1
|
Zhang Y, Li L, Li J, Ma Q. Integrating aptasensor with an explosive mass-tag signal amplification strategy for ultrasensitive and multiplexed analysis using a miniature mass spectrometer. Biosens Bioelectron 2024; 249:116010. [PMID: 38215638 DOI: 10.1016/j.bios.2024.116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Mass probes attached with aptamers and mass tags offer excellent specificity and sensitivity for multiplexed detection, wherein the dissociation of mass tags from the mass probes is as important as their labeling. Herein, aggregation-induced emission luminogen (AIEgen)-tagged mass probes (AIEMPs) were established to analyze estrogens, which integrated aptasensor with an explosive mass-tag signal amplification strategy via a simple ultrasound-assisted emulsification of nanoliposomes. The AIEMPs were assembled by the hybridization of aptamer-modified Fe3O4 nanoparticles (Fe NPs@Apt) and nanoliposomes loaded with massive AIEgen mass tags and partially complementary DNA strands (AIE NLs@cDNA). The aptamer was preferentially and specifically bound to estrogen, resulting in the detachment of AIE NLs from AIEMPs. Subsequently, the AIEMPs were deposited with electrospray solvents for explosive release of mass tags. Using nanoelectrospray ionization mass spectrometry (nanoESI-MS), the AIEMP-based aptasensor achieved ultrasensitive analysis of estrogens with limits of detection of 0.168-0.543 pg/mL and accuracies in the range of 87.9-114.0%. Compared to direct nanoESI-MS detection, the AIEMP-based aptasensor provides a signal amplification of four orders of magnitude. Furthermore, the utilization of different AIEMPs enables multiplexed detection of three estrogens with a miniature mass spectrometer, showing promising potential for on-site detection. This work expands the diversity of mass-tagging strategy and provides a versatile mass probe-based aptasensor platform for routine MS detection of trace analytes.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Linsen Li
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jingjing Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qiang Ma
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
2
|
Takahata Y, Hara M, Nishino K, Kawakami T. Immuno-Mass Spectrometry Workflow for Quantification of Serum α-Fetoprotein Using Antibody-Immobilized Magnetic Beads and Modified Eluents. Mass Spectrom (Tokyo) 2023; 12:A0122. [PMID: 37260735 PMCID: PMC10227195 DOI: 10.5702/massspectrometry.a0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 06/02/2023] Open
Abstract
Immuno-mass spectrometry (MS) is a powerful method for the quantitative analysis of low-abundance proteins in biological specimens. In these procedures, collecting specifically and efficiently the target protein antigens from the antigen-antibody complex generated on the surface of nanocarrier beads is crucial and can be performed by hydrolyzing the proteins directly on the beads or after elution. Herein, we optimized the conditions of the immunoaffinity purification via elution using serum α-fetoprotein (AFP) as a model and its specific antibody immobilized covalently on magnetic beads. Antibody-coated beads were incubated with human serum spiked with standard AFP for antigen-antibody reaction. AFP was then eluted from the beads using various eluents, including organic solvents, to optimize the elution conditions. After proteolytically hydrolyzing the eluted protein, stable isotope-labeled standard peptides were added to the hydrolysate to quantify the eluted AFP via liquid chromatography-tandem MS. Using an optimized workflow for quantitative analysis afforded a correlation between the amount of spiked AFP and heavy to light ratios calculated based on peptide ion peak areas, from which an endogenous AFP concentration of 2.3±0.6 ng/mL was determined in normal serum; this is consistent with previous reports using radioimmunoassay methods. The present immuno-MS workflow could apply to the detection and quantitation of other low-abundance biofluid biomarkers.
