1
|
Do SD, Lee S, Lee DH, Choi M, Rhee JS. Acute and chronic detrimental effects induced by short-chain chlorinated paraffins in the marine mysid Neomysis awatschensis. CHEMOSPHERE 2025; 371:144069. [PMID: 39756709 DOI: 10.1016/j.chemosphere.2025.144069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
To determine the potentially detrimental impacts of short-chain chlorinated paraffins (SCCPs), we conducted assessments of acute effects on 96-h survival rate and biochemical markers, as well as chronic and multigenerational impacts on growth and reproduction over three generations in the marine mysid, Neomysis awatschensis. Dose-dependent increase of mortality was measured in both juvenile and adult mysids for 96 h. Exposure to the LC10 value (derived from the 96-h acute toxicity value) significantly reduced feeding activity in juveniles, accompanied by a significant elevation in oxidative stress and a reduction in acetylcholinesterase activity. When juvenile and adult mysids were exposed to 1/10 of the NOEC and NOEC values for four weeks, mortality significantly increased in juveniles. Furthermore, mysids subjected to constant exposure to 1/10 of the NOEC and NOEC values across three generations, F0-F2, displayed more pronounced growth retardation, an extended intermolt duration, and a reduced rate of reproduction. These results collectively indicate that even sublethal concentrations of SCCPs can have harmful effects on the health status of mysid populations when they are consistently exposed.
Collapse
Affiliation(s)
- Seong Duk Do
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Somyeong Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Do-Hee Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Minkyu Choi
- Department of Marine Environment Research, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, Republic of Korea; Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon, 22012, Republic of Korea; Yellow Sea Research Institute, Incheon, 22012, Republic of Korea.
| |
Collapse
|
2
|
Lee J, Do SD, Rhee JS. Acute and multigenerational effects of short-chain chlorinated paraffins on the harpacticoid copepod Tigriopus japonicus. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110055. [PMID: 39437872 DOI: 10.1016/j.cbpc.2024.110055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Although the measurement of short-chain chlorinated paraffins (SCCPs) in aquatic ecosystems has increased, limited information is available on their toxic effects on aquatic animals. To evaluate the harmful effects of SCCPs, we assessed their acute impact on 24-h survival and biochemical parameters, as well as their chronic effects on growth and reproduction over three generations in the harpacticoid copepod Tigriopus japonicus. Dose-dependent increases in mortality were observed, with an LC50 value of 74.6 μg L-1 for 24 h. Acute exposure to the LC10 value for 24 h significantly reduced feeding behavior, accompanied by a notable decrease in acetylcholinesterase enzymatic activity. Simultaneously, the intracellular levels of reactive oxygen species increased, along with elevated malondialdehyde contents. Glutathione level was increased by the LC10 value of SCCPs with the induction of enzymatic activities of antioxidant defense components, including glutathione S-transferase, catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. When T. japonicus was continuously exposed to 1/10 of the NOEC and NOEC values for 12 days across three generations (F0-F2), growth retardation was observed in the F2 generation, with delay in the developmental periods from nauplius to adult. Although the total number of nauplii per brood was not significantly altered across generations, a significant delay in the onset of reproduction was observed in the F2 generation. Our findings suggest that even sublethal concentrations of SCCPs can negatively affect the health of copepod populations with consistent exposure.
Collapse
Affiliation(s)
- Jihyun Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Seong Duk Do
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 22012, Republic of Korea.
| |
Collapse
|
3
|
Xie Q, Zhang X, Wu Y. Space-use strategy drives fine-scale spatial variation of chlorinated paraffins in indo-pacific humpback dolphins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124559. [PMID: 39019312 DOI: 10.1016/j.envpol.2024.124559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Contaminant accumulation in organisms can be influenced by both biological traits and environmental conditions. However, delineating the main factors affecting contaminant burdens in organisms remains challenging. Here, we conducted an initial investigation into the impact of diet and habitat on the accumulation of short- (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in Indo-Pacific humpback dolphins (2003-2020, n = 128) from the Pearl River Estuary (PRE), a highly polluted estuary in China. The detected levels of SCCPs (5897 ± 3480 ng g-1 lw) and MCCPs (13,960 ± 8285 ng g-1 lw) in blubber samples of humpback dolphin are the highest among recorded values marine mammals. Both SCCPs and MCCPs exhibited biomagnification factor values exceeding 1, suggesting their biomagnification potential within the dolphins and their diet. Quantitative diet analysis using the dolphin fatty acid signatures revealed that humpback dolphins inhabiting the western PRE consumed a larger proportion of carnivorous fish than those from the eastern PRE. However, spatial analysis showed that humpback dolphins in the western PRE contained lower SCCP/MCCP concentrations than those from the eastern PRE. Based on these findings we suggest that, compared to diet differences, spatial variations of SCCPs/MCCPs in humpback dolphins may be predominantly influenced by their space-use strategies, as the eastern PRE is closer to the pollutant discharge source and transfer routes.
Collapse
Affiliation(s)
- Qiang Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| |
Collapse
|
4
|
McGrath TJ, Hägele C, Schweizer S, Vetter W, Dodson RE, Le Bizec B, Covaci A, Dervilly G, Cariou R. Application of pattern deconvolution strategies for the estimation of bromochloro alkane concentrations in indoor dust samples. CHEMOSPHERE 2024; 366:143370. [PMID: 39306103 DOI: 10.1016/j.chemosphere.2024.143370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Bromochloro alkanes (BCAs) are a class of flame retardants similar in structure to polychlorinated alkanes (PCAs), which are the major component of short-chain chlorinated paraffins (SCCPs) listed as Persistent Organic Pollutants under the Stockholm Convention. BCAs have recently been detected for the first time in environmental samples. Due to the complete lack of commercially available analytical standards, no method for quantifying BCAs has been reported to date. In this study, 16 custom-synthesised standards with mixed bromine and chlorine halogenation and carbon chain lengths ranging from C10 to C17 were characterized by liquid chromatography and Orbitrap high-resolution mass spectrometry and used to assess the applicability of pattern deconvolution quantification strategies for BCAs in indoor dust. Br1-9 and Cl1-8 BCAs were detected as [M + Cl]- adduct ions among the C10 to C17 standards, as well as numerous PCA homologues. After applying correction factors to account for the presence of PCAs in the standards, triplicate fortification experiments using varied halogenation composition and concentration determined an average measurement accuracy of 81% over the carbon chain lengths studied and coefficient of variance ≤20% between replicates. Overall, approximately 89% of the ΣBCA concentrations quantified in the fortification trials met the European Union Reference Laboratory's accuracy acceptability criteria recommended for PCAs, between 50 and 150%. Application of the BCA pattern deconvolution quantification procedure to seven representative indoor dust samples from the United States of America revealed a low correlation between the homologue distribution in the samples and the prototype standards (R2 ≤ 0.40), which precluded reliable quantification. This study indicates that pattern deconvolution is an appropriate strategy for quantifying BCAs in environmental samples, but that a large set of appropriate mixture standards will be required before more reliable estimates of BCA concentrations can be achieved in indoor dust.
Collapse
Affiliation(s)
- Thomas J McGrath
- Oniris, INRAE, LABERCA, 44300, Nantes, France; Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Clara Hägele
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | - Sina Schweizer
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | | | | |
Collapse
|
5
|
Masucci C, Nagornov KO, Kozhinov AN, Kraft K, Tsybin YO, Bleiner D. Evaluation of atmospheric-plasma-source absorption mode Fourier transform Orbitrap mass spectrometry for chlorinated paraffin mixtures. Anal Bioanal Chem 2024; 416:5133-5144. [PMID: 39138657 PMCID: PMC11377688 DOI: 10.1007/s00216-024-05450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
Chlorinated paraffins (CP) are complex molecular mixtures occurring in a wide range of isomers and homologs of environmental hazards, whose analytical complexity demand advanced mass spectrometry (MS) methods for their characterization. The reported formation of chlorinated olefins (COs) and other transformation products during CP biotransformation and degradation can alter the MS analysis, increasing the high resolution required to distinguish CPs from their degradation products. An advanced setup hyphenating a plasma ionization source and an external high-performance data acquisition and processing system to the legacy hybrid LTQ Orbitrap XL mass spectrometer is reported. First, the study demonstrated the versatility of a liquid sampling atmospheric pressure glow discharge, as a soft ionization technique, for CP analysis. Second, enhanced resolution and sensitivity provided by the absorption mode Fourier transform spectral representation on this legacy mass spectrometer are shown. The developed Orbitrap-based platform allowed the detection of new isotopic clusters and CPs and COs to be distinguished at medium resolution (setting 30,000 at m/z 400, ~ 400 ms transients), and even chlorinated di-olefins (CdiOs) at higher resolution (setting 100,000 at m/z 400, ~ 1500 ms transients). Overall, such proof-of-principle instrumental improvements are promising for environmental and analytical research in the field of CP analysis.
Collapse
Affiliation(s)
- Claudia Masucci
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | | | - Kevin Kraft
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Davide Bleiner
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
6
|
McGrath TJ, Saint-Vanne J, Hutinet S, Vetter W, Poma G, Fujii Y, Dodson RE, Johnson-Restrepo B, Muenhor D, Le Bizec B, Dervilly G, Covaci A, Cariou R. Detection of Bromochloro Alkanes in Indoor Dust Using a Novel CP-Seeker Data Integration Tool. Anal Chem 2024; 96:4942-4951. [PMID: 38478960 DOI: 10.1021/acs.analchem.3c05800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bromochloro alkanes (BCAs) have been manufactured for use as flame retardants for decades, and preliminary environmental risk screening suggests they are likely to behave similarly to polychlorinated alkanes (PCAs), subclasses of which are restricted as Stockholm Convention Persistent Organic Pollutants (POPs). BCAs have rarely been studied in the environment, although some evidence suggests they may migrate from treated-consumer materials into indoor dust, resulting in human exposure via inadvertent ingestion. In this study, BCA-C14 mixture standards were synthesized and used to validate an analytical method. This method relies on chloride-enhanced liquid chromatography-electrospray ionization-Orbitrap-high resolution mass spectrometry (LC-ESI-Orbitrap-HRMS) and a novel CP-Seeker integration software package for homologue detection and integration. Dust sample preparation via ultrasonic extraction, acidified silica cleanup, and fractionation on neutral silica cartridges was found to be suitable for BCAs, with absolute recovery of individual homologues averaging 66 to 78% and coefficients of variation ≤10% in replicated spiking experiments (n = 3). In addition, a total of 59 indoor dust samples from six countries, including Australia (n = 10), Belgium (n = 10), Colombia (n = 10), Japan (n = 10), Thailand (n = 10), and the United States of America (n = 9), were analyzed for BCAs. BCAs were detected in seven samples from the U.S.A., with carbon chain lengths of C8, C10, C12, C14, C16, C18, C24 to C28, C30 and C31 observed overall, though not detected in samples from any other countries. Bromine numbers of detected homologues in the indoor dust samples ranged Br1-4 as well as Br7, while chlorine numbers ranged Cl2-11. BCA-C18 was the most frequently detected, observed in each of the U.S.A. samples, while the most prevalent degrees of halogenation were homologues of Br2 and Cl4-5. Broad estimations of BCA concentrations in the dust samples indicated that levels may approach those of other flame retardants in at least some instances. These findings suggest that development of quantification strategies and further investigation of environmental occurrence and health implications are needed.
