1
|
Zhang Y, Zhao C, Guo Z, Yang T, Zhang X, Huang X, Shi J, Gao S, Zou X. Ultrasensitive Analysis of Escherichia coli O157:H7 Based on Immunomagnetic Separation and Labeled Surface-Enhanced Raman Scattering with Minimized False Positive Identifications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22349-22359. [PMID: 39327911 DOI: 10.1021/acs.jafc.4c06311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
It is a big challenge to monitor pathogens in food with high selectivity. In this study, we reported an ultrasensitive method for Escherichia coli O157:H7 detection based on immunomagnetic separation and labeled surface-enhanced Raman scattering (SERS). The bacterium was identified by heterogeneous recognition elements, monoclonal antibody (mAb), and aptamer. E. coli O157:H7 was separated and enriched by magnetic nanoparticles modified by mAb, and then a plasmonic nanostructure functionalized by aptamers with embedded Raman tags and interior gaps was utilized for further discrimination and detection. The selectivity was enhanced by two binding sites. The higher Raman enhancement was obtained by strong local electromagnetic field oscillation in the gap and the firm embedment of 4-mercaptopyridine (4-Mpy). Optimum experiments created that SERS signals of 4-Mpy at 1010 cm-1 had a good linearity with E. coli O157:H7 at a large range of 10 to 107 CFU/mL with a limit of detection of 2 CFU/mL. This method has great potential for on-site food pathogenic bacterial detection.
Collapse
Affiliation(s)
- Yang Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chuping Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianxi Yang
- Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
2
|
Takallu S, Aiyelabegan HT, Zomorodi AR, Alexandrovna KV, Aflakian F, Asvar Z, Moradi F, Behbahani MR, Mirzaei E, Sarhadi F, Vakili-Ghartavol R. Nanotechnology improves the detection of bacteria: Recent advances and future perspectives. Heliyon 2024; 10:e32020. [PMID: 38868076 PMCID: PMC11167352 DOI: 10.1016/j.heliyon.2024.e32020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Nanotechnology has advanced significantly, particularly in biomedicine, showing promise for nanomaterial applications. Bacterial infections pose persistent public health challenges due to the lack of rapid pathogen detection methods, resulting in antibiotic overuse and bacterial resistance, threatening the human microbiome. Nanotechnology offers a solution through nanoparticle-based materials facilitating early bacterial detection and combating resistance. This study explores recent research on nanoparticle development for controlling microbial infections using various nanotechnology-driven detection methods. These approaches include Surface Plasmon Resonance (SPR) Sensors, Surface-Enhanced Raman Scattering (SERS) Sensors, Optoelectronic-based sensors, Bacteriophage-Based Sensors, and nanotechnology-based aptasensors. These technologies provide precise bacteria detection, enabling targeted treatment and infection prevention. Integrating nanoparticles into detection approaches holds promise for enhancing patient outcomes and mitigating harmful bacteria spread in healthcare settings.
Collapse
Affiliation(s)
- Sara Takallu
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Abolfazl Rafati Zomorodi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Asvar
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Moradi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahrokh Rajaee Behbahani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firoozeh Sarhadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Su G, Liu Y, Hou Y, Zhang R, Wang W, Zhang J, Dang L. Surface-Enhanced Raman Spectroscopy Sensor Integrated with Ag@ZIF-8@Au Core-Shell-Shell Nanowire Membrane for Enrichment, Ultrasensitive Detection, and Inactivation of Bacteria in the Environment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28080-28092. [PMID: 38768255 PMCID: PMC11163406 DOI: 10.1021/acsami.4c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
A core-shell-shell sandwich material is developed with silver nanowires as the core, ZIF-8 as an inner shell, and gold nanoparticles as the outer shell, namely, Ag@ZIF-8@Au nanowires (AZA-NW). Then, the synthesized AZA-NW is transformed into a surface-enhanced Raman spectroscopy (SERS) sensor (named M-AZA) by the vacuum filtration method and used to enrich, detect, and inactivate traces of bacteria in the environment. The M-AZA sensor has three main functions: (1) trace bacteria are effectively enriched, with an enrichment efficiency of 91.4%; (2) ultrasensitive detection of trace bacteria is realized, with a minimum detectable concentration of 1 × 101 CFU/mL; (3) bacteria are effectively killed up to 92.4%. The shell thickness of ZIF-8 (5-75 nm) is controlled by adjusting the synthesis conditions. At an optimum shell thickness of 15 nm, the effect of gold nanoparticles and ZIF-8 shell on the sensor's stability, SERS activity, and antibacterial performance is investigated. The simulation of the SERS sensor using the finite difference time domain (FDTD) method is consistent with the experimental results, theoretically demonstrating the role of the gold nanoparticles and the ZIF-8 shell. The sensor also shows excellent stability, safety, and generalizability. The campus water sample is then tested on-site by the M-AZA SERS sensor, indicating its potential for practical applications.
