1
|
Nieweś D, Biegun M, Marecka K, Hoffmann J. Ultrasound-Assisted Synthesis of Humic-Silica Composites by the Isolation of Humic Substances from Peat and Lignite. Chempluschem 2024; 89:e202300715. [PMID: 38300236 DOI: 10.1002/cplu.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The aim of the presented study was to evaluate an integrated, direct procedure for the synthesis of humic-silica composites (HSiC) by the isolation of humic substances (HS) from peat and lignite by the use of sodium silicate solution as an extractant. The obtained materials, because of the presence of humic functional groups, may potentially be used for removing contaminants from aqueous solutions. The quantitative assessment was based on experiments designed according to the Box-Behnken plan. The statistical analysis of the results allowed to determine the optimal conditions of the process tested, for which the isolation efficiency of humic substances (HS) was greater than 50 % for both raw materials. This made it possible to synthesize humic silica composites with a high content of HS, which have been qualitatively evaluated. This step was focused on the analysis of the humic structure using elemental analysis, spectroscopic methods, and differential thermal analysis coupled with thermogravimetry. On the basis of them, the presence of structures characteristic for HS in the HSiC tested was observed. Moreover, the results of the thermal analysis pointed to the higher thermal stability of the synthesized compounds, compared to the HS isolated with the use of a traditional extractant.
Collapse
Affiliation(s)
- Dominik Nieweś
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372, Wroclaw, Poland
| | - Marcin Biegun
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372, Wroclaw, Poland
| | - Kinga Marecka
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372, Wroclaw, Poland
| | - Józef Hoffmann
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372, Wroclaw, Poland
| |
Collapse
|
2
|
Li S, Zhang S, Li X, Zhou S, Ma J, Zhao X, Zhang Q, Yin X. Determination of multi-mycotoxins in vegetable oil via liquid chromatography-high resolution mass spectrometry assisted by a complementary liquid-liquid extraction. Food Chem X 2023; 20:100887. [PMID: 38144739 PMCID: PMC10740109 DOI: 10.1016/j.fochx.2023.100887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 12/26/2023] Open
Abstract
The simultaneous determination of multi-mycotoxins in food commodities are highly desirable due to their potential toxic effects and mass consumption of foods. Herein, liquid chromatography-quadrupole exactive orbitrap mass spectrometry was proposed to analyze multi-mycotoxins in commercial vegetable oils. Specifically, the method featured a successive liquid-liquid extraction process, in which the complementary solvents consisted of acetonitrile and water were optimized. Resultantly, matrix effects were reduced greatly. External calibration approach revealed good quantification property for each analyte. Under optimal conditions, the recovery ranging from 80.8% to 109.7%, relative standard deviation less than 11.7%, and good limit of quantification (0.35 to 45.4 ng/g) were achieved. The high accuracy of proposed method was also validated. The detection of 20 commercial vegetable oils revealed that aflatoxins B1 and B2, zearalenone were observed in 10 real samples. The as-developed method is simple and low-cost, which merits the wide applications for scanning mycotoxins in oil matrices.
Collapse
Affiliation(s)
- Shuangqing Li
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Siyao Zhang
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaomin Li
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Shukun Zhou
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Jiahui Ma
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaotong Zhao
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qinghe Zhang
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Xiong Yin
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
3
|
Munjanja BK, Nomngongo PN, Mketo N. Mycotoxins in Vegetable Oils: A Review of Recent Developments, Current Challenges and Future Perspectives in Sample Preparation, Chromatographic Determination, and Analysis of Real Samples. Crit Rev Anal Chem 2023:1-14. [PMID: 38133964 DOI: 10.1080/10408347.2023.2286642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Mycotoxins are toxic compounds that are formed as secondary metabolites by some fungal species that contaminate crops during pre- and postharvest stages. Exposure to mycotoxins can lead to adverse health effects in humans, such as carcinogenicity, mutagenicity, and teratogenicity. Hence, there is a need to develop analytical methods for their determination in vegetable oils that possess high sensitivity and selectivity. In the current review (116 references), the recent developments, current challenges, and perspectives in sample preparation techniques and chromatographic determination are summarized. It is impressive that current sample preparation techniques such as dispersive liquid-liquid microextraction (DLLME), quick, easy, cheap, rugged, and safe method (QuEChERS) and solid phase extraction (SPE) have exhibited high extraction recoveries and minimal matrix effects. However, a few studies have reported signal suppression or enhancement. Regarding chromatographic techniques, high sensitivity and selectivity have been reported by liquid chromatography coupled to fluorescence detection, tandem mass spectrometry, or high-resolution mass spectrometry. Furthermore, current challenges and perspectives in this field are tentatively proposed.
Collapse
Affiliation(s)
- Basil K Munjanja
- Department of Chemistry, University of South Africa, Roodepoort, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nomvano Mketo
- Department of Chemistry, University of South Africa, Roodepoort, South Africa
| |
Collapse
|
4
|
Zhao D, Xu X, Wang X, Xu B, Zhang F, Wu W. Synthesis of a core-shell magnetic covalent organic framework for the enrichment and detection of aflatoxin in food using HPLC-MS/MS. Mikrochim Acta 2023; 190:488. [PMID: 38015320 DOI: 10.1007/s00604-023-06051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023]
Abstract
A porous magnetic covalent organic framework, Fe3O4@TPBD-TPA (terephthalaldehyde (TPA) , N, N, N', N'-tetrakis(p-aminophenyl)-p-phenylenediamine (TPBD)), was synthesized using the Schiff base reaction under mild reaction conditions. This adsorbent exhibited excellent adsorption performance for aflatoxins. The adsorption capacity of Fe3O4@TPBD-TPA for aflatoxins ranged from 64.4 to 84.4 mg/g. A magnetic solid-phase extraction combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method based on Fe3O4@TPBD-TPA was developed for the efficient determination of four types of aflatoxins in food samples (maize, maize oil, peanut, and peanut oil). The determination coefficients (R2) were ≥0.9972. The method exhibited detection limits ranging from 0.01 to 0.06 μg/kg and spiked recoveries of 80.0 to 113.1%. The intra-day and inter-day precision were less than 6.77%, indicating good repeatability. The adsorbent showed promising prospects for the efficient enrichment of trace amounts of aflatoxins in complex food matrices.
Collapse
Affiliation(s)
- Dongyue Zhao
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, 100176, China
- School of Food Science and Engineering, Qingdao Agricultural University, Shandong, Qingdao, 266109, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Xiuli Xu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Bozhou Xu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, 100176, China.