Collapse
Affiliation(s)
- Thomas J McGrath
- Oniris, INRAE, LABERCA, 44307 Nantes, France
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | | | | | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, 70599, Stuttgart, Germany
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
- Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | - Robin E Dodson
- Silent Spring Institute, Newton, Massachusetts 02460, United States
| | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, Campus of San Pablo, University of Cartagena, Cartagena 130015, Colombia
| | - Dudsadee Muenhor
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | | |
Collapse
|
7
|
Chen C, Li L, Endo S, Jiang S, Wania F. Are We Justified in Modeling Human Exposure to Chlorinated Paraffin Mixtures Using the Average Properties of Congeners and Homologues? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4535-4544. [PMID: 38408178 DOI: 10.1021/acs.est.3c09186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Concern over human exposure to chlorinated paraffin (CP) mixtures keeps increasing. The absence of a comprehensive understanding of how human exposure varies with the physicochemical properties of CP constituents has hindered the ability to determine at what level of aggregation exposure to CPs should be assessed. We answer this question by comparing exposure predicted with either a "complex" method that utilizes isomer-specific properties or "simplified" methods that rely on median properties of congener, homologue, or short-/medium-/long-chain CP groups. Our results demonstrate the wide range of physicochemical properties across CP mixtures and their dependence on molecular structures. Assuming unit emissions in the environment, these variances translate into an extensive disparity in whole-body concentrations predicted for different isomers, spanning ∼11 orders of magnitude. CPs with 13-19 carbons and 6-10 chlorines exhibit the highest human exposure potential, primarily owing to moderate to high hydrophobicity and slow environmental degradation and biotransformation. Far-field exposure is dominant for most CP constituents. Our study underscores that using average properties of congener, homologue, or S/M/LCCP groups yields results that are consistent with those derived from isomer-based modeling, thus offering an efficient and practical framework for future risk assessments and human exposure studies of CPs and other complex chemical mixtures.
Collapse
Affiliation(s)
- Chengkang Chen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Li Li
- School of Public Health, University of Nevada Reno, 1664 N Virginia Street, Reno, Nevada 89557, United States
| | - Satoshi Endo
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba 305-8506, Ibaraki, Japan
| | - Shaoxiang Jiang
- Institute for Global Health and Development, Peking University, Beijing 100871, China
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
8
|
Knobloch MC, Hutter J, Diaz OM, Zennegg M, Vogel JC, Durisch E, Stalder U, Bigler L, Kern S, Bleiner D, Heeb NV. Evolution of chlorinated paraffin and olefin fingerprints in sewage sludge from 1993 to 2020 of a Swiss municipal wastewater treatment plant. CHEMOSPHERE 2024; 349:140825. [PMID: 38040258 DOI: 10.1016/j.chemosphere.2023.140825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Exposure of humans to chlorinated paraffins (CPs) and chlorinated olefins (COs) can occur via contact with CP-containing plastic materials. Such plastic materials can contain short-chain CPs (SCCPs), which are regulated as persistent organic pollutants (POPs) under the Stockholm Convention since 2017. Municipal wastewater treatment plants (WWTP) collect effluents of thousands of households and their sludge is a marker for CP exposure. We investigated digested sewage sludge collected in the years 1993, 2002, 2007, 2012, and 2020 from a Swiss WWTP serving between 20000 and 23000 inhabitants. A liquid chromatography mass spectrometry (R > 100000) method, in combination with an atmospheric pressure chemical ionization source (LC-APCI-MS), was used to detect mass spectra of CPs and olefinic side products. A R-based automated spectra evaluation routine (RASER) was applied to search for ∼23000 ions whereof ∼6000 ions could be assigned to CPs, chlorinated mono- (COs), di- (CdiOs) and tri-olefins (CtriOs). Up to 230 CP-, 120 CO-, 50 CdiO- and 20 CtriO-homologues could be identified in sludge. Characteristic fingerprints were deduced describing C- and Cl-homologue distributions, chlorine- (nCl) and carbon- (nC) numbers of CPs and COs. In addition, proportions of saturated and unsaturated material were determined together with proportions of different chain length classes including short- (SC), medium- (MC), long- (LC) and very long-chain (vLC) material. A substantial reduction of SCCPs of 84% was observed from 1993 to 2020. Respective levels of MCCPs, LCCPs and vLCCPs decreased by 61, 69 and 58%. These trends confirm that banned SCCPs and non-regulated CPs are present in WWTP sludge and higher-chlorinated SCCPs were replaced by lower chlorinated MCCPs. Combining high-resolution mass spectrometry with a selective and fast data evaluation method can produce characteristic fingerprints of sewage sludge describing the long-term trends in a WWTP catchment area.
Collapse
Affiliation(s)
- Marco C Knobloch
- Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland; University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jules Hutter
- Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland; Zurich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.
| | - Oscar Mendo Diaz
- Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland; University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Markus Zennegg
- Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Jean Claude Vogel
- Office for Waste, Water, Energy and Air of the Canton of Zurich AWEL, Water Protection Department, Hardturmstrasse 105, 8090, Zurich, Switzerland
| | - Edith Durisch
- Office for Waste, Water, Energy and Air of the Canton of Zurich AWEL, Water Protection Department, Hardturmstrasse 105, 8090, Zurich, Switzerland
| | - Urs Stalder
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Laurent Bigler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Susanne Kern
- Zurich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Davide Bleiner
- Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland; University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Norbert V Heeb
- Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| |
Collapse
|
9
|
Hanari N, Nakano T. Interlaboratory trial of short-chain chlorinated paraffin: comparison of mass fractions and homolog profiles in a simulation environmental sample. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119450-119461. [PMID: 37924406 DOI: 10.1007/s11356-023-30577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are listed in the Stockholm Convention. Therefore, selecting suitable methods for their accurate quantification is essential. Nowadays, the quality of commercial reagents employed as quantification standards is not guaranteed. As a solution, we adopted an SCCP formulation reference material with known homolog composition ratios as the quantification standard to evaluate the appropriateness of the methods. By mixing the SCCP formulation and interferences, an analytical sample was independently prepared and used as the simulation environmental sample. The homolog compositional profiles of the SCCPs resembled those of the quantification standard and the analytical sample. The mass fractions and the homolog profiles, including the carbon chain length and chlorine homolog profiles, of the SCCPs were reported by 14 different laboratories. For the mass fraction, the results reported by participants were consistent, except for the participants that employed low-resolution gas chromatography (GC). The results generated from liquid chromatography (LC) and GC were slightly different, despite of the similar homolog composition ratios between the quantification standard and the analytical sample. Although there were discreet discrepancies in the overall chlorine homolog profiles, the carbon chain length profiles acquired from GC and LC were similar. The differences depended on the method employed. Additionally, compared with the low-resolution data, the high-resolution data displayed less fluctuation since the effect of the interferences on the analytical sample was reduced because of the mass accuracy of high-resolution instruments. Accordingly, the interlaboratory trial employing the similar homolog compositional profiles of the quantification standard and the analytical sample proved valuable in elucidating the differences among methods, considering equipment, resolution specification, and ionization.
Collapse
Affiliation(s)
- Nobuyasu Hanari
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan.
| | - Takeshi Nakano
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Liu X, Wang S, Hou Y, Liu C, Ling J, Wei C, Zhou Q, Zheng X. Freshwater environment risk assessment and derivation of human health ambient water quality criteria for SCCPs in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122379. [PMID: 37586687 DOI: 10.1016/j.envpol.2023.122379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/15/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs, CxH2x+2-yCly, where x = 10 to 13 and y = 3 to x) are a complex family of emerging contaminants that have been identified as persistent, bioaccumulative and toxic (PBT) substances. Because of their persistence, high toxicity, bioaccumulation and long-distance mobility, SCCPs were added to the list of controlled POPs in the Stockholm Convention in 2017. China is the largest producer and user of SCCPs all over the world, thus SCCPs have been widely distributed in the freshwater environment. But the ecological risk and human health risk of SCCPs in China were still less evaluated. This study collected and screened the exposure data of SCCPs in freshwater environment in China, and then evaluated the freshwater and sediments ecological risk of SCCPs by risk quotient (RQ) method and the human health risk by margin of exposure (MOE) method. Our results showed that the pollution of SCCPs in the freshwater environment in China was not optimistic. The ecological risks and human health risks had occurred, and even there were high ecological risks occurred in some regions in China. Besides, because of the absence of the concentration threshold of SCCPs to protect human health in freshwater at present, we derived the human health ambient water quality criteria (AWQC) values of SCCPs based on exposure data and bioaccumulation factor (BAF) in China. The human health AWQC values of SCCPs ranged from 14.99 ng L-1 to 154.54 ng L-1 in different regions in China, and the national human health AWQC value was determined as 24.08 ng L-1. This study will provide the scientific references for the management and control of SCCPs in China, especially for the formulation of standard of water environmental quality for SCCPs.
Collapse
Affiliation(s)
- Xinyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yin Hou
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Chen Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Jianan Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Chao Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Quan Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| |
Collapse
|
11
|
McGrath TJ, Poma G, Hutinet S, Fujii Y, Dodson RE, Johnson-Restrepo B, Muenhor D, Dervilly G, Cariou R, Covaci A. An international investigation of chlorinated paraffin concentrations and homologue distributions in indoor dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121994. [PMID: 37302785 DOI: 10.1016/j.envpol.2023.121994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
In this study, very short-, short-, medium-, and long-chain chlorinated paraffins (vSCCPs, SCCPs, MCCPs and LCCPs, respectively) were measured in 40 indoor dust samples from four countries including Japan (n = 10), Australia (n = 10), Colombia (n = 10) and Thailand (n = 10). Homologues of the chemical formula CxH(2x+2-y)Cly ranging C6-36 and Cl3-30 were analysed using liquid chromatography coupled to Orbitrap high resolution mass spectrometry (LC-Orbitrap-HRMS) and integrated using novel custom-built CP-Seeker software. CPs were detected in all dust samples with MCCPs the dominant homologue group in all countries. Overall median ∑SCCP, ∑MCCP and ∑LCCP (C18-20) concentrations determined in dust samples were 30 μg/g (range; 4.0-290 μg/g), 65 μg/g (range; 6.9-540 μg/g) and 8.6 μg/g (range; <1.0-230 μg/g), respectively. Of the quantified CP classes, overall concentrations were generally highest in the samples from Thailand and Colombia, followed by Australia and Japan. vSCCPs with C≤9 were detected in dust from each country with an overall frequency of 48%, while LCCPs (C21-36) were present in 100% of samples. Estimated daily intakes (EDIs) calculated for SCCPs and MCCPs relating to ingestion of contaminated indoor dust were considered not to represent health risks based on currently available toxicological data using the margin of exposure (MOE) approach. To the authors' knowledge, this study provides the first data on CPs in indoor dust from Japan, Colombia and Thailand, and is among the first reports of vSCCPs in indoor dust, globally. These findings indicate that further toxicological data and the availability of appropriate analytical standards are needed to evaluate the potential for negative health outcomes deriving from exposure to vSCCPs and LCCPs.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium; Oniris, INRAE, LABERCA, 44300, Nantes, France.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | | | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium; Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | | | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, University of Cartagena, Cartagena, 130015, Colombia
| | - Dudsadee Muenhor
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
12
|
Guida Y, Matsukami H, Oliveira de Carvalho G, Weber R, Vetter W, Kajiwara N. Homologue Composition of Technical Chlorinated Paraffins Used in Several Countries over the Last 50 Years─SCCPs Are Still Out There. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13136-13147. [PMID: 37607020 DOI: 10.1021/acs.est.3c02243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Chlorinated paraffins (CPs) are widely produced chemicals, with certain CP subgroups facing global restrictions due to their environmental dispersion, persistence, bioaccumulation, and toxicity. To evaluate the effectiveness of these international restrictions, we assessed the homologue group contribution and the mass fraction of short-chain CPs (SCCPs: C10-C13), medium-chain CPs (MCCPs: C14-C17), and long-chain CPs (LCCPs: ≥C18) in 36 technical CP mixtures used worldwide over the last 50 years. Using low-resolution mass spectrometry (LC-ESI-MS/MS), we quantified 74 CP homologue groups (C10Cl4-C20Cl10). Additionally, high-resolution mass spectrometry (LC-ESI-QTOF-MS) screening was employed to identify unresolved CP contents, covering 375 CP homologue groups (C6Cl4-C30Cl30). Overall, 1 sample was mainly composed of
Collapse
Affiliation(s)
- Yago Guida
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, 21941-902 Rio de Janeiro, Brazil
| | - Hidenori Matsukami
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Gabriel Oliveira de Carvalho
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, 21941-902 Rio de Janeiro, Brazil
| | - Roland Weber
- POPs Environmental Consulting, 73527 Schwäbisch Gmünd, Germany
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, DE-70593 Stuttgart, Germany
| | - Natsuko Kajiwara
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| |
Collapse
|
13
|
Martín-Carrasco I, Carbonero-Aguilar P, Dahiri B, Moreno IM, Hinojosa M. Comparison between pollutants found in breast milk and infant formula in the last decade: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162461. [PMID: 36868281 DOI: 10.1016/j.scitotenv.2023.162461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Since ancient times, breastfeeding has been the fundamental way of nurturing the newborn. The benefits of breast milk are widely known, as it is a source of essential nutrients and provides immunological protection, as well as developmental benefits, among others. However, when breastfeeding is not possible, infant formula is the most appropriate alternative. Its composition meets the nutritional requirements of the infant, and its quality is subject to strict control by the authorities. Nonetheless, the presence of different pollutants has been detected in both matrices. Thus, the aim of the present review is to make a comparison between the findings in both breast milk and infant formula in terms of contaminants in the last decade, in order to choose the most convenient option depending on the environmental conditions. For that, the emerging pollutants including metals, chemical compounds derived from heat treatment, pharmaceutical drugs, mycotoxins, pesticides, packaging materials, and other contaminants were described. While in breast milk the most concerning contaminants found were metals and pesticides, in infant formula pollutants such as metals, mycotoxins, and packaging materials were the most outstanding. In conclusion, the convenience of using a feeding diet based on breast milk or either infant formula depends on the maternal environmental circumstances. However, it is important to take into account the immunological benefits of the breast milk compared to the infant formula, and the possibility of using breast milk in combination with infant formula when the nutritional requirements are not fulfilled only with the intake of breast milk. Therefore, more attention should be paid in terms of analyzing these conditions in each case to be able to make a proper decision, as it will vary depending on the maternal and newborn environment.
