1
|
Zhan S, Zhang J, Gao C, Yin Z, Liu H. An electrochemical microbiosensor for serotonin based on surface imprinted layer coordinated bimetal functionalized acupuncture needle. Talanta 2024; 277:126334. [PMID: 38838564 DOI: 10.1016/j.talanta.2024.126334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a pivotal monoamine neurotransmitter, which is widely distributed in human brain for biological, physical and psychopathological processes. The content of 5-HT can support diagnose of various diseases. To selectively detect 5-HT is very important in clinical medicine. Here, a novel microbiosensor for 5-HT is studied on acupuncture needle. Molecularly imprinted film enwrapped 5-HT was electropolymerized onto bimetallic gold/platinum (Au/Pt) nanoparticles on acupuncture needle microelectrode (ANME). Au/Pt nanostructure exhibited active sites to catalyze the oxidation of 5-HT and bind the generated polymer. 5-HT can be enwrapped by the functional monomer of pyrrole (Py) in the process of electropolymerization with suitably electroactive conformation. Comparing with interfaces of single metal or molecularly imprinted layer, synergistic microbiosensor exhibit better performance for 5-HT. 5-HT can be adsorbed and catalytically oxidized by the imprinted cavities. Under optimized conditions, the peak current linearly increases with the concentration of 5-HT from 0.03 to 500 μM, and a detection limit of 0.0106 μM is obtained. The performance of this microbiosensor is competitive with previous studies. Furthermore, the prepared microbiosensor showed effective application to analyze 5-HT in human serum and urine. Interestingly, the microbiosensor expressed the real-time monitoring ability to 5-HT from stimulated PC12 cells by K+. The microbiosensor also exhibited high selectivity, stability and reproducibility, which is promising in view of the low price, fast response and simple operation.
Collapse
Affiliation(s)
- Shanshan Zhan
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200000, China
| | - Jiayi Zhang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | | | - Zhengzhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Hongying Liu
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Colozza N, Mazzaracchio V, Arduini F. Paper-Based Electrochemical (Bio)Sensors for the Detection of Target Analytes in Liquid, Aerosol, and Solid Samples. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:127-147. [PMID: 38640070 DOI: 10.1146/annurev-anchem-061522-034228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
The last decade has been incredibly fruitful in proving the multifunctionality of paper for delivering innovative electrochemical (bio)sensors. The paper material exhibits unprecedented versatility to deal with complex liquid matrices and facilitate analytical detection in aerosol and solid phases. Such remarkable capabilities are feasible by exploiting the intrinsic features of paper, including porosity, capillary forces, and its easy modification, which allow for the fine designing of a paper device. In this review, we shed light on the most relevant paper-based electrochemical (bio)sensors published in the literature so far to identify the smart functional roles that paper can play to bridge the gap between academic research and real-world applications in the biomedical, environmental, agrifood, and security fields. Our analysis aims to highlight how paper's multifarious properties can be artfully harnessed for breaking the boundaries of the most classical applications of electrochemical (bio)sensors.
Collapse
Affiliation(s)
- Noemi Colozza
- 1Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy;
- 2Sense4Med S.R.L., Rome, Italy
| | - Vincenzo Mazzaracchio
- 1Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy;
| | - Fabiana Arduini
- 1Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy;
- 2Sense4Med S.R.L., Rome, Italy
| |
Collapse
|
3
|
Mondal R, Khan M, Ahmed SF, Mukherjee N. Electrochemically Grown Hole-Rich NiO(OH) Thin Films toward Hole-Mediated Very Fast and Selective Enzyme-Free Electrochemical Sensing of Dopamine under Simulated Environment. ACS APPLIED BIO MATERIALS 2024; 7:4062-4079. [PMID: 38831551 DOI: 10.1021/acsabm.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This work aimed to develop an enzyme-free semiconductor-assisted electrochemical technique for the selective detection of the neurotransmitter dopamine. In this case, electrochemically grown nickel oxyhydroxide [NiO(OH)] thin films were chosen to fabricate the sensing platform, i.e., the electrodes. Chronoamperometry was used to deposit the films on indium tin oxide (ITO) coated glass substrates. The films were thoroughly characterized to establish their structure, composition, phase purity, and electrochemical attributes. Electrochemical sensing characteristics were investigated by means of cyclic and differential pulse voltammetry, steady-state amperometry, and electrochemical impedance spectroscopy. The effects of several interfering agents like glucose, sodium chloride, methanol, hydrogen peroxide, and paracetamol were also studied on the detection attributes of dopamine. Significantly high value of sensitivity (11.87 μA μM-1 cm-2) was obtained for dopamine sensing that was associated with a limit of detection (LoD) of 0.22 μM of dopamine. However, the sensitivity (2.51 μA μM-1 cm-2) and LoD (1.20 μM) obtained for serotonin were inferior compared to those of dopamine. The performance of the electrode toward dopamine sensing was not compromised either in the presence of only serotonin or a series of other electroactive interfering agents, which makes the electrode very much dopamine selective. The dopamine response time was 200 ms, which is notably fast. Extensive studies on the effect of temperature, pH and scan rate on the detection of dopamine by the developed electrode material have also been carried out. The developed electrodes were also found to be notably stable for dopamine detection with a decay of only 6.6% in oxidation peak current density after the 50th cycle. Real-life application of the developed electrode material was checked with urine samples from adult male humans and yielded encouraging results.
Collapse
Affiliation(s)
- Rimpa Mondal
- Nanoscience Laboratory, Department of Physics, Aliah University, IIA/27 Newtown, Kolkata 700160, West Bengal, India
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Mohibul Khan
- Nanoscience Laboratory, Department of Physics, Aliah University, IIA/27 Newtown, Kolkata 700160, West Bengal, India
| | - Sk Faruque Ahmed
- Nanoscience Laboratory, Department of Physics, Aliah University, IIA/27 Newtown, Kolkata 700160, West Bengal, India
| | - Nillohit Mukherjee
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| |
Collapse
|
4
|
Avcı B, Akpınar Y, Ertaş G, Volkan M. Sialic Acid-Functionalized Gold Nanoparticles for Sensitive and Selective Colorimetric Determination of Serotonin. ACS OMEGA 2024; 9:23832-23842. [PMID: 38854544 PMCID: PMC11154895 DOI: 10.1021/acsomega.4c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024]
Abstract
We present a novel colorimetric method inspired by nature's complex mechanisms, capable of selectively determining serotonin with high sensitivity. This method exploits the inherent binding affinity of serotonin with sialic acid (SA) molecules anchored to gold nanoparticles (SA-AuNPs). Upon serotonin binding, SA-AuNPs aggregate, and a characteristic red shift in the absorbance of SA-AuNPs accompanied by a dramatic color change (red to blue) occurs, readily observable even without instrumentation. The proposed method effectively eliminates interventions from potential interfering species such as dopamine, epinephrine, l-tyrosine, glucosamine, galactose, mannose, and oxalic acid. The absence of a color change with l-tryptophan, a structurally related precursor of serotonin, further confirms the high selectivity of this approach for serotonin detection. The colorimetric method has a wide linear dynamic range (0.05-1.0 μM), low limit of detection (0.02 μM), and fast response time (5 min). The limit of detection of the method is lower than other colorimetric serotonin sensors reported so far. The possible use of the proposed method in biological sample analysis was evaluated by employing a serotonin recovery assay in processed human plasma. The recoveries ranged from 90.5 to 104.2%, showing promising potential for clinical applications.