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China.
| | - Wei Wu
- School of Food Science and Engineering, Qingdao Agricultural University, Shandong, Qingdao, 266109, China
| |
Collapse
|
5
|
Bian Y, Zhang Y, Zhou Y, Wei B, Feng X. Recent Insights into Sample Pretreatment Methods for Mycotoxins in Different Food Matrices: A Critical Review on Novel Materials. Toxins (Basel) 2023; 15:toxins15030215. [PMID: 36977106 PMCID: PMC10053610 DOI: 10.3390/toxins15030215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Mycotoxins pollution is a global concern, and can pose a serious threat to human health. People and livestock eating contaminated food will encounter acute and chronic poisoning symptoms, such as carcinogenicity, acute hepatitis, and a weakened immune system. In order to prevent or reduce the exposure of human beings and livestock to mycotoxins, it is necessary to screen mycotoxins in different foods efficiently, sensitively, and selectively. Proper sample preparation is very important for the separation, purification, and enrichment of mycotoxins from complex matrices. This review provides a comprehensive summary of mycotoxins pretreatment methods since 2017, including traditionally used methods, solid-phase extraction (SPE)-based methods, liquid-liquid extraction (LLE)-based methods, matrix solid phase dispersion (MSPD), QuEChERS, and so on. The novel materials and cutting-edge technologies are systematically and comprehensively summarized. Moreover, we discuss and compare the pros and cons of different pretreatment methods and suggest a prospect.
Collapse
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binbin Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Correspondence: (B.W.); (X.F.); Fax: +86-18900911582 (B.W.); +86-18240005807 (X.F.)
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Correspondence: (B.W.); (X.F.); Fax: +86-18900911582 (B.W.); +86-18240005807 (X.F.)
| |
Collapse
|
6
|
Gubin AS, Sukhanov PT, Kushnir AA. Magnetic sorbent modified by humate for the extraction of alkylphenols, bisphenol A and estradiol. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Dilute-and-shoot versus clean-up approaches: A comprehensive evaluation for the determination of mycotoxins in nuts by UHPLC-MS/MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Boron-doped activated carbon nanocomposite as a selective adsorbent for rapid extraction of aflatoxins in nut samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
9
|
Synthesis of a magnetic covalent organic framework as sorbents for solid-phase extraction of aflatoxins in food prior to quantification by liquid chromatography-mass spectrometry. Food Chem 2022; 387:132821. [DOI: 10.1016/j.foodchem.2022.132821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022]
|
10
|
Simultaneous Determination of Aflatoxins and Benzo(a)pyrene in Vegetable Oils Using Humic Acid-Bonded Silica SPE HPLC–PHRED–FLD. Toxins (Basel) 2022; 14:toxins14050352. [PMID: 35622598 PMCID: PMC9144054 DOI: 10.3390/toxins14050352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
In the present work, a rapid, accurate, and cost-effective method was developed for the simultaneous quantification of aflatoxins and benzo(a)pyrene in lipid matrices, using solid-phase extraction (SPE) via humic acid-bonded silica (HAS) sorbents, followed by high-performance liquid chromatography coupled with photochemical post-column reactor fluorescence spectroscopy (HPLC–PHRED–FLD) analysis. The major parameters of extraction efficiency and HPLC–PHRED–FLD analysis were investigated and this method was fully validated. The limits of quantification and the limits of detection were 0.05–0.30 and 0.01–0.09 µg kg−1, respectively. The recoveries were 66.9%–118.4% with intra-day and inter-day precision less than 7.2%. The results of 80 oil samples from supermarkets indicated a high occurrence of BaP, and most of concentrations were within the requirements of EU and China food safety regulations. This is the first utilization of HAS–SPE HPLC–PHRED–FLD to simultaneously analyze the occurrence of aflatoxins and benzo(a)pyrene in vegetable oils.
Collapse
|
11
|
Sumara A, Stachniuk A, Montowska M, Kotecka-Majchrzak K, Grywalska E, Mitura P, Saftić Martinović L, Kraljević Pavelić S, Fornal E. Comprehensive Review of Seven Plant Seed Oils: Chemical Composition, Nutritional Properties, and Biomedical Functions. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Agata Sumara
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Poznan, Poland
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Lublin, Poland
| | - Przemysław Mitura
- Department of Urology and Urological Oncology, Medical University of Lublin, Lublin, Poland
| | | | | | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
12
|
Tang Z, Liu F, Fang F, Ding X, Han Q, Tan Y, Peng C. Solid-phase extraction techniques based on nanomaterials for mycotoxin analysis: An overview for food and agricultural products. J Sep Sci 2022; 45:2273-2300. [PMID: 35389521 DOI: 10.1002/jssc.202200067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination is a globally concerned problem for food and agricultural products since it may directly or indirectly induce severe threats to human health. Sensitive and selective screening is an efficient strategy to prevent or reduce human and animal exposure to mycotoxins. However, enormous challenges exist in the determination of mycotoxins, arising from complex sample matrices, trace-level analytes, and the co-occurrence of diverse mycotoxins. Appropriate sample preparation is essential to isolate, purify, and enrich mycotoxins from complicated matrices, thus decreasing sample matrix effects and lowering detection limits. With the cross-disciplinary development, new solid-phase extraction strategies have been exploited and integrated with nanotechnology to meet the challenges of mycotoxin analysis. This review summarizes the advance and progress of solid-phase extraction techniques as the methodological solutions for mycotoxin analysis. Emphases are paid on nanomaterials fabricated as trapping media of SPE techniques, including carbonaceous nanoparticles, metal/metal oxide-based nanoparticles, and nanoporous materials. Advantages and limitations are discussed, along with the potential prospects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhentao Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Liu
- Technology Center of Chengdu Customs District P. R. China, Chengdu, China
| | - Fang Fang
- Urumqi Customs District P. R. China, Urumqi, China
| | - Xuelu Ding
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingrong Han
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Shishov A, Volodina N, Semenova E, Navolotskaya D, Ermakov S, Bulatov A. Reversed-phase dispersive liquid-liquid microextraction based on decomposition of deep eutectic solvent for the determination of lead and cadmium in vegetable oil. Food Chem 2022; 373:131456. [PMID: 34731809 DOI: 10.1016/j.foodchem.2021.131456] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 11/04/2022]
Abstract
In this work, a reversed-phase dispersive liquid-liquid microextraction procedure based on the decomposition of deep eutectic solvent was suggested for the first time. The procedure was utilized for fast and simple separation of lead and cadmium from vegetable oil samples. The procedure assumed mixing of oil sample and DES based on menthol, formic acid and water. Water as component of DES promoted its decomposition in sample matrix resulting menthol dissolution in the sample phase and dispersion of aqueous formic acid solution. In this procedure menthol acted as a dispersive solvent during DES decomposition for dispersion of aqueous formic acid solution. The metals were determined by the square-wave anodic stripping voltammetry. The limits of detection, were 0.01 µg kg-1 for lead and 0.006 µg kg-1 for cadmium. The RSD was less then 6% for both analytes. The enrichment factor was 36 and 39 for lead and cadmium, respectively.