Collapse
Affiliation(s)
- I Martín-Carrasco
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - P Carbonero-Aguilar
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - B Dahiri
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - I M Moreno
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain.
| | - M Hinojosa
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain; Department of Biochemistry and Biophysics, Stockholm University, Institutionen för biokemi och biofysik, 106 91 Stockholm, Sweden
| |
Collapse
|
14
|
Simond AÉ, Ross PS, Cabrol J, Lesage V, Lair S, Woudneh MB, Yang D, Peng H, Colbourne K, Brown TM. Declining concentrations of chlorinated paraffins in endangered St. Lawrence Estuary belugas (Delphinapterus leucas): Response to regulations or a change in diet? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161488. [PMID: 36626992 DOI: 10.1016/j.scitotenv.2023.161488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Very high levels of industrial contaminants in St. Lawrence Estuary (SLE) beluga whales represent one of the major threats to this population classified as endangered under the Species at Risk Act in Canada. Elevated concentrations of short-chained chlorinated paraffins (SCCPs) were recently reported in blubber of adult male SLE belugas. Recent regulations for SCCPs in North America, combined with their replacement by medium- (MCCPs) and long-chained chlorinated paraffins (LCCPs), highlight the importance of tracking this toxic chemical class. The objectives of this study were to evaluate (1) levels and profiles of chlorinated paraffins (CPs) in samples obtained from carcasses of adult male, adult female, juvenile, newborn, and fetus beluga, and (2) trends in adult male belugas between 1997 and 2018. Factors potentially influencing CP temporal trends such as age, feeding ecology and sampling year were also explored. SCCPs dominated (64 to 100%) total CP concentrations across all age and sex classes, MCCPs accounted for the remaining proportion of total CPs, and LCCPs were not detected in any sample. The chlorinated paraffin homolog that dominated the most in beluga blubber was C12Cl8. Adult male SCCP concentrations from this study were considerably lower (> 2000-fold) than those recently reported in Simond et al. (2020), likely reflecting a previously erroneous overestimate due to the lack of a suitable analytical method for SCCPs at the time. Both SCCPs and total CPs declined over time in adult males in our study (rate of 1.67 and 1.33% per year, respectively), presumably due in part to the implementation of regulations in 2012. However, there is a need to better understand the possible contribution of a changing diet to contaminant exposure, as stable isotopic ratios of carbon also changed over time.
Collapse
Affiliation(s)
- Antoine É Simond
- Fisheries and Oceans Canada, Pacific Science Enterprise Center, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada; Simon Fraser University, Pacific Science Enterprise Centre, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
| | - Peter S Ross
- Raincoast Conservation Foundation, W̱SÁNEĆ Territory, P.O. Box 2429, Sidney, BC V8L 3Y3, Canada.
| | - Jory Cabrol
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, 850 Route de la Mer, Mont-Joli, QC G5H 3Z4, Canada.
| | - Véronique Lesage
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, 850 Route de la Mer, Mont-Joli, QC G5H 3Z4, Canada.
| | - Stéphane Lair
- Canadian Wildlife Health Cooperative, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, St Hyacinthe, QC J2S 2M2, Canada.
| | - Million B Woudneh
- SGS AXYS Analytical Services Ltd., 2045 Mills Road West, Sydney, BC V8L 5X2, Canada.
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| | - Hui Peng
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada; School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada.
| | - Katerina Colbourne
- Fisheries and Oceans Canada, Pacific Science Enterprise Center, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
| | - Tanya M Brown
- Fisheries and Oceans Canada, Pacific Science Enterprise Center, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada; Simon Fraser University, Pacific Science Enterprise Centre, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
| |
Collapse
|
15
|
Liu S, Ye X, Zhou X, Chen C, Huang Y, Fang S, Guo P, Ouyang G. In Vivo Profiling and Quantification of Chlorinated Paraffin Homologues in Living Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3053-3061. [PMID: 36790355 DOI: 10.1021/acs.est.2c05923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, we demonstrate the ability of a dual-purpose periodic mesoporous organosilica (PMO) probe to track the complex chlorinated paraffin (CP) composition in living animals by assembling it as an adsorbent-assisted atmospheric pressure chemical ionization Fourier-transform ion cyclotron resonance mass spectrometry (APCI-FT-ICR-MS) platform and synchronously performing it as the in vivo sampling device. First, synchronous solvent-free ionization and in-source thermal desorption of CP homologues were achieved by the introduction of the PMO adsorbent-assisted APCI module, generating exclusive adduct ions ([M - H]-) of individual CP homologues (CnClm) with enhanced ionization efficiency. Improved detection limits of short- and medium-chain CPs (0.10-24 and 0.48-5.0 pg/μL) were achieved versus those of the chloride-anion attachment APCI-MS methods. Second, the dual-purpose PMO probe was applied to extract the complex CP compositions in living animals, following APCI-FT-ICR-MS analysis. A modified pattern-deconvolution algorithm coupled with the sampling-rate calibration method was used for the quantification of CPs in living fish. In vivo quantification of a tilapia exposed to technical CPs for 7 days was successfully achieved, with ∑SCCPs and ∑MCCPs of the sampled fish calculated to be 1108 ± 289 and 831 ± 266 μg/kg, respectively. Meanwhile, 58 potential CP metabolites were identified in living fish for the first time during in vivo sampling of CPs, a capacity that could provide an important tool for future study regarding its expected risks to humans and its environmental fate.
Collapse
Affiliation(s)
- Shuqin Liu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Xiaoji Ye
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Xi Zhou
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Yiquan Huang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuting Fang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Gangfeng Ouyang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
16
|
Liu R, Hu X, Yang L, Xie C, Yang L, Geng J, Wang X, Yao S, Zhang Z. Online Quantitative Analysis of Chlorine Contents in Chlorinated Paraffins by Facile Raman Spectroscopy. ACS OMEGA 2023; 8:4711-4715. [PMID: 36777560 PMCID: PMC9910067 DOI: 10.1021/acsomega.2c06674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Online analysis of industrial chemicals is extremely important for managing product quality and performance. The chlorine (Cl) content is one of the most important technical metrics for chlorinated paraffins (CPs), and the conventional approaches to estimate Cl contents require transforming the Cl element to chloride followed by quantitative analysis with either titration or instrumentation, which are normally tedious and time-consuming and cannot simultaneously guide the industrial production. Here, we developed a rapid, real-time, and online approach to determine the Cl content of CPs with facile Raman spectroscopy. The chlorination of paraffins generated two new Raman peaks at 610-618 and 668-690 cm-1, which are associated with the vibrational modes of the SHH and SHC conformations of the C-Cl bond in CPs, respectively. More importantly, the corresponding peak of the SHH conformation decreased and that of the SHC conformation increased with the enhancement of the chlorination degree of CPs. The ratiometric calculation of the two respective Raman peak areas leads to a quantitative analysis of the Cl content of CPs. The developed approach can online provide the Cl contents of CPs within seconds accurately but without the tedious sample treatment required by conventional approaches. The strategy of integrating Raman analysis with the industrial pipeline will help in managing the production and quality control of industrial chemicals.
Collapse
Affiliation(s)
- Renyong Liu
- Key
Laboratory of Biomimetic Sensor and Detecting Technology of Anhui
Province, School of Materials and Chemical Engineering, West Anhui University, Lu’an, Anhui 237012, China
| | - Xinqiang Hu
- Key
Laboratory of Biomimetic Sensor and Detecting Technology of Anhui
Province, School of Materials and Chemical Engineering, West Anhui University, Lu’an, Anhui 237012, China
| | - Linlin Yang
- Key
Laboratory of Biomimetic Sensor and Detecting Technology of Anhui
Province, School of Materials and Chemical Engineering, West Anhui University, Lu’an, Anhui 237012, China
| | - Chenggen Xie
- Key
Laboratory of Biomimetic Sensor and Detecting Technology of Anhui
Province, School of Materials and Chemical Engineering, West Anhui University, Lu’an, Anhui 237012, China
| | - Lei Yang
- Key
Laboratory of Biomimetic Sensor and Detecting Technology of Anhui
Province, School of Materials and Chemical Engineering, West Anhui University, Lu’an, Anhui 237012, China
| | - Junlong Geng
- Institute
of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Xiruo Wang
- Anhui
Xingxin Material Technology Co., Ltd., Lu’an, Anhui 237451, China
| | - Shangqun Yao
- Anhui
Xingxin Material Technology Co., Ltd., Lu’an, Anhui 237451, China
| | - Zhongping Zhang
- Institute
of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
17
|
Yu X, McPhedran KN, Huang R. Chlorinated paraffins: A review of sample preparation, instrumental analysis, and occurrence and distribution in food samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120875. [PMID: 36526055 DOI: 10.1016/j.envpol.2022.120875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Chlorinated paraffins (CPs) are released into natural environment during processes of production and utilization with diet being the most important exposure route of CPs for human beings. Short-chain chlorinated paraffins (SCCPs) have lower molecular weights, higher vapor pressures, and higher water solubilities than medium-chain chlorinated paraffins (MCCPs) and long-chain chlorinated paraffins (LCCPs), making SCCPs more likely to be readily released into the environment. Thus, SCCPs were enlisted as persistent organic pollutants being included in the Stockholm Convention in 2017. This review article summarized sample preparation and instrumental analysis methods of CPs for food types such as oil, meat, and aquatic foods. In addition, reported concentrations and profiles, dietary intake and risk assessment of CPs in food samples from various regions, such as China, Japan, and Germany are discussed for studies published between 2005 and 2022. This review is timely given the lack of a recent literature summary of the concentration and distribution of CPs in food. All these studies warranted the necessity to maintain continuous monitoring of CPs concentrations and their potential health risks given the concentrations of CPs in food are increasing worldwide.