Collapse
Affiliation(s)
- Begüm Avcı
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Yeliz Akpınar
- Department of Chemistry, Kirsehir Ahi Evran University, 40100 Kirsehir, Turkey
| | - Gülay Ertaş
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Mürvet Volkan
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
5
|
Hernández-Contreras M, Cruz J, Gurrola M, Pamplona Solis B, Vega-Azamar R. Application of nanosilica in the construction industry: A bibliometric analysis using Methodi Ordinatio. MethodsX 2024; 12:102642. [PMID: 38660026 PMCID: PMC11041844 DOI: 10.1016/j.mex.2024.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/29/2024] [Indexed: 04/26/2024] Open
Abstract
The number of publications related to the implementation of nanotechnology in the construction industry, and specifically to the application of nanosilica (SiO2), has had a constant increase in recent years. Based on this, in the present work, an analysis was carried out using bibliometric techniques, with the aim at characterizing the development of specialized literature and identifying the largest areas of growth in the field, maintaining hydrophobic nanosilica as the research guideline. This analysis acquired information from the Scopus and Web of Science (WoS) databases to compare bibliometric indicators of the publications. It should be noted that, even though bibliometric analysis is useful to identify the study areas of greatest interest, to complement this work, the implementation of a method that helped in the research process to obtain the most important bibliography was required. This study implemented Methodi Ordinatio, which helped to take a new direction. Therefore, based on this method, a list of articles cataloged and ranked is obtained, which is the basis for integrating the final bibliographic portfolio. •The study applies the Methodi Ordinatio to obtain a portfolio of the most relevant articles to guide the researchers' work.•Insightful information can be obtained using VOSviewer to analyze and visualize metadata of the bibliographic portfolio.•The study demonstrates how the alpha value in the InOrdinatio formula modifies the resulting portfolio.
Collapse
Affiliation(s)
- M. Hernández-Contreras
- TecNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, Chetumal, QR 77013, Mexico
| | - J.C. Cruz
- TecNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, Chetumal, QR 77013, Mexico
| | - M.P. Gurrola
- IxM-CONAHCYT-Tecnológico Nacional de México/I.T. Chetumal, Insurgentes 330, Chetumal, QR 77013, Mexico
| | - B. Pamplona Solis
- TecNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, Chetumal, QR 77013, Mexico
| | - R.E. Vega-Azamar
- TecNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, Chetumal, QR 77013, Mexico
| |
Collapse
|
6
|
Yu W, Li J, Huang G, He Z, Tian H, Xie F, Jin W, Huang Q, Fu W, Yang X. Rapid and sensitive detection of Staphylococcus aureus using a THz metamaterial biosensor based on aptamer-functionalized Fe 3O 4@Au nanocomposites. Talanta 2024; 272:125760. [PMID: 38364563 DOI: 10.1016/j.talanta.2024.125760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Staphylococcus aureus (S. aureus) poses a serious threat to global public health, necessitating the establishment of rapid and simple tools for its accurate identification. Herein, we developed a terahertz (THz) metamaterial biosensor based on aptamer-functionalized Fe3O4@Au nanocomposites for quantitative S. aureus assays in different clinical samples. Fe3O4@Au@Cys@Apt has the dual advantages of magnetism and a high refractive index in the THz range and was used to rapidly separate and enrich target bacteria in a complex environmental solution. Furthermore, conjugation to the nanocomposites significantly increased the resonance frequency shift of the THz metamaterial after target loading. Our results showed that the shifts in the metamaterial resonance frequency were linearly related to S. aureus concentrations ranging from 1.0 × 103 to 1.0 × 107 CFU/mL, with a detection limit of 4.78 × 102 CFU/mL. The biosensor was further applied to S. aureus detection in spiked human urine and blood with satisfactory recoveries (82.4-109.6%). Our approach also demonstrated strong concordance with traditional plate counting (R2 = 0.99306) while significantly lowering the analysis time from 24 h to <1 h. In conclusion, the proposed biosensor can not only perform culture-free and extraction-free detection of target bacteria but can also be easily extended to the determination of other pathogenic bacteria, rendering it suitable for various bacteria-related disease diagnoses.
Collapse
Affiliation(s)
- Wenjing Yu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jining Li
- Institute of Laser and Opto-electronics, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Guorong Huang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhe He
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Huiyan Tian
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Fengxin Xie
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Weidong Jin
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
7
|
Malik S, Singh J, Saini K, Chaudhary V, Umar A, Ibrahim AA, Akbar S, Baskoutas S. Paper-based sensors: affordable, versatile, and emerging analyte detection platforms. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2777-2809. [PMID: 38639474 DOI: 10.1039/d3ay02258g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Paper-based sensors, often referred to as paper-based analytical devices (PADs), stand as a transformative technology in the field of analytical chemistry. They offer an affordable, versatile, and accessible solution for diverse analyte detection. These sensors harness the unique properties of paper substrates to provide a cost-effective and adaptable platform for rapid analyte detection, spanning chemical species, biomolecules, and pathogens. This review highlights the key attributes that make paper-based sensors an attractive choice for analyte detection. PADs demonstrate their versatility by accommodating a wide range of analytes, from ions and gases to proteins, nucleic acids, and more, with customizable designs for specific applications. Their user-friendly operation and minimal infrastructure requirements suit point-of-care diagnostics, environmental monitoring, food safety, and more. This review also explores various fabrication methods such as inkjet printing, wax printing, screen printing, dip coating, and photolithography. Incorporating nanomaterials and biorecognition elements promises even more sophisticated and sensitive applications.
Collapse
Affiliation(s)
- Sumit Malik
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Kajal Saini
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Vivek Chaudhary
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
- Department of Materials Science and Engineering, The Ohio State University, Columbus 43210, OH, USA
- STEM Pioneers Training Lab, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
- STEM Pioneers Training Lab, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus 43210, OH, USA
| | | |
Collapse
|
8
|
Somnet K, Chimjarn S, Wanram S, Jarujamrus P, Nacapricha D, Lieberzeit PA, Amatatongchai M. Smart dual imprinted Origami 3D-ePAD for selective and simultaneous analysis of vanillylmandelic acid and 5-hydroxyindole-3-acetic acid carcinoid cancer biomarkers using graphene quantum dots coated with dual molecularly imprinted polymers. Talanta 2024; 269:125512. [PMID: 38091737 DOI: 10.1016/j.talanta.2023.125512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Measuring the levels of the biomarkers vanillylmandelic acid (VMA) and 5-Hydroxyindole-3-acetic acid (5-HIAA) is a valuable tool for clinical diagnosis not only of neuroblastoma or carcinoid syndrome, but also of essential hypertension, depression, migraine, and Tourette's syndrome. Herein, we explore using graphene quantum dots (GQDs) coated with molecularly imprinted polymer (MIP) as novel dual-imprinted sensors for selective and simultaneous determination of VMA and 5-HIAA in urine and plasma samples. The dual-MIP was successfully coated on the GQDs core via co-polymerization of (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS), acting as functional and cross-linking monomers, respectively. In addition, we successfully created the dual imprinted VMA and 5-HIAA shell on the GQDs' core via a one-pot synthesis. We fabricated a facile and ready-to-use Origami three-dimensional electrochemical paper-based analytical device (Origami 3D-ePAD) for simultaneous determination of VMA and 5-HIAA using a GQDs@dual-MIP modified graphene electrode (GQDs@dual-MIP/SPGE). The Origami 3D-ePAD was designed to form a voltammetric cell on a three-layer foldable sheet with several advantages. For example, they were quickly assembled and enhanced the device's physical durability with the hydrophobic backup sheet. The developed dual imprinted Origami 3D-ePAD leads to substantially enhanced sensitivity and selectivity to electrochemical signal amplification generated from increasing the electrode-specific surface area, electrocatalytic activity, and the large numbers of dual imprinted sites for VMA and 5-HIAA detection. The synthetic recognition sites are highly selective for 5-HIAA and VMA molecules with an imprinting factor of 8.46 and 7.10, respectively. Quantitative analysis relying on square wave voltammetry reveals excellent linear dynamic ranges of around 0.001-25 μM, with detection limits of 0.023 nM for 5-HIAA and 0.047 nM for VMA (3Sb, n = 3). The Origami 3D-ePAD provides high accuracy and precision (i.e., recovery values of 5-HIAA ranged from 82.98 to 98.40 %, and VMA ranged from 83.28 to 104.39 %), and RSD less than 4.37 %) in urine and plasma samples without any evidence of interference. Hence, it is well suited as a facile and ready-to-use disposable device for point-of-care testing. It is straightforward, cost-effective, reproducible, and stable. Furthermore, it allows for rapid analysis (analysis time ∼20s) useful in medical diagnosis and other relevant fields.