Collapse
Affiliation(s)
- Guanwen Su
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s
Republic of China
| | - Yue Liu
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s
Republic of China
| | - Yulin Hou
- Institute
of Preventive Medicine, Fourth Military
Medical University, Xi’an 710033, China
| | - Rui Zhang
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers and Department of Immunology, Fourth
Military Medical University, Xi’an, Shaanxi 710032, China
| | - Wei Wang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s
Republic of China
| | - Jie Zhang
- Institute
of Preventive Medicine, Fourth Military
Medical University, Xi’an 710033, China
| | - Leping Dang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s
Republic of China
| |
Collapse
|
4
|
Qu X, Zhou P, Shi B, Zheng Y, Kan L, Jiang L. A sandwich-structured multifunctional platform based on self-assembled Ti 3C 2T x@Au NPs films, antibiotics, and silent region SERS probe for the capture, determination, and drug resistance analysis of Gram-positive bacteria. Mikrochim Acta 2024; 191:305. [PMID: 38713444 DOI: 10.1007/s00604-024-06387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
A multifunctional surface-enhanced Raman scattering (SERS) platform integrating sensitive detection and drug resistance analysis was developed for Gram-positive bacteria. The substrate was based on self-assembled Ti3C2Tx@Au NPs films and capture molecule phytic acid (IP6) to achieve specific capture of Gram-positive bacteria and different bacteria were analyzed by fingerprint signal. It had advantages of good stability and homogeneity (RSD = 8.88%). The detection limit (LOD) was 102 CFU/mL for Staphylococcus aureus and 103 CFU/mL for MRSA, respectively. A sandwich structure was formed on the capture substrate by signal labels prepared by antibiotics (penicillin G and vancomycin) and non-interference SERS probe molecules (4-mercaptobenzonitrile (2223 cm-1) and 2-amino-4-cyanopyridine (2240 cm-1)) to improve sensitivity. The LOD of Au NPs@4-MBN@PG to S. aureus and Au NPs@AMCP@Van to MRSA and S. aureus were all improved to 10 CFU/mL, with a wide dynamic linear range from 108 to 10 CFU/mL (R2 ≥ 0.992). The SERS platform can analyze the drug resistance of drug-resistant bacteria. Au NPs@4-MBN@PG was added to the substrate and captured MRSA to compare the SERS spectra of 4-MBN. The intensity inhomogeneity of 4-MBN at the same concentrations of MRSA and the nonlinearity at the different concentrations of MRSA revealed that MRSA was resistant to PG. Finally, the SERS platform achieved the determination of MRSA in blood. Therefore, this SERS platform has great significance for the determination and analysis of Gram-positive bacteria.
