL (R2 = 0.99). The GO-based FAM-labeled W3 aptasensor (denoted as FAM-W3-GO) not only specifically recognizes mCRC cell lines (LoVo and HCT116), but also sensitively differentiates the target cells from mixed cells, even in the presence of only 5% of the target cells. Furthermore, FAM-W3-GO was applied to detect LoVo cells in human whole blood, which showed good reproducibility with an RSD range of 1.49% to 1.80%. Therefore, FAM-W3-GO may have great potential for early diagnosis of mCRC. This strategy of GO-based fluorescent aptasensor provides a simple, one-step, and highly sensitive approach for the detection of mCRC cells.
Collapse
|
12
|
Ionic liquid-based magnetic nanoparticles for magnetic dispersive solid-phase extraction: A review. Anal Chim Acta 2022; 1201:339632. [PMID: 35300789 DOI: 10.1016/j.aca.2022.339632] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
Abstract
Due to their highly tunable nature and outstanding physicochemical properties, ionic liquids (ILs) have been widely reported for use in the synthesis of multitudinous magnetic nanoparticles (MNPs). IL-based magnetic nanoparticles (IL-MNPs) have great potential in magnetic dispersive solid-phase extraction (MDSPE). At present, IL-MNPs have been successfully applied in the pretreatment of MDSPE samples from medicines, pesticides, veterinary drugs, heavy metals, dyes, additives, and proteins in agricultural products, foods and beverages, environmental water, and biological samples. In this review, the preparation of IL-MNPs and their application in MDSPE are comprehensively summarized. The structural characteristics of the introduced ILs used to prepare the IL-MNPs and the synthetic routes employed to obtain the IL-MNPs are described, including physical coating and chemical bonding methods. The IL-MNPs are then classified and described according to different modified materials, including silica-based materials, carbon-based materials, metal-organic frameworks, molecularly imprinted polymers and other interesting large/small molecules. Finally, the research prospects and development directions of IL-MNPs in the context of MDSPE are further identified.
Collapse
|
13
|
Sethumadhavan SC, Pottail L, Sharma SC, Chithambharan A, Ballal S. Structural and Morphological Characterization of Bio-templated Reduced Graphene Oxide and their Antibacterial Efficacy. J CLUST SCI 2021; 33:1997-2008. [PMID: 34248312 PMCID: PMC8260015 DOI: 10.1007/s10876-021-02120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022]
Abstract
We would like to report the eco-friendly synthesis of reduced graphene oxide using aqueous extract of Acorus calamus (rhizome), dried fruit and seed parts of Terminalia bellirica, Helicteres isora and Quercus infectoria and the whole shell part of Turbinella pyrum by simple steam bath technique. The structural and morphological characteristics of prepared reduced graphene oxides were determined by UV-Visible spectroscopy, Fourier Transform Infra-Red spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM) and Raman spectroscopy. The Surface Plasmon Resonance at 260-280 nm ensured the reduced graphene oxide formation. The antibacterial efficacy of synthesized reduced graphene oxide was evaluated against both gram-positive and gram-negative pathogens such as Staphylococcus aureus, Bacillus subtilis, Salmonella paratyphi and Escherichia coli. Among the selected samples Quercus infectoria mediated reduced graphene oxide showed excellent inhibition efficiency (27 and 28 mm) against Escherichia coli and Staphylococcus aureus, respectively as compared to the standard Gentamycin (29 mm). Quercus infectoria showed significant inhibition of 22 mm and moderate inhibition of 18 mm against Bacillus subtilis and Salmonella paratyphi, respectively. The results suggest selected plants and chank shell-mediated reduced graphene oxide as potential antibacterial agents for various therapeutic applications.
Collapse
Affiliation(s)
| | - Lalitha Pottail
- Department of Chemistry and Coordinator, Bharat Ratna Prof. C.N.R Rao Research Center, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu India
| | - S. C. Sharma
- National Assessment and Accreditation Council, Bengaluru, India
| | - Akhila Chithambharan
- Department of Chemistry, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu India
| | - Suhas Ballal
- Department of Chemistry, School of Sciences B-II, Jain University, Bengaluru, India
| |
Collapse
|
14
|
Manousi N, Plastiras OE, Deliyanni EA, Zachariadis GA. Green Bioanalytical Applications of Graphene Oxide for the Extraction of Small Organic Molecules. Molecules 2021; 26:molecules26092790. [PMID: 34065150 PMCID: PMC8126010 DOI: 10.3390/molecules26092790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Bioanalysis is the scientific field of the quantitative determination of xenobiotics (e.g., drugs and their metabolites) and biotics (e.g., macromolecules) in biological matrices. The most common samples in bioanalysis include blood (i.e., serum, plasma and whole blood) and urine. However, the analysis of alternative biosamples, such as hair and nails are gaining more and more attention. The main limitations for the determination of small organic compounds in biological samples is their low concentration in these matrices, in combination with the sample complexity. Therefore, a sample preparation/analyte preconcentration step is typically required. Currently, the development of novel microextraction and miniaturized extraction techniques, as well as novel adsorbents for the analysis of biosamples, in compliance with the requirements of Green Analytical Chemistry, is in the forefront of research in analytical chemistry. Graphene oxide (GO) is undoubtedly a powerful adsorbent for sample preparation that has been successfully coupled with a plethora of green extraction techniques. GO is composed of carbon atoms in a sp2 single-atom layer of a hybrid connection, and it exhibits high surface area, as well as good mechanical and thermal stability. In this review, we aim to discuss the applications of GO and functionalized GO derivatives in microextraction and miniaturized extraction techniques for the determination of small organic molecules in biological samples.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (N.M.); (G.A.Z.)
| | - Orfeas-Evangelos Plastiras
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni A. Deliyanni
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George A. Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (N.M.); (G.A.Z.)