Collapse
Affiliation(s)
- Kanpitcha Somnet
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Supansa Chimjarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Surasak Wanram
- Biomedical Science Research Unit, College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Duangjai Nacapricha
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Thailand
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, 1090 Vienna, Austria
| | - Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Thailand.
| |
Collapse
|
9
|
Faysal AA, Kaya SI, Cetinkaya A, Ozkan SA, Gölcü A. The Effect of Polymerization Techniques on the Creation of Molecularly Imprinted Polymer Sensors and Their Application on Pharmaceutical Compounds. Crit Rev Anal Chem 2024:1-20. [PMID: 38252120 DOI: 10.1080/10408347.2023.2301652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Molecularly imprinted polymers (MIPs) have become more prevalent in fabricating sensor applications, particularly in medicine, pharmaceuticals, food quality monitoring, and the environment. The ease of their preparation, adaptability of templates, superior affinity and specificity, improved stability, and the possibility for downsizing are only a few benefits of these sensors. Moreover, from a medical perspective, monitoring therapeutic medications and determining pharmaceutical compounds in their pharmaceutical forms and biological systems is very important. Additionally, because medications are hazardous to the environment, effective, quick, and affordable determination in the surrounding environment is of major importance. Concerning a variety of performance criteria, including sensitivity, specificity, low detection limits, and affordability, MIP sensors outperform other published technologies for analyzing pharmaceutical drugs. MIP sensors have, therefore, been widely used as one of the most crucial techniques for analyzing pharmaceuticals. The first part of this review provides a detailed explanation of the many polymerization techniques that were employed to create high-performing MIP sensors. In the subsequent section of the review, the utilization of MIP-based sensors for quantifying the drugs in their pharmaceutical preparation, biological specimens, and environmental samples are covered in depth. Finally, a critical evaluation of the potential future research paths for MIP-based sensors clarifies the use of MIP in pharmaceutical fields.
Collapse
Affiliation(s)
- Abdullah Al Faysal
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Türkiye
| | - Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Türkiye
- Graduate School of Health Sciences, Ankara University, Türkiye
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Türkiye
| | - Ayşegül Gölcü
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Türkiye
| |
Collapse
|
10
|
Seddaoui N, Colozza N, Gullo L, Arduini F. Paper as smart support for bioreceptor immobilization in electrochemical paper-based devices. Int J Biol Macromol 2023; 253:127409. [PMID: 37848114 DOI: 10.1016/j.ijbiomac.2023.127409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
The use of paper as a smart support in the field of electrochemical sensors has been largely improved over the last 15 years, driven by its outstanding features such as foldability and porosity, which enable the design of reagent and equipment-free multi-analysis devices. Furthermore, the easy surface engineering of paper has been used to immobilize different bioreceptors, through physical adsorption, covalent bonding, and electrochemical polymerization, boosting the fine customization of the analytical performances of paper-based biosensors. In this review, we focused on the strategies to engineer the surface of the paper for the immobilization of (bio)recognition elements (eg., enzymes, antibodies, DNA, molecularly imprinted polymers) with the overriding goal to develop accurate and reliable paper-based electrochemical biosensors. Furthermore, we highlighted how to take advantage of paper for designing smart configurations by integrating different analytical processes in an eco-designed analytical tool, starting from the immobilization of the (bio)receptor and the reagents, through a designed sample flow along the device, until the analyte detection.
Collapse
Affiliation(s)
- Narjiss Seddaoui
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Noemi Colozza
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy; SENSE4MED S.R.L, Via Bitonto 139, 00133 Rome, Italy
| | - Ludovica Gullo
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy; SENSE4MED S.R.L, Via Bitonto 139, 00133 Rome, Italy.
| |
Collapse
|
11
|
Ait Lahcen A, Lamaoui A, Amine A. Exploring the potential of molecularly imprinted polymers and metal/metal oxide nanoparticles in sensors: recent advancements and prospects. Mikrochim Acta 2023; 190:497. [PMID: 38040934 DOI: 10.1007/s00604-023-06030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/04/2023] [Indexed: 12/03/2023]
Abstract
Metal/metal oxide nanoparticles have gained increasing attention in recent years due to their outstanding features, including optical and catalytic properties, as well as their excellent conductivity. The implementation of metal/metal oxide nanoparticles, combined with molecularly imprinted polymers (MIPs) has paved the way for a new generation of building blocks to engineer and enhance the fascinating features of advanced sensors. This review critically evaluates the impact of combining metal/metal oxide nanoparticles with MIPs in sensors. It covers synthesis strategies, advantages of coupling these materials with MIPs, and addresses questions about the selectivity of these hybrid materials. In the end, the current challenges and future perspectives of this field are discussed, with a particular focus on the potential applications of these hybrid composites in the sensor field. This review highlights the exciting opportunities of using metal/metal oxide nanoparticles along with MIPs for the development of next-generation sensors.
Collapse
Affiliation(s)
| | - Abderrahman Lamaoui
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Aziz Amine
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco.
| |
Collapse
|
12
|
du Plooy J, Jahed N, Iwuoha E, Pokpas K. Advances in paper-based electrochemical immunosensors: review of fabrication strategies and biomedical applications. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230940. [PMID: 38034121 PMCID: PMC10685120 DOI: 10.1098/rsos.230940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Cellulose paper-based sensing devices have shown promise in addressing the accuracy, sensitivity, selectivity, analysis time and cost of current disease diagnostic tools owing to their excellent physical and physiochemical properties, high surface-area-to-volume ratio, strong adsorption capabilities, ease of chemical functionalization for immobilization, biodegradability, biocompatibility and liquid transport by simple capillary action. This review provides a comprehensive overview of recent advancements in the field of electrochemical immunosensing for various diseases, particularly in underdeveloped regions and globally. It highlights the significant progress in fabrication techniques, fluid control, signal transduction and paper substrates, shedding light on their respective advantages and disadvantages. The primary objective of this review article is to compile recent advances in the field of electrochemical immunosensing for the early detection of diseases prevalent in underdeveloped regions and globally, including cancer biomarkers, bacteria, proteins and viruses. Herein, the critical need for new, simplistic early detection strategies to combat future disease outbreaks and prevent global pandemics is addressed. Moreover, recent advancements in fabrication techniques, including lithography, printing and electrodeposition as well as device orientation, substrate type and electrode modification, have highlighted their potential for enhancing sensitivity and accuracy.
Collapse
Affiliation(s)
- Jarid du Plooy
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Nazeem Jahed
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Emmanuel Iwuoha
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Keagan Pokpas
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| |
Collapse
|
13
|
Lamaoui A, Mani V, Durmus C, Salama KN, Amine A. Molecularly imprinted polymers: A closer look at the template removal and analyte binding. Biosens Bioelectron 2023; 243:115774. [PMID: 39492184 DOI: 10.1016/j.bios.2023.115774] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Molecularly imprinted polymers (MIPs), which first appeared over half a century ago, are now attracting considerable attention as artificial receptors, particularly for sensing. MIPs, especially applied to biomedical analysis in biofluids, contribute significantly to patient diagnosis at the point of care, thereby allowing health monitoring. Despite the importance given to MIPs, removal of templates and binding of analytes have received little attention and are currently the least focused steps in MIP development. This critical review is dedicated to a comprehensive analysis and discussion of cutting-edge concepts and methodologies in the removal and binding steps pertaining to various types of analytes, including ions, molecules, epitopes, proteins, viruses, and bacteria. The central objective of this review is to comprehensively examine and discuss a range of removal methods, including soxhlet extraction, immersion, microwave-assisted technique, ultrasonication, electrochemical approach, and proteolytic digestion, among others. Additionally, we will explore various binding methods, such as soaking, drop-casting, and batch sorption, to provide a comprehensive overview of the subject. Furthermore, the current challenges and perspectives in removal and binding are highlighted. Our review, at the interface of chemistry and sensors, will offer a wide range of opportunities for researchers whose interests include MIPs, (bio)sensors, analytical chemistry, and diagnostics.