Collapse
Affiliation(s)
- Xiangwen Qu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Pengwei Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| | - Boya Shi
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Yekai Zheng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Lian Kan
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Li Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
5
|
Guo R, Wang J, Zhao W, Cui S, Qian S, Chen Q, Li X, Liu Y, Zhang Q. A novel strategy for specific sensing and inactivation of Escherichia coli: Constructing a targeted sandwich-type biosensor with multiple SERS hotspots to enhance SERS detection sensitivity and near-infrared light-triggered photothermal sterilization performance. Talanta 2024; 269:125466. [PMID: 38008021 DOI: 10.1016/j.talanta.2023.125466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Human health is greatly threatened by bacterial infection, which raises the risk of serious illness and death in humans. For early screening and accurate treatment of bacterial infection, there is a strong desire to undertake ultrasensitive detection and effective killing of pathogenic bacteria. Herein, a novel surface-enhanced Raman scattering (SERS) biosensor based on sandwich structure consisting of capture probes/bacteria/SERS tags was established for specific identification, capture and photothermal killing of Escherichia coli (E. coli). Finite-difference time-domain (FDTD) technique was used to simulate the electromagnetic field distribution of capture probes, SERS tags and sandwich-type SERS substrate, and a possible SERS enhancement mechanism based on sandwich structure was presented and discussed. Sandwich-type SERS biosensor successfully achieved distinctive identification and magnetic beneficiation of E. coli. In addition, a single SERS substrate, including capture probes and SERS tags, could also achieve outstanding photothermal effects as a consequence of localized surface plasmon resonance (LSPR) effect. Intriguingly, sandwich-type SERS biosensor demonstrated a higher photothermal conversion efficiency (50.03 %) than the single substrate, which might be attributed to the formation of target bacterial clusters. The superior biocompatibility and the low toxicity of the sandwich-type biosensor were confirmed. Our approach offers a fresh method for constructing sandwich-type biosensor with multiple SERS hotspots based on extremely effective hybrid plasmonic nanoparticles, and has a wide range of potential applications in the recognition and treatment of bacteria.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Jingru Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Sihan Qian
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Qiuxu Chen
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Xue Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China.
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China.
| |
Collapse
|
6
|
Pan Y, Xu S, Wang Z, Jiang C, Ma X. Sensitive SERS aptasensor for histamine detection based on Au/Ag nanorods and IRMOF-3@Au based flexible PDMS membrane. Anal Chim Acta 2024; 1288:342147. [PMID: 38220281 DOI: 10.1016/j.aca.2023.342147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/26/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Histamine is a kind of biogenic amine with strong toxicity and potential carcinogenicity. Many traditional methods of detecting histamine have the disadvantages of cumbersome detection steps, expensive equipment, and high professional requirements for staff. In contrast, SERS has become the preferred method for quantitative analysis of histamine because of rich fingerprint information, rapidity and economy. However, most of SERS substrates still have technical problems, such as poor stability, low sample collection rate, and detection efficiency. Therefore, there is a great need for new strategies to develop high-performance SERS substrates based sensors. RESULTS In our study, a sensitive SERS aptasensor for the detection of histamine was synthesized. The assembly was formed between IRMOF-3@Au/PDMS (flexible SERS substrate) and AuNR-DTNB@Ag-HA apt (Raman signal probe with both the target capture ability) via π-π stacking interaction from HA aptamer and IRMOF-3. Consequently, the SERS signal of the assembly derived from DTNB reached highest due to the synergistic enhancement effect by AuNR@Ag and IRMOF-3@Au. Meanwhile, HA aptamer can specifically capture histamine, therefore histamine addition competitively bound to the probe, leading to a corresponding decrease in the DTNB signal value on the SERS substrate. The SERS intensity at 1331 cm-1 presented a good linear relationship towards the logarithmic value of histamine concentrations ranging from 0.0001 mg/L to 400 mg/L (R2 = 0.990) with the LOD of 3.6 × 10-5 mg/L. Furthermore, the application in wine samples demonstrated the accuracy and applicability of the developed sensor. SIGNIFICANCE This method effectively improves substrate stability, detection sensitivity and signal response immediacy to amplify the SERS sensor, thus satisfying the histamine detection requirements of various systems. According to this aptasensor design, our strategy can be extended to create other MOF-based SERS substrates for accurately detecting relative targets to ensure food safety.