Collapse
Affiliation(s)
- Xi Yu
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Kerry Neil McPhedran
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
18
|
McGrath TJ, Christia C, Poma G, Covaci A. Seasonal variation of short-, medium- and long-chain chlorinated paraffin distribution in Belgian indoor dust. ENVIRONMENT INTERNATIONAL 2022; 170:107616. [PMID: 36370602 DOI: 10.1016/j.envint.2022.107616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated paraffins (CPs) are high production volume plasticizers and flame retardants, which have exhibited bioaccumulative and toxic properties. CPs may be released from treated consumer goods and bind with indoor dust, leading to human exposure via unintentional dust ingestion. In this study, the concentrations and homologue distribution of CPs were measured in 50 indoor dust samples collected in paired winter and summer sampling campaigns from 25 homes in Flanders, Belgium. Short-, medium- and long-chain CPs (SCCPs (C10-13), MCCPs (C14-17) and LCCPs (C18-20), respectively) were each detected in all Belgian indoor dust samples with overall median concentrations of 6.1 µg/g (range 0.61 to 120 µg/g), 45 µg/g (range 4.5 to 520 µg/g) and 4.5 µg/g (range 0.3 to 50 µg/g), respectively. Concentrations were significantly higher in the winter samples than summer for each of the three groups (p < 0.05). LCCPs homologues ranging from C21-32 were also detected in dust samples and accounted for approximately half of the LCCP relative abundance based on instrumental peak area, although a lack of appropriate analytical standards prevented quantification of these homologues. While clear sources of CP contamination in dust could not be identified, significant associations between concentrations of ∑SCCPs, ∑MCCPs and ∑LCCPs (C18-20) (p < 0.05) suggested the combined application within materials or products in homes. Based on typical exposure scenarios, estimated daily intake of ∑CPs (C10-20) for adults and toddlers were 14 and 270 ng/kg bw/day, respectively, though margin of exposure assessments for SCCPs and MCCPs indicated that adverse health effects were unlikely for all exposure scenarios. This study presents the first evidence of seasonal variation in the levels and distribution for each of the SCCP, MCCP and LCCP classes in indoor dust and highlights the urgent need for appropriate analytical standards for LCCP quantification.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Christina Christia
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
19
|
South L, Saini A, Harner T, Niu S, Parnis JM, Mastin J. Medium- and long-chain chlorinated paraffins in air: A review of levels, physicochemical properties, and analytical considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157094. [PMID: 35779735 DOI: 10.1016/j.scitotenv.2022.157094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Chlorinated paraffins (CPs) are synthetic chemicals that are produced at high volumes and have a global presence. CPs are generally divided into three groups based on their carbon chain lengths: short-chain CPs (SCCPs, C10-13), medium-chain CPs (MCCPs, C14-17), and long-chain CPs (LCCPs, C≥18). SCCPs have been formally recognized as persistent organic pollutants (POPs) and have been listed under the Stockholm Convention on POPs. Concerns about increases in MCCP and LCCP production as replacements for SCCP products are rising, given their similar properties to SCCPs and the fact that they remain relatively understudied with only a few reported measurements in air. Passive air samplers with polyurethane foam disks (PUF-PAS), which have been successfully applied to SCCPs, provide an opportunity to expand the existing body of data on MCCP and LCCP air concentrations, as they are inexpensive and require little maintenance. The uptake of MCCPs and LCCPs by PUF disk samplers is characterized in this paper based on newly derived PUF-air partitioning coefficients using COSMOtherm. The ability of PUF disk samplers to capture both gas-phase and particle fractions is important because MCCPs and LCCPs have reduced volatility compared to SCCPs and therefore are mainly associated with particulate matter in air. In addition, due to their use as additives in plastics and rubber products, they are associated with micro- and nanoplastics, which are considered to be potential vectors for the long-range atmospheric transport (LRAT) of these chemicals. The review has highlighted other limitations to reporting of MCCPs and LCCPs in air, including the lack of suitable analytical standards and the requirement for advanced analytical methods to detect and resolve these complex mixtures. Overall, this review indicates that further research is needed in many areas for medium- and long-chain chlorinated paraffins in order to better understand their occurrence, transport and fate in air.
Collapse
Affiliation(s)
- Lauren South
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Amandeep Saini
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Shan Niu
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - J Mark Parnis
- Department of Chemistry and Canadian Environmental Modelling Centre, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Jacob Mastin
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| |
Collapse
|
20
|
Knobloch MC, Mathis F, Diaz OM, Stalder U, Bigler L, Kern S, Bleiner D, Heeb NV. Selective and Fast Analysis of Chlorinated Paraffins in the Presence of Chlorinated Mono-, Di-, and Tri-Olefins with the R-Based Automated Spectra Evaluation Routine (RASER). Anal Chem 2022; 94:13777-13784. [PMID: 36169133 DOI: 10.1021/acs.analchem.2c02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlorinated paraffins (CPs) are complex mixtures consisting of various C homologues (nC ≈ 10-30) and Cl homologues (nCl ≈ 2-20). Technical CP mixtures are produced on a large scale (>106 t/y) and are widely used such as plasticizers in plastic and coolants in metalwork. Since 2017, short-chain CPs (C10-C13) are classified as persistent organic pollutants (POPs) by the Stockholm Convention but longer-chain CPs are not regulated. Analysis of technical CP mixtures is challenging because they consist of hundreds of homologues and millions of constitutional isomers and stereoisomers. Furthermore, such mixtures can also contain byproducts and transformation products such as chlorinated olefins (COs). We applied a liquid-chromatography method coupled to an atmospheric pressure chemical ionization technique with a high-resolution mass detector (LC-APCI-Orbitrap-MS) to study CP and CO homologues in two plastic materials. Respective mass spectra can contain up to 23,000 signals from 1320 different C-Cl homologue classes. The R-based automated spectra evaluation routine (RASER) was developed to efficiently search for characteristic ions in these complex mass spectra. With it, the time needed to evaluate such spectra was reduced from weeks to hours, compared to manual data evaluation. Unique sets of homologue distributions could be obtained from the two plastic materials. CPs were found together with their transformation products, the chlorinated mono-olefins (COs), di-olefins (CdiOs), and tri-olefins (CtriOs) in both plastic materials. Based on these examples, it can be shown that RASER is an efficient and selective tool for evaluating high-resolution mass spectra of CP mixtures containing hundreds of homologues.
Collapse
Affiliation(s)
- Marco C Knobloch
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland.,Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Flurin Mathis
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland.,Zürich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Oscar Mendo Diaz
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland.,Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Urs Stalder
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Susanne Kern
- Zürich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Davide Bleiner
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland.,Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Norbert V Heeb
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
21
|
Du X, Yuan B, Li J, Yin G, Qiu Y, Zhao J, Duan X, Wu Y, Lin T, Zhou Y. Distribution, behavior, and risk assessment of chlorinated paraffins in paddy plants throughout whole growth cycle. ENVIRONMENT INTERNATIONAL 2022; 167:107404. [PMID: 35868077 DOI: 10.1016/j.envint.2022.107404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Paddy plants provide staple food for 3 billion people worldwide. This study explores the environmental fate and behavior of a high-volume production emerging contaminants chlorinated paraffins (CPs) in the paddy ecosystem. Very-short-, short-, medium-, and long-chain CPs (vSCCPs, SCCPs, MCCPs, and LCCPs, respectively) were analyzed in specific tissue of paddy plants at four main growth stages and soils from the Yangtze River Delta, China throughout a full rice growing season. The total CP concentrations in the paddy roots, stalks, leaves, panicles, hulls, rice, and soils ranged from 181 to 1.74 × 103, 21.7-383, 19.6-585, 108-332, 245-470, 59.6-130, and 99.6-400 ng/g dry weight, respectively. The distribution profile indicated the translocation of SCCPs and MCCPs from soils to paddy tissue, highlighting their elevated bioaccumulative potential. The evolution of CP level/mass/pattern during the whole growth cycle suggested atmospheric CPs deposition on leaves and hulls, as well as stalk-rice transfer. CSOIL plant uptake model well predicted the level, distribution pattern, and bioconcentration factors (BCFs) of SCCPs and MCCPs in paddy shoot and recognized the soil-air-shoot pathway as the major contributor. Moreover, risk evaluation indicated that MCCPs intake and subsequent risks dominated the total exposure to CPs via rice ingestion. This is the first report on the occurrence, fate and risk assessment of all CPs classes in paddy ecosystems, and the results underline the potential health effects caused by the in-use MCCPs via rice ingestion.
Collapse
Affiliation(s)
- Xinyu Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo Yuan
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden; Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Jun Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai 200233, China
| | - Yanling Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuchuan Duan
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Yan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
22
|
Chen W, Hou X, Mao X, Jiao S, Wei L, Wang Y, Liu J, Jiang G. Biotic and Abiotic Transformation Pathways of a Short-Chain Chlorinated Paraffin Congener, 1,2,5,6,9,10-C 10H 16Cl 6, in a Rice Seedling Hydroponic Exposure System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9486-9496. [PMID: 35622943 DOI: 10.1021/acs.est.2c01119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a typical congener of short-chain chlorinated paraffins (SCCPs) with six chlorine atoms (CP-4, 1,2,5,6,9,10-C10H16Cl6, 250 ng/mL) was selected to elaborate the comprehensive environmental transformation of SCCPs in rice seedling exposure system. CP-4 was quickly absorbed, translocated, and phytovolatilized by seedlings with a small quality of CP-4 (5.81-36.5 ng) being detected in the gas phase. Only 21.4 ± 1.6% of an initial amount (10,000 ng) of CP-4 remained in the exposure system at the end of exposure. Among the transformed CP-4, some were attributed to the degradation of the rhizosphere microorganism (9.1 ± 5.8%), root exudates (2.2 ± 4.2%), and abiotic transformation (3.0 ± 2.8%) that were proved by several transformation products found in the root exudate exposure groups and unplanted controls, and a majority was phytotransformed by rice seedlings. Here, 61 products were determined through complex transformation pathways, including multihydroxylation, -HCl elimination, dechlorination, acetylation, sulfation, glycosylation, and amide acid conjugation. The acetylated and amide acid conjugates of CPs were first observed. Phase I and Phase II phytometabolic reactions of CPs were found intertwining. These findings demonstrate that multiactive transformation reactions contribute to the overlook of CPs accumulated in plants and are helpful for the environmental and health risk assessments of SCCPs in agricultural plants.
Collapse
Affiliation(s)
- Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Mao
- School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Suning Jiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
23
|
Darnerud PO, Bergman Å. Critical review on disposition of chlorinated paraffins in animals and humans. ENVIRONMENT INTERNATIONAL 2022; 163:107195. [PMID: 35447436 DOI: 10.1016/j.envint.2022.107195] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Even though the chlorinated paraffins (CPs) have been on the environmental pollution agenda throughout the last 50 years it is a class of chemicals that only now is discussed in terms of an emerging issue with extensive annual publication rates. Major reviews on CPs have been produced, but a deeper understanding of the chemical fate of CPs, including formation of metabolites in animals and humans, is still missing. Thus, the present review aims to critically compile our present knowledge on the disposition, i.e. Adsorption, Disposition, Metabolism, and Excretion (ADME) of CPs in biota and to identify research needs. We conclude that CPs could be effectively absorbed from the gastro-intestinal tract (GI) tract, and probably also from the lungs, and transported to various organs. A biphasic elimination is suggested, with a rapid initial phase followed by a terminal phase, the latter (e.g., fat tissues) covering half-lives of weeks and months. CPs are metabolized in the liver and excreted mainly via the bile and faeces, and the metabolic rate and type of metabolites are dependent on chlorine content and chain length. Results that strengthen CP metabolism are in vivo findings of phase II metabolites in bile, and CP degradation to carbon fragments in experimental animals. Still the metabolic transformations of CPs are poorly studied, and no metabolic scheme has yet been presented. Further, toxicokinetic mass balance calculations suggest that a large part of a given dose (not found as parent compound) is transformation products of CPs, and in vitro metabolism studies present numerous CP metabolites (e.g., chloroalkenes, chlorinated ketones, aldehydes, and carboxylic acids).