Collapse
Affiliation(s)
- Abderrahman Lamaoui
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Veerappan Mani
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ceren Durmus
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aziz Amine
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco.
| |
Collapse
|
14
|
Al-Jaf SH, Omer KM. Accuracy improvement via novel ratiometry design in distance-based microfluidic paper based analytical device: instrument-free point of care testing. RSC Adv 2023; 13:15704-15713. [PMID: 37228680 PMCID: PMC10204734 DOI: 10.1039/d3ra01601c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Developing accurate, precise, instrument-free, and point-of-need microfluidic paper-based devices is highly significant in clinical diagnosis and biomedical analysis. In the present work, a ratiometric distance-based microfluidic paper-based analytical device (R-DB-μPAD), along with a three-dimensional (3D) multifunctional connector (spacer), was designed to improve the accuracy and detection resolution analyses. Specifically, the novel R-DB-μPAD was used for the accurate and precise detection of ascorbic acid (AA) as a model analyte. In this design, two channels were fabricated as detection zones, with a 3D spacer located between the sampling and detection zones to improve the detection resolution by preventing the reagents mixing from overspreading between these zones. Two probes for AA were used: Fe3+ and 1,10-phenanthroline were deposited in the first channel, and oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) was added to the second channel. Accuracy improvement of this ratiometry-based design was achieved by enhancing the linearity range and reducing the volume dependency of the output signal. Moreover, the 3D connector improved the detection resolution by eliminating the systematic errors. Under the optimal conditions, the ratio of the distances of the color bands in the two channels was used to construct an analytical calibration curve in the range from 0.05 to 1.2 mM, with a limit of detection of 16 μM. The proposed R-DB-μPAD combined with the connector was successfully used for the detection of AA in orange juice and vitamin C tablets with satisfactory accuracy and precision. This work opens the door for multiplex analysis of various analytes in different matrices.
Collapse
Affiliation(s)
- Sabah H Al-Jaf
- Department of Chemistry, College of Science, University of Sulaimani 46002 Sulaimani City Kurdistan Region Iraq
- Department of Chemistry, College of Science, University of Garmian Darbandikhan Road 46021 Kalar City Sulaimaniyah Province Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani 46002 Sulaimani City Kurdistan Region Iraq
- Center of Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani 46002 Sulaimani City Kurdistan Region Iraq
| |
Collapse
|
15
|
Feng H, Wang F, Li J, Wu Q, Cui Y, He L, Liu X, Liu Z, Qian D, Tong H. Tuning the Fe/Co ratio towards a bimetallic Prussian blue analogue for the ultrasensitive electrochemical sensing of 5-hydroxytryptamine. Talanta 2023; 254:124138. [PMID: 36463803 DOI: 10.1016/j.talanta.2022.124138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Lack of highly efficient, inexpensive, and easily available catalysts severely limits the practical applicability of electrochemically sensing assay towards 5-hydroxytryptamine (5-HT). Herein, four kinds of Fe-Co bimetallic Prussian blue analogues (FeCo-PBAs) with different molar ratios of Fe to Co were prepared using a simple coprecipitation method. Interestingly, Fe(III) in K3 [Fe(CN)6] can be reduced to Fe(II) by adding trisodium citrate dehydrate, which could offer a new clue to synthesize PBAs with Fe(II) core ions. With the optimizational FeCo-PBA synthesized at a 0.5/1 M ratio of Fe to Co as an electrocatalyst, the constructed sensor shows excellent comprehensive performance for the 5-HT assay with a high sensitivity of 0.856 μA μM-1 and an ultralow detection limit of 8.4 nM. Under the optimum conditions, linearity was obtained in the ranges of 0.1-10.0 μM and 10.0-200.0 μM and preferable recoveries ranged from 97.8% to 103.0% with relative standard deviation (RSD) < 4.0%. The integrated properties of FeCo-PBA can be comparable to previously reported electrocatalysts for the 5-HT assay including noble metal-based and expensive carbon (graphene and carbon nanotubes)-based electrocatalysts. The proposed sensor also exhibits outstanding selectivity, reproducibility, and practicality for real sample analyses. This work is the first report on the PBA-based sensor for the 5-HT assay, verifying the practicability of this high-performance sensor for the 5-HT assay.
Collapse
Affiliation(s)
- Hao Feng
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Fan Wang
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Junhua Li
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China; Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Qian Wu
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Ying Cui
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Lingzhi He
- School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, 421008, PR China; Institute of Chemical and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Xing Liu
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Zeng Liu
- Cangzhou Dahua Group Co., Ltd, Cangzhou, 061000, PR China
| | - Dong Qian
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Haixia Tong
- Institute of Chemical and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.
| |
Collapse
|
16
|
Woźnica M, Sobiech M, Luliński P. A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:248. [PMID: 36677999 PMCID: PMC9863567 DOI: 10.3390/nano13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Molecular imprinting technology is a well-known strategy to synthesize materials with a predetermined specificity. For fifty years, the "classical" approach assumed the creation of "memory sites" in the organic polymer matrix by a template molecule that interacts with the functional monomer prior to the polymerization and template removal. However, the phenomenon of a material's "memory" provided by the "footprint" of the chemical entity was first observed on silica-based materials nearly a century ago. Through the years, molecular imprinting technology has attracted the attention of many scientists. Different forms of molecularly imprinted materials, even on the nanoscale, were elaborated, predominantly using organic polymers to induce the "memory". This field has expanded quickly in recent years, providing versatile tools for the separation or detection of numerous chemical compounds or even macromolecules. In this review, we would like to emphasize the role of the molecular imprinting process in the formation of highly specific siloxane-based nanomaterials. The distinct chemistry of siloxanes provides an opportunity for the facile functionalization of the surfaces of nanomaterials, enabling us to introduce additional properties and providing a way for vast applications such as detectors or separators. It also allows for catalyzing chemical reactions providing microreactors to facilitate organic synthesis. Finally, it determines the properties of siloxanes such as biocompatibility, which opens the way to applications in drug delivery and nanomedicine. Thus, a brief outlook on the chemistry of siloxanes prior to the discussion of the current state of the art of siloxane-based imprinted nanomaterials will be provided. Those aspects will be presented in the context of practical applications in various areas of chemistry and medicine. Finally, a brief outlook of future perspectives for the field will be pointed out.
Collapse
|
17
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
18
|
Highly sensitive molecularly imprinted polymer-based electrochemical sensor for voltammetric determination of Adenine and Guanine in real samples using gold screen-printed electrode. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
19
|
Khan MQ, Khan RA, Alsalme A, Ahmad K, Kim H. Design and Fabrication of α-MnO 2-Nanorods-Modified Glassy-Carbon-Electrode-Based Serotonin Sensor. BIOSENSORS 2022; 12:849. [PMID: 36290986 PMCID: PMC9599580 DOI: 10.3390/bios12100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Serotonin is a very important monoamine neurotransmitter, which takes part in biological and psychological processes. In the present scenario, design and fabrication of a serotonin electrochemical sensor is of great significance. In this study, we have synthesized α-MnO2 via a hydrothermal synthesis method using potassium permanganate as a precursor. The physiochemical properties, such as structural and phase-purity of the prepared α-MnO2, were investigated by various characterization techniques and methods (powder X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy). Furthermore, the serotonin sensor was fabricated using α-MnO2 as an electrode modifier or electro-catalyst. The bare glassy carbon electrode (GCE) was adopted as a working substrate, and its active carbon surface was modified with the synthesized α-MnO2. This modified GCE (α-MnO2/GCE = MGCE) was explored as a serotonin sensor. The electrochemical investigations showed that the MGCE has excellent electro-catalytic properties towards determination of serotonin. The MGCE exhibits an excellent detection limit (DL) of 0.14 µM, along with good sensitivity of 2.41 µAµM-1 cm-2. The MGCE also demonstrated excellent selectivity for determination of serotonin in the presence of various electro-active/interfering molecules. The MGCE also exhibits good cyclic repeatability, stability, and storage stability.
Collapse
Affiliation(s)
- Mohd Quasim Khan
- Department of Chemistry, M.M.D. College, Moradabad, M.J.P. Rohilkhand University, Bareilly 244001, UP, India
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khursheed Ahmad
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Haekyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
20
|
A disposable paper-based microfluidic electrochemical cell equipped with graphite-supported gold nanoparticles modified electrode for gallic acid determination. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Xu S, Xu Z, Liu Z. Paper-Based Molecular-Imprinting Technology and Its Application. BIOSENSORS 2022; 12:595. [PMID: 36004991 PMCID: PMC9405720 DOI: 10.3390/bios12080595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
Paper-based analytical devices (PADs) are highly effective tools due to their low cost, portability, low reagent accumulation, and ease of use. Molecularly imprinted polymers (MIP) are also extensively used as biomimetic receptors and specific adsorption materials for capturing target analytes in various complex matrices due to their excellent recognition ability and structural stability. The integration of MIP and PADs (MIP-PADs) realizes the rapid, convenient, and low-cost application of molecular-imprinting analysis technology. This review introduces the characteristics of MIP-PAD technology and discusses its application in the fields of on-site environmental analysis, food-safety monitoring, point-of-care detection, biomarker detection, and exposure assessment. The problems and future development of MIP-PAD technology in practical application are also prospected.