Collapse
Affiliation(s)
- Yoshio Takahata
- Biomolecule Analysis Group, Medical ProteoScope Co., Ltd., Yokohama Kanazawa High-Tech Center Techno Core, 1–1–1 Fukuura, Kanazawa-ku, Yokohama 236–0004, Japan
| | - Misato Hara
- Tamagawa Seiki Co., Ltd., 1879 Ohyasumi, Iida, Nagano 395–8515, Japan
| | - Kouhei Nishino
- Biomolecule Analysis Group, Medical ProteoScope Co., Ltd., Yokohama Kanazawa High-Tech Center Techno Core, 1–1–1 Fukuura, Kanazawa-ku, Yokohama 236–0004, Japan
| | - Takao Kawakami
- Biomolecule Analysis Group, Medical ProteoScope Co., Ltd., Yokohama Kanazawa High-Tech Center Techno Core, 1–1–1 Fukuura, Kanazawa-ku, Yokohama 236–0004, Japan
| |
Collapse
|
3
|
Liu C, Liu T. A Graphene-assisted Electrochemical Sensor for Detection of Alpha-fetoprotein in Serum. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
4
|
Zhang Z, Cai F, Chen J, Luo S, Lin Y, Zheng T. Ion-selective electrode-based potentiometric immunoassays for the quantitative monitoring of alpha-fetoprotein by coupling rolling cycle amplification with silver nanoclusters. Analyst 2022; 147:4752-4760. [DOI: 10.1039/d2an01282k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports an ion-selective electrode-based potentiometric immunoassay for AFP detection coupling rolling cycle amplification with silver nanoclusters.
Collapse
Affiliation(s)
- Zhishan Zhang
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| | - Fan Cai
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Jintu Chen
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| | - Shimu Luo
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Tingjin Zheng
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| |
Collapse
|
5
|
Li L, Liang D, Guo W, Tang D, Zeng Y. Antibody‐invertase Cross‐linkage Nanoparticles: A New Signal Tag for Point‐of‐Care Immunoassay of Alpha‐fetoprotein for Hepatocellular Carcinoma with Personal Glucometer. ELECTROANAL 2021. [DOI: 10.1002/elan.202100212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ling Li
- The First Clinical Medical College of Fujian Medical University Fuzhou 350004 P. R. China
- Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- Hepatopancreatobiliary Surgery Department The First Affiliated Hospital of Fujian Medical University Fuzhou 350004 P. R. China
| | - Dong Liang
- Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- People's Hospital Affiliated of Fujian University of Traditional Chinese Medicine Fuzhou 350004 P. R. China
| | - Wuhua Guo
- Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
| | - Dianping Tang
- Department of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Yongyi Zeng
- The First Clinical Medical College of Fujian Medical University Fuzhou 350004 P. R. China
- Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- Hepatopancreatobiliary Surgery Department The First Affiliated Hospital of Fujian Medical University Fuzhou 350004 P. R. China
| |
Collapse
|
6
|
Lopreside A, Calabretta MM, Montali L, Zangheri M, Guardigli M, Mirasoli M, Michelini E. Bioluminescence goes portable: recent advances in whole-cell and cell-free bioluminescence biosensors. LUMINESCENCE 2020; 36:278-293. [PMID: 32945075 DOI: 10.1002/bio.3948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Recent advancements in synthetic biology, organic chemistry, and computational models have allowed the application of bioluminescence in several fields, ranging from well established methods for detecting microbial contamination to in vivo imaging to track cancer and stem cells, from cell-based assays to optogenetics. Moreover, thanks to recent technological progress in miniaturized and sensitive light detectors, such as photodiodes and imaging sensors, it is possible to implement laboratory-based assays, such as cell-based and enzymatic assays, into portable analytical devices for point-of-care and on-site applications. This review highlights some recent advances in the development of whole-cell and cell-free bioluminescence biosensors with a glance on current challenges and different strategies that have been used to turn bioassays into biosensors with the required analytical performance. Critical issues and unsolved technical problems are also highlighted, to give the reader a taste of this fascinating and challenging field.