Collapse
Affiliation(s)
- Yue Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Shan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Caiyun Jiang
- Department of Health, Jiangsu Engineering and Research Center of Food Safety, Jiangsu Vocational Institute of Commerce, Nanjing, 211168, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
7
|
Zhu Y, Tian J, Liu S, Li M, Zhao L, Liu W, Zhao G, Liang D, Ma Y, Tu Q. Rapid capture and quantification of food-borne spores based on the double-enhanced Fe 3O 4@PEI@Ag@PEI core-shell structure SERS sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123512. [PMID: 37864975 DOI: 10.1016/j.saa.2023.123512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/21/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
To realize rapid capture and quantification of food-borne spores and prevent their potential harm, Fe3O4@PEI@Ag@PEI core-shell structure nanoparticles were combined with flower-like AgNPs for double enhancement and efficient capture of spores. The developed sensor showed excellent reproducibility and SERS enhancement factor (AEF) is 4.6 × 104. Orthogonal partial least-squares discrimination analysis and linear discriminant analysis accurately identified the three spores (Bacillus subtilis, Bacillus cereus, and Clostridium perfringens), and the qualitative identification accuracy of linear discriminant analysis was 100 %. Efficient enrichment of B. subtilis spores was realized within 5 min, with a detection limit of 3 cfu/mL. Spiked tests revealed that this sensor was effective in detecting spores in milk, orange juice, and water samples, with recovery ratio of 95.2-103.9 % and relative standard deviation of 3.1-7.7 %. Thus, the developed sensor was accurate and reliable, and could achieve rapid identification and quantitative detection of food-borne spores.
Collapse
Affiliation(s)
- Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China; Henan Jiuyuquan Food Co., LTD., Postdoctoral Innovation Base, Henan Province, Yuanyang 453500, PR China
| | - Jiaqi Tian
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Shijie Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Weijia Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Dong Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China; Henan Jiuyuquan Food Co., LTD., Postdoctoral Innovation Base, Henan Province, Yuanyang 453500, PR China
| | - Yangyang Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Qiancheng Tu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| |
Collapse
|
8
|
Altalbawy FMA, Ali E, N Fenjan M, Fakri Mustafa Y, Mansouri S, D O B, Gulnikhol Idiyevna S, Misra N, Alawadi AH, Alsalamy A. Aptamer-Magnetic Nanoparticle Complexes for Powerful Biosensing: A Comprehensive Review. Crit Rev Anal Chem 2024:1-14. [PMID: 38165810 DOI: 10.1080/10408347.2023.2298328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The selective and sensitive diagnosis of diseases is a significant matter in the early stages of the cure of illnesses. To elaborate, although several types of probes have been broadly applied in clinics, magnetic nanomaterials-aptamers, as new-generation probes, are becoming more and more attractive. The presence of magnetic nanomaterials brings about quantification, purification, and quantitative analysis of biomedical, especially in complex samples. Elaborately, the superparamagnetic properties and numerous functionalized groups of magnetic nanomaterials are considered two main matters for providing separation ability and immobilization substrate, respectively. In addition, the selectivity and stability of aptamer can present a high potential recognition element. Importantly, the integration of aptamer and magnetic nanomaterials benefits can boost the performance of biosensors for biomedical analysis by introducing efficient and compact probes that need low patient samples and fast diagnosis, user-friendly application, and high repeatability in the quantification of biomolecules. The primary aim of this review is to suggest a summary of the effect of the employed other types of nanomaterials in the fabrication of novel aptasensors-based magnetic nanomaterials and to carefully explore various applications of these probes in the quantification of bioagents. Furthermore, the application of these versatile and high-potential probes in terms of the detection of cancer cells and biomarkers, proteins, drugs, bacteria, and nucleoside were discussed. Besides, research gaps and restrictions in the field of biomedical analysis by magnetic nanomaterials-aptamers will be discussed.