Collapse
Affiliation(s)
- Per Ola Darnerud
- Department of Organismal Biology, Environmental Toxicology, Norbyvägen 18A, SE-752 36 Uppsala, Sweden.
| | - Åke Bergman
- Department of Environmental Science (ACES), Stockholm University, SE-106 92 Stockholm, Sweden; Department of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden; College of Environmental Science and Engineering, Tongji University, Shanghai, China.
| |
Collapse
|
24
|
Simonnet-Laprade C, Bayen S, McGoldrick D, McDaniel T, Hutinet S, Marchand P, Vénisseau A, Cariou R, Le Bizec B, Dervilly G. Evidence of complementarity between targeted and non-targeted analysis based on liquid and gas-phase chromatography coupled to mass spectrometry for screening halogenated persistent organic pollutants in environmental matrices. CHEMOSPHERE 2022; 293:133615. [PMID: 35038446 DOI: 10.1016/j.chemosphere.2022.133615] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 05/12/2023]
Abstract
This study explored the complementarity between targeted (TS) and non-targeted screening (NTS) based on liquid and gas-phase chromatography coupled to (high-resolution) mass spectrometry (LC-/GC-(HR)MS) for the comprehensive characterization of organohalogen fingerprints within a set of Lake Ontario lake trout samples. The concentrations of 86 legacy, emerging and novel halogenated compounds (HCs), were determined through 4 TS approaches involving no less than 6 hyphenated systems. In parallel, an innovative NTS strategy, involving both LC and GC-Q-Orbitrap, was implemented to specifically highlight halogenated signals. Non-targeted HRMS data were processed under the HaloSeeker software based on Cl and Br isotopic ratio and mass defect to extend the screening to unsuspected and unknown HCs. A total of 195 halogenated mass spectral features were characterized in the Lake Ontario lake trout, including well known HCs (PCBs, PBDEs, PBBs, DDT and their degradation products), emerging HCs (novel brominated flame retardants, short-, medium- and long-chain chlorinated paraffins) or suggested molecular formula (mainly polychlorinated ones). Among the 122 HCs highlighted by TS, only 21 were identified by NTS. These results fueled a discussion on the potential and limitations of both approaches, and the current position of NTS within environmental and health monitoring programs.
Collapse
Affiliation(s)
| | - S Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - D McGoldrick
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - T McDaniel
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - S Hutinet
- Oniris, INRAE, LABERCA, 44307, Nantes, France
| | - P Marchand
- Oniris, INRAE, LABERCA, 44307, Nantes, France
| | - A Vénisseau
- Oniris, INRAE, LABERCA, 44307, Nantes, France
| | - R Cariou
- Oniris, INRAE, LABERCA, 44307, Nantes, France
| | - B Le Bizec
- Oniris, INRAE, LABERCA, 44307, Nantes, France
| | - G Dervilly
- Oniris, INRAE, LABERCA, 44307, Nantes, France.
| |
Collapse
|
25
|
Hu H, Jin H, Li T, Guo Y, Wu P, Xu K, Zhu W, Zhou Y, Zhao M. Spatial distribution, partitioning, and ecological risk of short chain chlorinated paraffins in seawater and sediment from East China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151932. [PMID: 34838909 DOI: 10.1016/j.scitotenv.2021.151932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) have attracted increasing attention due to their potential risks to the ecosystem and human health. However, there is still a lack of systematic research on their environmental fate in the coastal marine environment. In this study, we collected paired seawater (n = 40) and surface sediment samples (n = 40) from East China Sea, and investigated their spatial distribution, partitioning behaviors and ecological risks. The total SCCP concentrations (∑SCCPs) in seawater and sediment samples were in the range of 12.2-430 ng/L and 89.6-351 ng/g (dry weight), respectively. C10-11 SCCPs and Cl5-7 SCCPs were the predominant homologues in all of the samples. This study first calculated the field-based logKOC values for ∑SCCPs in the marine environment, which ranged from 5.0 to 6.5 (mean 5.5). The logKOC values of SCCP homologues (range 3.6-8.0, mean 5.6) showed a weak correlation with their logKOW (R = 0.214, p < 0.05). A preliminary risk assessment indicated that SCCPs at current levels posed no significant ecological risk. Overall, this study contributes to the further understanding of environmental behaviors of SCCPs in the marine environment.
Collapse
Affiliation(s)
- Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tiejun Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Yuanming Guo
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Pengfei Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999007, PR China
| | - Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Wenbin Zhu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Yanqiu Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
26
|
Knobloch MC, Sprengel J, Mathis F, Haag R, Kern S, Bleiner D, Vetter W, Heeb NV. Chemical synthesis and characterization of single-chain C 18-chloroparaffin materials with defined degrees of chlorination. CHEMOSPHERE 2022; 291:132938. [PMID: 34798110 DOI: 10.1016/j.chemosphere.2021.132938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Technical chlorinated paraffins (CPs) are produced via radical chlorination of n-alkane feedstocks with different carbon chain-lengths (∼C10-C30). Short-chain CPs (SCCPs, C10-C13) are classified as persistent organic pollutants (POPs) under the Stockholm Convention. This regulation has induced a shift to use longer-chain CPs as substitutes. Consequently, medium-chain (MCCPs, C14-C17) and long-chain (LCCPs, C>17) CPs have become dominant homologues in recent environmental samples. However, no suitable LCCP-standard materials are available. Herein, we report on the chemical synthesis of single-chain C18-CP-materials, starting with a pure n-alkane and sulfuryl chloride (SO2Cl2). Fractionation of the crude product by normal-phase liquid-chromatography and pooling of suitable fractions yielded in four C18-CP-materials with different chlorination degrees (mCl,EA = 39-52%). In addition, polar side-products, tentatively identified as sulfite-, sulfate- and bis-sulfate-diesters, were separated from CPs. The new single-chain materials were characterized by LC-MS, 1H-NMR and EA. LC-MS provided Relative retention times for different C18-CP homologues and side-products. Mathematical deconvolution of full-scan mass spectra revealed the presence of chloroparaffins (57-93%) and chloroolefins (COs, 7-26%) in the four single-chain C18-CP-materials. Homologue distributions and chlorination degrees were deduced for CPs and COs. 1H-NMR revealed chemical shift ranges of mono-chlorinated (δ = 3.2-5.3 ppm) and non-chlorinated (δ = 1.0-3.2 ppm) hydrocarbon moieties. The synthesized C18-single-chain standard materials and respective spectroscopic data are useful to identify and quantify LCCPs in various materials and environmental samples. CP- and CO-distributions resemble the ones of existing SCCP and MCCP reference materials and technical mixtures. Furthermore, these materials now allow specific studies on the environmental fate and the transformation of long-chain chloroparaffins and chloroolefins.
Collapse
Affiliation(s)
- Marco C Knobloch
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland; Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | - Jannik Sprengel
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Flurin Mathis
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland; Zürich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Regula Haag
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Susanne Kern
- Zürich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Davide Bleiner
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland; Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Norbert V Heeb
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| |
Collapse
|
27
|
Wang Z, Adu-Kumi S, Diamond ML, Guardans R, Harner T, Harte A, Kajiwara N, Klánová J, Liu J, Moreira EG, Muir DCG, Suzuki N, Pinas V, Seppälä T, Weber R, Yuan B. Enhancing Scientific Support for the Stockholm Convention's Implementation: An Analysis of Policy Needs for Scientific Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2936-2949. [PMID: 35167273 DOI: 10.1021/acs.est.1c06120] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Stockholm Convention is key to addressing the global threats of persistent organic pollutants (POPs) to humanity and the environment. It has been successful in identifying new POPs, but its national implementation remains challenging, particularly by low- and middle-income Parties. Concerted action is needed to assist Parties in implementing the Convention's obligations. This analysis aims to identify and recommend research and scientific support needed for timely implementation of the Convention. We aim this analysis at scientists and experts from a variety of natural and social sciences and from all sectors (academia, civil society, industry, and government institutions), as well as research funding agencies. Further, we provide practical guidance to scientists and experts to promote the visibility and accessibility of their work for the Convention's implementation, followed by recommendations for sustaining scientific support to the Convention. This study is the first of a series on analyzing policy needs for scientific evidence under global governance on chemicals and waste.
Collapse
Affiliation(s)
- Zhanyun Wang
- Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, CH-9014 St. Gallen, Switzerland
| | - Sam Adu-Kumi
- Chemicals Control and Management Centre, Environmental Protection Agency, Ministries, P.O. Box MB 326, Accra GR, Ghana
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Ramon Guardans
- WEOG Region Representative for the Global Monitoring Plan of the Stockholm Convention on POPs, Adviser on POPs, Ministry for the Ecological Transition and Demographic Challenge (MITECO), 28046 Madrid, Spain
| | - Tom Harner
- WEOG Region Representative for the Global Monitoring Plan of the Stockholm Convention on POPs, Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Agustín Harte
- National Chemicals and Hazardous Waste Directorate, Secretariat of Environmental Control and Monitoring, Ministry of Environment and Sustainable Development, San Martin 451, Autonomous City of Buenos Aires C1004AAI, Argentina
| | - Natsuko Kajiwara
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Jana Klánová
- RECETOX Centre of Masaryk University, the Stockholm Convention Regional Centre for Capacity Building and the Transfer of Technology in Central and Eastern Europe, 611 37 Brno, Czech Republic
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | | | - Derek C G Muir
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario L7S 1A1, Canada
| | - Noriyuki Suzuki
- Planning Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Victorine Pinas
- Institute for Graduate Studies and Research, Anton de Kom University of Suriname, P.O.B: 9212, Paramaribo, Suriname
| | - Timo Seppälä
- Finnish Environment Institute, Contaminants Unit, 00790, Helsinki, Finland
| | - Roland Weber
- POPs Environmental Consulting, 73527, Schwäbisch Gmünd Germany
| | - Bo Yuan
- Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
28
|
Hanari N, Nakano T. Comparison of short-chain chlorinated paraffin concentrations and homolog profiles by interlaboratory trial using a candidate reference material. CHEMOSPHERE 2022; 291:132783. [PMID: 34752840 DOI: 10.1016/j.chemosphere.2021.132783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Chlorinated paraffins (CPs) are industrial chemicals that have been primarily used in applications involving metalworking fluids. Among CPs, short-chain chlorinated paraffins (SCCPs) are a well-known environmental pollutant and are listed under Annex A of the Stockholm Convention on Persistent Organic Pollutants. CPs are alkanes substituted with chlorine atoms, and SCCPs are comprised of 10-13 carbon atoms. Reliable quantification of SCCPs is a critical issue because of the large number of SCCP isomers that are in use across multiple industries. Some interlaboratory comparisons of SCCP analyses have been conducted, and the reliability of these results was overwhelmingly determined as inferior to that of comparable PCB and dioxin analyses because of variations in the quality of commercial reagents that were employed as quantification standards. In order to address such inconsistencies, this study endeavored to prepare and evaluate a novel SCCP formulation as a candidate reference material for use as a reliable quantification standard. A subject trial study was hence performed to evaluate methods such as gas- and liquid-chromatography mass spectrometry (GC/MS and LC/MS) on sample matrices (without a clean-up process), and to subsequently elucidate the interpreted specifications for their candidacy as a reliable quantification standard. Results ultimately showed that the SCCP concentrations obtained from GC and LC were comparable. When the homologs reported by a subset of 14 separate laboratories were unified (excluding all results for Cl4 homologs), the carbon chain length profiles obtained from GC and LC were found to be similar; however, the overall chlorine homolog profiles did exhibit slight differences. Moreover, the results from high-resolution MS showed less variation than those from low-resolution MS. Thus, it was overarchingly determined that the deployment of this candidate reference material would serve as an effective mechanism for estimating the comparability of SCCP quantifications/evaluations of standard materials.
Collapse
Affiliation(s)
- Nobuyasu Hanari
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan.
| | - Takeshi Nakano
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
29
|
Sprengel J, Krätschmer K, Vetter W. A new synthesis approach for the generation of single chain CP mixtures composed of a few major compounds. CHEMOSPHERE 2022; 287:132372. [PMID: 34592207 DOI: 10.1016/j.chemosphere.2021.132372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Chlorinated paraffins (CPs) are complex mixtures, which consist of thousands of individual compounds with no dominant representative. Consequently, knowledge on structure and environmental relevance of individual CP congeners is poor. Similarly to the synthesis of individual CPs, the generation of less complex CP mixtures that can be thoroughly analyzed may be used to overcome some drawbacks of the highly complex technical CP mixtures. Here, we present a new synthesis approach to generate such simple CP mixtures by decarboxylation of polyunsaturated fatty acids followed by saturation of the double bonds by chlorination. Specifically, α-linolenic acid (18:3Δ9,12,15) was decarboxylated to heptadecatriene. The resulting raw product was chlorinated with SO2Cl2. Purification by column chromatography led to a main fraction consisting of four major peaks originating from hexachloroheptadecane (C17H30Cl6) isomers (∼80% of the total peak area) along with ∼20 low abundant by-products, according to gas chromatography with electron capture negative ion mass spectrometry. In the same way, decarboxylation and subsequent chlorination of other polyunsaturated fatty acids may lead to further simple CP mixtures with other chain lengths. Although these simple CP mixtures cannot fully reflect the various structural features present in technical mixtures they could be beneficial for transformation studies because changes in the CP pattern can easily be noted which is in contrast to technical CP mixtures. Such simple CP mixtures could also be used in toxicity tests which are difficult to perform with technical CP mixtures because of their high complexity.