| |
Collapse
|
15
|
Zhang H, Lin L, Ren L, Liu Y, Song R. Characterization of
CS
/
PVA
/
GO
electrospun nanofiber membrane with astaxanthin. J Appl Polym Sci 2021. [DOI: 10.1002/app.50166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hengfang Zhang
- First Affiliated Hospital of Harbin Medical University, College of Stomatology Harbin Medical University Harbin China
| | - Lexun Lin
- Department of Pathogenic Microbiology, School of Basic Medical Sciences Harbin Medical University Harbin China
| | - Liping Ren
- First Affiliated Hospital of Harbin Medical University, College of Stomatology Harbin Medical University Harbin China
| | - Yongxu Liu
- Institute of Materials Science and Engineering Northeast Forestry University Harbin China
| | - Rong Song
- First Affiliated Hospital of Harbin Medical University, College of Stomatology Harbin Medical University Harbin China
| |
Collapse
|
16
|
LI Z, LI N, ZHAO T, ZHANG Z, WANG M. [Fabrication of nanomaterials incorporated polymeric monoliths and application in sample pretreatment]. Se Pu 2021; 39:229-240. [PMID: 34227305 PMCID: PMC9403804 DOI: 10.3724/sp.j.1123.2020.05030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 11/25/2022] Open
Abstract
Polymeric monolithic columns are fabricated by in situ polymerization of the corresponding monomer, crosslinkers, porogenic solvents and radical initiators within a mold. Compared with the conventional packed solid phase extraction adsorbents, polymeric monolithic columns with a continuous porous structure process distinctive advantages of rapid mass transfer and excellent permeability, which facilitates the extraction of trace amounts of the target from the matrix even at high flow velocities. Besides, these materials can be easily fabricated in situ within various cartridges, avoiding a further packing step associated with packed particulate adsorbents. Additionally, the abundant monomer availability, flexible porous structure, and wide applicable pH range make monoliths versatile for use in separation science. Thus, polymeric monolithic columns have been increasingly applied as efficient and promising extraction media for sample pretreatment food, pharmaceutical, biological and environmental analyses. However, these materials usually have the difficulty in morphology control and their interconnected porous micro-globular structure, which may result in low porosity, limited specific surface area and poor efficiency. In addition, polymeric monoliths suffer from the swelling in organic solvents, thus decreasing the service life and precision while increasing the cost consumption. Recently, the development of nanomaterial-incorporated polymeric monoliths with an improved ordered structure, enhanced adsorption efficiency and outstanding selectivity has attracted considerable attention. Nanoparticles are considered as particulates within the size range of 1-100 nm in at least one dimension, which endows them with unique optical, electrical and magnetic properties. These materials have a large surface area, excellent thermal and chemical stabilities, remarkable versatility, as well as a wide variety of active functional groups on their surface. With the aim of exploiting these advantages, researchers have shown great interest in applying nanomaterial-incorporated polymeric monoliths to separation science. Accordingly, significant progress has been achieved in this field. Nanomaterials can be entrapped via the direct synthesis of a polymerization solution that contains well dispersed nanomaterials in porogens. In addition, nanoparticles can be incorporated into the monolithic matrix by copolymerization and post-polymerization modification via specific interactions. Therefore, nanomaterial-incorporated polymeric monoliths combined the different shapes, chemical properties, and physical properties of the polymers with those of the nanoparticles. The presence of nanoparticles can improve the structural rigidity as well as the thermal and chemical stabilities of monolithic adsorbents. Besides, nanoparticles are capable of increasing the specific surface area and providing multiple active sites, which leads to enhanced extraction performance and selectivity of polymeric monolithic materials. In recent years, diverse types of nanomaterials, such as carbonaceous nanoparticles, metallic materials and metal oxides, metal-organic frameworks, covalent organic frameworks and inorganic nanoparticles have been extensively explored as hybrid adsorbents in the modes of solid phase extraction, solid phase microextraction, stir bar sorption extraction and on-line solid phase extraction. This review specifically summarizes the fabrication methods for nanomaterial incorporated polymeric monoliths and their application to the field of sample pretreatment. The existing challenges and future possible perspectives in the field are also discussed.
Collapse
Affiliation(s)
- Ziling LI
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Na LI
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Tengwen ZHAO
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Ziyang ZHANG
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Manman WANG
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
17
|
Liu J, Liu Y, Liang Y, Ma F, Bai Q. Poly- l-lysine-functionalized magnetic graphene for the immobilized metal affinity purification of histidine-rich proteins. NEW J CHEM 2021. [DOI: 10.1039/d1nj00059d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal affinity-poly-l-lysine functionalization on a magnetic graphene substrate for simultaneously improving the adsorption selectivity toward histidine-rich proteins and inhibiting the non-specific adsorption.
Collapse
Affiliation(s)
- Jiawei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Yingying Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Yixun Liang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Fen Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Quan Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| |
Collapse
|
18
|
Alemi F, Zarezadeh R, Sadigh AR, Hamishehkar H, Rahimi M, Majidinia M, Asemi Z, Ebrahimi-Kalan A, Yousefi B, Rashtchizadeh N. Graphene oxide and reduced graphene oxide: Efficient cargo platforms for cancer theranostics. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Wang Z, Meng Q, Li S. The Role of NIR Fluorescence in MDR Cancer Treatment: From Targeted Imaging to Phototherapy. Curr Med Chem 2020; 27:5510-5529. [PMID: 31244415 DOI: 10.2174/0929867326666190627123719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/25/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Multidrug Resistance (MDR) is defined as a cross-resistance of cancer cells to various chemotherapeutics and has been demonstrated to correlate with drug efflux pumps. Visualization of drug efflux pumps is useful to pre-select patients who may be insensitive to chemotherapy, thus preventing patients from unnecessary treatment. Near-Infrared (NIR) imaging is an attractive approach to monitoring MDR due to its low tissue autofluorescence and deep tissue penetration. Molecular NIR imaging of MDR cancers requires stable probes targeting biomarkers with high specificity and affinity. OBJECTIVE This article aims to provide a concise review of novel NIR probes and their applications in MDR cancer treatment. RESULTS Recently, extensive research has been performed to develop novel NIR probes and several strategies display great promise. These strategies include chemical conjugation between NIR dyes and ligands targeting MDR-associated biomarkers, native NIR dyes with inherent targeting ability, activatable NIR probes as well as NIR dyes loaded nanoparticles. Moreover, NIR probes have been widely employed for photothermal and photodynamic therapy in cancer treatment, which combine with other modalities to overcome MDR. With the rapid advancing of nanotechnology, various nanoparticles are incorporated with NIR dyes to provide multifunctional platforms for controlled drug delivery and combined therapy to combat MDR. The construction of these probes for MDR cancers targeted NIR imaging and phototherapy will be discussed. Multimodal nanoscale platform which integrates MDR monitoring and combined therapy will also be encompassed. CONCLUSION We believe these NIR probes project a promising approach for diagnosis and therapy of MDR cancers, thus holding great potential to reach clinical settings in cancer treatment.
