1
|
Terzapulo X, Kassenova A, Bukasov R. Immunoassays: Analytical and Clinical Performance, Challenges, and Perspectives of SERS Detection in Comparison with Fluorescent Spectroscopic Detection. Int J Mol Sci 2024; 25:2080. [PMID: 38396756 PMCID: PMC10889711 DOI: 10.3390/ijms25042080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Immunoassays (IAs) with fluorescence-based detection are already well-established commercialized biosensing methods, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA). Immunoassays with surface-enhanced Raman spectroscopy (SERS) detection have received significant attention from the research community for at least two decades, but so far they still lack a wide clinical commercial application. This review, unlike any other review that we have seen, performs a three-dimensional performance comparison of SERS IAs vs. fluorescence IAs. First, we compared the limit of detection (LOD) as a key performance parameter for 30 fluorescence and 30 SERS-based immunoassays reported in the literature. We also compared the clinical performances of a smaller number of available reports for SERS vs. fluorescence immunoassays (FIAs). We found that the median and geometric average LODs are about 1.5-2 orders of magnitude lower for SERS-based immunoassays in comparison to fluorescence-based immunoassays. For instance, the median LOD for SERS IA is 4.3 × 10-13 M, whereas for FIA, it is 1.5 × 10-11 M. However, there is no significant difference in average relative standard deviation (RSD)-both are about 5-6%. The analysis of sensitivity, selectivity, and accuracy reported for a limited number of the published clinical studies with SERS IA and FIA demonstrates an advantage of SERS IA over FIA, at least in terms of the median value for all three of those parameters. We discussed common and specific challenges to the performances of both SERS IA and FIA, while proposing some solutions to mitigate those challenges for both techniques. These challenges include non-specific protein binding, non-specific interactions in the immunoassays, sometimes insufficient reproducibility, relatively long assay times, photobleaching, etc. Overall, this review may be useful for a large number of researchers who would like to use immunoassays, but particularly for those who would like to make improvements and move forward in both SERS-based IAs and fluorescence-based IAs.
Collapse
Affiliation(s)
| | | | - Rostislav Bukasov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Hou H, Liu L, Li Q, Wang J, Du B. A Cascade Enzyme System Integrating Peroxidase Mimic with Catalase for Linear Range Expansion of H 2 O 2 Assay: A Mechanism and Application Study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300444. [PMID: 36970785 DOI: 10.1002/smll.202300444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Peroxidase (POD) Nanozyme-based hydrogen peroxide (H2 O2 ) detection is popular, but hardly adapt to high concentration of H2 O2 owing to narrow linear range (LR) and low LR maximum. Here, a solution of combining POD and catalase (CAT) is raised to expand the LR of H2 O2 assay via decomposing part of H2 O2 . As a proof of concept, a cascade enzyme system (rGRC) is constructed by integrating ruthenium nanoparticles (RuNPs), CAT and graphene together. The rGRC-based sensor does perform an expanded LR and higher LR maximum for H2 O2 detection. Meanwhile, it is confirmed that LR expansion is closely associated with apparent Km of rGRC, which is determined by the relative enzyme activity between CAT and POD both in theory and in experiment. At last, rGRC is successfully used to detect high concentration of H2 O2 (up to 10 mm) in contact lens care solution, which performs higher assay accuracy (close to 100% recovery at 10 mm of H2 O2 ) than traditional POD nanozymes. This study brings up a kind of POD/CAT cascade enzyme system and provides a new concept for accurate and facile H2 O2 detection. Additionally, it replenishes a new enzyme-substrate model of achieving the same pattern with competitive inhibition in enzyme reactions.
Collapse
Affiliation(s)
- Haiwei Hou
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lan Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qiuyue Li
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jianming Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Baoji Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
3
|
Ultrasensitive detection of pathogenic bacteria by primer exchange reaction coupled with PGM. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Song M, Wu Q, Liu B, Li P, Jiang L, Wang Y, Dong S, Xiong Y, Hammock BD, Zhang C. Using a quantum dot bead-based lateral flow immunoassay to broadly detect the adulteration of PDE-5 inhibitors in functional foods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2586-2595. [PMID: 35723455 PMCID: PMC11257028 DOI: 10.1039/d2ay00580h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a designed hapten possessing the classic structure of PDE-5 inhibitors was synthesized. A monoclonal antibody (mAb) with broad recognition for six PDE-5 inhibitors was further produced. For the determination of lodenafil, methisosildenafil, mirodenafil, udenafil and tadalafil, the limit of detection (LOD) and IC50 ranged from 1.01 to 26.91 ng mL-1 and 12.75 to 278 ng mL-1, respectively. Thereafter, a quantum dot bead-based lateral flow immunoassay (QB-LFIA) was developed, which improved the LOD and IC50 to 0.32-6.52 ng mL-1 and 7.45-133.8 ng mL-1, respectively. Method validation was conducted using honey and capsule samples spiked with PDE-5 inhibitors, and the recoveries of the intra- and inter-assays ranged from 81.01% to 108.16%, with coefficients of variation below 12.71%. In addition, the validity and the consistency have been confirmed with a comparison between QB-LFIA and HPLC-MS/MS (R2 = 0.9957). Furthermore, the developed QB-LFIA was employed for the inspection of real products, and several samples were found to be adulterated with lodenafil and methisosildenafil.
Collapse
Affiliation(s)
- Mingshu Song
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China.
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| | - Qin Wu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| | - Beibei Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| | - Pan Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| | - Lan Jiang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| | - Yulong Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| | - Sa Dong
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China.
| | - Bruce D Hammock
- Department of Entomology, Nematology and UCD Comprehensive Cancer Center, University of California Davis, California, 95616, USA
| | - Cunzheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China.