Collapse
Affiliation(s)
- Jannik Sprengel
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599, Stuttgart, Germany
| | - Kerstin Krätschmer
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599, Stuttgart, Germany; European Union Reference Laboratory for halogenated POPs in Feed and Food (EURL POPs), Bissierstraße 5, D-79114, Freiburg, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599, Stuttgart, Germany.
| |
Collapse
|
30
|
Ding L, Zhang S, Zhu Y, Zhao N, Yan W, Li Y. Overlooked long-chain chlorinated paraffin (LCCP) contamination in foodstuff from China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149775. [PMID: 34467914 DOI: 10.1016/j.scitotenv.2021.149775] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Data on long-chain chlorinated paraffins (LCCPs) is extremely sparse, despite their use and emission are increasing with the phasing out of short-chain chlorinated paraffins (SCCPs). In this study, we analyzed chlorinated paraffins (CPs) in foodstuff samples (551 pooled samples, 93 items) divided into eight categories collected from Jinan, Shandong Province of China, by atmospheric-pressure chemical ionization quadrupole time-of-flight mass spectrometry (APCI-qToF-MS), to investigate the occurrence, contamination patterns and homologue patterns of LCCPs in foodstuff commonly consumed in traditional Chinese diet. LCCP intake through diet was estimated as well. LCCPs were detected in all pooled samples with geometric mean (GM) concentrations ranging from 1.8 to 21.9 ng/g wet weight (ng/g ww), contributing to 9-28% of the total CP mass in the studied foodstuff categories. The contamination patterns of LCCPs differed from SCCPs and medium-chain chlorinated paraffins (MCCPs), as reflected by the patterns of mass distribution, and by the lack of correlations between LCCP and S/MCCP concentrations in various foodstuff categories. The homologue profiles of LCCPs were extremely complex and diverse, with frequent detection of C30-36Cl2-15 very-long-chain chlorinated paraffin (vLCCP) congeners. The homologue profiles of eggs stood out for their high abundance of C18-22Cl9-13 LCCP congeners. LCCPs contributed 6.0-25.2% (8.9% for median estimation) to the estimated dietary intake (EDI) for total CPs through diet based on estimations using different percentiles of CP concentrations. The median estimate of dietary LCCP intake for adults in Jinan was 287.9 ng/kg_bw/day, reaching ~10- to 100-fold of that in Sweden and Canada. Considering the continuing production, use and emission of LCCPs, as well as the similar toxicity effects induced by LCCPs as SCCPs and MCCPs, attention should be paid to the health risk posed by LCCPs, or all CPs as a class of contaminants.
Collapse
Affiliation(s)
- Lei Ding
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Shiwen Zhang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Yuting Zhu
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China.
| | - Wenbao Yan
- Environmental Monitoring Station of Lanshan Branch of Rizhao Ecological and Environment Bureau, Jiaodingshan Road 539, Rizhao 276800, China
| | - Yahui Li
- Jinan Ecological Environmental Protection Grid Supervision Center, Lvyou Road 17199, Jinan 250098, China
| |
Collapse
|
31
|
McGrath TJ, Limonier F, Poma G, Bombeke J, Winand R, Vanneste K, Andjelkovic M, Van Hoeck E, Joly L, Covaci A. Concentrations and distribution of chlorinated paraffins in Belgian foods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118236. [PMID: 34582924 DOI: 10.1016/j.envpol.2021.118236] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 05/22/2023]
Abstract
This study reports on concentrations of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs, respectively) in a wide range of food samples (n = 211) purchased in Belgium during 2020. Samples were analysed by gas chromatography-mass spectrometry (GC-MS) and quantified using chlorine content calibration. ∑SCCPs were present above LOQ in 25% of samples with an overall range of <LOQ to 58 ng/g wet weight (ww), while ∑MCCPs were identified in 66% of samples ranging from <LOQ to 250 ng/g ww. ∑MCCP concentrations were greater than those of ∑SCCPs in all 48 samples in which both groups were detected with an average ∑MCCP/∑SCCP ratio of 5.8 (ranging from 1.3 to 81). In general, the greatest CP concentrations were observed in foods classified as animal and vegetable fats and oils and sugar and confectionary for both SCCPs and MCCPs. Significant correlations between lipid content in food samples and CP levels illustrated the role of lipids in accumulating CPs within foodstuffs, while industrial processing, food packaging and environmental conditions are each likely to contribute to overall CP loads. Selected samples (n = 20) were further analysed by liquid chromatography-high resolution MS (LC-HRMS) to investigate homologue profiles and the occurrence of long-chain CPs (LCCPs). LCCPs were detected in 35% of the 20 subset samples while the HRMS results for SCCPs and MCCPs matched closely with those obtained by GC-MS. This study reveals the widespread occurrence of SCCPs and MCCPs in Belgian food and indicates that LCCPs may represent a substantial contribution to overall CP levels in foodstuffs.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Franck Limonier
- Chemical and Physical Health Risks Department, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Raf Winand
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Mirjana Andjelkovic
- Chemical and Physical Health Risks Department, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Els Van Hoeck
- Chemical and Physical Health Risks Department, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Laure Joly
- Chemical and Physical Health Risks Department, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
32
|
Li X, Chevez T, De Silva AO, Muir DCG, Kleywegt S, Simpson A, Simpson MJ, Jobst KJ. Which of the (Mixed) Halogenated n-Alkanes Are Likely To Be Persistent Organic Pollutants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15912-15920. [PMID: 34802231 DOI: 10.1021/acs.est.1c05465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Short-chain polychlorinated n-alkanes are ubiquitous industrial chemicals widely recognized as persistent organic pollutants. They represent only a small fraction of the 184,600 elemental compositions (C10-25) and the myriad isomers of all possible (mixed) halogenated n-alkanes (PXAs). This study prioritizes the PXAs on the basis of their potential to persist, bioaccumulate, and undergo long-range transport guided by quantitative structure-property relationships (QSPRs), density functional theory (DFT), chemical fate models, and partitioning space. The QSPR results narrow the list to 966 elemental compositions, of which 352 (23 Br, 83 Cl/F, 119 Br/Cl, and 127 Br/F) are likely constituents of substances used as lubricants, plasticizers, and flame retardants. Complementary DFT calculations suggest that an additional 1367 elemental compositions characterized by a greater number of carbon and fluorine atoms but fewer chlorine and bromine atoms may also pose a risk. The results of this study underline the urgent need to identify and monitor these suspected pollutants, most appropriately using mass spectrometry. We estimate that the resolving power required to distinguish ∼74% of the prioritized elemental compositions from the most likely interferents, i.e., chlorinated alkanes, is approximately 60,000 (full width at half-maximum). This indicates that accurate identification of the PXAs is achievable using most high-resolution mass spectrometers.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Tannia Chevez
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Amila O De Silva
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
- Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Derek C G Muir
- Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Andre Simpson
- Departments of Chemistry and Physical & Environmental Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Myrna J Simpson
- Departments of Chemistry and Physical & Environmental Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| |
Collapse
|
33
|
Simultaneous determination of short-chain chlorinated paraffins and other classes of persistent organic pollutants in sediment by gas chromatography‒tandem mass spectrometry after ultrasonic solvent extraction combined with stir bar sorptive extraction. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Zhao N, Fang X, Zhang S, Zhu Y, Ding L, Xu C. Male renal functions are associated with serum short- and medium-chain chlorinated paraffins in residents from Jinan, China. ENVIRONMENT INTERNATIONAL 2021; 153:106514. [PMID: 33799231 DOI: 10.1016/j.envint.2021.106514] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chlorinated paraffins (CPs) are contaminants ubiquitously detected in environmental samples, and reports addressing CPs in human samples are expanding. While CP exposure was suggested to impair kidney function by in vivo/in vitro experiments, epidemiological evidence is lacking. OBJECTIVE To examine the associations between serum total short-chain CP and medium-chain CP concentrations (∑SCCPs and ∑MCCPs) with human kidney function. METHODS The study samples were obtained from 387 participants living in Jinan, North China. We quantified ∑SCCPs and ∑MCCPs in serum samples and evaluated the kidney function of included subjects by estimated glomerular filtration rate (eGFR). The associations between serum ∑SCCPs, ∑MCCPs and eGFR were estimated using multivariable linear regression and logistic regression. The possible gender-dependent effects were studied by stratified analysis. RESULTS After adjusting for age, education, smoking status, drinking status, body mass index (BMI), family history of chronic kidney disease (CKD), fasting serum glucose, systolic blood pressure and diastolic blood pressure, higher concentrations of serum ∑SCCPs and ∑MCCPs were associated with higher male eGFR (β = 3.13 mL/min/1.73 m2 per one ln-unit increase of serum ∑SCCPs, 95%CI: 1.72, 4.54, p = 0.016; β = 3.52 mL/min/1.73 m2 per one ln-unit increase of serum ∑MCCPs, 95%CI: 1.89, 5.17, p = 0.011). Associations between serum ∑SCCPs, ∑MCCPs and female eGFR were null. Comparing higher (above the median serum CP levels) vs. lower exposure groups, serum ∑SCCPs and ∑MCCPs were associated with an elevated risk of glomerular hyperfiltration (GH, eGFR ≥ 135 mL/min/1.73 m2), which was associated with glomerular damage and represented as an early stage of chronic kidney disease (OR = 2.98; 95% CI: 1.24, 4.71 for SCCPs; OR = 3.25; 95% CI: 1.20, 5.29 for MCCPs). CONCLUSIONS Our study suggests that male serum ∑SCCPs and ∑MCCPs are associated with an increased risk of GH, indicating early-stage kidney impairment.
Collapse
Affiliation(s)
- Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Xinxin Fang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Shiwen Zhang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Yuting Zhu
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Lei Ding
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| | - Caihong Xu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| |
Collapse
|
35
|
Liu W, Zhou H, Qiu Z, Liu T, Yuan Y, Guan R, Li N, Wang W, Li X, Zhao C. Effect of short-chain chlorinated paraffins (SCCPs) on lipid membranes: Combination of molecular dynamics and membrane damage experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:144906. [PMID: 33631584 DOI: 10.1016/j.scitotenv.2020.144906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
In recent years, more attention has been paid to the biological effects of short-chain chlorinated paraffin (SCCP). Studies have shown that SCCPs exposure could cause metabolic damage and lipid metabolic damage. In the present work, based on E. coli membrane damage experiments and molecular dynamics (MD) simulation, the effects of SCCPs on the membrane structure and membrane properties were studied to explore the possible toxic damage effects of SCCPs on cell membrane. Experiments results showed that SCCPs had a significant inhibitory effect on E. coli. The E. coli cell membrane of the bacteria was broken and the macromolecules of the cell flowed out when exposed to SCCPs. SCCPs would lead to the decrease and depolarization of cell membrane potential, and then affect the integrity and permeability of cell membrane. The further molecular dynamic simulation revealed that SCCP molecules can easily enter the lipid DPPC membranes from the aqueous phase and tended to aggregate inside bilayer stably. The bound of SCCPs could lead to significant variations in DPPC bilayer with a less dense, more disorder and rougher layer, which thus made the damage of cell membrane. In a word, although the overall toxicity of SCCPs to cell was relatively weak, the damage to the cell membrane may be one of the mechanisms of its toxicity. MAIN FINDING OF THE WORK: The exposure of SCCPs could cause structural change of cell membrane in E. coli, which verified the damage to the cell membrane may be one of the mechanisms of its toxicity.