Collapse
Affiliation(s)
- Zengtao Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingqing Meng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
20
|
Maciel EVS, Mejía-Carmona K, Jordan-Sinisterra M, da Silva LF, Vargas Medina DA, Lanças FM. The Current Role of Graphene-Based Nanomaterials in the Sample Preparation Arena. Front Chem 2020; 8:664. [PMID: 32850673 PMCID: PMC7431689 DOI: 10.3389/fchem.2020.00664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Since its discovery in 2004 by Novoselov et al., graphene has attracted increasing attention in the scientific community due to its excellent physical and chemical properties, such as thermal/mechanical resistance, electronic stability, high Young's modulus, and fast mobility of charged atoms. In addition, other remarkable characteristics support its use in analytical chemistry, especially as sorbent. For these reasons, graphene-based materials (GBMs) have been used as a promising material in sample preparation. Graphene and graphene oxide, owing to their excellent physical and chemical properties as a large surface area, good mechanical strength, thermal stability, and delocalized π-electrons, are ideal sorbents, especially for molecules containing aromatic rings. They have been used in several sample preparation techniques such as solid-phase extraction (SPE), stir bar sorptive extraction (SBSE), magnetic solid-phase extraction (MSPE), as well as in miniaturized modes as solid-phase microextraction (SPME) in their different configurations. However, the reduced size and weight of graphene sheets can limit their use since they commonly aggregate to each other, causing clogging in high-pressure extractive devices. One way to overcome it and other drawbacks consists of covalently attaching the graphene sheets to support materials (e.g., silica, polymers, and magnetically modified supports). Also, graphene-based materials can be further chemically modified to favor some interactions with specific analytes, resulting in more efficient hybrid sorbents with higher selectivity for specific chemical classes. As a result of this wide variety of graphene-based sorbents, several studies have shown the current potential of applying GBMs in different fields such as food, biological, pharmaceutical, and environmental applications. Within such a context, this review will focus on the last five years of achievements in graphene-based materials for sample preparation techniques highlighting their synthesis, chemical structure, and potential application for the extraction of target analytes in different complex matrices.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando Mauro Lanças
- Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry (IQSC), University of São Paulo, São Carlos, Brazil
| |
Collapse
|
21
|
Magnetic Solid-Phase Extraction of Organic Compounds Based on Graphene Oxide Nanocomposites. Molecules 2020; 25:molecules25051148. [PMID: 32143401 PMCID: PMC7179219 DOI: 10.3390/molecules25051148] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022] Open
Abstract
Graphene oxide (GO) is a chemical compound with a form similar to graphene that consists of one-atom-thick two-dimensional layers of sp2-bonded carbon. Graphene oxide exhibits high hydrophilicity and dispersibility. Thus, it is difficult to be separated from aqueous solutions. Therefore, functionalization with magnetic nanoparticles is performed in order to prepare a magnetic GO nanocomposite that combines the sufficient adsorption capacity of graphene oxide and the convenience of magnetic separation. Moreover, the magnetic material can be further functionalized with different groups to prevent aggregation and extends its potential application. Until today, a plethora of magnetic GO hybrid materials have been synthesized and successfully employed for the magnetic solid-phase extraction of organic compounds from environmental, agricultural, biological, and food samples. The developed GO nanocomposites exhibit satisfactory stability in aqueous solutions, as well as sufficient surface area. Thus, they are considered as an alternative to conventional sorbents by enriching the analytical toolbox for the analysis of trace organic compounds.
Collapse
|
22
|
Pham XH, Hahm E, Kim HM, Son BS, Jo A, An J, Tran Thi TA, Nguyen DQ, Jun BH. Silica-Coated Magnetic Iron Oxide Nanoparticles Grafted onto Graphene Oxide for Protein Isolation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E117. [PMID: 31936217 PMCID: PMC7022723 DOI: 10.3390/nano10010117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
In this study, silica-coated magnetic iron oxide nanoparticles (MNPs@SiO2) were covalently conjugated onto graphene oxide (GO/MNP@SiO2) for protein isolation. First, MNPs were precisely coated with a silica layer on the surface by using the reverse microemulsion method, followed by incubation with 3-glycidyloxypropyltrimethoxysilane (GPTS) to produce the GPTS-functionalized MNPs@SiO2 (GPTS-coated MNPs@SiO2) that display epoxy groups on the surface. The silica shell on the MNPs was optimized at 300 µL of Igepal®CO-520, 5 mg of MNP, 100 µL of TEOS, 100 µL of NH4OH and 3% of 3-glycidyloxypropyltrimethoxysilane (GPTS). Simultaneously, polyethyleneimine (PEI) was covalently conjugated to GO to enhance the stability of GO in aqueous solutions and create the reaction sites with epoxy groups on the surface of GPTS-coated MNP@SiO2. The ratio of PEI grafted GO and GPTS-coated MNP@SiO2 (GO/MNP ratio) was investigated to produce GO/MNPs@SiO2 with highly saturated magnetization without aggregation. As a result, the GO/MNP ratio of 5 was the best condition to produce the GO/MNP@SiO2 with 9.53 emu/g of saturation superparamagnetization at a magnetic field of 2.0 (T). Finally, the GO/MNPs@SiO2 were used to separate bovine serum albumin (BSA) to investigate its protein isolation ability. The quantity of BSA adsorbed onto 1 mg of GO/MNP@SiO2 increased sharply over time to reach 628 ± 9.3 µg/mg after 15 min, which was 3.5-fold-higher than that of GPTS-coated MNP@SiO2. This result suggests that the GO/MNP@SiO2 nanostructure can be used for protein isolation.