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
- School of Biology and Food Engineering, Jiangsu University, Zhenjiang, 212000, P. R. China
| |
Collapse
|
5
|
Sample-in-answer-out colorimetric detection of Salmonella typhimurium using non-enzymatic cascade amplification. Anal Chim Acta 2022; 1218:339850. [DOI: 10.1016/j.aca.2022.339850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 01/03/2023]
|
6
|
Bai Z, Xu X, Wang C, Wang T, Sun C, Liu S, Li D. A Comprehensive Review of Detection Methods for Escherichia coli O157:H7. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
|
8
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
9
|
Xu L, Bai X, Bhunia AK. Current State of Development of Biosensors and Their Application in Foodborne Pathogen Detection. J Food Prot 2021; 84:1213-1227. [PMID: 33710346 DOI: 10.4315/jfp-20-464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/11/2021] [Indexed: 01/16/2023]
Abstract
ABSTRACT Foodborne disease outbreaks continue to be a major public health and food safety concern. Testing products promptly can protect consumers from foodborne diseases by ensuring the safety of food before retail distribution. Fast, sensitive, and accurate detection tools are in great demand. Therefore, various approaches have been explored recently to find a more effective way to incorporate antibodies, oligonucleotides, phages, and mammalian cells as signal transducers and analyte recognition probes on biosensor platforms. The ultimate goal is to achieve high specificity and low detection limits (1 to 100 bacterial cells or piconanogram concentrations of toxins). Advancements in mammalian cell-based and bacteriophage-based sensors have produced sensors that detect low levels of pathogens and differentiate live from dead cells. Combinations of biotechnology platforms have increased the practical utility and application of biosensors for detection of foodborne pathogens. However, further rigorous testing of biosensors with complex food matrices is needed to ensure the utility of these sensors for point-of-care needs and outbreak investigations. HIGHLIGHTS
Collapse
Affiliation(s)
- Luping Xu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA
| | - Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
10
|
Yang T, Wang Z, Song Y, Yang X, Chen S, Fu S, Qin X, Zhang W, Man C, Jiang Y. A novel smartphone-based colorimetric aptasensor for on-site detection of Escherichia coli O157:H7 in milk. J Dairy Sci 2021; 104:8506-8516. [PMID: 34053767 DOI: 10.3168/jds.2020-19905] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/16/2021] [Indexed: 01/25/2023]
Abstract
Effective testing tools for Escherichia coli O157:H7 can prevent outbreaks of foodborne illness. In this paper, a smartphone-based colorimetric aptasensor was developed using functionalized gold nanoparticles (GNP) and multi-walled carbon nanotubes (MWCNT) for monitoring E. coli O157:H7 in milk. The maximum absorption peak of GNP bonded with aptamer (Apt) generated evident transformation from 518 to 524 nm. The excess GNP-Apt was removed by functionalized MWCNT magnetized with carbonyl iron powder (CIP) and hybridized with a DNA probe, whereas the GNP-Apt immobilized on E. coli O157:H7 remained in the system. In the presence of a high-salt solution, the GNP-Apt that captured E. coli O157:H7 remained red, but the free GNP-Apt aggregated and appeared blue. The chromogenic results were analyzed by a smartphone-based colorimetric device that was fabricated using acrylic plates, a light-emitting diode, and a mobile power pack. To our knowledge, this was the first attempt to use a smartphone-based colorimetric aptasensor employing the capture of GNP-Apt coupled with separation of MWCNT@CIP probe to detect E. coli O157:H7. The aptasensor exhibited good reproducibility and no cross-reaction for other bacteria. A concentration of 8.43 × 103 cfu/mL of E. coli O157:H7 could be tested in pure culture, and 5.24 × 102 cfu/mL of E. coli O157:H7 could be detected in artificially contaminated milk after 1 h of incubation. Therefore, the smartphone-based colorimetric aptasensor was an efficient tool for the detection of E. coli O157:H7 in milk.
Collapse
Affiliation(s)
- Tao Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Zhenghui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Yang Song
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Sihan Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
11
|
Zhao Y, Li Y, Zhang P, Yan Z, Zhou Y, Du Y, Qu C, Song Y, Zhou D, Qu S, Yang R. Cell-based fluorescent microsphere incorporated with carbon dots as a sensitive immunosensor for the rapid detection of Escherichia coli O157 in milk. Biosens Bioelectron 2021; 179:113057. [DOI: 10.1016/j.bios.2021.113057] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/06/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
|
12
|
Ren Y, Gao P, Song Y, Yang X, Yang T, Chen S, Fu S, Qin X, Shao M, Man C, Jiang Y. An aptamer-exonuclease III (Exo III)-assisted amplification-based lateral flow assay for sensitive detection of Escherichia coli O157:H7 in milk. J Dairy Sci 2021; 104:8517-8529. [PMID: 33896635 DOI: 10.3168/jds.2020-19939] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/22/2021] [Indexed: 01/02/2023]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7), one of the most widespread foodborne pathogens, can cause a series of diseases and even lead to death. In this study, a highly sensitive method was developed by combining aptamer-exonuclease III (Exo III)-assisted amplification with lateral flow assay (LFA) based on gold nanoparticles (AuNP). The compound of single-stranded (ss) DNA-anti-E. coli O157:H7 aptamer (ssDNA-aptamer) was formed by hybridization between designed target ssDNA and aptamer. When E. coli O157:H7 was present, target bacteria were bound with the aptamer, and the free target ssDNA was hybridized with the probes of the designed hairpin (HP) structure. Exo III digests the 3' double-stranded blunt end of the complex and releases the enzyme product. Because the remaining sequence of the HP of the designed enzyme product was the same as the target ssDNA sequence, the target ssDNA could be amplified. Finally, the enhanced target ssDNA was combined with AuNP-LFA to achieve visual detection of E. coli O157:H7. The quantitative ability of this platform for E. coli O157:H7 was 7.6 × 101 cfu/mL in pure culture, and the detection limit in milk was 8.35 × 102 cfu/mL. This LFA was highly specific to E. coli O157:H7, and the time for detection of E. coli O157:H7 in milk was 4 h. Hence, this system has important application prospects in the detection of pathogenic bacteria in dairy products.