Collapse
Affiliation(s)
- Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, Saint Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
| | - Natalia Volodina
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, Saint Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Ekaterina Semenova
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, Saint Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Daria Navolotskaya
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, Saint Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Sergey Ermakov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, Saint Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, Saint Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
14
|
Samuel MS, Mohanraj K, Chandrasekar N, Balaji R, Selvarajan E. Synthesis of recyclable GO/Cu 3(BTC) 2/Fe 3O 4 hybrid nanocomposites with enhanced photocatalytic degradation of aflatoxin B1. CHEMOSPHERE 2022; 291:132684. [PMID: 34718022 DOI: 10.1016/j.chemosphere.2021.132684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/23/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the photocatalytic performance of the activated carbon assisted GO/Cu3(BTC)2/Fe3O4 photocatalyst for aflatoxin B1 (AFB1) degradation under ultraviolet light. The nanocomposite was characterized by Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption. The numerous factors influencing the degradation efficiency of AFB1 including catalyst dose, pH importance, and contact time were also probed. The elevated degradation performance of AFB1 by 99% was due to a larger surface area and improved GO/Cu3(BTC)2/Fe3O4 photocatalyst. The degradation process followed a pseudo-first-order kinetic model. Moreover, it is possible to quickly isolate the catalyst from the solution and retain successful operation. In the degradation of AFB1, the hole(h+) and the hydroxyl radicals(OH) were found to play a significant role. These studies showed that GO/Cu3(BTC)2/Fe3O4 has high capturing capacity and photoactivity synergy, thereby offering a quick effect, and green solution to AFB1 degradation.
Collapse
Affiliation(s)
- Melvin S Samuel
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 731 302, India
| | - K Mohanraj
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan
| | - Narendhar Chandrasekar
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India
| | - Ramachandran Balaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| |
Collapse
|
15
|
Rezaeefar A, Nemati M, Farajzadeh MA, Afshar Mogaddam MR, Lotfipour F. Development of N and S doped carbon sorbent-based dispersive micro solid phase extraction method combined with dispersive liquid-liquid microextraction for selected mycotoxins from soymilk samples. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Karapınar HS, Bilgiç A. A new magnetic Fe3O4@SiO2@TiO2-APTMS-CPA adsorbent for simple, fast and effective extraction of aflatoxins from some nuts. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Chen J, Liu F, Li Z, Tan L, Zhang M, Xu D. Solid phase extraction based microfluidic chip coupled with mass spectrometry for rapid determination of aflatoxins in peanut oil. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Salve S, Bahiram Y, Jadhav A, Rathod R, Tekade RK. Nanoplatform-Integrated Miniaturized Solid-Phase Extraction Techniques: A Critical Review. Crit Rev Anal Chem 2021; 53:46-68. [PMID: 34096402 DOI: 10.1080/10408347.2021.1934651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Preparation of the biological samples is one of the most critical steps in sample analysis. In past decades, the liquid-liquid extraction technique has been used to extract the desired analytes from complex biological matrices. However, solid-phase extraction (SPE) gained popularity due to versatility, simplicity, selectivity, reproducibility, high sample recovery %, solvent economy, and time-saving nature. The superior extraction efficiency of SPE can be attributed to the development of advanced techniques, including the nanosorbents technology. The nanosorbent technology significantly simplified the sample preparation, improved the selectivity, diversified the application, and accelerated the sample analysis. This review critically expands on the to-date advancements reported in SPE with particular regards to the nanosorbent technology.
Collapse
Affiliation(s)
- Sushmita Salve
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Yogita Bahiram
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amol Jadhav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rajeshwari Rathod
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
19
|
A polyhedral oligomeric silsesquioxanes/dual ligands-based magnetic adsorbent for effective extraction of aflatoxins in cereals via multiple interactions. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Ouakhssase A, Ait Addi E. Mycotoxins in food: a review on liquid chromatographic methods coupled to mass spectrometry and their experimental designs. Crit Rev Food Sci Nutr 2020; 62:2606-2626. [PMID: 33287555 DOI: 10.1080/10408398.2020.1856034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The development of a multi-mycotoxins method using LC-MS/MS is necessary and it is clear that the development of such method involves many compromises in the choice of the different parameters. This review summarizes applications using conventional experimental designs and some recent studies using response surface methodology (RSM) as a mathematical modeling tool for the optimization of extraction procedures. The authors also discuss pros and cons of the different procedures. To our knowledge, it is the first review on experimental design for the development of multi-mycotoxin methods. This review could be useful in the development and optimization of LC-MS/MS methods with the aim of describing experimental design and variables (factors) that are likely to affect sensitivity and specificity.
Collapse
Affiliation(s)
- Abdallah Ouakhssase
- Research group: Génie des procédés et Ingénierie Chimique, Ecole Supérieure de Technologie d'Agadir, Université Ibn Zohr, Agadir, Morocco
| | - Elhabib Ait Addi
- Research group: Génie des procédés et Ingénierie Chimique, Ecole Supérieure de Technologie d'Agadir, Université Ibn Zohr, Agadir, Morocco
| |
Collapse
|
21
|
Carneiro AF, Carneiro CN, de N Pires L, Teixeira LSG, Azcarate SM, de S Dias F. D-optimal mixture design for the optimization of extraction induced by emulsion breaking for multielemental determination in edible vegetable oils by microwave-induced plasma optical emission spectrometry. Talanta 2020; 219:121218. [PMID: 32887119 DOI: 10.1016/j.talanta.2020.121218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
A sample pretreatment based on an extraction process by emulsion breaking for multi-element determination in edible oils was developed. The determination of eight trace elements (Al, Ba, Cu, Cr, P, Ni, Ti, and Zn) was carried out by microwave-induced plasma optical emission spectrometry (MIP OES) after the extraction procedure. A D-optimal mixture experimental design was used to obtain the best experimental conditions for the extraction induced by emulsion breaking (EIEB). The proportion of HNO3 solution, Triton X-100 solution and sample was evaluated in a multivariate manner. The best recovery efficiency was obtained with 1.0 mL of 30% (v/v) HNO3, 1.0 mL of 30% (w/v) Triton-X 100 and 3.0 mL of the sample. The precisions, established as the relative standard deviation (RSD, %), were better than 2.5% for all analytes. The developed method was applied to the analysis of commercial vegetable oils with low limits of detection and good precision.