Collapse
Affiliation(s)
- Antonia Lopreside
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | | | - Laura Montali
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy
| | - Mara Mirasoli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy.,INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d'Oro, Rome, Italy
| | - Elisa Michelini
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy.,Health Sciences and Technologies-Interdepartmental Centre for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E 40064, Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
7
|
Hu X, Wei Z, Tang M, Long Y, Zheng H. Reducing background absorbance via a double-lock strategy for detection of alkaline phosphatase and α-fetoprotein. Mikrochim Acta 2020; 187:489. [PMID: 32766932 DOI: 10.1007/s00604-020-04468-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/27/2020] [Indexed: 11/25/2022]
Abstract
Lowering the background signal for more sensitive analysis of determinands is as important as amplifying the target signal. The photoinduced oxidase of fluorescein has been reported, which can catalyze the oxidization of common substrates in a few minutes. As a metaphor for locks and keys, we designed double locks confining the activity of fluorescein to reduce the background absorbance during colorimetric detection. The first lock inhibits the main activity of fluorescein by phosphating. The second lock almost completely deactivates fluorescein by forming coordination nanoparticles (CNPs) via the self-assembly of cerium chloride and fluorescein diphosphate (FDP). The Ce-FDP CNPs are characterized by scanning electron microscope (SEM), dynamic light scattering (DLS), Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectrum (EDS), which show electrostatic formation and amorphous character in the morphology. Alkaline phosphatase (ALP), the key to release fluorescein, can destroy Ce-FDP CNPs along with decomposing FDP by degrading phosphate groups. Therefore, a novel colorimetric strategy for sensitive detection of ALP is established. The detection of α-fetoprotein (AFP) is further succeeded by labeling AFP antibody with ALP. By dramatically reducing the background absorbance, the detection limits of ALP and AFP are as low as 0.014 mU/mL and 0.023 ng/mL, respectively. This convenient, brief, sensitive assay provides a promising prospect for clinical diagnosis. Graphical abstract.
Collapse
Affiliation(s)
- Xuemei Hu
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Zixuan Wei
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Menghuan Tang
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Yijuan Long
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Huzhi Zheng
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
8
|
Sforzi J, Palagi L, Aime S. Liposome-Based Bioassays. BIOLOGY 2020; 9:E202. [PMID: 32752243 PMCID: PMC7466007 DOI: 10.3390/biology9080202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
This review highlights the potential of using liposomes in bioassays. Liposomes consist of nano- or micro-sized, synthetically constructed phospholipid vesicles. Liposomes can be loaded with a number of reporting molecules that allow a dramatic amplification of the detection threshold in bioassays. Liposome-based sensors bind or react with the biological components of targets through the introduction of properly tailored vectors anchored on their external surface. The use of liposome-based formulations allows the set-up of bioassays that are rapid, sensitive, and often suitable for in-field applications. Selected applications in the field of immunoassays, as well as recognition/assessment of corona proteins, nucleic acids, exosomes, bacteria, and viruses are surveyed. The role of magnetoliposomes is also highlighted as an additional tool in the armory of liposome-based systems for bioassays.