Collapse
Affiliation(s)
- Yuwei Ren
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Pingping Gao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Yang Song
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Tao Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Sihan Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Meili Shao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
13
|
Du H, Wang X, Yang Q, Wu W. Quantum dot: Lightning invisible foodborne pathogens. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Aptamer-quantum dots and teicoplanin-gold nanoparticles constructed FRET sensor for sensitive detection of Staphylococcus aureus. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Hernández LA, Martín F, Berrios E, Riveros G, González DM, González E, Lizama S, Hernández F. Novel electrosynthesis of CdS/FeS nanocomposite-modified poly(o-phenylenediamine) with views to their use as a biosensor for Escherichia coli. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
16
|
Development of Cu(II)/Cu(I)-induced quantum dot-mediated fluorescence immunoassay for the sensitive determination of ethyl carbamate. Mikrochim Acta 2020; 187:533. [DOI: 10.1007/s00604-020-04502-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
|
17
|
Hu X, Li Y, Xu Y, Gan Z, Zou X, Shi J, Huang X, Li Z, Li Y. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk. Food Chem 2020; 339:127775. [PMID: 32916400 DOI: 10.1016/j.foodchem.2020.127775] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 07/18/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022]
Abstract
Carbon quantum dots (CQDs) prepared by a green one-step approach was used for sensitive and selective assay of Escherichia coli O157: H7 (E. coli). CQDs was synthesized from orange peel as a carbon source via a microwave-assisted method. The CQDs displayed strong green fluorescence under excitation wavelength of 420 nm. A fluorescent probe (CQDs-MNPs) for E. coli was fabricated based on CQDs labeled with aptamer (aptamer-CQDs) and magnetic nanoparticles labeled with complementary DNA (cDNA-MNPs). Fluorescent intensity of the CQDs-MNPs was decreased with addition of E. coli. The linearity between fluorescent intensity and E. coli concentration was used for developing a fluorescent method with detecting range of 500-106 CFU/mL and detection limit of 487 CFU/mL. Milk samples contaminated by E. coli were analyzed by this method, and the results agreed with that achieved by plate-counting methods. This fluorescent probe exhibits great potential in guaranteeing food quality and safety.
Collapse
Affiliation(s)
- Xuetao Hu
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanxiao Li
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yiwei Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ziyu Gan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yahui Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
18
|
Xue L, Huang F, Hao L, Cai G, Zheng L, Li Y, Lin J. A sensitive immunoassay for simultaneous detection of foodborne pathogens using MnO2 nanoflowers-assisted loading and release of quantum dots. Food Chem 2020; 322:126719. [DOI: 10.1016/j.foodchem.2020.126719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
|
19
|
Yang T, Yang X, Guo X, Fu S, Zheng J, Chen S, Qin X, Wang Z, Zhang D, Man C, Jiang Y. A novel fluorometric aptasensor based on carbon nanocomposite for sensitive detection of Escherichia coli O157:H7 in milk. J Dairy Sci 2020; 103:7879-7889. [PMID: 32600757 DOI: 10.3168/jds.2020-18344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Escherichia coli O157:H7 is an extremely serious foodborne pathogen accounting for a vast number of hospitalizations. In this system, a simple, rapid, and safe compound method was developed based on carbonyl iron powder (CIP) and multiwalled carbon nanotubes (MWCNT). Then, the CIP@MWCNT-based aptasensor was constructed by strong π-stacking between nanocomposite and aptamer, single-strand DNA, causing fluorescent quenching of the dye-labeled aptamer. The restoration of dye fluorescence could be achieved when aptamer came off the surface of the CIP@MWCNT nanocomposite due to the presence of target bacteria. To the best of our knowledge, this fabrication of magnetic carbon nanotubes without irritating and corrosive reagents is described for the first time. The sensing platform was also an improvement on the conventional formation of the aptasensor between carbon materials and DNA aptamer. The nanocomposite was verified by diverse characterization of zeta potential, Fourier-transform infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray analysis. The CIP@MWCNT-based aptasensor was an effective nanoplatform for quantitative detection of E. coli O157:H7, and was measured to have high specificity, good reproducibility, and strong stability. The aptasensor's capacity to quantify E. coli O157:H7 was as low as 7.15 × 103 cfu/mL in pure culture. The detection limit of E. coli O157:H7 was 3.15 × 102 cfu/mL in contaminated milk after 1 h of pre-incubation. Hence, the developed assay is a new possibility for effective synthesis of nanocomposites and sensitive tests of foodborne pathogens in the dairy industry.
Collapse
Affiliation(s)
- Tao Yang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xinyan Yang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xiaojie Guo
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Jiapeng Zheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Sihan Chen
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xue Qin
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Zhenghui Wang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Dongyan Zhang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
20
|
Speranskaya ES, Drozd DD, Pidenko PS, Goryacheva IY. Enzyme modulation of quantum dot luminescence: Application in bioanalysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Razmi N, Hasanzadeh M, Willander M, Nur O. Recent Progress on the Electrochemical Biosensing of Escherichia coli O157:H7: Material and Methods Overview. BIOSENSORS 2020; 10:E54. [PMID: 32443629 PMCID: PMC7277213 DOI: 10.3390/bios10050054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/21/2023]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is a pathogenic strain of Escherichia coli which has issued as a public health threat because of fatal contamination of food and water. Therefore, accurate detection of pathogenic E. coli is important in environmental and food quality monitoring. In spite of their advantages and high acceptance, culture-based methods, enzyme-linked immunosorbent assays (ELISAs), polymerase chain reaction (PCR), flow cytometry, ATP bioluminescence, and solid-phase cytometry have various drawbacks, including being time-consuming, requiring trained technicians and/or specific equipment, and producing biological waste. Therefore, there is necessity for affordable, rapid, and simple approaches. Electrochemical biosensors have shown great promise for rapid food- and water-borne pathogen detection. Over the last decade, various attempts have been made to develop techniques for the rapid quantification of E. coli O157:H7. This review covers the importance of E. coli O157:H7 and recent progress (from 2015 to 2020) in the development of the sensitivity and selectivity of electrochemical sensors developed for E. coli O157:H7 using different nanomaterials, labels, and electrochemical transducers.