Collapse
Affiliation(s)
- Angélica F Carneiro
- Universidade Federal Do Recôncavo da Bahia, Centro de Ciências Exatas e Tecnológicas, Campus Universitário de Cruz Das Almas, (CEP 44380-000), Cruz Das Almas, Bahia, Brazil
| | - Candice N Carneiro
- Universidade Federal Do Recôncavo da Bahia, Centro de Ciências Exatas e Tecnológicas, Campus Universitário de Cruz Das Almas, (CEP 44380-000), Cruz Das Almas, Bahia, Brazil
| | - Laís de N Pires
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, (CEP 40170-115), Salvador, Bahia, Brazil
| | - Leonardo S G Teixeira
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, (CEP 40170-115), Salvador, Bahia, Brazil; INCT de Energia e Ambiente - Universidade Federal da Bahia, Instituto de Química, Campus Universitário de Ondina, 40170-115, Salvador, Bahia, Brazil
| | - Silvana M Azcarate
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, And Instituto de Ciencias de La Tierra y Ambientales de La Pampa (INCITAP), Av. Uruguay 151, Santa Rosa, L6300CLB, La Pampa, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, CABA, C1425FQB, Argentina
| | - Fabio de S Dias
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Campus Universitário de Ondina, (CEP 40170-115), Salvador, Bahia, Brazil.
| |
Collapse
|
22
|
He T, Zhou T, Wan H, Han Q, Ma Y, Tan T, Wan Y. One-step deep eutectic solvent strategy for efficient analysis of aflatoxins in edible oils. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4840-4848. [PMID: 32483821 DOI: 10.1002/jsfa.10544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/11/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Aflatoxins, a kind of carcinogen, have attracted increasing attention due to their toxicity and harmfulness to human health. Traditional methods for aflatoxins analysis usually involve tedious extraction steps with a subsequent derivatization process. Herein, a simple and efficient liquid-phase microextraction method based on deep eutectic solvents (DESs) for direct analysis of aflatoxins was developed. RESULTS Adopting DESs as the extractant, we surprisingly found out that DESs could either achieve good extraction performance or play a similar role to the derivatization agent, achieving an enhancement of fluorescence intensity for direct analysis of aflatoxins by high-performance liquid chromatography combined with fluorescent detection. Under optimal conditions obtained by response surface methodology, the method provided satisfactory linear ranges (0.01-0.75 μg kg-1 for AFB1 and AFG1, 0.003-0.25 μg kg-1 for AFB2 and AFG2) with good determination coefficients (R2 > 0.9988), a low detection limit (0.0005-0.003 μg kg-1 ), and good recovery rates (72.05-113.54%). CONCLUSION These results highlighted superiorities of the one-step DES strategy for analysis of aflatoxins in edible oils, providing insights for future development of efficient methods in food analysis. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tingting He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, P. R. China
| | - Tong Zhou
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, P. R. China
| | - Hao Wan
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Quanbin Han
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yaqian Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ting Tan
- Center of Analysis and Testing, Nanchang University, Nanchang, China
| | - Yiqun Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Center of Analysis and Testing, Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Jayasinghe GDTM, Domínguez-González R, Bermejo-Barrera P, Moreda-Piñeiro A. Miniaturized vortex assisted-dispersive molecularly imprinted polymer micro-solid phase extraction and HPLC-MS/MS for assessing trace aflatoxins in cultured fish. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4351-4362. [PMID: 32844825 DOI: 10.1039/d0ay01259a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A dispersive micro-solid phase extraction approach using a molecularly imprinted polymer as an adsorbent has been developed for pre-concentrating aflatoxins from cultured fish. Aflatoxins were first isolated from fish muscle and liver by an ultrasound assisted extraction procedure using a 60 : 40 acetonitrile/0.1 M KH2PO4 aqueous buffer (pH 6.0) mixture. Polymeric adsorbent beads were synthesized using 5,7-dimethoxycoumarin as a dummy template, methacrylic acid as a functional monomer, divinylbenzene as a crosslinker, and 2,2'-azobisisobutyronitrile as an initiator. Parameters affecting the steps of extraction procedure, including the sample (fish extract) pH, adsorption stirring speed and time, desorption stirring speed and time, elution solvent ratio, and polymer capacity, were investigated and optimized. The limit of detection was found to vary from 0.29 to 0.61 μg kg-1 for the several aflatoxins. The proposed method was shown to be accurate and precise. Intraday and inter-day relative standard deviations were lower than 20%, and intraday and inter-day analytical recoveries were within the 80-100% range. The prepared adsorbent in the dispersive micro-solid phase extraction format was re-usable, and the pre-concentration procedure was found to be simple, rapid and highly selective and sensitive to identify/quantify AFs in fish.
Collapse
Affiliation(s)
- G D Thilini Madurangika Jayasinghe
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenidadas Ciencias, s/n. 15782, Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
24
|
Zhou Y, Zhao W, Lai Y, Zhang B, Zhang D. Edible Plant Oil: Global Status, Health Issues, and Perspectives. FRONTIERS IN PLANT SCIENCE 2020; 11:1315. [PMID: 32983204 PMCID: PMC7485320 DOI: 10.3389/fpls.2020.01315] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 05/13/2023]
Abstract
Edible plant oil (EPO) is an indispensable nutritional resource for human health. Various cultivars of oil-bearing plants are grown worldwide, and the chemical compositions of different plant oils are diverse. The extremely complex components in oils lead to diverse standards for evaluating the quality and safety of different EPOs. The environment poses great challenges to the EPO safety and quality during the entire industrial chain, including plant cultivation, harvesting, oil processing, and storage. Environmental risk factors include heavy metal or pesticide residue pollution, insect or harmful microbial infestation, and rancidity. Here, the diverse components in oil and various oil-producing processes are discussed, including plant species, oil yield, and composition complexity, environmental factors that degrade oil quality. Additionally, we propose a whole-industrial-chain monitoring system instead of current single-link-monitoring approach by monitoring and tracking the quality and safety of EPOs during the entire process of plant cultivation, raw materials harvest, oil process, and EPOs storage. This will provide guidance for monitoring the quality and safety of EPOs, which were challenged by the deteriorating environment.