Collapse
Affiliation(s)
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China;
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China;
| |
Collapse
|
22
|
Mazzotta E, Di Giulio T, Malitesta C. Electrochemical sensing of macromolecules based on molecularly imprinted polymers: challenges, successful strategies, and opportunities. Anal Bioanal Chem 2022; 414:5165-5200. [PMID: 35277740 PMCID: PMC8916950 DOI: 10.1007/s00216-022-03981-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022]
Abstract
Looking at the literature focused on molecularly imprinted polymers (MIPs) for protein, it soon becomes apparent that a remarkable increase in scientific interest and exploration of new applications has been recorded in the last several years, from 42 documents in 2011 to 128 just 10 years later, in 2021 (Scopus, December 2021). Such a rapid threefold increase in the number of works in this field is evidence that the imprinting of macromolecules no longer represents a distant dream of optimistic imprinters, as it was perceived until only a few years ago, but is rapidly becoming an ever more promising and reliable technology, due to the significant achievements in the field. The present critical review aims to summarize some of them, evidencing the aspects that have contributed to the success of the most widely used strategies in the field. At the same time, limitations and drawbacks of less frequently used approaches are critically discussed. Particular focus is given to the use of a MIP for protein in the assembly of electrochemical sensors. Sensor design indeed represents one of the most active application fields of imprinting technology, with electrochemical MIP sensors providing the broadest spectrum of protein analytes among the different sensor configurations.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy.
| | - Tiziano Di Giulio
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
23
|
Teleanu RI, Niculescu AG, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters-Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. Int J Mol Sci 2022; 23:5954. [PMID: 35682631 PMCID: PMC9180936 DOI: 10.3390/ijms23115954] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Neurotransmitters are molecules that amplify, transmit, and convert signals in cells, having an essential role in information transmission throughout the nervous system. Hundreds of such chemicals have been discovered in the last century, continuing to be identified and studied concerning their action on brain health. These substances have been observed to influence numerous functions, including emotions, thoughts, memories, learning, and movements. Thus, disturbances in neurotransmitters' homeostasis started being correlated with a plethora of neurological and neurodegenerative disorders. In this respect, the present paper aims to describe the most important neurotransmitters, broadly classified into canonical (e.g., amino acids, monoamines, acetylcholine, purines, soluble gases, neuropeptides) and noncanonical neurotransmitters (e.g., exosomes, steroids, D-aspartic acid), and explain their link with some of the most relevant neurological conditions. Moreover, a brief overview of the recently developed neurotransmitters' detection methods is offered, followed by several considerations on the modulation of these substances towards restoring homeostasis.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Eugenia Roza
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Oana Vladâcenco
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | | |
Collapse
|
24
|
Ivoilova A, Malakhova N, Mozharovskaia P, Nikiforova A, Tumashov A, Kozitsina A, Ivanova A, Rusinov V. Study of Different Carbonaceous Materials as Modifiers of Screen‐Printed Carbon Electrodes for Detection of the Triazid as Potential Antiviral Drug. ELECTROANAL 2022. [DOI: 10.1002/elan.202100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Nataliya Malakhova
- Ural Federal University named after the first President of Russia B N Yeltsin RUSSIAN FEDERATION
| | - Polina Mozharovskaia
- Ural Federal University named after the first President of Russia B N Yeltsin RUSSIAN FEDERATION
| | - Aleksandra Nikiforova
- Ural Federal University named after the first President of Russia B N Yeltsin RUSSIAN FEDERATION
| | - Andrey Tumashov
- FSBSI I Ya Postovsky Institute of Organic Synthesis of Ural Branch of the Russian Academy of Sciences RUSSIAN FEDERATION
| | | | | | | |
Collapse
|
25
|
Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Pang R, Zhu Q, Wei J, Meng X, Wang Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules 2022; 27:508. [PMID: 35056823 PMCID: PMC8779822 DOI: 10.3390/molecules27020508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks associated with PADs, which limit the entry of PADs into the real-life applications. The application of nanomaterials in PADs is showing great improvement in their detection performance in terms of sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties. In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting representative recent publications. We mainly focus on the detection principles, the sensing mechanisms of how they work and applications in disease diagnosis, environmental monitoring and food safety management. In addition, the limitations and challenges associated with the development of nanomaterial-based PADs are discussed, and further directions in this research field are proposed.
Collapse
Affiliation(s)
- Renzhu Pang
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Jia Wei
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Xianying Meng
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemical Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
27
|
Upan J, Lerdsri J, Soongsong J, Mool-am-kha P, Sridara T, Reanpang P, Jakmunee J. A novel and portable electrochemical sensor for 5-hydroxymethylfurfural detection using silver microdendrite electrodeposited paper-based electrode. Analyst 2022; 147:2170-2179. [DOI: 10.1039/d2an00346e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A lab-made screen-printed carbon electrode was fabricated on poster paper and modified with silver microdendrites for the determination of 5-hydroxymethylfurfural in honey.
Collapse
Affiliation(s)
- Jantima Upan
- Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Jamras Lerdsri
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Veterinary Research and Development Center (Upper Northern Region), Department of Livestock Development, Thailand
| | - Jittrapun Soongsong
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pijika Mool-am-kha
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tharinee Sridara
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Preeyaporn Reanpang
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Lampang, 52190, Thailand
| | - Jaroon Jakmunee
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence for Innovation in Chemistry, and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
28
|
Beitollahi H, Shahsavari M, Sheikhshoaie I, Tajik S, Jahani PM, Mohammadi SZ, Afshar AA. Amplified electrochemical sensor employing screen-printed electrode modified with Ni-ZIF-67 nanocomposite for high sensitive analysis of Sudan I in present bisphenol A. Food Chem Toxicol 2022; 161:112824. [DOI: 10.1016/j.fct.2022.112824] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
|
29
|
Moslah M, Fredj Z, Dridi C. Development of a new highly sensitive serotonin sensor based on green synthesized silver nanoparticle decorated reduced graphene oxide. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5187-5194. [PMID: 34672314 DOI: 10.1039/d1ay01532j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical detection of serotonin (5-hydroxytryptamine, 5-HT) is proposed for the first time using a cost-effective and eco-friendly nanocomposite of AgNPs and rGO which is synthesized through an in situ green reduction process using rosemary leaf extract. The synthesized nanocomposite and the elaborate thin layers have been characterized using UV-Vis, FTIR, TEM, and EIS. The sensitivity of the developed sensor was evaluated by differential pulse voltammetry. The peak current measured at a voltage of 420 mV (vs. Ag/AgCl) increased linearly in the 0.1 nM to 100 µM concentration range. A very low limit of detection of 78 pM compared to those in recent studies reported in the literature was obtained. The innovative approach was successfully applied to the determination of serotonin in spiked artificial urine samples.
Collapse
Affiliation(s)
- Maroua Moslah
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse (CRMN), Technopole of Sousse B. P. 334, Sahloul, Sousse 4034, Tunisia.
- University of Sousse, Higher School of Science and Technology of Hammam Sousse, 4011, Tunisia
| | - Zina Fredj
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse (CRMN), Technopole of Sousse B. P. 334, Sahloul, Sousse 4034, Tunisia.
| | - Chérif Dridi
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse (CRMN), Technopole of Sousse B. P. 334, Sahloul, Sousse 4034, Tunisia.
| |
Collapse
|
30
|
Peng S, Wang A, Lian Y, Zhang X, Zeng B, Chen Q, Yang H, Li J, Li L, Dan J, Liao J, Zhou S. Smartphone-based molecularly imprinted sensors for rapid detection of thiamethoxam residues and applications. PLoS One 2021; 16:e0258508. [PMID: 34748559 PMCID: PMC8575258 DOI: 10.1371/journal.pone.0258508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
In order to achieve rapid detection of thiamethoxam residues in mango, cowpea and water, this study modified the screen printed carbon electrode (SPCE) to make a specific molecular imprinting sensor (Thiamethoxam-MIP/Au/rGO/SPCE) for thiamethoxam. An integrated smartphone platform was also built for thiamethoxam residue analysis. The performance of the complete system was analyzed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The system was then applied for the rapid determination of thiamethoxam residues in water, mango and cowpea samples. The results showed that the molecular sensor showed good linearity in the range 0.5–3.0 μmol/L of thiamethoxam. The detection limit of thiamethoxam was 0.5 μmol/L. Moreover, the sensor had good reproducibility and anti-interference performance. The average recovery rates of the pesticide residues in water, mango and cowpea samples were in the range of 90–110% with relative standard deviations < 5%. The rapid detection system for thiamethoxam residue constructed in this study was simple, reliable, reproducible and had strong anti-interference. It has broad application prospects in the field detection of thiamethoxam residue, and serves as a valuable reference for the further development of rapid detection technology of pesticide residues in the field of environment and food safety.