Collapse
Affiliation(s)
- Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, Egypt
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Bokov D O
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | | | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- Chemistry Department, The Islamic University, Najaf, Iraq
- Chemistry Department, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Chemistry Department, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- Chemistry Department, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
9
|
Patil AVP, Yang PF, Yang CY, Gaur MS, Wu CC. A Critical Review on Detection of Foodborne Pathogens Using Electrochemical Biosensors. Crit Rev Biomed Eng 2024; 52:17-40. [PMID: 38523439 DOI: 10.1615/critrevbiomedeng.2023049469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
An outbreak of foodborne pathogens would cause severe consequences. Detecting and diagnosing foodborne diseases is crucial for food safety, and it is increasingly important to develop fast, sensitive, and cost-effective methods for detecting foodborne pathogens. In contrast to traditional methods, such as medium-based culture, nucleic acid amplification test, and enzyme-linked immunosorbent assay, electrochemical biosensors possess the advantages of simplicity, rapidity, high sensitivity, miniaturization, and low cost, making them ideal for developing pathogen-sensing devices. The biorecognition layer, consisting of recognition elements, such as aptamers, antibodies and bacteriophages, and other biomolecules or polymers, is the most critical component to determine the selectivity, specificity, reproducibility, and lifetime of a biosensor when detecting pathogens in a biosample. Furthermore, nanomaterials have been frequently used to improve electrochemical biosensors for sensitively detecting foodborne pathogens due to their high conductivity, surface-to-volume ratio, and electrocatalytic activity. In this review, we survey the characteristics of biorecognition elements and nanomaterials in constructing electrochemical biosensors applicable for detecting foodborne pathogens during the past five years. As well as the challenges and opportunities of electrochemical biosensors in the application of foodborne pathogen detection are discussed.
Collapse
Affiliation(s)
- Avinash V Police Patil
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan R.O.C
| | - Ping-Feng Yang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan R.O.C
| | - Chiou-Ying Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan R.O.C
| | - M S Gaur
- Department of Physics, Hindustan College of Science and Technology, Farah, Mathura, 281122 U.P., India
| | | |
Collapse
|
10
|
Sun Y, Xu G, Wang Y, Song P, Zhang Y, Xia L. Surface plasmon-assisted catalytic reduction of p-nitrothiophenol for the detection of Fe 2+ by surface-enhanced Raman spectroscopy. Anal Biochem 2023; 680:115314. [PMID: 37678582 DOI: 10.1016/j.ab.2023.115314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/12/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Herein, we developed a concise, time-efficient, and high selective assay for detecting Fe2+ through its triggered surface plasmon-assisted reduction reaction of p-nitrothiophenol (PNTP) to p,p'-dimercaptoazobenzene (DMAB) on the surface of gold nanoparticles (AuNPs) based on surface-enhanced Raman scattering (SERS) spectroscopy. When Fe2+ was added to the PNTP-AuNPs system, the appearance of three characteristic peaks at 1142, 1392, and 1440 cm-1 attributed to DMAB demonstrated that Fe2+ induced the catalytic coupling reaction of PNTP. The Raman intensity ratio of the peak at 1142 cm-1 to the peak at 1336 cm-1 and the concentration of Fe2+ presented a good linear response from 10 to 100 μM with a limit of detection (LOD) of 0.35 μM. More importantly, the entire detection process can be completed within 2 min and further successfully used for the detection of Fe2+ in river water.
Collapse
Affiliation(s)
- Ye Sun
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Guangda Xu
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yue Wang
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Peng Song
- College of Physics, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yao Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, People's Republic of China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China.