Collapse
Affiliation(s)
- Wencheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Haitao Zhou
- Neurology Department, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471009, China
| | - Zhiqiang Qiu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tingting Liu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730000, China
| | - Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruining Guan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningqi Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Weilin Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xin Li
- Henan University of Science and Technology, Luoyang 471023, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
36
|
van Mourik LM, Janssen E, Breeuwer R, Jonker W, Koekkoek J, Arrahman A, Kool J, Leonards PEG. Combining High-Resolution Gas Chromatographic Continuous Fraction Collection with Nuclear Magnetic Resonance Spectroscopy: Possibilities of Analyzing a Whole GC Chromatogram. Anal Chem 2021; 93:6158-6168. [PMID: 33832223 PMCID: PMC8153385 DOI: 10.1021/acs.analchem.1c00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
This study presents, for the first time, the successful
application
of analyzing a whole gas chromatography (GC) chromatogram by nuclear
magnetic resonance (NMR) spectroscopy using a continuous repeatable
and stable (n = 280) high-resolution (HR) GC fractionation
platform with a 96-well plate. Typically with GC– or liquid
chromatography–mass spectrometry analysis, (isomer) standards
and/or additional NMR analysis are needed to confirm the identification
and/or structure of the analyte of interest. In the case of complex
substances (e.g., UVCBs), isomer standards are often unavailable and
NMR spectra too complex to achieve this. This proof of concept study
shows that a HR GC fractionation collection platform was successfully
applied to separate, purify, and enrich isomers in complex substances
from a whole GC chromatogram, which would facilitate NMR analysis.
As a model substance, a chlorinated paraffin (CP) mixture (>8,000
isomers) was chosen. NMR spectra were obtained from all 96 collected
fractions, which provides important information for unravelling their
full structure. As a proof of concept, a spectral interpretation of
a few NMR spectra was made to assign sub-structures. More research
is ongoing for the full characterization of CP isomers using multivariate
statistical analysis. For the first time, up to only a few CP isomers
per fraction were isolated from a highly complex mixture. These may
be further purified and certified as standards, which are urgently
needed, and can also be used for persistency, bioaccumulation, or
toxicity studies.
Collapse
Affiliation(s)
- Louise M van Mourik
- Department of Environment and Health (E&H), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| | - Elwin Janssen
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| | - Robin Breeuwer
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| | - Willem Jonker
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| | - Jacco Koekkoek
- Department of Environment and Health (E&H), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| | - Arif Arrahman
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| | - Jeroen Kool
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| | - Pim E G Leonards
- Department of Environment and Health (E&H), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
37
|
Tomasko J, Stupak M, Hajslova J, Pulkrabova J. Application of the GC-HRMS based method for monitoring of short- and medium-chain chlorinated paraffins in vegetable oils and fish. Food Chem 2021; 355:129640. [PMID: 33799253 DOI: 10.1016/j.foodchem.2021.129640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 11/27/2022]
Abstract
The aim of this study was to develop methods for the determination of short- and medium-chain chlorinated paraffins (SCCPs; MCCPs) in vegetable oils and fish employing gas chromatography coupled with high-resolution mass spectrometry because of a lack of information on the presence of chlorinated paraffins in food consumed in Europe. For isolation of CPs from fish, an ethyl acetate extraction followed by a clean-up of the extract by gel permeation chromatography was performed. The same purification step was used for the isolation of CPs from the vegetable oils. The concentration range for SCCPs was <10-389 ng/g lipid weight (lw, mean 36 ng/g lw for the oils and 28 ng/g lw for the fish) and that for MCCPs was <20-543 ng/g lw (mean 55 ng/g lw for the oils and 59 ng/g lw for the fish). There was found a high variability in concentrations of CPs influenced by area of origin.
Collapse
Affiliation(s)
- Jakub Tomasko
- University of Chemistry and Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6 - Dejvice, Czech Republic.
| | - Michal Stupak
- University of Chemistry and Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6 - Dejvice, Czech Republic.
| | - Jana Hajslova
- University of Chemistry and Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6 - Dejvice, Czech Republic.
| | - Jana Pulkrabova
- University of Chemistry and Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6 - Dejvice, Czech Republic.
| |
Collapse
|
38
|
Yuan S, Wang M, Lv B, Wang J. Transformation pathways of chlorinated paraffins relevant for remediation: a mini-review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9020-9028. [PMID: 33475920 DOI: 10.1007/s11356-021-12469-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
In the past decades, the environmental presence and ecological risks of chlorinated paraffins (CPs), an emerging class of organic halogen compounds, have been receiving increasing attention worldwide. Short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) constitute the important CPs of considerable concern. In this review article, the state-of-the-art research status on the environmental transformation of CPs, including thermal decomposition, photolytic and photocatalytic degradation, biological metabolism, and atmospheric transformation, was summarized and integrated in detail. The degradation efficiency and transformation products of CPs in these environmental processes were evaluated, in which dechlorination was considered as the major reaction pathway. Notably, waste incineration of CPs has been demonstrated to generate a variety of persistent chlorinated aromatic hydrocarbons such as polychlorinated biphenyls and polychlorinated naphthalenes, which have more significant environmental impacts. Additionally, photodegradation and photocatalysis are suggested as the feasible techniques for efficient removal of SCCPs from water matrices. Overall, the current transformation studies of CPs could facilitate the comprehensive understanding of their environmental behaviors and fate as well as the development of promising remediation strategies for pollution control.
Collapse
Affiliation(s)
- Shaochun Yuan
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
- Engineering Research Center for Sponge City Construction of Chongqing, Chongqing, 400020, People's Republic of China
| | - Min Wang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.
| | - Bo Lv
- Engineering Research Center for Sponge City Construction of Chongqing, Chongqing, 400020, People's Republic of China
| | - Jinhua Wang
- School of Environmental and Energy Engineering, Key laboratory of Anhui Province of Water Pollution Control and Wastewater Reuse, Anhui Jianzhu University, HeFei, China
| |
Collapse
|
39
|
Yuan B, Tay JH, Padilla-Sánchez JA, Papadopoulou E, Haug LS, de Wit CA. Human Exposure to Chlorinated Paraffins via Inhalation and Dust Ingestion in a Norwegian Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1145-1154. [PMID: 33400865 PMCID: PMC7880561 DOI: 10.1021/acs.est.0c05891] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Very-short- (vSCCPs, C6-9), short- (SCCPs, C10-13), medium- (MCCPs, C14-17), and long-chain chlorinated paraffins (LCCPs, C>17) were analyzed in indoor air and dust collected from the living rooms and personal 24 h air of 61 adults from a Norwegian cohort. Relatively volatile CPs, i.e., vSCCPs and SCCPs, showed a greater tendency to partition from settled indoor dust to paired stationary indoor air from the same living rooms than MCCPs and LCCPs, with median logarithmic dust-air partition ratios of 1.3, 2.9, 4.1, and 5.4, respectively. Using the stationary indoor air and settled indoor dust concentrations, the combined median daily exposures to vSCCPs, SCCPs, MCCPs, and LCCPs were estimated to be 0.074, 2.7, 0.93, and 0.095 ng/kg bw/d, respectively. Inhalation was the predominant exposure pathway for vSCCPs (median 99%) and SCCPs (59%), while dust ingestion was the predominant exposure pathway for MCCPs (75%) and LCCPs (95%). The estimated inhalation exposure to total CPs was ∼ 5 times higher when the personal 24 h air results were used rather than the corresponding stationary indoor air results in 13 paired samples, indicating that exposure situations other than living rooms contributed significantly to the overall personal exposure. The 95th percentile exposure for CPs did not exceed the reference dose.
Collapse
Affiliation(s)
- Bo Yuan
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Joo Hui Tay
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Eleni Papadopoulou
- Section
for Environmental Exposure and Epidemiology, Norwegian Institute of Public
Health, NO-0213 Oslo, Norway
| | - Line Småstuen Haug
- Section
for Environmental Exposure and Epidemiology, Norwegian Institute of Public
Health, NO-0213 Oslo, Norway
| | - Cynthia A. de Wit
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
40
|
Optimization and validation of an analytical method for the quantification of short- and medium-chained chlorinated paraffins in food by gas chromatography-mass spectrometry. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
A simplified screening method for short- and medium-chain chlorinated paraffins in food by gas chromatography-low resolution mass spectrometry. J Chromatogr A 2020; 1631:461574. [PMID: 32987312 DOI: 10.1016/j.chroma.2020.461574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 12/21/2022]
Abstract
This study evaluates the performance of a simplified screening method for short- and medium-chain chlorinated paraffins (SCCPs and MCCPs, respectively) based on gas chromatography-electron capture negative ionization/mass spectrometry (GC-ECNI/MS) analysis and chlorine content quantification. The response from different combinations of 'indicator' congener groups present in technical mixture standards were used within calibration calculations to test the hypothesis that ∑SCCPs and ∑MCCPs could be quantified with acceptable accuracy using only a subset of the commonly analysed C10 to C17 and Cl5 to Cl10 groups. Potential combinations were assessed with respect to calibration curve performance and accuracy of SCCP and MCCP analysis of spiked food samples (olive oil, salmon, pork sausage, breakfast cereal, cow's milk and lard). Based on these trials, a screening method which quantifies ∑SCCPs and ∑MCCPs using only congener groups with 6 and 8 chlorine atoms for each carbon chain length was proposed. Concentrations of SCCPs and MCCPs in triplicate analyses of spiked food samples calculated using the proposed screening method deviated by ≤ 25% for the vast majority of samples (maximum deviation 37%) from levels determined using all analysed congener groups. The mean trueness of the screening method as applied to each of the spiked food samples and lard samples from a previous European Union Reference Laboratory (EURL) interlaboratory study ranged from 65 to 110% for ∑SCCPs and 102 to 175% for ∑MCCPs. Relative standard deviations (RSDs) were ≤ 25% for all triplicate analyses and matrix specific LOQs ranged from 0.7 to 6 ng/g ww for ∑SCCPs and from 1.3 to 12 ng/g ww for ∑MCCPs. The proposed screening method has the potential to deliver substantial time savings in instrumental analysis and manual labour without greatly reducing the overall accuracy and sensitivity of SCCP and MCCP quantification.
Collapse
|
42
|
Mézière M, Marchand P, Hutinet S, Larvor F, Baéza E, Le Bizec B, Dervilly G, Cariou R. Transfer of short-, medium-, and long-chain chlorinated paraffins to eggs of laying hens after dietary exposure. Food Chem 2020; 343:128491. [PMID: 33183877 DOI: 10.1016/j.foodchem.2020.128491] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
Chlorinated paraffins (CPs) are a complex family of contaminants. Lack of exposure data and an understanding of the fate of these chemicals in the environment affect our ability to reliably assess the human health risk associated with CP exposure. The present study focused on the evaluation of CP transfer from feed to eggs of laying hens exposed over 91 days. Laying hens were provided feed spiked with five technical mixtures of short-, medium- or long-chain CPs and featuring low or high chlorine contents, at concentrations of 200 ng/g each. Eggs were collected daily. All mixtures except the LCCPs with high chlorine content transferred into the eggs, with accumulation ratios increasing with the chain length and chlorine content. Concentrations at the steady-state varied between 41 and 1397 ng/g lw depending on the mixture. Additionally, the homologue-dependant transfer resulted in a change of pattern compared to that from the spiked feed.