Collapse
Affiliation(s)
- Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (E.H.); (H.-M.K.); (B.S.S.); (A.J.); (J.A.)
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (E.H.); (H.-M.K.); (B.S.S.); (A.J.); (J.A.)
| | - Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (E.H.); (H.-M.K.); (B.S.S.); (A.J.); (J.A.)
| | - Byung Sung Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (E.H.); (H.-M.K.); (B.S.S.); (A.J.); (J.A.)
| | - Ahla Jo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (E.H.); (H.-M.K.); (B.S.S.); (A.J.); (J.A.)
| | - Jaehyun An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (E.H.); (H.-M.K.); (B.S.S.); (A.J.); (J.A.)
| | - Tuong An Tran Thi
- Laboratory of Biofuel and Biomass Research, VNU-HCMU University of Technology, 268 Ly Thuong Kiet street, district 10, Ho Chi Minh 700000, Vietnam; (T.A.T.T.); (D.Q.N.)
| | - Dinh Quan Nguyen
- Laboratory of Biofuel and Biomass Research, VNU-HCMU University of Technology, 268 Ly Thuong Kiet street, district 10, Ho Chi Minh 700000, Vietnam; (T.A.T.T.); (D.Q.N.)
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (E.H.); (H.-M.K.); (B.S.S.); (A.J.); (J.A.)
| |
Collapse
|
23
|
Wei S, Zou X, Tian J, Huang H, Guo W, Chen Z. Control of Protein Conformation and Orientation on Graphene. J Am Chem Soc 2019; 141:20335-20343. [PMID: 31774666 DOI: 10.1021/jacs.9b10705] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Graphene-based biosensors have attracted considerable attention due to their advantages of label-free detection and high sensitivity. Many such biosensors utilize noncovalent van der Waals force to attach proteins onto graphene surface while preserving graphene's high conductivity. Maintaining the protein structure without denaturation/substantial conformational change and controlling proper protein orientation on the graphene surface are critical for biosensing applications of these biosensors fabricated with proteins on graphene. Based on the knowledge we obtained from our previous experimental study and computer modeling of amino acid residual level interactions between graphene and peptides, here we systemically redesigned an important protein for better conformational stability and desirable orientation on graphene. In this paper, immunoglobulin G (IgG) antibody-binding domain of protein G (protein GB1) was studied to demonstrate how we can preserve the protein native structure and control the protein orientation on graphene surface by redesigning protein mutants. Various experimental tools including sum frequency generation vibrational spectroscopy, attenuated total refection-Fourier transform infrared spectroscopy, fluorescence spectroscopy, and circular dichroism spectroscopy were used to study the protein GB1 structure on graphene, supplemented by molecular dynamics simulations. By carefully designing the protein GB1 mutant, we can avoid strong unfavorable interactions between protein and graphene to preserve protein conformation and to enable the protein to adopt a preferred orientation. The methodology developed in this study is general and can be applied to study different proteins on graphene and beyond. With the knowledge obtained from this research, one could apply this method to optimize protein function on surfaces (e.g., to enhance biosensor sensitivity).
Collapse
Affiliation(s)
- Shuai Wei
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xingquan Zou
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jiayi Tian
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Hao Huang
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Wen Guo
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Zhan Chen
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
24
|
Maltodextrin-modified graphene oxide for improved enantiomeric separation of six basic chiral drugs by open-tubular capillary electrochromatography. Mikrochim Acta 2019; 187:55. [DOI: 10.1007/s00604-019-4037-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
|
25
|
Xiong J, Li S, Li Y, Chen Y, Liu Y, Gan J, Ju J, Xian Y, Xiong X. Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9257-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Application of three-dimensional graphene hydrogels for removal of ofloxacin from aqueous solutions. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.enmm.2019.100274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Liu Y, Li Z, Zhang Z, Zhao T, Wang M, Wang X. Determination of Urinary Hydroxyl PAHs Using Graphene Oxide@Diatomite Based Solid-Phase Extraction and High-Performance Liquid Chromatography. Molecules 2019; 24:molecules24224186. [PMID: 31752256 PMCID: PMC6891718 DOI: 10.3390/molecules24224186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/10/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022] Open
Abstract
A diatomite supported graphene oxide composite (GO@Dt–NH2) was fabricated and explored as a solid-phase extraction adsorbent coupled with high performance liquid chromatography to determine the trace hydroxyl polycyclic aromatic hydrocarbons (2-hydroxy-naphthalene, 2-hydroxy-fluorene, 1-hydroxy-phenanthrene, and 1-hydroxy-pyrene) in urine samples. The fabricated composites were characterized by X-ray powder diffractometry and scanning electron microscopy. GO@Dt–NH2 offered enhanced adsorption affinity towards the analytes compared with the bare diatomite. The amount of graphene oxide and the factors affecting solid-phase extraction were investigated in detail. Under the optimized conditions, the method gave good linearity (0.30–200 ng/mL) and a low detection limit (0.10–0.15 ng/mL) for the hydroxyl polycyclic aromatic hydrocarbons. The average recovery for spiked urine samples with three levels ranged from 90.6% to 100%. The intra-day and inter-day relative standard deviations were in the range of 1.8–6.4% and 2.7–11.8%, respectively. Besides, the GO@Dt–NH2 provided enrichment factors of 18–20 and superior purification ability. The developed method was successfully applied to the determination of hydroxyl polycyclic aromatic hydrocarbons in urine samples from smoking volunteers.