Collapse
Affiliation(s)
- Sihua Peng
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
- College of Plant Protection, Hainan University, Hainan, China
| | - Aqiang Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Yuyang Lian
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Xi Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Bei Zeng
- College of Plant Protection, Hainan University, Hainan, China
| | - Qiulin Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Heming Yang
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Jinlei Li
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Limin Li
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Jianguo Dan
- College of Plant Protection, Hainan University, Hainan, China
- * E-mail: (JD); (JL); (SZ)
| | - Jianjun Liao
- College of Ecology and Environment, Hainan University, Hainan, China
- * E-mail: (JD); (JL); (SZ)
| | - Shihao Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants, College of Forestry, Hainan University, Hainan, China
- * E-mail: (JD); (JL); (SZ)
| |
Collapse
|
31
|
Alahmad W, Sahragard A, Varanusupakul P. An overview of the recent developments of microfluidic paper-based analytical devices for the detection of chromium species. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Ding S, Lyu Z, Li S, Ruan X, Fei M, Zhou Y, Niu X, Zhu W, Du D, Lin Y. Molecularly imprinted polypyrrole nanotubes based electrochemical sensor for glyphosate detection. Biosens Bioelectron 2021; 191:113434. [PMID: 34225056 DOI: 10.1016/j.bios.2021.113434] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
An electrochemical sensor based on molecularly imprinted polypyrrole nanotubes (MIPNs) has been developed for the detection of glyphosate (Gly) with high sensitivity and specificity. Herein, the MIPNs are prepared by imprinting Gly sites on the surface of polypyrrole (PPy) nanotubes. The synthesized MIPNs have high electrical conductivity and exhibit rapid adsorption rate, enhanced affinity and specificity to Gly. An electrochemical sensor for Gly detection is fabricated by assembling MIPNs-modified screen-printed electrodes with a 3D-printed electrode holder, which is highly portable and suitable for real-time detection. The results demonstrate that the MIPNs-based electrochemical sensor for Gly exhibits a wide detection range of 2.5-350 ng/mL with a limit of detection (LOD) of 1.94 ng/mL. Besides, the Gly sensor possessed good stability, reproducibility, and excellent selectivity against other interferents. The practicability of the sensor is verified by detecting Gly in orange juice and rice beverages, indicating that the sensor is suitable for monitoring pesticides in actual food and environmental samples.
Collapse
Affiliation(s)
- Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Suiqiong Li
- DL ADV-Tech, Pullman, WA, 99163, United States
| | - Xiaofan Ruan
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Mingen Fei
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Yang Zhou
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Xiangheng Niu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States.
| |
Collapse
|
33
|
Fe3O4@Au@SiO2 Core–Shell Nanoparticles: Synthesis, Characterization, Investigations of Its Influence on Cell Lines Using a NIR Laser and an Alternating Magnetic Field. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02136-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Origami Paper-Based Electrochemical (Bio)Sensors: State of the Art and Perspective. BIOSENSORS-BASEL 2021; 11:bios11090328. [PMID: 34562920 PMCID: PMC8467589 DOI: 10.3390/bios11090328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022]
Abstract
In the last 10 years, paper-based electrochemical biosensors have gathered attention from the scientific community for their unique advantages and sustainability vision. The use of papers in the design the electrochemical biosensors confers to these analytical tools several interesting features such as the management of the solution flow without external equipment, the fabrication of reagent-free devices exploiting the porosity of the paper to store the reagents, and the unprecedented capability to detect the target analyte in gas phase without any sampling system. Furthermore, cost-effective fabrication using printing technologies, including wax and screen-printing, combined with the use of this eco-friendly substrate and the possibility of reducing waste management after measuring by the incineration of the sensor, designate these type of sensors as eco-designed analytical tools. Additionally, the foldability feature of the paper has been recently exploited to design and fabricate 3D multifarious biosensors, which are able to detect different target analytes by using enzymes, antibodies, DNA, molecularly imprinted polymers, and cells as biocomponents. Interestingly, the 3D structure has recently boosted the self-powered paper-based biosensors, opening new frontiers in origami devices. This review aims to give an overview of the current state origami paper-based biosensors, pointing out how the foldability of the paper allows for the development of sensitive, selective, and easy-to-use smart and sustainable analytical devices.
Collapse
|
35
|
Bräuer B, Unger C, Werner M, Lieberzeit PA. Biomimetic Sensors to Detect Bioanalytes in Real-Life Samples Using Molecularly Imprinted Polymers: A Review. SENSORS 2021; 21:s21165550. [PMID: 34450992 PMCID: PMC8400518 DOI: 10.3390/s21165550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Molecularly imprinted polymers (MIPs) come with the promise to be highly versatile, useful artificial receptors for sensing a wide variety of analytes. Despite a very large body of literature on imprinting, the number of papers addressing real-life biological samples and analytes is somewhat limited. Furthermore, the topic of MIP-based sensor design is still, rather, in the research stage and lacks wide-spread commercialization. This review summarizes recent advances of MIP-based sensors targeting biological species. It covers systems that are potentially interesting in medical applications/diagnostics, in detecting illicit substances, environmental analysis, and in the quality control of food. The main emphasis is placed on work that demonstrates application in real-life matrices, including those that are diluted in a reasonable manner. Hence, it does not restrict itself to the transducer type, but focusses on both materials and analytical tasks.
Collapse
|
36
|
Tai WC, Chang YC, Chou D, Fu LM. Lab-on-Paper Devices for Diagnosis of Human Diseases Using Urine Samples-A Review. BIOSENSORS 2021; 11:260. [PMID: 34436062 PMCID: PMC8393526 DOI: 10.3390/bios11080260] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
In recent years, microfluidic lab-on-paper devices have emerged as a rapid and low-cost alternative to traditional laboratory tests. Additionally, they were widely considered as a promising solution for point-of-care testing (POCT) at home or regions that lack medical infrastructure and resources. This review describes important advances in microfluidic lab-on-paper diagnostics for human health monitoring and disease diagnosis over the past five years. The review commenced by explaining the choice of paper, fabrication methods, and detection techniques to realize microfluidic lab-on-paper devices. Then, the sample pretreatment procedure used to improve the detection performance of lab-on-paper devices was introduced. Furthermore, an in-depth review of lab-on-paper devices for disease measurement based on an analysis of urine samples was presented. The review concludes with the potential challenges that the future development of commercial microfluidic lab-on-paper platforms for human disease detection would face.
Collapse
Affiliation(s)
- Wei-Chun Tai
- Department of Oral and Maxillofacial Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Yu-Chi Chang
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan;
| | - Dean Chou
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan;
- Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
37
|
C G AM, Varghese A, M N. Recent Advances in Nanomaterials Based Molecularly Imprinted Electrochemical Sensors. Crit Rev Anal Chem 2021; 53:88-97. [PMID: 34152870 DOI: 10.1080/10408347.2021.1937925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nanotechnology and molecular imprinting both are omnipresent in the modern scientific world. Molecular recognition in the biological systems was mimicked to an extreme extent with its difficulties through molecular imprinting. Solving the problems related to this mimicking was the goal of science and technology. Some challenges like difficulties with the imprinting of protein, poor compatibility with aqueous environments, template leakage, and heterogeneous populations of binding sites in the polymers that contribute to a high level of nonspecific binding sites were addressed with recent advancement in the modern era. These issues were solved later with nano level instrumentations and inventions. Different types of nanomaterials were employed for this research on molecular recognition through MIPs to enhance selectivity, sensitivity and stability to specific systems such as sensors. This review paper attempts to give all the recent advances in molecular imprinting and the potential of nanomaterials in electrochemical sensors.