Collapse
Affiliation(s)
- Ying Zhou
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Weiwei Zhao
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yong Lai
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Dangquan Zhang
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, College of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
25
|
Mudhoo A, Ramasamy DL, Bhatnagar A, Usman M, Sillanpää M. An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110587. [PMID: 32325327 DOI: 10.1016/j.ecoenv.2020.110587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/13/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The persistence and bioaccumulation of environmental pollutants in water bodies, soils and living tissues remain alarmingly related to environmental protection and ecosystem restoration. Adsorption-based techniques appear highly competent in sequestering several environmental pollutants. In this review, the recent research findings reported on the assessments of composts and compost-amended soils as adsorbents of heavy metal ions, dye molecules and xenobiotics have been appraised. This review demonstrates clearly the high adsorption capacities of composts for umpteen environmental pollutants at the lab-scale. The main inferences from this review are that utilization of composts for the removal of heavy metal ions, dye molecules and xenobiotics from aqueous environments and soils is particularly worthwhile and efficient at the laboratory scale, and the adsorption behaviors and effectiveness of compost-type adsorbents for agrochemicals (e.g. herbicides and insecticides) vary considerably because of variabilities in structure, topology, bond connectivity, distribution of functional groups and interactions of xenobiotics with the active humic substances in composts. Compost-based field-scale remediation of environmental pollutants is still sparse and arguably much challenging to implement if, furthermore, real-world soil and water contamination issues are to be addressed effectively. Hence, significant research and process development efforts should be promptly geared and intensified in this direction by extrapolating the lab-scale findings in a cost-effective manner.
Collapse
Affiliation(s)
- Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837, Mauritius.
| | - Deepika Lakshmi Ramasamy
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia.
| |
Collapse
|
26
|
Innovations in Extractive Phases for In-Tube Solid-Phase Microextraction Coupled to Miniaturized Liquid Chromatography: A Critical Review. Molecules 2020; 25:molecules25102460. [PMID: 32466305 PMCID: PMC7287690 DOI: 10.3390/molecules25102460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past years, a great effort has been devoted to the development of new sorbents that can be used to pack or to coat extractive capillaries for in-tube solid-phase microextraction (IT-SPME). Many of those efforts have been focused on the preparation of capillaries for miniaturized liquid chromatography (LC) due to the reduced availability of capillary columns with appropriate dimensions for this kind of system. Moreover, many of the extractive capillaries that have been used for IT-SPME so far are segments of open columns from the gas chromatography (GC) field, but the phase nature and dimensions are very limited. In particular, polar compounds barely interact with stationary GC phases. Capillary GC columns may also be unsuitable when highly selective extractions are needed. In this work, we provide an overview of the extractive capillaries that have been specifically developed for capillary LC (capLC) and nano LC (nanoLC) to enhance the overall performance of the IT-SPME, the chromatographic separation, and the detection. Different monolithic polymers, such as silica C18 and C8 polymers, molecularly imprinted polymers (MIPs), polymers functionalized with antibodies, and polymers reinforced with different types of carbon nanotubes, metal, and metal oxide nanoparticles (including magnetic nanoparticles), and restricted access materials (RAMs) will be presented and critically discussed.
Collapse
|
27
|
Liu P, Liao YH, Zheng HB, Tang Y. Facile dispersive solid-phase extraction based on humic acid for the determination of aflatoxins in various edible oils. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2308-2316. [PMID: 32930255 DOI: 10.1039/d0ay00534g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aflatoxins (AFs), as the secondary metabolites of the toxigenic fungi Aspergillus flavus and Aspergillus parasiticus, are well known to be extremely harmful to humans and animals because of their high toxicity, mutagenicity, carcinogenicity, and teratogenicity. Recurring and increasing studies on AF ingestion incidents indicate that AF contamination is a serious food safety issue worldwide. Currently, immunoaffinity chromatography (IAC) has become the most conventional sample clean-up method for determining AFs in foodstuffs. However, the IAC method may be limited to some laboratories because it requires the use of expensive disposable cartridges and the IA procedure is time-consuming. Herein, to achieve the cost-effective determination of AFs in edible oils, we developed a dispersive solid-phase extraction (DSPE) clean-up method based on humic acids (HAs), which is followed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis. HAs could be directly used as a DSPE sorbent after simple treatment without any chemical modification. In the HA-DSPE, AFs could remain on the HA sorbent by both hydrophobic and hydrophilic interactions, whereas the oil matrix was retained on HA via only hydrophobic interactions. The oil matrix could be sufficiently washed off by n-hexane, whereas the AFs could still be retained on HA; thus, the selective extraction of AFs and clean-up of oil matrices were achieved. Under the optimal conditions of HA-DSPE, satisfactory recoveries ranging from 81.3% to 106.2% for four AFs (B1, B2, G1, and G2) were achieved in various oil matrices i.e. blended oil, mixed olive oil, tea oil, sunflower seed oil, rapeseed oil, sesame oil, soybean oil, rice oil, corn oil, and peanut oil. Minor matrix effects ranging from 89.3% to 112.9% were obtained for the four AFs, which were acceptable. Moreover, the LODs of AFs between 0.063 and 0.102 μg kg-1 completely meet the regulatory levels fixed by the Food and Drug Administration (FDA), the European Union (EU), China, or other countries. The proposed methodology was further validated using a naturally contaminated peanut oil, and the results indicated that the accuracy of the HA-DSPE could match the accuracy of the referenced IAC. In addition, HA-DSPE can be used to directly treat diluted edible oil without liquid-liquid extraction and HA is cheap and can be easily obtained from the market worldwide; these advantages make the proposed methodology simple, low-cost, and accessible for the determination of AFs in edible oils.
Collapse
Affiliation(s)
- Ping Liu
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yan-Hua Liao
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi 530028, China.
| | - Hao-Bo Zheng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yang Tang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi 530028, China.
| |
Collapse
|
28
|
Wang N, Duan C, Li S, Geng X, Ding K, Guan Y. Aqueous extraction followed by dispersive solid phase extraction with in situ derivatization for the determination of aflatoxins in traditional Chinese medicines. J Chromatogr A 2020; 1618:460894. [DOI: 10.1016/j.chroma.2020.460894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/12/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
|
29
|
Pota G, Venezia V, Vitiello G, Di Donato P, Mollo V, Costantini A, Avossa J, Nuzzo A, Piccolo A, Silvestri B, Luciani G. Tuning Functional Behavior of Humic Acids through Interactions with Stöber Silica Nanoparticles. Polymers (Basel) 2020; 12:E982. [PMID: 32340165 PMCID: PMC7240412 DOI: 10.3390/polym12040982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022] Open
Abstract
Humic acids (HA) exhibit fascinating multifunctional features, yet degradation phenomena as well as poor stability in aqueous environments strongly limit their use. Inorganic nanoparticles are emerging as a powerful interface for the development of robust HA bio-hybrid materials with enhanced chemical stability and tunable properties. Hybrid organic-inorganic SiO2/HA nanostructures were synthesized via an in-situ sol-gel route, exploiting both physical entrapment and chemical coupling. The latter was achieved through amide bond formation between carboxyl groups of HA and the amino group of 3-aminopropyltriethoxysilane (APTS), as confirmed by Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. Monodisperse hybrid nanoparticles about 90 nm in diameter were obtained in both cases, yet Electron Paramagnetic Resonance (EPR) spectroscopy highlighted the different supramolecular organization of HA. The altered HA conformation was reflected in different antioxidant properties of the conjugated nanoparticles that, however, resulted in being higher than for pure HA. Our findings proved the key role of both components in defining the morphology of the final system, as well as the efficacy of the ceramic component in templating the HA supramolecular organization and consequently tuning their functional features, thus defining a green strategy for bio-waste valorization.