| |
Collapse
|
11
|
Sharma K, Sharma M. Optical biosensors for environmental monitoring: Recent advances and future perspectives in bacterial detection. ENVIRONMENTAL RESEARCH 2023; 236:116826. [PMID: 37543133 DOI: 10.1016/j.envres.2023.116826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
The environmental contamination due to bacterial proliferation vs their identification is the major deciding factor in the spread of diseases leading to pandemics. The advent of drug-resistant pathogenic contaminants in our environment has further added to the load of complications associated with their diagnosis and treatment. Obstructing the spread of such infections, prioritizes the expansion of sensor-based diagnostics, effectuating, a sturdy detection of disease-causing microbes, contaminating our surroundings in shortest possible time, with minimal expenditure. Among many sensors known, optical biosensors promote the recognition of pathogens befouling the environment through a comparatively intuitive, brisk, portable, multitudinous, and thrifty approach. This article reviews the recent progresses in optical biosensor-based systems for effective environmental monitoring. The technical and methodological perspectives of fundamental optical-sensing platforms are reviewed, combined with the pros and cons of every procedure. Eventually, the obstacles lying in the path of development of an effective optical biosensor device for bio-monitoring and its future perspectives are highlighted in the present work.
Collapse
Affiliation(s)
- Kajal Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), India.
| | - Meenakshi Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), India.
| |
Collapse
|
12
|
Liu J, Lu D, Wang J. A simple, sensitive and colorimetric assay for Pseudomonas aeruginosa infection analysis. Biotechniques 2023; 75:210-217. [PMID: 37881830 DOI: 10.2144/btn-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Skin and soft tissue infections caused by Pseudomonas aeruginosa are common acquired diseases in postpartum care. Many methods have been developed in recent years for detecting P. aeruginosa, but they are criticized for the drawbacks of labor-intensiveness, complicated operation and high cost. Here, a simple, sensitive and colorimetric assay for P. aeruginosa detection is described. The approach displays a green color for positive samples and colorless for target-free samples. The approach exhibits a wide detection range and a low limit of detection of 45 CFU/ml. Thus, the developed ligation-initiated multiple-signal amplification method may be used for on-site testing of pathogenic bacteria and assist in the early diagnosis of postpartum care skin infections.
Collapse
Affiliation(s)
- Jie Liu
- Obstetric Clinic, Chatu Hospital, the Fourth Hospital of Shijiazhuang City, Shijiazhuang City, Hebei Province, 050000, China
| | - Dan Lu
- Department of Gynecology, Chatu Hospital, the Fourth Hospital of Shijiazhuang City, Shijiazhuang City, Hebei Province, 050000, China
| | - Junyuan Wang
- Department of Gynecology, Chatu Hospital, the Fourth Hospital of Shijiazhuang City, Shijiazhuang City, Hebei Province, 050000, China
| |
Collapse
|
13
|
Nik Kamarudin NAA, Mawang CI, Ahamad M. Direct Detection of Lyme Borrelia: Recent Advancement and Use of Aptamer Technology. Biomedicines 2023; 11:2818. [PMID: 37893191 PMCID: PMC10604176 DOI: 10.3390/biomedicines11102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Borrelia burgdorferi sensu lato (B. burgdorferi s.l.), which is predominantly spread by ticks, is the cause of Lyme disease (LD), also known as Lyme borreliosis, one of the zoonotic diseases affecting people. In recent years, LD has become more prevalent worldwide, even in countries with no prior records. Currently, Lyme Borrelia detection is achieved through nucleic acid amplification, antigen detection, microscopy, and in vitro culture. Nevertheless, these methods lack sensitivity in the early phase of the disease and, thus, are unable to confirm active infection. This review briefly discusses the existing direct detection methods of LD. Furthermore, this review also introduces the use of aptamer technology integrated with biosensor platforms to detect the Borrelia antigen. This aptamer technology could be explored using other biosensor platforms targeting whole Borrelia cells or specific molecules to enhance Borrelia detection in the future.