Collapse
Affiliation(s)
- Nasrin Razmi
- Physics and Electronics, Department of Sciences and Technology, Linköping University, SE-601 74 Norrköping, Sweden;
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran;
| | - Magnus Willander
- Physics and Electronics, Department of Sciences and Technology, Linköping University, SE-601 74 Norrköping, Sweden;
| | - Omer Nur
- Physics and Electronics, Department of Sciences and Technology, Linköping University, SE-601 74 Norrköping, Sweden;
| |
Collapse
|
22
|
G-quadruplex-based assay combined with aptamer and gold nanoparticles for Escherichia coli K88 determination. Mikrochim Acta 2020; 187:308. [PMID: 32356133 DOI: 10.1007/s00604-020-04291-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
A colorimetric method was developed using G-quadruplex and gold nanoparticles (AuNPs) for determination of Escherichia coli K88 (ETEC K88). It was composed of two modules: (1) an aptamer as biorecognizing element and (2) a capturing DNA (modified with AuNPs at 5') as a transducer. In the absence of target bacteria, the aptamer can form stable double strands with capturing DNA, preventing the binding of capturing DNA to the G-quadruplex. However, the double strands of capturing DNA and aptamer are untied due to the stronger binding of aptamers to bacteria in the presence of target bacteria. As a result, the G-quadruplex binds to capture DNA and leads to the aggregation and color change of AuNPs, which can be monitored by a spectrophotometer or visualization. The quantitative determination was achieved by monitoring the optical density change of AuNPs solution at 524 nm after target addition. Under optimal conditions, the method has a low detection limit (1.35 × 102 CFU mL-1) and a linear response in the range 102 to 106 CFU mL-1. Graphical abstract The manuscripts describe a colorimetric method for the detection of ETEC K88 by using intermolecular G-quadruplex to induce the agglomeration of gold nanoparticles, which can be directly used to determine the presence of bacteria with our naked eyes.
Collapse
|
23
|
Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens. SENSORS 2020; 20:s20071966. [PMID: 32244581 PMCID: PMC7181077 DOI: 10.3390/s20071966] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
The intake of microbial-contaminated food poses severe health issues due to the outbreaks of stern food-borne diseases. Therefore, there is a need for precise detection and identification of pathogenic microbes and toxins in food to prevent these concerns. Thus, understanding the concept of biosensing has enabled researchers to develop nanobiosensors with different nanomaterials and composites to improve the sensitivity as well as the specificity of pathogen detection. The application of nanomaterials has enabled researchers to use advanced technologies in biosensors for the transfer of signals to enhance their efficiency and sensitivity. Nanomaterials like carbon nanotubes, magnetic and gold, dendrimers, graphene nanomaterials and quantum dots are predominantly used for developing biosensors with improved specificity and sensitivity of detection due to their exclusive chemical, magnetic, mechanical, optical and physical properties. All nanoparticles and new composites used in biosensors need to be classified and categorized for their enhanced performance, quick detection, and unobtrusive and effective use in foodborne analysis. Hence, this review intends to summarize the different sensing methods used in foodborne pathogen detection, their design, working principle and advances in sensing systems.
Collapse
|
24
|
Jiang H, Yang J, Jiang D, Sun X. An FcεRI-IgE-based genetically encoded microfluidic cell sensor for fast Gram-negative bacterial screening in food samples. Analyst 2020; 145:2297-2304. [PMID: 32016182 DOI: 10.1039/c9an02289a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An FcεRI-IgE-based genetically encoded microfluidic cell sensor was constructed for fast Gram-negative bacterial screening in food samples. CD14-Fcε IgE, produced by the gene engineered antibodies (GEAs) technology, was used for the recognition of the target bacteria or lipopolysaccharide (LPS). Stable cell lines expressing GCaMP6s, a genetically encoded indicator of calcium flux, were first established for monitoring mast cell activation and improving detection sensitivity. The microfluidic system was designed to improve automation and control the reaction time. Once Gram-negative bacteria bound to the CD14-Fcε IgE on the RBL-2H3 cell surface, RBL-2H3 cell receptor (FcεRI)-induced Ca2+ signaling pathway was immediately activated to release Ca2+. The elevated intracellular Ca2+ triggers GCaMP6s for reporting the presence of Gram-negative bacteria. The developed biosensor was able to detect 80 CFU mL-1 Gram-negative bacteria within 2.5 min in pure culture samples. The biosensor was used to detect Gram-negative bacteria in pork samples. With its short screening time and easy operation, the proposed biosensor shows promise in future applications of foodborne pathogen testing in 1 h to 1 day.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China. and Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, PR China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, PR China
| | - Donglei Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing, Jiangsu 210023, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
25
|
Fu J, Zhou Y, Huang X, Zhang W, Wu Y, Fang H, Zhang C, Xiong Y. Dramatically Enhanced Immunochromatographic Assay Using Cascade Signal Amplification for Ultrasensitive Detection of Escherichia coli O157:H7 in Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1118-1125. [PMID: 31895982 DOI: 10.1021/acs.jafc.9b07076] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The conventional colloidal gold immunochromatographic assay (AuNP-ICA) cannot meet the requirements for the rapid and sensitive detection of Escherichia coli (E. coli) O157:H7 because of its poor sensitivity. Herein, a novel two-step cascade signal amplification strategy that integrates in situ gold growth and nanozyme-mediated catalytic deposition was proposed to enhance the detection sensitivity of conventional AuNP-ICA dramatically. The enhanced strip displayed ultrahigh sensitivity in E. coli O157:H7 detection and had a detection limit of 1.25 × 101 CFU/mL, which is approximately 400-fold lower than that of traditional AuNP-ICA (5 × 103 CFU/mL). The amplified strip had no background signal in the T-line zone in the absence of E. coli O157:H7 even after one round of cascade signal amplification. The enhanced strip demonstrated excellent selectivity against E. coli O157:H7 with a negligible cross-reaction to nine other common pathogens. Intra-assays and interassays showed that the improved strip has acceptable accuracy and precision for determining E. coli O157:H7. The average recoveries in a real milk sample ranged from 87.33 to 112.15%, and the coefficients of variation were less than 10%. The enhanced strip also showed great potential in detecting a single E. coli O157:H7 cell in a 75 μL solution.