Collapse
Affiliation(s)
| | | | | | | | - Manman Wang
- Correspondence: (M.W.); (X.W.); Tel.: +86-031-5880-5576 (M.W.); +86-031-5880-5576 (X.W.)
| | - Xuesheng Wang
- Correspondence: (M.W.); (X.W.); Tel.: +86-031-5880-5576 (M.W.); +86-031-5880-5576 (X.W.)
| |
Collapse
|
28
|
Gao Z, Li Y, Ma Y, Ji W, Chen T, Ma X, Xu H. Functionalized melamine sponge based on β-cyclodextrin-graphene oxide as solid-phase extraction material for rapidly pre-enrichment of malachite green in seafood. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Guo PF, Wang XM, Chen XW, Yang T, Chen ML, Wang JH. Nanostructures serve as adsorbents for the selective separation/enrichment of proteins. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Li W, Zhang J, Zhu W, Qin P, Zhou Q, Lu M, Zhang X, Zhao W, Zhang S, Cai Z. Facile preparation of reduced graphene oxide/ZnFe 2O 4 nanocomposite as magnetic sorbents for enrichment of estrogens. Talanta 2019; 208:120440. [PMID: 31816803 DOI: 10.1016/j.talanta.2019.120440] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/18/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
Reduced graphene oxide/ZnFe2O4 (rGO/ZnFe2O4) nanocomposite was facile prepared and applied as magnetic sorbent for the extraction of estrogens including 17β-estradiol, 17α-estradiol, estrone and hexestrol from water, soil, and fish samples prior to HPLC analysis. The rGO/ZnFe2O4 nanocomposite was characterized by scanning electron microscope, Fourier transform-infrared spectroscopy, X-ray diffraction, and vibrating sample magnetometer. The experimental parameters affecting the efficiency of magnetic solid-phase extraction (MSPE) including the amount of material, extraction time, pH, temperature, desorption solvents, desorption time, and desorption solvent volume were investigated respectively. With the developed method, good linearity was observed in the range of 0.05-500 ng/mL with the correlation coefficients (R2) between 0.9978 and 0.9993. The limits of detection (S/N = 3) and limits of quantification (S/N = 10) were achieved at 0.01-0.02 ng/mL and 0.05 ng/mL, respectively. The enrichment factors were calculated as the range of 241-288. Using rGO/ZnFe2O4 nanocomposite as the sorbent, the developed MSPE followed by HPLC analysis, was applied to analysis of estrogens in river water, soil and fish samples. The method has the potential application in the extraction and preconcentration ultra trace compounds in complex matrices, such as environmental and biological samples.
Collapse
Affiliation(s)
- Wenqi Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Jing Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Wenli Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Peige Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Qian Zhou
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| | - Xuebin Zhang
- Center for Multi-Omics Research, Institute of Plant Stress Biology, Henan University, Kaifeng, 475004, Henan, China
| | - Wuduo Zhao
- Center for Advanced Analysis and Computational Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shusheng Zhang
- Center for Advanced Analysis and Computational Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
31
|
Jalali K, Pajootan E, Bahrami H. Elimination of hazardous methylene blue from contaminated solutions by electrochemically magnetized graphene oxide as a recyclable adsorbent. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Li ZL, Li N, Du L, Wang YH, Fang B, Wang MM, Wang Q. Determination of trace hydroxyl polycyclic aromatic hydrocarbons in urine using graphene oxide incorporated monolith solid-phase extraction coupled with LC-MS/MS. J Sep Sci 2019; 42:3234-3242. [PMID: 31402580 DOI: 10.1002/jssc.201900540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 01/24/2023]
Abstract
The biomonitoring of hydroxy polycyclic aromatic hydrocarbons in urine, as a direct way to access multiple exposures to polycyclic aromatic hydrocarbons, has raised great concerns due to their increasing hazardous health effects on humans. Solid-phase extraction is an effective and useful technique to preconcentrate trace analytes from biological samples. Here, we report a novel solid-phase extraction method using a graphene oxide incorporated monolithic syringe for the determination of six hydroxy polycyclic aromatic hydrocarbons in urine coupled with liquid chromatography-tandem mass spectrometry. The effect of graphene oxide amount, washing solvent, eluting solvent, and its volume on the extraction performance were investigated. The fabricated monoliths gave higher adsorption efficiency and capacity than the neat polymer monolith and commercial C18 sorbent. Under the optimum conditions, the developed method provided the detection limits (S/N = 3) of 0.02-0.1 ng/mL and the linear ranges of 0.1-1500 ng/mL for six analytes in urine sample. The recoveries at three spiked levels ranged from 77.5 to 97.1%. Besides, the intra column-to-column (n = 3) and inter batch-to-batch (n = 3) precisions were ≤ 9.8%. The developed method was successfully applied for the determination of hydroxy polycyclic aromatic hydrocarbons in urine samples of coke oven workers.
Collapse
Affiliation(s)
- Zi-Ling Li
- School of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| | - Na Li
- School of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| | - Li Du
- School of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| | - Ya-Hui Wang
- School of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| | - Bo Fang
- School of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| | - Man-Man Wang
- School of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| |
Collapse
|
33
|
Graphene oxide composites for magnetic solid-phase extraction of twelve quinolones in water samples followed by MALDI-TOF MS. Anal Bioanal Chem 2019; 411:7039-7049. [PMID: 31428817 DOI: 10.1007/s00216-019-02081-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
Antibiotic compounds in natural waters are normally present at low concentrations. In this paper, an easy and highly sensitive screening method using graphene oxide-functionalized magnetic composites (GO@NH2@Fe3O4) combined with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) was established for twelve quinolone antibiotics. GO@NH2@Fe3O4 composites were utilized as adsorbents for magnetic solid-phase extraction. This method combines the advantages of magnetic solid-phase extraction and MALDI-TOF MS, which allows for fast detection of quinolones at low concentrations. To improve absorption efficiency, the following parameters were individually optimized: sample acidity, extraction time, amount of adsorbent used, eluent used, and desorption time. Under the optimum conditions, the established method gave a low detection limit of 0.010 mg/L and allowed the high-throughput screening of twelve quinolone antibiotics (enoxacin, norfloxacin, ciprofloxacin, pefloxacin, fleroxacin, gatifloxacin, enrofloxacin, levofloxacin, sparfloxacin, danofloxacin, difloxacin, and lomefloxacin). The proposed method, having an easily prepared sorbent with a high affinity for quinolones and a convenient, high-throughput detection step, has been shown to have merit for the detection of antibiotics in water samples. Graphical abstract Schematic illustration of the (A) preparation of GO@NH2@Fe3O4 and (B) operating procedure for the MSPE and MALDI-TOF MS detection of QNs.