Collapse
Affiliation(s)
- Giulio Pota
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy; (G.P.); (V.V.); (G.V.); (A.C.); (G.L.)
| | - Virginia Venezia
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy; (G.P.); (V.V.); (G.V.); (A.C.); (G.L.)
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy; (G.P.); (V.V.); (G.V.); (A.C.); (G.L.)
- CSGI, Center for Colloids and Surface Science, via della Lastruccia 3, 50019 Florence, Italy
| | - Paola Di Donato
- Department of Science and Technology, University of Naples “Parthenope”, Centro Direzionale Isola C4, 80143 Naples, Italy;
| | - Valentina Mollo
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia@CABHC, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Aniello Costantini
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy; (G.P.); (V.V.); (G.V.); (A.C.); (G.L.)
| | - Joshua Avossa
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland;
| | - Assunta Nuzzo
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare ed i Nuovi Materiali (CERMANU), University of Naples “Federico II”, Via Università 100, 80055 Portici, Italy; (A.N.); (A.P.)
| | - Alessandro Piccolo
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare ed i Nuovi Materiali (CERMANU), University of Naples “Federico II”, Via Università 100, 80055 Portici, Italy; (A.N.); (A.P.)
| | - Brigida Silvestri
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy; (G.P.); (V.V.); (G.V.); (A.C.); (G.L.)
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy; (G.P.); (V.V.); (G.V.); (A.C.); (G.L.)
| |
Collapse
|
30
|
|
31
|
Sereshti H, Khodayari F, Nouri N. Integrated in-syringe magnetic sheet solid-phase extraction and dispersive liquid-liquid microextraction for determination of aflatoxins in fresh and moldy breads. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1048-1055. [PMID: 31677164 DOI: 10.1002/jsfa.10109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Magnetic three-dimensional graphene-based nanoadsorbents have unique characteristics such as large surface area, good thermal and chemical stability, and high adsorption capacity that make them efficient materials in sorbent-based extraction techniques. In this study, four aflatoxins (AFs) were analyzed in bread samples using magnetic three-dimensional graphene as the adsorbent phase in dispersive micro solid-phase extraction. RESULTS AND CONCLUSIONS In-syringe magnetic sheet solid-phase extraction based on magnetic three-dimensional graphene in tandem with dispersive liquid-liquid microextraction was used for the extraction and preconcentration of the target AFs. The effect of significant parameters of the method was investigated and the optimum conditions were determined as follows: adsorbent dosage, 20 mg; desorption/disperser solvent (methanol) volume, 700 μL; desorption solvent flow rate, 0.7 mL min-1 ; pH, neutral; salt (NaCl) concentration, 10% (w/v); extraction solvent (chloroform) volume, 250 μL; and centrifugation rate (and time), 4000 rpm (5 min). The limits of detection and quantification were in the ranges 0.043-0.083 and 0.14-0.28 μg kg-1 , respectively. The extraction method was followed by the HPLC technique with fluorescence detection and applied to the determination of the AFs in four different Iranian fresh and moldy bread samples. The relative recoveries were in the range 84-107% with relative standard deviations of 3.9-8.6%. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hassan Sereshti
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farnaz Khodayari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Nina Nouri
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
32
|
Lv Y, Qu Q, Li C, Zhu T. Acrylamide-Modified 3-Aminopropyltriethoxysilanes Hybrid Monomer for Highly Selective Imprinting Recognition of Theophylline. J Chromatogr Sci 2019; 58:75-82. [PMID: 31879774 DOI: 10.1093/chromsci/bmz106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 12/05/2018] [Accepted: 10/31/2019] [Indexed: 01/20/2023]
Abstract
The hybrid monomer synthesized with 3-aminopropyltriethoxysilanes and acrylamide was applied for synthesis of molecularly imprinting polymers, and the obtained polymers were used as sorbent in solid-phase extraction for purification of theophylline (THP) in green tea. The static adsorption curves showed better molecular recognition ability and binding capability of the polymers for the target. On the optimized condition, a method was developed for increasing extraction of THP with satisfactory recovery of 93.7%. Good calibration linearity obtained in a range of 5-500 μg·mL-1. The recoveries at three spiked levels ranged from 86.7% to 100.7% with relative standard deviations ≤6.6% (n = 3). The result showed that the obtained polymers exhibited highly selective imprinting recognition to the analyte, and the number of templates was an important factor affecting the selective recognition ability of polymers. The proposed method with hybrid monomer imprinting polymers was successfully applied for purification of THP in green tea.
Collapse
Affiliation(s)
- Yaying Lv
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qi Qu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Caiwen Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tao Zhu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
33
|
Pellicer-Castell E, Belenguer-Sapiña C, Borràs VJ, Amorós P, El Haskouri J, Herrero-Martínez JM, Mauri-Aucejo AR. Extraction of aflatoxins by using mesoporous silica (type UVM-7), and their quantitation by HPLC-MS. Mikrochim Acta 2019; 186:792. [DOI: 10.1007/s00604-019-3958-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/17/2019] [Indexed: 11/25/2022]
|
34
|
Yu L, Ma F, Zhang L, Li P. Determination of Aflatoxin B 1 and B 2 in Vegetable Oils Using Fe 3O 4/rGO Magnetic Solid Phase Extraction Coupled with High-Performance Liquid Chromatography Fluorescence with Post-Column Photochemical Derivatization. Toxins (Basel) 2019; 11:E621. [PMID: 31717761 PMCID: PMC6891357 DOI: 10.3390/toxins11110621] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
In this study, magnetic graphene nanocomposite Fe3O4/rGO was synthesized by facile one-pot solvothermal method. The nanocomposite was successfully used as magnetic solid phase extraction (MSPE) adsorbents for the determination of aflatoxins in edible vegetable oils through the π-π stacking interactions. MSPE parameters including the amount of adsorbents, extraction and desorption time, washing conditions, and the type and volume of desorption solvent were optimized. Under optimal conditions, good linear relationships were achieved. Limits of detection of this method were as low as 0.02 µg/kg and 0.01 µg/kg for aflatoxin B1 and B2, respectively. Finally, the magnetic graphene nanocomposite was successfully applied to aflatoxin analysis in vegetable oils. The results indicated that the recoveries of the B-group aflatoxins ranged from 80.4% to 106.0%, whereas the relative standard deviations (RSDs) were less than 8.1%. Owing to the simplicity, rapidity and efficiency, Fe3O4/rGO magnetic solid phase extraction coupled with high-performance liquid chromatography fluorescence with post-column photochemical derivatization (Fe3O4/rGO MSPE-HPLC-PCD-FLD) is a promising analytical method for routine and accurate determination of aflatoxins in lipid matrices.