Collapse
Affiliation(s)
- Jinmei Fu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study , Nanchang University , Nanchang 330047 , P. R. China
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study , Nanchang University , Nanchang 330047 , P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study , Nanchang University , Nanchang 330047 , P. R. China
| | - Wenjing Zhang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study , Nanchang University , Nanchang 330047 , P. R. China
| | - Yuhao Wu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study , Nanchang University , Nanchang 330047 , P. R. China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study , Nanchang University , Nanchang 330047 , P. R. China
| | - Cunzheng Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| |
Collapse
|
26
|
Zhan S, Fang H, Fu J, Lai W, Leng Y, Huang X, Xiong Y. Gold Nanoflower-Enhanced Dynamic Light Scattering Immunosensor for the Ultrasensitive No-Wash Detection of Escherichia coli O157:H7 in Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9104-9111. [PMID: 31334655 DOI: 10.1021/acs.jafc.9b03400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gold nanoflowers (GNFs) exhibit stronger light scattering ability than gold nanospheres (GNSs) with the same diameter, thereby contributing to enhancing the sensitivity of the scattering-based sensing method. However, the application of GNFs in biosensors based on dynamic light scattering (DLS) has not been yet reported. Herein, we describe for the first time an improved no-wash immunosensor based on dynamic light scattering for the detection of Escherichia coli O157:H7 (E. coli O157:H7) in milk using GNFs for sensitive signal transduction. To achieve this goal, a thiolated amphiphilic carboxyl ligand was introduced to modify the GNF surface and improve solution stability and antibody functionalization. Several key factors that affect the detection sensitivity of our developed GNF_DLS immunosensor were systematically investigated. Under the optimal conditions, our proposed GNF_DLS immunosensor provided an excellent linear detection for E. coli O157:H7 within the range from 6 × 100 to 6 × 104 colony-forming units (CFU)/mL, with a limit of detection of 2.7 CFU/mL. Combined with our previously reported two-step large-volume immunomagnetic separation (IMS) method, the designed GNF_DLS immunosensor can sensitively, selectively, and accurately detect the presence of E. coli O157:H7 in pasteurized milk. The potential of our GNF_DLS method for monitoring the presence of a single bacterial cell in 1 mL of sample solution was also demonstrated. Overall, the developed GNF_DLS immunosensor can be used for the rapid and high-sensitivity determination of pathogenic bacteria and can be extended for the ultrasensitive no-wash detection of other trace analytes.
Collapse
|
27
|
Jia M, Liu Z, Wu C, Zhang Z, Ma L, Lu X, Mao Y, Zhang H. Detection of Escherichia coli O157:H7 and Salmonella enterica serotype Typhimurium based on cell elongation induced by beta-lactam antibiotics. Analyst 2019; 144:4505-4512. [PMID: 31225571 DOI: 10.1039/c9an00569b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pathogenic bacteria such as Shiga toxigenic Escherichia coli and Salmonella can cause severe food-borne diseases. Rapid and sensitive detection of these foodborne pathogens is essential to ensure food safety. In this study, a novel method based on cell elongation induced by beta-lactam antibiotics for direct microscopic counting of Gram-negative bacteria was established. Combined with the sample preparation steps of membrane filtration and magnetic separation, the detection of E. coli O157:H7 and Salmonella enterica serotype Typhimurium was achieved by direct optical microscopic counting of the number of elongated bacteria. The limit of detection of E. coli O157:H7 and S. typhimurium could reach 20 CFU mL-1. The recovery tests for E. coli O157:H7 and S. typhimurium in water and milk samples showed acceptable recovery values between 93.6% and 106.2%. This method is sensitive, cost effective, and rapid (<2 h) and shows great potential for the detection of Gram-negative pathogens in various environmental and food samples.
Collapse
Affiliation(s)
- Min Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Zhaochen Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Chuanchen Wu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Zhen Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Yifei Mao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
28
|
Xiong Y, Zhang K, Gao B, Wu Y, Huang X, Lai W, Xiong Y, Liu Y. Fluorescence immunoassay through histone-ds-poly(AT)-templated copper nanoparticles as signal transductors for the sensitive detection of Salmonella choleraesuis in milk. J Dairy Sci 2019; 102:6047-6055. [PMID: 31103295 DOI: 10.3168/jds.2019-16472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/19/2019] [Indexed: 11/19/2022]
Abstract
The rapid and sensitive detection of foodborne pathogens is one of the most important issues in food safety control. In this work, we developed a novel fluorescence immunoassay method for the sensitive detection of Salmonella choleraesuis. The method uses the fluorescent signals of histone-ds-poly(AT)-templated copper nanoparticles (His-pAT CuNP) as signal transducers and glucose oxidase as an alternative for horseradish peroxidase for the generation of hydrogen peroxide (H2O2) through the catalysis of glucose. The H2O2 is then further converted into hydroxyl radical (·OH) by Fenton reagents. Owing to the ultrahigh sensitivity of His-pAT CuNP synthesis toward ·OH, the proposed fluorescence immunoassay method exhibited excellent sensitivity for S. choleraesuis, with a limit of detection of 8.04 × 101 cfu/mL, which is 3 orders of magnitude lower than that of the tetramethylbenzidine-based traditional immunoassay. The reliability of the proposed method was evaluated by using spiked milk samples with S. choleraesuis concentration ranging from 8.8 × 101 to 8.8 × 104 cfu/mL. The average recoveries for the intra- and inter-assay ranged from 73.52 to 96.59% and from 66.99 to 98.24% with a coefficient of variation from 6.85 to 31.26% and 5.46 to 17.99%, respectively. These results indicated that the proposed fluorescence immunoassay possesses a great potential for ultra-sensitive detection of foodborne pathogens in food safety control.
Collapse
Affiliation(s)
- Ying Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Kangkang Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Bao Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Yunqing Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China.