Collapse
|
34
|
Magnetic carbon nanotube modified with polymeric deep eutectic solvent for the solid phase extraction of bovine serum albumin. Talanta 2019; 206:120215. [PMID: 31514903 DOI: 10.1016/j.talanta.2019.120215] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022]
Abstract
This article described the fabrication of novel magnetic carbon nanotube modified with polymeric deep eutectic solvent (M-CNT@PDES) and its application as extractant for the magnetic solid phase extraction (MSPE) of bovine serum albumin (BSA). The physicochemical properties and morphology of M-CNT@PDES were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermo-gravimetric analysis (TGA), zeta potentials, fourier transform infrared spectrometry (FT-IR) and transmission electron microscope (TEM). Afterwards, several parameters such as pH value, initial concentration of BSA, extraction time, ionic strength and extraction temperature were optimized. The results indicated that the modification of PDES significantly improved the extraction performance for BSA, and the maximum extraction capacity was 225.15 mg/g under the optimized conditions. In addition, 0.20 mol/L NaCl-PBS solution was chosen as the appropriate eluent, and favourable elution rate (81.22%) was obtained. Circular dichroism spectroscopy (CD) indicated that the secondary structure of BSA has not changed during extraction and elution. The regenerative experiment and application in real calf serum confirmed the outstanding durability and practical application ability of M-CNT@PDES. All of above verified that the proposed M-CNT@PDES coupled with MSPE method has great application potential for the pre-concentration of biomolecules.
Collapse
|
35
|
Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex. Sci Rep 2019; 9:7659. [PMID: 31114011 PMCID: PMC6529438 DOI: 10.1038/s41598-019-44051-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 05/03/2019] [Indexed: 01/11/2023] Open
Abstract
The development of a multiplexed sensing platform is necessary for highly selective, sensitive, and rapid screening of specific antibiotics. In this study, we designed a novel multiplex aptasensor for antibiotics by fluorescence resonance energy transfer (FRET) strategy using DNase I-assisted cyclic enzymatic signal amplification (CESA) method combined with aptamer/graphene oxide complex. The aptamers specific for sulfadimethoxine, kanamycin, and ampicillin were conjugated with Cyanine 3 (Cy3), 6-Carboxyfluorescein (FAM), and Cyanine 5 (Cy5), respectively, and graphene oxide (GO) was adopted to quench the fluorescence of the three different fluorophores with the efficiencies of 94.36%, 93.94%, and 96.97% for Cy3, FAM, and Cy5, respectively. CESA method was used for sensitive detection, resulting in a 2.1-fold increased signal compared to those of unamplified method. The aptasensor rapidly detected antibiotics in solution with limit of detection of 1.997, 2.664, and 2.337 ng/mL for sulfadimethoxine, kanamycin, and ampicillin, respectively. In addition, antibiotics dissolved in milk were efficiently detected with similar sensitivities. Multiplexed detection test proved that the fluorescently modified aptamers could work separately from each other. The results indicate that the aptasensor offers high specificity for each antibiotic and enables simultaneous and multicolor sensing for rapid screening of multiple antibiotics at the same time.
Collapse
|
36
|
Ni R, Wang Y, Wei X, Chen J, Xu P, Xu W, Meng J, Zhou Y. Ionic liquid modified molybdenum disulfide and reduced graphene oxide magnetic nanocomposite for the magnetic separation of dye from aqueous solution. Anal Chim Acta 2019; 1054:47-58. [DOI: 10.1016/j.aca.2018.12.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 12/17/2022]
|
37
|
Interaction of graphene oxide with cell culture medium: Evaluating the fetal bovine serum protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:363-377. [PMID: 30948072 DOI: 10.1016/j.msec.2019.02.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/07/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022]
Abstract
The interaction of single-layer graphene oxide (SLGO) and multi-layered graphene oxide (MLGO) with a cell culture medium (i.e. DMEM) was studied by evaluating fetal bovine serum (FBS) protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions. SLGO and MLGO exhibited different colloidal behavior in the culture medium, which was visualized by cryogenic transmission electron microscopy in situ analysis. Exploring proteomics and bioinformatics tools, 394 and 290 proteins were identified on the SLGO and MLGO hard corona compositions, respectively. From this amount, 115 proteins were exclusively detected on the SLGO and merely 11 on MLGO. SLGO enriched FBS proteins involved in metabolic processes and signal transduction, while MLGO enriched proteins involved in cellular development/structure, and lipid transport/metabolic processes. Such a distinct corona profile is due to differences on surface chemistry, aggregation behavior and the surface area of GO materials. Hydrophilic interactions were found to play a greater role in protein adsorption by MLGO than SLGO. Our results point out implications for in vitro studies of graphene oxide materials concerning the effective dose delivered to cells and corona bioactivity. Finally, we demonstrated the importance of integrating conventional and modern techniques thoroughly to understand the GO-FBS complexes towards more precise, reliable and advanced in vitro nanotoxicity assessment.