Collapse
Affiliation(s)
- Nik Abdul Aziz Nik Kamarudin
- Acarology Unit, Infectious Disease Research Center, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Malaysia; (C.I.M.); (M.A.)
| | | | | |
Collapse
|
14
|
Rourke-Funderburg AS, Walter AB, Carroll B, Mahadevan-Jansen A, Locke AK. Development of a Low-Cost Paper-Based Platform for Coffee Ring-Assisted SERS. ACS OMEGA 2023; 8:33745-33754. [PMID: 37744797 PMCID: PMC10515595 DOI: 10.1021/acsomega.3c03690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/14/2023] [Indexed: 09/26/2023]
Abstract
The need for highly sensitive, low-cost, and timely diagnostic technologies at the point of care is increasing. Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique that is an advantageous technique to address this need, as it can rapidly detect analytes in small or dilute samples with improved sensitivity compared to conventional Raman spectroscopy. Despite the many advantages of SERS, one drawback of the technique is poor reproducibility due to variable interactions between nanoparticles and target analytes. To overcome this limitation, coupling SERS with the coffee ring effect has been implemented to concentrate and localize analyte-nanoparticle conjugates for improved signal reproducibility. However, current coffee ring platforms require laborious fabrication steps. Herein, we present a low-cost, two-step fabrication process for coffee ring-assisted SERS, utilizing wax-printed nitrocellulose paper. The platform was designed to produce a highly hydrophobic paper substrate that supports the coffee ring effect and tested using gold nanoparticles for SERS sensing. The nanoparticle concentration and solvent were varied to determine the effect of solution composition on ring formation and center clearance. The SERS signal was validated using 4-mercaptobenzoic acid (MBA) and tested with Moraxella catarrhalis bacteria to ensure functionality for chemical and biological applications. The limit of detection using MBA is 41.56 nM, and the biochemical components of the bacterial cell wall were enhanced with low spectral variability. The developed platform is advantageous due to ease of fabrication and use, representing the next step toward implementing low-cost coffee ring-assisted SERS for point-of-care sensing.
Collapse
Affiliation(s)
- Anna S. Rourke-Funderburg
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Vanderbilt
Biophotonics Center, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | - Alec B. Walter
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Vanderbilt
Biophotonics Center, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | - Braden Carroll
- Vanderbilt
Biophotonics Center, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | - Anita Mahadevan-Jansen
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Vanderbilt
Biophotonics Center, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | - Andrea K. Locke
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Vanderbilt
Biophotonics Center, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| |
Collapse
|
15
|
Subekin A, Alieva R, Kukushkin V, Oleynikov I, Zavyalova E. Rapid SERS Detection of Botulinum Neurotoxin Type A. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2531. [PMID: 37764560 PMCID: PMC10535226 DOI: 10.3390/nano13182531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful technique for decoding of 2-5-component mixes of analytes. Low concentrations of analytes and complex biological media are usually non-decodable with SERS. Recognition molecules, such as antibodies and aptamers, provide an opportunity for a specific binding of ultra-low contents of analyte dissolved in complex biological media. Different approaches have been proposed to provide changes in SERS intensity of an external label upon binding of ultra-low contents of the analytes. In this paper, we propose a SERS-based sensor for the rapid and sensitive detection of botulinum toxin type A. The silver nanoisland SERS substrate was functionalized using an aptamer conjugated with a Raman label. The binding of the target affects the orientation of the label, providing changes in an analytical signal. This trick allowed detecting botulinum toxin type A in a one-stage manner without additional staining with a monotonous dose dependence and a limit of detection of 2.4 ng/mL. The proposed sensor architecture is consistent with the multiarray detection systems for multiplex analyses.
Collapse
Affiliation(s)
- Alexei Subekin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.S.); (R.A.)