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China.
| |
Collapse
|
29
|
Jia M, Liu J, Zhang J, Zhang H. An immunofiltration strip method based on the photothermal effect of gold nanoparticles for the detection of Escherichia coli O157:H7. Analyst 2019; 144:573-578. [PMID: 30427329 DOI: 10.1039/c8an01004h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An immunofiltration strip is a promising rapid and powerful tool for the routine monitoring of foodborne pathogenic bacteria. However, the strip assay is generally less sensitive than other immunological techniques. A novel immunofiltration strip method based on the photothermal effect of gold nanoparticles (GNPs) was developed for the sensitive, rapid, simple handheld and low-cost detection of Escherichia coli O157:H7. The photothermal effect of GNPs was used to achieve the amplification of signals to improve the sensitivity of the strip method. The thermal contrasts caused by the photothermal effect were proportional to the bacteria concentrations and yield an almost logarithmic relation. Under optimal conditions, the detection limit was 1.95 × 104 CFU mL-1, and the sensitivity was improved about ten times compared to that of the conventional visual strip method. In brief, the photothermal based immunofiltration strip could be used for the rapid and sensitive detection of other pathogens as a great potential food quality control technique.
Collapse
Affiliation(s)
- Min Jia
- College of Life Science, Shandong Normal University, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, Jinan, 250014, PR China.
| | | | | | | |
Collapse
|
30
|
Wang C, Xing K, Zhang G, Yuan M, Xu S, Liu D, Chen W, Peng J, Hu S, Lai WH. Novel ELISA based on fluorescent quenching of DNA-stabilized silver nanoclusters for detecting E. coli O157:H7. Food Chem 2019; 281:91-96. [DOI: 10.1016/j.foodchem.2018.12.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 12/29/2022]
|
31
|
Man Y, Jin X, Fu H, Pan L. A magnetic nanoparticle based immunoassay for alternariol monomethyl ether using hydrogen peroxide-mediated fluorescence quenching of CdTe quantum dots. Mikrochim Acta 2019; 186:221. [PMID: 30847631 DOI: 10.1007/s00604-019-3334-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/23/2019] [Indexed: 01/01/2023]
Abstract
The authors describe a fluorometric immunoassay for alternariol monomethyl ether (AME). It is making use of magnetic nanoparticles and quenching of the fluorescence of mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) by H2O2. Catalase (CAT) was labeled with AME as a competitive antigen to competitively bind to magnetic nanoparticles carrying monoclonal antibodies (mAbs) with free AME in samples. The effects of the concentration and pH value of buffer, the concentrations of H2O2 and CAT-AME, and the incubation time of H2O2 and MPA-CdTe QDs were optimized. Under optimal conditions and in combination with magnetic separation, the quenching of the fluorescence of the MPA-CdTe QDs (excitation at 310 nm, emission at 599 nm) can be used to quantify AME with a detection limit of 0.25 pg·mL-1 and the linear range from 0.25 to 7.5 pg·mL-1. The immunoassay also has a lower cross-reactivity to AME analogues. It was evaluated by analyzing fruit samples spiked with AME. The recoveries from spiked fruits ranged from 87.2% to 92.0%. Graphical abstract Schematic presentation of a fluorometric immunoassay for alternariol monomethyl ether (AME) using magnetic nanoparticles (MNPs) for the rapid separation and purification. The method is based on quenching of the fluorescence of mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) by H2O2 for the fluorescence signal output, and on the use of catalase (CAT) with its high catalytic activity.
Collapse
Affiliation(s)
- Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,Risk Assessment Laboratory for Agro-products (Beijing), Ministry of Agriculture, Beijing, 100097, China.,Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China
| | - Xinxin Jin
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,Risk Assessment Laboratory for Agro-products (Beijing), Ministry of Agriculture, Beijing, 100097, China.,Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China
| | - Hailong Fu
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,Risk Assessment Laboratory for Agro-products (Beijing), Ministry of Agriculture, Beijing, 100097, China.,Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China
| | - Ligang Pan
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,Risk Assessment Laboratory for Agro-products (Beijing), Ministry of Agriculture, Beijing, 100097, China. .,Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China.
| |
Collapse
|
32
|
Hao X, Yeh P, Qin Y, Jiang Y, Qiu Z, Li S, Le T, Cao X. Aptamer surface functionalization of microfluidic devices using dendrimers as multi-handled templates and its application in sensitive detections of foodborne pathogenic bacteria. Anal Chim Acta 2019; 1056:96-107. [PMID: 30797466 DOI: 10.1016/j.aca.2019.01.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
A microfluidic system that incorporates both dendrimers and aptamers to detect E. coli O157:H7 is developed. To achieve this, generation 7-polyamidoamine dendrimers were immobilized onto the detection surfaces of PDMS microfluidic channels; subsequently aptamers against E. coli O157:H7 were conjugated onto the microchannel surfaces via the immobilized dendrimers as templates. Surface modifications were characterized by FTIR, XPS, water contact angles, fluorescence microscopy and AFM to confirm the success of each surface modification steps. The efficacy of this simple microchannel in detection was investigated using E. coli O157:H7 spiked samples. Our results showed that this interesting approach significantly increased the amount of aptamers available on the microfluidic channel surfaces to capture E. coli O157:H7 cells to allow sensitive detection, which in turn resulted in detections of E. coli O157:H7 cells at a low limit of detection of 102 cells mL-1. The results also demonstrated that in comparison with the generation 4-polyamidoamine dendrimers (G4) modified microchannels, those modified with G7 showed enhanced detection signals, improved target capturing efficiencies, and at higher throughput. This simple whole cell detection design has not been reported in the literature and it is an interesting and effective approach to developing a sensitive and rapid detection platform for foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Xingkai Hao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Poying Yeh
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Yubo Qin
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Yuqian Jiang
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Zhenyu Qiu
- Nanchang Institute of Technology, 901 Yingxiong Road, Nanchang, Jiangxi, 330044, China
| | - Shuying Li
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Tao Le
- College of Life Science, Chongqing Normal University, Shapingba, Chongqing, 400047, China
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada; Ottawa-Carlton Institute of Biomedical Engineering, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
33
|
Zhang LJ, Xia L, Xie HY, Zhang ZL, Pang DW. Quantum Dot Based Biotracking and Biodetection. Anal Chem 2018; 91:532-547. [DOI: 10.1021/acs.analchem.8b04721] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Li-Juan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Li Xia