Collapse
|
38
|
A chemiluminescence biosensor for lysozyme detection based on aptamers and hemin/G-quadruplex DNAzyme modified sandwich-rod carbon fiber composite. Talanta 2019; 200:57-66. [PMID: 31036225 DOI: 10.1016/j.talanta.2019.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/19/2019] [Accepted: 03/02/2019] [Indexed: 01/16/2023]
Abstract
In our work, aptamers and hemin/G-quadruplex DNAzyme modified sandwich-rod graphene quantum dots @ graphene oxide @ carbon fiber composite (DNAzyme/L-Apt/GQDs@GO@CF) was successfully prepared for sensitive and selective chemiluminescence (CL) detection of lysozyme (LZM). Initially, GQDs@GO@CF was successfully prepared and characterized. Lysozyme aptamers (L-Apt) as a recognition element and hemin/G-quadruplex DNAzyme (DNAzyme) as a catalyst of luminal - H2O2 were modified on the surface of GQDs@GO@CF, sequentially. The immobilization properties of GQDs@GO@CF to L-Apt and the adsorption properties of L-Apt/GQDs@GO@CF to DNAzyme were also researched, respectively. Then, the modified sandwich-rod carbon fiber composite was applied to the construction of CL biosensor for LZM detection. When LZM existed, DNAzyme would be released from the surface of L-Apt/GQDs@GO@CF and catalyzed the reaction of luminal - H2O2. Under optimized conditions, the CL biosensor for LZM detection showed wide linear range of 2.64 × 10-10 to 6.6 × 10-8 g/L and low detection limit of 1.25 × 10-11 g/L (3δ). Finally, the CL biosensor was successfully used for LZM detection in human urine samples and illustrated the potential application in pratical samples.
Collapse
|
39
|
Barreca D, Neri G, Scala A, Fazio E, Gentile D, Rescifina A, Piperno A. Covalently immobilized catalase on functionalized graphene: effect on the activity, immobilization efficiency, and tetramer stability. Biomater Sci 2019; 6:3231-3240. [PMID: 30379150 DOI: 10.1039/c8bm00850g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herein we describe, for the first time, the covalent immobilization of catalase (CAT) on functionalized graphene surfaces (G) by exploiting the azalactone chemistry for the post-functionalization of graphene-based materials. The structure, morphology and chemical composition of catalase immobilized on graphene (CAT-G) have been investigated by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). The biological responses such as catalytic activity, cellular uptake, internalization pathway, and the ability to protect lymphocytes from oxidative stress induced by H2O2 together with the unforeseen ability to increase the lifetime of the free catalase in solution have been deeply investigated. From our studies, it is evident that the behavior of CAT covalently linked to modified graphene depends on the CAT/G ratio that affects the secondary structure and the tetramer stability of CAT. In order to support the experimental results, we have also investigated the behaviors of two appropriately designed model systems, named CAT-surfer and CAT-skier, by molecular dynamics calculations. These in silico results parallel the experimental results proving our hypothesis that the CAT-surfer maintains the conformational flexibility needed for a biological response, whereas CAT-skier favors the dissociation of the tetramer subunits, involving the inactivation of the enzyme.
Collapse
Affiliation(s)
- Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Feng Y, Hu X, Zhao F, Zeng B. Fe 3 O 4 /reduced graphene oxide-carbon nanotubes composite for the magnetic solid-phase extraction and HPLC determination of sulfonamides in milk. J Sep Sci 2019; 42:1058-1066. [PMID: 30623575 DOI: 10.1002/jssc.201801177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 01/01/2023]
Abstract
A novel magnetic adsorbent Fe3 O4 /reduced graphene oxide-carbon nanotubes, was prepared by one-pot solvothermal synthesis method. It was characterized by scanning electron microscopy, X-ray powder diffraction and vibrating sample magnetometry. The diameter of Fe3 O4 microparticles was about 350 nm, which were covered by carbon nanotubes and reduced graphene oxide sheets, while carbon nanotubes inserted between the reduced graphene oxide sheets effectively prevented their aggregation. The composite had large surface area and good magnetic property, suiting for magnetic solid-phase extraction and the determination of sulfonamides, by coupling with high-performance liquid chromatography. Under the optimized conditions (including extraction time, amount of adsorbent, solution pH, ionic strength and desorption conditions), a good linear was achieved in the concentration range of 5-500 μg/L and the low limits of detection and low limits of quantification were 0.35-1.32 and 1.16-4.40 μg/L, respectively. The enrichment factors were estimated to be 24.72 to 30.15 fold. The proposed method was applied for the detection of sulfonamides in milk sample and the recoveries were 88.4-105.9%, with relative standard deviations of 0.74-5.38%.
Collapse
Affiliation(s)
- Yingying Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Hubei Province, Wuhan, P. R. China
| | - Xiaopeng Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Hubei Province, Wuhan, P. R. China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Hubei Province, Wuhan, P. R. China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Hubei Province, Wuhan, P. R. China
| |
Collapse
|
41
|
Metal affinity-carboxymethyl cellulose functionalized magnetic graphene composite for highly selective isolation of histidine-rich proteins. Talanta 2018; 195:381-389. [PMID: 30625558 DOI: 10.1016/j.talanta.2018.11.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
A metal affinity-carboxymethyl cellulose functionalized magnetic graphene, namely MGCI-Cu composite, was prepared by successive modifications of graphene oxide nanosheets with magnetic nanoparticles, carboxymethyl cellulose (CMC), iminodiacetic acid (IDA) and then chelated with copper ions. The successful modifications of the graphene surface were demonstrated by various characterizations, and a high density of 6.17 μmol m-2 for metal affinity groups was obtained. The composite exhibited high adsorption selectivity toward histidine-rich proteins. The adsorption was governed by strong metal affinity binding force between hisitidine residues of proteins and immobilized Cu2+ ions of MGCI-Cu composite. In particular, highly selective isolation of hemoglobin (Hb) was achieved in 0.2 mol L-1 phosphate buffer at pH 8. The adsorption capacity of Hb significantly increased to 769 mg g-1 in comparison to that of 435 mg g-1 on metal affinity modified magnetic graphene composite (MGI-Cu) without CMC modification. The adsorbed Hb molecules were recovered with a carbonate buffer (0.2 mol L-1 pH 10) containing 0.5 mol L-1 imidazole. MGCI-Cu composite displayed favorable reusability for at least four times after regeneration of the composite by edetic acid (EDTA) and Cu2+ solution. The practical applications demonstrated that MGCI-Cu composite could highly selectively isolate Hb from human whole blood and polyhistidine-tagged recombinant protein from Escherichia coli (E. coli) lysate.