Collapse
Affiliation(s)
- Ann Maria C G
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Nidhin M
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
38
|
Rong Y, Hassan MM, Ouyang Q, Chen Q. Lanthanide ion (Ln 3+ )-based upconversion sensor for quantification of food contaminants: A review. Compr Rev Food Sci Food Saf 2021; 20:3531-3578. [PMID: 34076359 DOI: 10.1111/1541-4337.12765] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022]
Abstract
The food safety issue has gradually become the focus of attention in modern society. The presence of food contaminants poses a threat to human health and there are a number of interesting researches on the detection of food contaminants. Upconversion nanoparticles (UCNPs) are superior to other fluorescence materials, considering the benefits of large anti-Stokes shifts, high chemical stability, non-autofluorescence, good light penetration ability, and low toxicity. These properties render UCNPs promising candidates as luminescent labels in biodetection, which provides opportunities as a sensitive, accurate, and rapid detection method. This paper intended to review the research progress of food contaminants detection by UCNPs-based sensors. We have proposed the key criteria for UCNPs in the detection of food contaminants. Additionally, it highlighted the construction process of the UCNPs-based sensors, which includes the synthesis and modification of UCNPs, selection of the recognition elements, and consideration of the detection principle. Moreover, six kinds of food contaminants detected by UCNPs technology in the past 5 years have been summarized and discussed fairly. Last but not least, it is outlined that UCNPs have great potential to be applied in food safety detection and threw new insight into the challenges ahead.
Collapse
Affiliation(s)
- Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
39
|
Ran G, Xia Y, Liang L, Fu C. Enhanced response of sensor on serotonin using nickel-reduced graphene oxide by atomic layer deposition. Bioelectrochemistry 2021; 140:107820. [PMID: 33892214 DOI: 10.1016/j.bioelechem.2021.107820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/25/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Atomic layer deposition (ALD) is a promising method for preparing nanomaterials. The thickness and uniformity of nanomaterials can be precisely controlled. Hence, the uniform Ni nanoparticles (Ni NPs) deposited on reduced graphene oxide (rGO) by ALD and got the optimal combination interface. The morphology, structure, and electrochemical behavior of Ni NPs-rGO nanocomposite are investigated. By experiment results, the Ni NPs could occupy some active surface of rGO, resulting in high conductivity and large specific surface area of Ni NPs-rGO nanocomposite. The Ni NPs-rGO nanocomposite exhibits high electrocatalytic activity for serotonin and speeds up the electron transfer between the surface of the electrode and the solution. Therefore, the sensor is prepared by Ni NPs-rGO nanocomposite modified glassy carbon electrode (GCE) and used to sensitive detection of serotonin. By differential pulse voltammetric, the Ni NPs-rGO/GCE enhanced the current responses and showed a wide linear range of 0.02-2 μM with a low detection of 0.01 μM for serotonin (S/N = 3). The Ni NPs-rGO/GCE exhibited good stability, selectivity, and anti-interference ability that can be used for real sample detection. According to these results, the Ni NPs-rGO nanocompositeis successfully prepared by ALD. The properties of Ni NPs-rGO nanocomposite make it an attractive material for potential applications in sensors and catalysis.
Collapse
Affiliation(s)
- Gu Ran
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou 404100, PR China.
| | - Ying Xia
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou 404100, PR China
| | - Lijiao Liang
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou 404100, PR China
| | - Chuan Fu
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou 404100, PR China
| |
Collapse
|
40
|
Bian L, Cao Q, Zheng L, Liu Y. Ultramicrotomy preparation of magnetic nanoparticles for transmission electron microscopy. Ultramicroscopy 2021; 227:113275. [PMID: 34090710 DOI: 10.1016/j.ultramic.2021.113275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/15/2021] [Accepted: 04/02/2021] [Indexed: 11/30/2022]
Abstract
Transmission electron microscopy (TEM) is one of the most important methods for the morphological characterization and structure analysis of nanomaterials. However, the characterization of magnetic materials has always been a challenge due to limitations arising from the design of electron microscopes. To tackle this problem, advanced sample preparation technology is needed, especially for magnetic materials. Here in this work ultrathin sectioning technology (ultramicrotomy) is used for the sample preparation of magnetic Fe3O4 nanoparticles embedded into a resin, where the loaded resin can be sliced into nanoscale sheets. By the optimization of the embedding method and the slicing process, nano-sheets with uniform thickness and exceptional flatness were prepared, where the nanoparticles exhibited uniform dispersion. It is shown that this technology also helps reducing the degree of pollution of the electron microscope by the magnetic nanoparticles under different electron beam irradiation intensities. Generally, the magnetic nanoparticles are more resistant to electron beam bombardment when embedded into a resin.
Collapse
Affiliation(s)
- Longchun Bian
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Advanced Analysis and Measurment Center, Yunnan University, Kunming 650091, China
| | - Qiue Cao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Advanced Analysis and Measurment Center, Yunnan University, Kunming 650091, China
| | - Liyan Zheng
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Advanced Analysis and Measurment Center, Yunnan University, Kunming 650091, China
| | - Yanxiong Liu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Advanced Analysis and Measurment Center, Yunnan University, Kunming 650091, China.
| |
Collapse
|
41
|
Dabhade A, Jayaraman S, Paramasivan B. Development of glucose oxidase-chitosan immobilized paper biosensor using screen-printed electrode for amperometric detection of Cr(VI) in water. 3 Biotech 2021; 11:183. [PMID: 33927974 PMCID: PMC7982374 DOI: 10.1007/s13205-021-02736-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Hexavalent chromium is a toxic heavy metal getting discharged into the environment and water bodies through various industrial processes. Conventional analysis methods call for expensive equipment and complicated sample pretreatment that made unsuitable for onsite detection. Paper is used as an enzyme immobilization platform because of its property to wick the liquid by capillary action; lightweight, cheap and can be easily patterned or cut according to the requirements for developing biosensor. In this study, enzyme immobilization of glucose oxidase (GOx) on filter paper were examined using three polysaccharides such as chitosan, sodium alginate and dextran for entrapment efficiency, activity and stability of the immobilized enzyme. Among the three, chitosan proved efficient for enzyme entrapment with about 90% efficiency at 0.3% (w/v) chitosan. The stability was checked after 1 week at 4 °C and room temperature, where the chitosan entrapped enzyme retained nearly 97% stability at 4 °C. Enzyme inhibition study of GOx and Cr(VI) was carried out using chronoamperometry shown uncompetitive type of inhibition. A paper-based electrochemical biosensor strip was developed by immobilizing GOx enzyme on filter paper using chitosan as an entrapping agent and associating it with a screen-printed carbon electrode for amperometric measurements. The linear range of detection was obtained as 0.05-1 ppm with the limit of detection as 0.05 ppm for Cr(VI), which is the standard permissible limit in potable water. The relative standard deviation (5.6%) indicates good reproducibility of the fabricated biosensor.
Collapse
Affiliation(s)
- Ajinkya Dabhade
- Agricultural and Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Sivaraman Jayaraman
- Medical Electronics and Instrumentation Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Balasubramanian Paramasivan
- Agricultural and Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| |
Collapse
|
42
|
Costa-Rama E, Fernández-Abedul MT. Paper-Based Screen-Printed Electrodes: A New Generation of Low-Cost Electroanalytical Platforms. BIOSENSORS 2021; 11:51. [PMID: 33669316 PMCID: PMC7920281 DOI: 10.3390/bios11020051] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Screen-printed technology has helped considerably to the development of portable electrochemical sensors since it provides miniaturized but robust and user-friendly electrodes. Moreover, this technology allows to obtain very versatile transducers, not only regarding their design, but also their ease of modification. Therefore, in the last decades, the use of screen-printed electrodes (SPEs) has exponentially increased, with ceramic as the main substrate. However, with the growing interest in the use of cheap and widely available materials as the basis of analytical devices, paper or other low-cost flat materials have become common substrates for SPEs. Thus, in this revision, a comprehensive overview on paper-based SPEs used for analytical proposes is provided. A great variety of designs is reported, together with several examples to illustrate the main applications.