Collapse
|
43
|
Mézière M, Krätschmer K, Pe Rkons I, Zacs D, Marchand P, Dervilly G, Le Bizec B, Schächtele A, Cariou R, Vetter W. Addressing Main Challenges Regarding Short- and Medium-Chain Chlorinated Paraffin Analysis Using GC/ECNI-MS and LC/ESI-MS Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1885-1895. [PMID: 32872783 DOI: 10.1021/jasms.0c00155] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The risk assessment of chlorinated paraffins (CPs), chemicals of widespread industrial use, is struggling without standardized analytical methods to obtain reliable occurrence data. Indeed, scientists face analytical challenges that hinder the comparability of analytical methods, among them uncontrolled ionization efficiency and lack of quantification standards. In this study, our goal was to investigate potential issues faced when comparing data from different mass spectrometry platforms and quantification methods. First, the injection of the same set of single-chain length standards in three different instrumental mass spectrometry set-ups (liquid chromatography-electrospray-Orbitrap (LC/ESI-HRMS), liquid chromatography-electrospray-time-of-flight (LC/ESI-MS), and gas chromatography-electron capture negative ion-Orbitrap (GC/ECNI-HRMS)) revealed a shift of homologue response patterns even in-between LC/ESI-based set-ups, which was more pronounced for CPs of low chlorination degree. This finding emphasizes the need for a comprehensive description of instrument parameters when publishing occurrence data. Second, the quantification of a data set of samples with four quantification methods showed that quantification at the sum SCCP and MCCP levels presented good comparability, while quantification at the homologue level remained unsatisfactory. In light of those results, we suggest that (i) response pattern comparison should only be performed between similar instrumental set-ups, (ii) experimental chlorination degrees should be used when quantifying according to the %Cl (instead of those provided by the suppliers), and (iii) concentration results should be expressed as the sum of SCCPs and MCCPs primarily, with an indication on the match between samples and quantification standards (for example their chlorine content).
Collapse
Affiliation(s)
| | - Kerstin Krätschmer
- EURL for Halogenated POPs, c/o State Institute for Chemical and Veterinary Analysis of Food (CVUA) Freiburg, Bissierstraße 5, 79114 Freiburg, Germany
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, 70599 Stuttgart, Germany
| | | | | | | | | | | | - Alexander Schächtele
- EURL for Halogenated POPs, c/o State Institute for Chemical and Veterinary Analysis of Food (CVUA) Freiburg, Bissierstraße 5, 79114 Freiburg, Germany
| | | | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, 70599 Stuttgart, Germany
| |
Collapse
|
44
|
Yuan B, Lysak DH, Soong R, Haddad A, Hisatsune A, Moser A, Golotvin S, Argyropoulos D, Simpson AJ, Muir DCG. Chlorines Are Not Evenly Substituted in Chlorinated Paraffins: A Predicted NMR Pattern Matching Framework for Isomeric Discrimination in Complex Contaminant Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2020; 7:496-503. [PMID: 32685603 PMCID: PMC7365351 DOI: 10.1021/acs.estlett.0c00244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 05/06/2023]
Abstract
Chlorinated paraffins (CPs) can be mixtures of nearly a half-million possible isomers. Despite the extensive use of CPs, their isomer composition and effects on the environment remain poorly understood. Here, we reveal the isomeric distributions of nine CP mixtures with single-chain lengths (C14/15) and varying degrees of chlorination. The molar distribution of C n H2n+2-m Cl m in each mixture was determined using high-resolution mass spectrometry (MS). Next, the mixtures were analyzed by applying both one-dimensional 1H, 13C and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. Due to substantially overlapping signals in the experimental NMR spectra, direct assignment of individual isomers was not possible. As such, a new NMR spectral matching approach that used massive NMR databases predicted by a neural network algorithm to provide the top 100 most likely structural matches was developed. The top 100 isomers appear to be an adequate representation of the overall mixture. Their modeled physicochemical and toxicity parameters agree with previous experimental results. Chlorines are not evenly distributed in any of the CP mixtures and show a general preference at the third carbon. The approach described here can play a key role in understanding of complex isomeric mixtures such as CPs that cannot be resolved by MS alone.
Collapse
Affiliation(s)
- Bo Yuan
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Daniel Henryk Lysak
- Environmental
NMR Centre, University of Toronto, Toronto, ON, Canada M1C 1A4
| | - Ronald Soong
- Environmental
NMR Centre, University of Toronto, Toronto, ON, Canada M1C 1A4
| | - Andrew Haddad
- Environmental
NMR Centre, University of Toronto, Toronto, ON, Canada M1C 1A4
| | - Arika Hisatsune
- Environmental
NMR Centre, University of Toronto, Toronto, ON, Canada M1C 1A4
| | - Arvin Moser
- ACD/Labs, 8 King Street East, Toronto, ON, Canada M5C 1B5
| | | | | | - Andre J. Simpson
- Environmental
NMR Centre, University of Toronto, Toronto, ON, Canada M1C 1A4
| | - Derek C. G. Muir
- Canada
Centre for Inland Waters, Environment and
Climate Change Canada, Burlington, ON, Canada L7S 1A1
| |
Collapse
|
45
|
Jobst KJ, Arora A, Pollitt KG, Sled JG. Dried blood spots for the identification of bio-accumulating organic compounds: current challenges and future perspectives. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2020; 15:66-73. [PMID: 33073071 PMCID: PMC7560987 DOI: 10.1016/j.coesh.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The exposome is a concept that underlines the critical relationship between health and environmental exposures, including environmental toxicants. Currently, most environmental exposures that contribute to the exposome have not been characterized. Dried-blood spots (DBS) offer a cost-effective, reliable approach to characterize the blood exposome, which consists of diverse endogenous and exogenous chemicals, including persistent and bioaccumulating organic compounds. Current challenges involve prioritizing the identification by state-of-the-art mass spectrometry of likely up to tens of thousands of compounds present in blood; characterizing substances that represent a mixture of myriad constituent compounds; and detecting trace level contaminants, especially in quantity-limited matrices like DBS. This contribution reviews recent trends in DBS analysis of chemical pollutants and highlights the need for continued research in analytical chemistry to advance the field of exposomics.
Collapse
Affiliation(s)
- Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, 283 Prince Phillip Drive, St. John's A1B 3X7 Canada
| | - Anmol Arora
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, 06520 USA
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | - Krystal Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, 06520 USA
| | - John G. Sled
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto M5G 1L7, Canada
| |
Collapse
|
46
|
NMR and GC/MS analysis of industrial chloroparaffin mixtures. Anal Bioanal Chem 2020; 412:4669-4679. [PMID: 32468281 PMCID: PMC7329780 DOI: 10.1007/s00216-020-02720-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 11/02/2022]
Abstract
Chlorinated paraffins (CPs) are high-volume chemicals used worldwide in various industries as plasticizers, lubricants, and flame retardants. CPs are produced by chlorination of alkane mixtures which leads to complex products of thousands of homologs and congeners. Classic mass spectrometric analyses of CPs allow determining carbon chain lengths and degrees of chlorination while information on the substitution patterns cannot be derived. Therefore, we performed different one- and two-dimensional nuclear magnetic resonance spectroscopy (NMR) experiments, elemental analysis (EA), and gas chromatography coupled with electron capture negative ion mass spectrometry (GC/ECNI-MS) for the analysis of ten technical CP products with 42%, 52%, and 70% chlorine content from four producers. Slight differences in chlorine content but varying chain length compositions were observed for similarly labeled products from different manufacturers. Two-dimensional heteronuclear spectral quantum coherence (HSQC) measurements helped to evaluate ten structural elements in the products and confirmed the presence of geminal chlorine atoms in primary and secondary carbons in products with 70% chlorine. The variation of signal groups increased with increasing chlorine content of the products. Two-dimensional heteronuclear multiple bond coherence (HMBC) analysis of one sample and GC/ECNI-MS measurements indicated the presence of impurities (e.g., C9-CPs, iso-alkanes) in different technical CP products. These methods could in future allow for better distinction of CP mixtures, and an improved trace-back of environmental CPs to the source, based on specific structural features. Additionally, further structural characterization could help in the development of more accurate analysis processes. Graphical Abstract.
Collapse
|
47
|
Optimized characterization of short-, medium, and long-chain chlorinated paraffins in liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2020; 1619:460927. [DOI: 10.1016/j.chroma.2020.460927] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 11/23/2022]
|
48
|
Li H, Gao S, Yang M, Zhang F, Cao L, Xie H, Chen X, Cai Z. Dietary exposure and risk assessment of short-chain chlorinated paraffins in supermarket fresh products in Jinan, China. CHEMOSPHERE 2020; 244:125393. [PMID: 31790997 DOI: 10.1016/j.chemosphere.2019.125393] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Dietary intake is the major route for the exposure of residents to short-chain chlorinated paraffins (SCCPs). SCCPs are classified as persistent organic pollutants (POPs) by the Stockholm Convention since May 2017. This study assessed the general population's dietary exposure to SCCPs through supermarket products. Five food categories, which included 40 food species, were collected from five supermarkets in April 2019. The SCCP concentrations in all food matrices varied between 58.6 and 1977 ng g-1 dry weight (dw), with the average and standard deviation (SD) value of 301 ± 379 ng g-1 dw. Generally, the SCCP concentrations in animal-origin food matrices were higher than those in plant-origin food matrices. The C10Cl7 congeners were predominant among the congener groups of SCCPs. The proportion of C10 congeners in the animal-origin food samples (29.8%) was lower than that in the plant-origin food samples (39.7%), and the C13 congeners showed a contrasting result. The estimated daily intake (EDI) of SCCPs through dietary intake for the residents was 3109 ng kg-1 day-1, which is much lower than the standards of European Food Safety Authority (10 mg kg-1 day-1) for SCCPs. Risk assessment based on the supermarket foods indicated that SCCP exposure through dietary intake does not cause adverse effects to human health according to the margin of exposure (MOE).
Collapse
Affiliation(s)
- Huijuan Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Shan Gao
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Limin Cao
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, China
| | - Hanyi Xie
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
49
|
Yuan B, Tay JH, Papadopoulou E, Haug LS, Padilla-Sánchez JA, de Wit CA. Complex Mixtures of Chlorinated Paraffins Found in Hand Wipes of a Norwegian Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2020; 7:198-205. [PMID: 32953926 PMCID: PMC7493225 DOI: 10.1021/acs.estlett.0c00090] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 05/20/2023]
Abstract
Up to 18000 ng of total chlorinated paraffins (CPs) was found in hand wipes of individual adult participants in a Norwegian cohort study (n = 60), with a geometric mean (SD) value of 870 (2700) ng. The CPs covered a wide range of alkane chain lengths from C7 to C48 with variable chlorine substitution. Complex mixtures of very-short-chain (vSCCPs, C<10), short-chain (SCCPs, C10-13), medium-chain (MCCPs, C14-17), and long-chain (LCCPs, C>17) CPs were found, contributing on average 0.3%, 20%, 58%, and 22%, respectively, of the total CPs. Significant positive correlations were found between CP levels and factors related to the indoor environment and product use, including living in a house/apartment built before the ban of SCCPs, having a sofa, the number of TVs in the home, and owning a car, which mirrors CP usage as flame retardants and/or plasticizers in consumer products. Compared to previous studies of other organic contaminants in hand wipe samples from the same cohort, CPs were the most abundant flame retardants. This is the first report of CPs in hand wipes, and dermal exposure based on these data suggested that hand contact could be an important human exposure pathway for LCCPs.
Collapse
Affiliation(s)
- Bo Yuan
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Joo Hui Tay
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Eleni Papadopoulou
- Section
for Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, NO-0213 Oslo, Norway
| | - Line Småstuen Haug
- Section
for Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, NO-0213 Oslo, Norway
| | - Juan Antonio Padilla-Sánchez
- Section
for Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, NO-0213 Oslo, Norway
| | - Cynthia A. de Wit
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
50
|
Wang X, Zhu J, Xue Z, Jin X, Jin Y, Fu Z. The environmental distribution and toxicity of short-chain chlorinated paraffins and underlying mechanisms: Implications for further toxicological investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133834. [PMID: 31416033 DOI: 10.1016/j.scitotenv.2019.133834] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 05/20/2023]
Abstract
Short-chain chlorinated paraffin (SCCP) pollution has become a global threat. Much attention has been paid to their environmental occurrence and toxicity. In this review, we summarized the wide distribution of SCCPs in various environmental matrices and biota, including human beings. Toxicokinetics and the toxicities of SCCPs, including lethality, hepatotoxicity, developmental toxicity, carcinogenicity, endocrine- and metabolism-disrupting effects, and immunomodulatory effects have been considered. The mechanisms of SCCP toxicity are mainly related to oxidative stress, metabolic disturbance, endocrine disruption and binding to biomacromolecules. In the future, further studies of SCCPs should focus on searching for their novel toxicity targets, and uncovering their toxic effects using transcriptomics, proteomics, metabolomics, and mutigenerational toxicity.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zimeng Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xini Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|