Collapse
|
42
|
Rapid Determination of Sulfonamides in Chicken Muscle and Milk Using Efficient Graphene Oxide-Based Monolith On-Line Solid-Phase Extraction Coupled with Liquid Chromatography–Tandem Mass Spectrometry. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1358-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Ehtesabi H, Bagheri Z, Eskandari F, Ahadian MM. Molecular interaction between three-dimensional graphene aerogel and enzyme solution: Effect on enzyme structure and function. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release 2018; 286:64-73. [DOI: 10.1016/j.jconrel.2018.07.034] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
|
45
|
Dispersive solid-phase extraction with tannic acid functionalized graphene adsorbent for the preconcentration of trace beryllium from water and street dust samples. Talanta 2018; 190:397-402. [PMID: 30172525 DOI: 10.1016/j.talanta.2018.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
In this study, tannic acid functionalized graphene as an adsorbent was synthesized and characterized by X-ray diffraction and scanning electron microscopy. It was used for the first time as an adsorbent for vortex-assisted dispersive solid phase extraction of trace Be(II) from water and street dust samples. The determination of beryllium was made by graphite furnace atomic absorption spectrometry. The effect of different parameters (pH, contact times, centrifuge rate and time, eluent type and volume, sample volume, and interfering ions) was investigated. The optimum pH was found to be 6. The adsorption and elution contact times were 3 min. The quantitative elution was carried out with 2 mL of 1.5 mol L-1 HCl. The preconcentration factor, detection limit and precision (as RSD%) of the method were found to be 125, 0.84 ng L-1, and 2.9%, respectively. The adsorbent showed good selectivity for Be(II) against interfering cations and anions and it was reusable up to 80 cycles. The accuracy of the developed method was confirmed by analyzing certified reference material (TMDA-70 Lake water) and by spiking tap water, wastewater, well water, and street dust samples.
Collapse
|
46
|
Chen L, Liu B, Xu Z, Liu J. NiO Nanoparticles for Exceptionally Stable DNA Adsorption and Its Extraction from Biological Fluids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9314-9321. [PMID: 30001142 DOI: 10.1021/acs.langmuir.8b01743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Selective extraction of a small amount of nucleic acids from complex biological samples containing a high concentration of proteins is critical for bioanalytical chemistry. A number of previously published studies have focused on long, double-stranded DNA such as plasmid DNA. On the other hand, we are interested in short oligonucleotides. Nucleic acids have a negatively charged phosphate backbone that interacts with metal oxides strongly, and this may be used to distinguish them from proteins. In this work, a few metal oxide nanoparticles were screened, including NiO, CoO, ZnO, TiO2, CeO2, and Fe3O4 for DNA recovery. NiO had the highest DNA adsorption efficiency from mixtures containing bovine serum albumin or human blood serum. The adsorption of DNA by NiO was further characterized as a function of the pH, salt concentration, DNA length, and DNA sequence. The adsorption mechanism was studied by adding competing chemicals or denaturing agents. A striking observation was the extremely high adsorption affinity of NiO, much higher than that of the other tested oxides. Polyphosphate was the most effective agent for displacing adsorbed DNA, whereas simple inorganic phosphate was less effective. NiO was able to concentrate DNA from a serum mixture by 33- to 55-fold, depending on the serum concentration. NiO is thus a promising candidate for extracting DNA from biological samples.
Collapse
Affiliation(s)
- Lei Chen
- Research Center for Analytical Sciences , Northeastern University , Shenyang 110004 , China
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Zhangrun Xu
- Research Center for Analytical Sciences , Northeastern University , Shenyang 110004 , China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
47
|
Tunable composites prepared from graphene oxide and zeolitic imidazolate framework-8 for improved selective isolation of hemoglobin. Mikrochim Acta 2018; 185:361. [DOI: 10.1007/s00604-018-2904-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023]
|
48
|
Ye N, Wang X, Liu Q, Hu X. Covalent bonding of Schiff base network-1 as a stationary phase for capillary electrochromatography. Anal Chim Acta 2018; 1028:113-120. [PMID: 29884348 DOI: 10.1016/j.aca.2018.04.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 11/26/2022]
Abstract
Covalent organic frameworks (COFs), featuring low densities, high surface areas, and good thermal and chemical stabilities, are gradually attracting interest in the field of analytical chemistry. A type of microporous polymer network material named Schiff base network-1 (SNW-1) was introduced into a capillary column through covalent bonding. The obtained SNW-1-coated capillary column was characterized by thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Then, the SNW-1-coated capillary column was successfully utilized for the open-tubular capillary electrochromatography (OT-CEC) separation of sulfonamides, cephalosporins, amino acids and parabens. The fabricated capillary column showed good separation efficiency (Rs > 1.4), stability and reproducibility (relative standard deviation (RSD) < 5.88%). To the best of our knowledge, this is the first report of a covalent bonding strategy to bond an SNW material to a capillary column for OT-CEC.
Collapse
Affiliation(s)
- Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China.
| | - Xuan Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Qingye Liu
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Xiaoyu Hu
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| |
Collapse
|
49
|
Cheng Z, Du F, Qin Q, Sun L, Zeng Q, Ruan G, Li J. Graphene oxide composites for magnetic solid-phase extraction of trace cytokinins in plant samples followed by liquid chromatography-tandem mass spectrometry. J Sep Sci 2018; 41:2386-2392. [DOI: 10.1002/jssc.201701491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Zhenfang Cheng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials; College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials; College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| | - Qun Qin
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials; College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| | - Lingshun Sun
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials; College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| | - Qiulian Zeng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials; College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials; College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials; College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| |
Collapse
|
50
|
Hamid Y, Fat’Hi MR. A simple vortex-assisted graphene oxide nanosheets dispersive micro-solid phase extraction combined with high-performance liquid chromatography for UV-Vis detection of tramadol in biological samples. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1439960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yahya Hamid
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Fat’Hi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|