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| |
Collapse
|
34
|
A novel photoelectrochemical immunosensor for prion protein based on CdTe quantum dots and glucose oxidase. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Dual-mode fluorescent and colorimetric immunoassay for the ultrasensitive detection of alpha-fetoprotein in serum samples. Anal Chim Acta 2018; 1038:112-119. [PMID: 30278892 DOI: 10.1016/j.aca.2018.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022]
Abstract
We present a novel dual-mode fluorescent and colorimetric immunosensor based on conventional immunoassay platforms by utilizing a gold nanoflower (AuNF)-loaded fluorescein molecule (AuNF@Fluorescein) as signal output. The AuNFs were modified with thiolated carboxyl ligand, which consisted of a hydrophobic alkane chain as hydrophobic wallet for fluorescein encapsulation, a tetra (ethylene glycol) unit for biocompatibility and solubility, and a functional carboxyl group for the conjugation of biorecognition molecules for biosensing. The resultant AuNFs showed a high loading capacity of 3.74 × 106 fluorescein molecules per AuNF because of its flower-like shape with many complex branches. By adjusting the solution pH to 8.0, the fluorescein molecules can almost entirely be released from the hydrophobic wallet of AuNF@Fluorescein, which led to strong fluorescent-signal amplification. Under the optimal detection conditions, the proposed immunoassay based on fluorescent signal exhibited ultrahigh sensitivity for alpha-fetoprotein (AFP) detection, with a limit of detection (LOD) of 29 fg/mL. This value is approximately 9.3 × 103-fold lower than that of corresponding horseradish peroxidase (HRP)-based immunoassay (LOD = 270 pg/mL). The fluorescein molecule also had intrinsic peroxidase-like activity to catalyze 3,3',5,5'-tetramethylbenzidine oxidation with hydrogen peroxide for colorimetric signal. The proposed method with colorimetric mode further exhibited a sensitivity with a LOD of 17.7 pg/mL, which is about 15-fold lower than that of conventional HRP-based immunoassay. The recoveries of the proposed dual-mode immunoassay for AFP spiked serum samples ranged within 89.85%-100.0%, with the coefficient of variations ranging from 0.5% to 2.4%, indicating acceptable accuracy and precision for AFP quantitative detection. The reliability of the developed dual-mode immunoassay was further compared with a commercial chemiluminescence immunoassay kit by analyzing 20 clinical serum samples, showing that the two methods well agreed with each other, with high correlation coefficients of 0.997 and 0.986 based on recorded fluorescence and colorimetric signals, respectively. In summary, the proposed method was highly suitable for the ultrasensitive analysis of biomarkers or infectious diseases by fluorescence mode and can be used for routine clinical diagnosis by colorimetric mode.
Collapse
|
36
|
Amini B, Kamali M, Salouti M, Yaghmaei P. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:421-429. [PMID: 29649678 DOI: 10.1016/j.saa.2018.03.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50ngmL-1 with the limit detection of 9.899ngmL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108CFUmL-1 in real samples with a detection limit of 320CFUmL-1.
Collapse
Affiliation(s)
- Bahram Amini
- Department of Biology, Science and Research Branch (IAU), Islamic Azad University, Tehran, Iran
| | - Mehdi Kamali
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Salouti
- Department of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch (IAU), Islamic Azad University, Tehran, Iran
| |
Collapse
|
37
|
Gómez-Arribas LN, Benito-Peña E, Hurtado-Sánchez MDC, Moreno-Bondi MC. Biosensing Based on Nanoparticles for Food Allergens Detection. SENSORS 2018; 18:s18041087. [PMID: 29617319 PMCID: PMC5948517 DOI: 10.3390/s18041087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/16/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022]
Abstract
Food allergy is one of the major health threats for sensitized individuals all over the world and, over the years, the food industry has made significant efforts and investments to offer safe foods for allergic consumers. The analysis of the concentration of food allergen residues in processing equipment, in raw materials or in the final product, provides analytical information that can be used for risk assessment as well as to ensure that food-allergic consumers get accurate and useful information to make their food choices and purchasing decisions. The development of biosensors based on nanomaterials for applications in food analysis is a challenging area of growing interest in the last years. Research in this field requires the combined efforts of experts in very different areas including food chemistry, biotechnology or materials science. However, the outcome of such collaboration can be of significant impact on the food industry as well as for consumer’s safety. These nanobiosensing devices allow the rapid, selective, sensitive, cost-effective and, in some cases, in-field, online and real-time detection of a wide range of compounds, even in complex matrices. Moreover, they can also enable the design of novel allergen detection strategies. Herein we review the main advances in the use of nanoparticles for the development of biosensors and bioassays for allergen detection, in food samples, over the past few years. Research in this area is still in its infancy in comparison, for instance, to the application of nanobiosensors for clinical analysis. However, it will be of interest for the development of new technologies that reduce the gap between laboratory research and industrial applications.
Collapse
Affiliation(s)
- Lidia Nazaret Gómez-Arribas
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Elena Benito-Peña
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | | | - María Cruz Moreno-Bondi
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
38
|
Li R, Wang S, Wang Y, Yu K. Development of a novel methodology for in vivo quantification of N/O/S-containing polycyclic aromatic hydrocarbons located on the epidermis of mangrove roots using graphene quantum dots as a fluorescence quencher. MARINE POLLUTION BULLETIN 2018; 127:424-428. [PMID: 29475680 DOI: 10.1016/j.marpolbul.2017.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
A novel approach for in vivo determination of typical N/O/S-containing PAHs located on the epidermis of mangrove roots was developed using graphene quantum dots (GQDs) as a fluorescence quencher. The decreasing fluorescence intensity from GQDs was attributed to the amount of N/O/S-containing PAHs introduced onto the epidermis of mangrove roots. The linear ranges of the proposed method were 10.3-980ngg-1, 9.5-1350ngg-1 and 7.8-1200ngg-1 for DBF, DBT and CAR located on the epidermis of K. obovata roots, respectively. This method was also shown to be valid for quantifying the N/O/S-containing PAHs on the root epidermis in the presence of heavy metal (10mmolL-1) and dissolved organic matter (1mgL-1 C). Moreover, the death rates of epidermal cells were almost unchanged (p>0.05) after acquiring the fluorescence spectra, which is superior to the previously reported LITRF method with which the cell death rates increased to 42.6%.