Collapse
|
43
|
Abstract
The present review deals with the recent progress made in the field of the electrochemical detection of serotonin by means of electrochemical sensors based on various nanomaterials incorporated in the sensitive element. Due to the unique chemical and physical properties of these nanomaterials, it was possible to develop sensitive electrochemical sensors with excellent analytical performances, useful in the practice. The main electrochemical sensors used in serotonin detection are based on carbon electrodes modified with carbon nanotubes and various materials, such as benzofuran, polyalizarin red-S, poly(L-arginine), Nafion/Ni(OH)2, or graphene oxide, incorporating silver-silver selenite nanoparticles, as well as screen-printed electrodes modified with zinc oxide or aluminium oxide. Also, the review describes the nanocomposite sensors based on conductive polymers, tin oxide-tin sulphide, silver/polypyrole/copper oxide or a hybrid structure of cerium oxide-gold oxide nanofibers together with ruthenium oxide nanowires. The presentation focused on describing the sensitive materials, characterizing the sensors, the detection techniques, electroanalytical properties, validation and use of sensors in lab practice.
Collapse
|
44
|
Li W, Zhang X, Li T, Ji Y, Li R. Molecularly imprinted polymer-enhanced biomimetic paper-based analytical devices: A review. Anal Chim Acta 2021; 1148:238196. [PMID: 33516379 DOI: 10.1016/j.aca.2020.12.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
The popularization of paper-based analytical devices (PADs) in analytical science has fostered research on enhancing their analytical performance for accurate and sensitive assays. With their superb recognition capability and structural stability, molecularly imprinted polymers (MIPs) have been extensively employed as biomimetic receptors for capturing target analytes in various complex matrices. The integration of MIPs as recognition elements with PADs (MIP-PADs) has opened new opportunities for advanced analytical devices with elevated selectivity and sensitivity, as well as a shorter assay time and a lower cost. This review covers recent advances in MIP-PAD fabrication and engineering based on multifarious signal transduction systems such as colorimetry, fluorescence, electrochemistry, photoelectrochemistry, and chemiluminescence. The application of MIP-PADs in the fields of biomedical diagnostics, environmental analysis, and food safety monitoring is also reviewed. Further, the advantages, challenges, and perspectives of MIP-PADs are discussed.
Collapse
Affiliation(s)
- Wang Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Xiaoyue Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Tingting Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| |
Collapse
|
45
|
Ahmadi M, Ghoorchian A, Dashtian K, Kamalabadi M, Madrakian T, Afkhami A. Application of magnetic nanomaterials in electroanalytical methods: A review. Talanta 2020; 225:121974. [PMID: 33592722 DOI: 10.1016/j.talanta.2020.121974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Magnetic nanomaterials (MNMs) have gained high attention in different fields of studies due to their ferromagnetic/superparamagnetic properties and their low toxicity and high biocompatibility. MNMs contain magnetic elements such as iron and nickel in metallic, bimetallic, metal oxide, and mixed metal oxide. In electroanalytical methods, MNMs have been applied as sorbents for sample preparation before the electrochemical detection (sorbent role), as the electrode modifier (catalytic role), and the integration of the above two roles (as both sorbent and catalytic agent). In this paper, the application of MNMs in electroanalytical methods have been classified based on the main role of the nanomaterial and discussed separately. Furthermore, catalytic activities of MNMs in electroanalytical methods such as redox electrocatalytic, nanozymes catalytic (peroxidase, catalase activity, oxidase activity, superoxide dismutase activity), catalyst gate, and nanocontainer have been discussed.
Collapse
Affiliation(s)
- Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| | | | | | | | | | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
46
|
Cernat A, Ştefan G, Tertis M, Cristea C, Simon I. An overview of the detection of serotonin and dopamine with graphene-based sensors. Bioelectrochemistry 2020; 136:107620. [DOI: 10.1016/j.bioelechem.2020.107620] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
|
47
|
Baharfar M, Rahbar M, Tajik M, Liu G. Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices. Biosens Bioelectron 2020; 167:112506. [PMID: 32823207 DOI: 10.1016/j.bios.2020.112506] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
Applications of electrochemical detection methods in microfluidic paper-based analytical devices (μPADs) has revolutionized the area of point-of-care (POC) testing towards highly sensitive and selective quantification of various (bio)chemical analytes in a miniaturized, low-coat, rapid, and user-friendly manner. Shortly after the initiation, these relatively new modulations of μPADs, named as electrochemical paper-based analytical devices (ePADs), gained widespread popularity within the POC research community thanks to the inherent advantages of both electrochemical sensing and usage of paper as a suitable substrate for POC testing platforms. Even though general aspects of ePADs such as applications and fabrication techniques, have already been reviewed multiple times in the literature, herein, we intend to provide a critical engineering insight into the area of ePADs by focusing particularly on the practical strategies utilized to enhance their analytical performance (i.e. sensitivity), while maintaining the desired simplicity and efficiency intact. Basically, the discussed strategies are driven by considering the parameters potentially affecting the generated electrochemical signal in the ePADs. Some of these parameters include the type of filter paper, electrode fabrication methods, electrode materials, fluid flow patterns, etc. Besides, the limitations and challenges associated with the development of ePADs are discussed, and further insights and directions for future research in this field are proposed.
Collapse
Affiliation(s)
- Mahroo Baharfar
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney NSW, 2052, Australia
| | - Mohammad Rahbar
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney NSW, 2052, Australia
| | - Mohammad Tajik
- School of Chemistry, The University of New South Wales, Sydney NSW, 2052, Australia
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney NSW, 2052, Australia.
| |
Collapse
|
48
|
Amatatongchai M, Thimoonnee S, Jarujamrus P, Nacapricha D, Lieberzeit PA. Novel amino-containing molecularly-imprinted polymer coating on magnetite-gold core for sensitive and selective carbofuran detection in food. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Moein MM. Advancements of chiral molecularly imprinted polymers in separation and sensor fields: A review of the last decade. Talanta 2020; 224:121794. [PMID: 33379023 DOI: 10.1016/j.talanta.2020.121794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023]
Abstract
Since chiral recognition mechanism based on molecularly imprinted polymers immerged, it has assisted countless chemical and electrochemical analytical sample preparation techniques. It has done this by enhancing the enatioseparation abilities of these techniques. The preparation and optimization of chiral molecularly imprinted polymers (CMIPs) are two favored methods in the separation and sensor fields. This review aims to present an overview of advances in the preparation and application of CMIPs in analytical approaches in different available formats (eg. column, monolithic column, cartridge, membrane, nanomaterials, pipette tip and stir bar sorptive) over the last decade. In addition, progress in the preparation and development of CMIPs-based sensor fields have been also discussed. Finally, the main application challenges of CMIPs are also summarily explained, as well as upcoming prospects in the field.
Collapse
Affiliation(s)
- Mohammad Mahdi Moein
- Karolinska Radiopharmacy, Karolinska University Hospital, Akademiska stråket 1, S-171 64, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Akademiska stråket 1, S-171 77, Stockholm, Sweden.
| |
Collapse
|
50
|
Point-of-Care Diagnostics: Molecularly Imprinted Polymers and Nanomaterials for Enhanced Biosensor Selectivity and Transduction. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Significant healthcare disparities resulting from personal wealth, circumstances of birth, education level, and more are internationally prevalent. As such, advances in biomedical science overwhelmingly benefit a minority of the global population. Point-of-Care Testing (POCT) can contribute to societal equilibrium by making medical diagnostics affordable, convenient, and fast. Unfortunately, conventional POCT appears stagnant in terms of achieving significant advances. This is attributed to the high cost and instability associated with conventional biorecognition: primarily antibodies, but nucleic acids, cells, enzymes, and aptamers have also been used. Instead, state-of-the-art biosensor researchers are increasingly leveraging molecularly imprinted polymers (MIPs) for their high selectivity, excellent stability, and amenability to a variety of physical and chemical manipulations. Besides the elimination of conventional bioreceptors, the incorporation of nanomaterials has further improved the sensitivity of biosensors. Herein, modern nanobiosensors employing MIPs for selectivity and nanomaterials for improved transduction are systematically reviewed. First, a brief synopsis of fabrication and wide-spread challenges with selectivity demonstration are presented. Afterward, the discussion turns to an analysis of relevant case studies published in the last five years. The analysis is given through two lenses: MIP-based biosensors employing specific nanomaterials and those adopting particular transduction strategies. Finally, conclusions are presented along with a look to the future through recommendations for advancing the field. It is hoped that this work will accelerate successful efforts in the field, orient new researchers, and contribute to equitable health care for all.
Collapse
|