Collapse
Affiliation(s)
- Li Yu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.Y.); (F.M.); (L.Z.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Fei Ma
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.Y.); (F.M.); (L.Z.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.Y.); (F.M.); (L.Z.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.Y.); (F.M.); (L.Z.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
35
|
Tezerji NS, Foroughi MM, Bezenjani RR, Jandaghi N, Rezaeipour E, Rezvani F. A facile one-pot green synthesis of β-cyclodextrin decorated porous graphene nanohybrid as a highly efficient adsorbent for extracting aflatoxins from maize and animal feeds. Food Chem 2019; 311:125747. [PMID: 31864190 DOI: 10.1016/j.foodchem.2019.125747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 09/26/2019] [Accepted: 10/19/2019] [Indexed: 01/05/2023]
Abstract
In this paper, β-cyclodextrin (β-CD) supported on porous graphene nanohybrid (β-CDPG) was obtained by self-assembly of functionalized graphene nanosheets into a three-dimensional network in the presence of ascorbic acid via an in situ graphene oxide reduction and β-CD functionalization process during a hydrothermal reaction. The prepared supramolecular nanohybrid was further packed into a reusable syringe filter holder and applied as an adsorbent for solid phase extraction of four aflatoxins (B1, B2, G1, G2). Under optimal conditions, the detection limits and linear dynamic ranges were achieved in the range of 0.0075-0.030 μg kg-1 and 0.025-100 μg kg-1, respectively and the relative standard deviations were less than 6.1%. Good recoveries were observed for analyzing target AFs in maize and cereal-based chicken feed samples ranged from 90.5 to 105%. The method offered simultaneous advantages of high supramolecular recognition and enrichment capability of β-CD and the high specific surface area of the porous graphene.
Collapse
Affiliation(s)
- Najmeh Sheibani Tezerji
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Kerman Branch, Kerman, Iran; Iranian National Standards Organization of Hormozgan, Iran
| | - Mohammad Mehdi Foroughi
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Kerman Branch, Kerman, Iran
| | - Rasoul Rezaei Bezenjani
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Kerman Branch, Kerman, Iran; National Iranian Copper Industries Company, Iran
| | - Nezhat Jandaghi
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Kerman Branch, Kerman, Iran
| | - Ebrahim Rezaeipour
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran; Iranian National Standards Organization of Hormozgan, Iran.
| | - Forogh Rezvani
- Iranian National Standards Organization of Hormozgan, Iran
| |
Collapse
|
36
|
Gao S, Wu Y, Xie S, Shao Z, Bao X, Yan Y, Wu Y, Wang J, Zhang Z. Determination of aflatoxins in milk sample with ionic liquid modified magnetic zeolitic imidazolate frameworks. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128:121778. [PMID: 31499294 DOI: 10.1016/j.jchromb.2019.121778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/18/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
The ionic liquid (IL) was introduced to the synthesis system of magnetic zeolite imidazolate framework-8 (M/ZIF-8), which was benefit to the formation of binary imidazole and the co-modification of M/ZIF-8. The morphology and textural properties of ILM/ZIF-8 were characterized by SEM, TEM, BET and BJH. The crystal structural shape and size of MZIF-8 was unvaried with the interventional of IL. The ILM/ZIF-8 was applied to the concentration and determination of aflaoxins (AFB1, AFB2, AFG1 and AFG2) in milk samples based on magnetic solid phase extraction (MSPE) coupled with ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The experimental parameters of the MSPE, including amount of ILM/ZIF-8, pH, type and amount of desorption solvent, extraction time and sample volume were investigated by a univariate method and orthogonal screening. The four AFs were concentrated from the 20 mL milk when 90 mg ILM/ZIF-8 was used as magnetic adsorbent. The extraction efficiency of AFs was higher than 80.0% within 15 min. The limits of quantitative and detection were 7.5-26.7 and 2.3-8.1 ng/L, respectively. The proposed method was applied to the determination of milk samples containing trace amounts of AFs and the recoveries ranged from 79.0% to 102.5%, with RSD below 7.7%.
Collapse
Affiliation(s)
- Shiqian Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China.
| | - Yiqiu Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Siyuan Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zichun Shao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiumin Bao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Yumeng Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Youyi Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Junxia Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhanen Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China.
| |
Collapse
|
37
|
Sereshti H, Khodayari F, Nouri N. Simultaneous Determination of Aflatoxins in Bread by In-Syringe Dispersive Micro-Solid Phase Extraction Using Magnetic Three-Dimensional Graphene Followed by HPLC-FLD. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01582-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Recent Advances and Trends in Applications of Solid-Phase Extraction Techniques in Food and Environmental Analysis. Chromatographia 2019. [DOI: 10.1007/s10337-019-03726-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Xie J, Fang X, Dai X, Shao B, Li J, Jiang Y, Yao K, Wang S, Xia X, Jiang H. Antibody-functionalized reduced graphene oxide films for highly selective capture and purification of aflatoxins. Mikrochim Acta 2019; 186:193. [PMID: 30778686 DOI: 10.1007/s00604-019-3255-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
Abstract
Pyrenylbutyric acid and streptavidin were coupled to films of reduced graphene oxide (rGO) and then conjugated to a biotinylated broad-spectrum monoclonal antibody against aflatoxins (AFs). It is shown that such films can efficiently and selectively capture AFs inculding AFB1, AFB2, AFG1, AFG2, AFM1 and AFM2. The rGO films were characterized by using scanning electron microscopy, energy-dispersive spectroscopy, and raman spectroscopy. The selectivity and purification performance of the antibody-loaded rGO films were investigated. They were applied to the purification of extremely small samples (100 μL) of AFs-spiked rabbit serum after enzymatic hydrolysis. The AFs were analyzed by ultra-performance liquid chromatography coupled to tandem mass spectrometry. The limits of detection for the six AFs investigated ranged from 50 to 170 pg·mL-1. The average recoveries of AFs in spiked rabbit serum samples ranged from 55% to 75%, with relative standard deviations of less than 9.4%. Graphical abstract Design of a multifunctional sandwich film that consists of a reduced graphene oxide film base, a pyrenylbutyric acid middle layer and a broad-specificity anti-AF monoclonal antibody surface layer. It was successfully applied to the determination of aflatoxins in only 100 μL of rabbit serum samples with satisfactory selectivity and acceptable accuracy.