Collapse
Affiliation(s)
- Ruilong Li
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Shaopeng Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Yinghui Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China.
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China.
| |
Collapse
|
39
|
Wu Y, Zeng L, Xiong Y, Leng Y, Wang H, Xiong Y. Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B. Talanta 2018; 181:258-264. [PMID: 29426510 DOI: 10.1016/j.talanta.2018.01.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/16/2022]
Abstract
Herein, we present a novel sandwich fluorescence enzyme linked immunosorbent assay (ELISA) for highly sensitive detection of Hepatitis B virus surface antigen (HBsAg) based on glucose oxidase (GOx)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (MPA-QDs). In this system, hydrogen peroxide (H2O2) sensitive MPA-QDs was used as a signal output, and glucose oxidase (GOx) was used as label which can generate H2O2 via catalytic oxidation of glucose. The proposed method showed dynamic linear detection of HBsAg both in the range of 47pgmL-1 ~ 380pgmL-1 and 0.75ngmL-1 ~ 12.12ngmL-1. The detection limit of the proposed fluorescence ELISA was 1.16pgmL-1, which was approximately 430-fold lower than that of horseradish peroxidase (HRP)-based conventional ELISA. The average recoveries for HBsAg-spiked serum samples ranged from 98.0% to 126.8% with the relative standard derivation below 10%, thus indicating acceptable precision and high reproducibility of the proposed fluorescence ELISA for HBsAg detection. Additionally, the developed method showed no false positive results analyzing 35 real HBsAg-negative serum samples, and exhibited excellent agreement (R2=0.9907) with a commercial time-resolved fluorescence immunoassay (TRFIA) kit for detecting 31 HBsAg-positive serum samples. In summary, the proposed method based on fluorescence quenching of H2O2 sensitive QDs is considerably to be an excellent biodetection platform with ultrahigh sensitivity, good accuracy and excellent reliability.
Collapse
Affiliation(s)
- Yunqing Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, PR China
| | - Lifeng Zeng
- The People's Hospital in Jiangxi Province, Nanchang 330006, PR China
| | - Ying Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, PR China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, PR China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
40
|
Novel immunochromatographic assay based on Eu (III)-doped polystyrene nanoparticle-linker-monoclonal antibody for sensitive detection of Escherichia coli O157:H7. Anal Chim Acta 2018; 998:52-59. [DOI: 10.1016/j.aca.2017.10.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/15/2017] [Accepted: 10/21/2017] [Indexed: 12/16/2022]
|
41
|
Cheng C, Yang L, Zhong M, Deng W, Tan Y, Xie Q, Yao S. Au nanocluster-embedded chitosan nanocapsules as labels for the ultrasensitive fluorescence immunoassay of Escherichia coli O157:H7. Analyst 2018; 143:4067-4073. [DOI: 10.1039/c8an00987b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultrasensitive fluorescence immunoassay of Escherichia coli O157:H7 is described using Au nanocluster-embedded chitosan nanocapsules as labels.
Collapse
Affiliation(s)
- Chang Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Lu Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Miao Zhong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| |
Collapse
|
42
|
Cheung SF, Yee MF, Le NK, Gomes EA, Afrasiabi Z, Kamei DT. A Combined Aqueous Two-Phase System and Spot-Test Platform for the Rapid Detection of Escherichia coli O157:H7 in Milk. SLAS Technol 2017; 23:57-63. [DOI: 10.1177/2472630317731892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Foodborne illnesses are a public health concern in the United States and worldwide. Recent outbreaks of Escherichia coli O157:H7 have brought to light the need for improved ways to detect foodborne pathogens and minimize serious outbreaks. Unfortunately, current methods for the detection of foodborne pathogens are time intensive and complex. In this study, we designed a spot immunoassay that uses a UCON-potassium phosphate salt aqueous two-phase system (ATPS) for the preconcentration of O157:H7. This platform was tested with samples of O157:H7 spiked in phosphate-buffered saline and milk. The ATPS was found to improve the detection limit of the spot test, yielding detection at 106 cfu/mL within 30 min. This is the first known application of ATPSs to spot immunoassays. Moreover, detection was successfully achieved without upstream processing or dilution of the sample prior to testing, thereby further simplifying the detection process. This technology’s ease of use, sensitivity, and short time to result highlight its potential to advance the spot test as a viable diagnostic tool for foodborne pathogens.
Collapse
Affiliation(s)
- Sherine F. Cheung
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Matthew F. Yee
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Nguyen K. Le
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Elizabeth A. Gomes
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Zahra Afrasiabi
- Department of Life and Physical Sciences, Lincoln University, Jefferson City, MO, USA
- Math and Sciences, Soka University of America, Aliso Viejo, CA, USA
| | - Daniel T. Kamei
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Lin Z, Li M, Lv S, Zhang K, Lu M, Tang D. In situ synthesis of fluorescent polydopamine nanoparticles coupled with enzyme-controlled dissolution of MnO2 nanoflakes for a sensitive immunoassay of cancer biomarkers. J Mater Chem B 2017; 5:8506-8513. [DOI: 10.1039/c7tb02291c] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new fluorescence/visual immunosensing strategy was designed for the AFP detection coupling enzyme-controlled formation of polydopamine and dissolution of MnO2 nanoflakes.
Collapse
Affiliation(s)
- Zhenzhen Lin
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Meijin Li
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Shuzhen Lv
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Kangyao Zhang
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Minghua Lu
- Institute of Environmental and Analytical Science
- School of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Dianping Tang
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|