Collapse
|
9
|
Pirzada M, Altintas Z. Recent Progress in Optical Sensors for Biomedical Diagnostics. MICROMACHINES 2020; 11:E356. [PMID: 32235546 PMCID: PMC7231100 DOI: 10.3390/mi11040356] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022]
Abstract
In recent years, several types of optical sensors have been probed for their aptitude in healthcare biosensing, making their applications in biomedical diagnostics a rapidly evolving subject. Optical sensors show versatility amongst different receptor types and even permit the integration of different detection mechanisms. Such conjugated sensing platforms facilitate the exploitation of their neoteric synergistic characteristics for sensor fabrication. This paper covers nearly 250 research articles since 2016 representing the emerging interest in rapid, reproducible and ultrasensitive assays in clinical analysis. Therefore, we present an elaborate review of biomedical diagnostics with the help of optical sensors working on varied principles such as surface plasmon resonance, localised surface plasmon resonance, evanescent wave fluorescence, bioluminescence and several others. These sensors are capable of investigating toxins, proteins, pathogens, disease biomarkers and whole cells in varied sensing media ranging from water to buffer to more complex environments such as serum, blood or urine. Hence, the recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
10
|
Zhang J, Lan T, Lu Y. Translating in vitro diagnostics from centralized laboratories to point-of-care locations using commercially-available handheld meters. Trends Analyt Chem 2020; 124:115782. [PMID: 32194293 PMCID: PMC7081941 DOI: 10.1016/j.trac.2019.115782] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a growing demand for high-performance point-of-care (POC) diagnostic technologies where in vitro diagnostics (IVD) is fundamental for prevention, identification, and treatment of many diseases. Over the past decade, a shift of IVDs from the centralized laboratories to POC settings is emerging. In this review, we summarize recent progress in translating IVDs from centralized labs to POC settings using commercially available handheld meters. After introducing typical workflows for IVDs and highlight innovative technologies in this area, we discuss advantages of using commercially available handheld meters for translating IVDs from centralized labs to POC settings. We then provide comprehensive coverage of different signal transduction strategies to repurpose the commercially-available handheld meters, including personal glucose meter, pH meter, thermometer and pressure meter, for detecting a wide range of targets by integrating biochemical assays with the meters for POC testing. Finally, we identify remaining challenges and offer future outlook in this area.
Collapse
Affiliation(s)
- JingJing Zhang
- State Key Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing
210023, China
| | - Tian Lan
- GlucoSentient, Inc., 2100 S. Oak Street, Suite 101,
Champaign, IL 61820, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Siwy Z, Ensinger W, Laube B, Baldwin R. Preface. Anal Chim Acta 2019; 1086:14-15. [DOI: 10.1016/j.aca.2019.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Yi R, Fu R, Li D, Qi J, Liu H. Identification of ligands from natural products as inhibitors of glutathione S‐transferases using enzyme immobilized mesoporous magnetic beads with high‐performance liquid chromatography plus quadrupole time‐of‐flight mass spectrometry and molecular docking. J Sep Sci 2019; 42:3611-3620. [DOI: 10.1002/jssc.201900318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Renxing Yi
- Jiangsu Key Laboratory of TCM Evaluation and Translational ResearchChina Pharmaceutical University Nanjing P. R. China
| | - Renjie Fu
- Jiangsu Key Laboratory of TCM Evaluation and Translational ResearchChina Pharmaceutical University Nanjing P. R. China
| | - Dapeng Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational ResearchChina Pharmaceutical University Nanjing P. R. China
| | - Jin Qi
- Jiangsu Key Laboratory of TCM Evaluation and Translational ResearchChina Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Haichun Liu
- School of ScienceChina Pharmaceutical University Nanjing P. R. China
| |
Collapse
|
13
|
|
14
|
Ge L, Li B, Xu H, Pu W, Kwok HF. Backfilling rolling cycle amplification with enzyme-DNA conjugates on antibody for portable electrochemical immunoassay with glucometer readout. Biosens Bioelectron 2019; 132:210-216. [DOI: 10.1016/j.bios.2019.02.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 01/24/2023]
|
15
|
Sun F, Sun X, Jia Y, Hu Z, Xu S, Li L, Na N, Ouyang J. Ultrasensitive detection of prostate specific antigen using a personal glucose meter based on DNA-mediated immunoreaction. Analyst 2019; 144:6019-6024. [DOI: 10.1039/c9an01558b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report a point-of-care immunosensor coupled with a rolling circle reaction and a personal glucose meter for sensitive detection of PSA.
Collapse
Affiliation(s)
- Feifei Sun
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Xiaomei Sun
- The Affiliated Hospital of Qingdao University
- Qingdao
- China
| | - Yijing Jia
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Zhian Hu
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Shenghao Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE; College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Lin Li
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| |
Collapse
|