Collapse
Affiliation(s)
- Jie Xie
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiang Fang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Xinhua Dai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Bing Shao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jiancheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - You Jiang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Kai Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Sihan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xi Xia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Haiyang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
40
|
Samuel MS, Subramaniyan V, Bhattacharya J, Chidambaram R, Qureshi T, Pradeep Singh ND. Ultrasonic-assisted synthesis of graphene oxide - fungal hyphae: An efficient and reclaimable adsorbent for chromium(VI) removal from aqueous solution. ULTRASONICS SONOCHEMISTRY 2018; 48:412-417. [PMID: 30080567 DOI: 10.1016/j.ultsonch.2018.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 05/20/2023]
Abstract
In this study, a hybrid film bio-nanocomposite material was developed based on the graphene oxide/fungal hyphae (GO-FH) interaction. The developed GO-FH bio-nanocomposite material was used for the removal of hexavalent chromium from aqueous solution. The GO-FH bio-nanocomposite material was prepared by ultrasonic irradiation technique. The synthesized GO-FH bio-nanocomposite material was characterized by XRD, FT-IR, SEM, TEM and TGA. The adsorption experiments were carried out in batch mode to optimize parameters such as pH, adsorbent dosage, initial Cr(VI) ion concentration, contact time and shaking speed. The results indicated that the adsorption of Cr(VI) onto GO-FH bio-nanocomposite material was pH dependant, with the maximum adsorption capacity of 212.76 mg/g occurred at pH 2.0. The adsorption studies followed, Langmuir isotherm and pseudo second order kinetic model. Findings demonstrates that GO-FH bio-nanocomposite material exhibited excellent regeneration performance.
Collapse
Affiliation(s)
- Melvin S Samuel
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Vasudevan Subramaniyan
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Jayanta Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | | | - Tanvir Qureshi
- Department of Civil Engineering, The University of Toronto, Toronto M5S 1A4, Ontario, Canada
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
41
|
Nouri N, Sereshti H, Farahani A. Graphene-coated magnetic-sheet solid-phase extraction followed by high-performance liquid chromatography with fluorescence detection for the determination of aflatoxins B1, B2, G1, and G2in soy-based samples. J Sep Sci 2018; 41:3258-3266. [DOI: 10.1002/jssc.201800471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Nina Nouri
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| | - Hassan Sereshti
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| | - Ali Farahani
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| |
Collapse
|
42
|
A monolithic column based on covalent cross-linked polymer gels for online extraction and analysis of trace aflatoxins in food sample. J Chromatogr A 2018; 1548:27-36. [DOI: 10.1016/j.chroma.2018.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 01/22/2023]
|
43
|
Liu X, Ying G, Sun C, Yang M, Zhang L, Zhang S, Xing X, Li Q, Kong W. Development of an Ultrasonication-Assisted Extraction Based HPLC With a Fluorescence Method for Sensitive Determination of Aflatoxins in Highly Acidic Hibiscus sabdariffa. Front Pharmacol 2018; 9:284. [PMID: 29681848 PMCID: PMC5897500 DOI: 10.3389/fphar.2018.00284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/13/2018] [Indexed: 12/24/2022] Open
Abstract
The high acidity and complex components of Hibiscus sabdariffa have provided major challenges for sensitive determination of trace aflatoxins. In this study, sample pretreatment of H. sabdariffa was systematically developed for sensitive high performance liquid chromatography-fluorescence detection (HPLC-FLD) after ultrasonication-assisted extraction, immunoaffinity column (IAC) clean-up and on-line post-column photochemical derivatization (PCD). Aflatoxins B1, B2, G1, G2 were extracted from samples by using methanol/water (70:30, v/v) with the addition of NaCl. The solutions were diluted 1:8 with 0.1 M phosphate buffer (pH 8.0) to negate the issues of high acidity and matrix interferences. The established method was validated with satisfactory linearity (R > 0.999), sensitivity (limits of detection (LODs) and limits of quantitation (LOQs) of 0.15-0.65 and 0.53-2.18 μg/kg, respectively), precision (RSD <11%), stability (RSD of 0.2-3.6%), and accuracy (recovery rates of 86.0-102.3%), which all met the stipulated analytical requirements. Analysis of 28 H. sabdariffa samples indicated that one sample incubated with Aspergillus flavus was positive with aflatoxin B1 (AFB1) at 3.11 μg/kg. The strategy developed in this study also has the potential to reliably extract and sensitively detect more mycotoxins in other complex acidic matrices, such as traditional Chinese medicines, foodstuffs, etc.
Collapse
Affiliation(s)
- Xiaofei Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangyao Ying
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,College of Pharmacy, Jinzhou Medical University, Jinzhou, China
| | - Chaonan Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,College of Pharmacy, Jinzhou Medical University, Jinzhou, China
| | - Xiaoyan Xing
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weijun Kong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Nian Y, Wang H, Ying G, Yang M, Wang Z, Kong W, Yang S. Transfer rates of aflatoxins from herbal medicines to decoctions determined by an optimized high-performance liquid chromatography with fluorescence detection method. J Pharm Pharmacol 2017; 70:278-288. [DOI: 10.1111/jphp.12856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022]
Abstract
Abstract
Objectives
This study aimed to explore the transfer rates of aflatoxins from several contaminated herbal medicines by fungi to their decoctions.
Methods
Five types of commonly used herbal medicines including Lilii Bulbus, Hordei Fructus Germinatus, Nelumbinis Semen, Polygalae Radix and Bombyx Batryticatus were selected as the examples. Raw herbal medicine samples were treated by ultrasonication-assisted extraction with 70% methanol and immunoaffinity column clean-up, and the decoctions were prepared following the commonly used boiling method with water for 2 h. Then, the optimized high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method was validated for the quantitative analysis of four aflatoxins (AFG2, AFG1, AFB2 and AFB1) after postcolumn photochemical derivatization, which was proved to be reliable and sensitive.
Key findings
Aflatoxins were detected to be transferred from the herbal medicines to decoctions with significantly different transfer rates in the five types of herbal medicines. Quietly high transfer rates of 7.26–115.36% for AFG2, 4.37–26.37% for AFB1 and 9.64–47.68% for AFB2 were obtained. AFB1 as the most toxic aflatoxin expressed the lowest transfer rate, but still exhibited high amount in the samples.
Conclusions
Therefore, the monitoring of aflatoxins in herbal medicines and their decoctions is in great urgency to ensure the security of consumers taking decoctions.
Collapse
Affiliation(s)
- Yujiao Nian
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haiwei Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guangyao Ying
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- College of Pharmacy, Jinzhou Medical University, Jinzhou, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ze Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Weijun Kong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shihai Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| |
Collapse
|