| | - Rugiya Alieva
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.S.); (R.A.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Kukushkin
- Osipyan Institute of Solid State Physics of the Russian Academy of Science, 142432 Chernogolovka, Russia;
| | - Ilya Oleynikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Elena Zavyalova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.S.); (R.A.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
16
|
Ilyas A, Dyussupova A, Sultangaziyev A, Shevchenko Y, Filchakova O, Bukasov R. SERS immuno- and apta-assays in biosensing/bio-detection: Performance comparison, clinical applications, challenges. Talanta 2023; 265:124818. [PMID: 37453393 DOI: 10.1016/j.talanta.2023.124818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Surface Enhanced Raman Spectroscopy is increasingly used as a sensitive bioanalytical tool for detection of variety of analytes ranging from viruses and bacteria to cancer biomarkers and toxins, etc. This comprehensive review describes principles of operation and compares the performance of immunoassays and aptamer assays with Surface Enhanced Raman scattering (SERS) detection to each other and to some other bioassay methods, including ELISA and fluorescence assays. Both immuno- and aptamer-based assays are categorized into assay on solid substrates, assays with magnetic nanoparticles and assays in laminar flow or/and strip assays. The best performing and recent examples of assays in each category are described in the text and illustrated in the figures. The average performance, particularly, limit of detection (LOD) for each of those methods reflected in 9 tables of the manuscript and average LODs are calculated and compared. We found out that, on average, there is some advantage in terms of LOD for SERS immunoassays (0.5 pM median LOD of 88 papers) vs SERS aptamer-based assays (1.7 pM median LOD of 51 papers). We also tabulated and analyzed the clinical performance of SERS immune and aptamer assays, where selectivity, specificity, and accuracy are reported, we summarized the best examples. We also reviewed challenges to SERS bioassay performance and real-life application, including non-specific protein binding, nanoparticle aggregation, limited nanotag stability, sometimes, relatively long time to results, etc. The proposed solutions to those challenges are also discussed in the review. Overall, this review may be interesting not only to bioanalytical chemist, but to medical and life science researchers who are interested in improvement of bioanalyte detection and diagnostics.
Collapse
Affiliation(s)
- Aisha Ilyas
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yegor Shevchenko
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Olena Filchakova
- Department of Biology, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
17
|
Mishra Y, Chattaraj A, Mishra V, Ranjan A, Tambuwala MM. Aptamers Versus Vascular Endothelial Growth Factor (VEGF): A New Battle against Ovarian Cancer. Pharmaceuticals (Basel) 2023; 16:849. [PMID: 37375796 DOI: 10.3390/ph16060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer is one of the diseases that causes a high mortality as it involves unregulated and abnormal cell growth proliferation that can manifest in any body region. One of the typical ovarian cancer symptoms is damage to the female reproductive system. The death rate can be reduced through early detection of the ovarian cancer. Promising probes that can detect ovarian cancer are suitable aptamers. Aptamers, i.e., so-called chemical antibodies, have a strong affinity for the target biomarker and can typically be identified starting from a random library of oligonucleotides. Compared with other probes, ovarian cancer targeting using aptamers has demonstrated superior detection effectiveness. Various aptamers have been selected to detect the ovarian tumor biomarker, vascular endothelial growth factor (VEGF). The present review highlights the development of particular aptamers that target VEGF and detect ovarian cancer at its earliest stages. The therapeutic efficacy of aptamers in ovarian cancer treatment is also discussed.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Abhigyan Ranjan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| |
Collapse
|
18
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
19
|
Zhao W, Yang S, Zhang D, Zhou T, Huang J, Gao M, Jiang Y, Liu Y, Yang J. Ultrasensitive dual-enhanced sandwich strategy for simultaneous detection of Escherichia coli and Staphylococcus aureus based on optimized aptamers-functionalized magnetic capture probes and graphene oxide-Au nanostars SERS tags. J Colloid Interface Sci 2023; 634:651-663. [PMID: 36549213 DOI: 10.1016/j.jcis.2022.12.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
In this work, a novel surface-enhanced Raman scattering (SERS) sandwich strategy biosensing platform has been established for simultaneously detecting Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Fe3O4@SiO2-Au nanocomposites (NCs) with varying amounts of Au nanocrystals were prepared, and the effect of interparticle gaps on SERS activity was studied by finite-difference time-domain (FDTD) method. The optimal magnetic SERS-active substrates (FS-A5) were functionalized with the specific aptamers to act as capture probes. Meanwhile, graphene oxide-Au nanostars (GO-Au NSs) decorated with Raman reporters and aptamers were used as SERS tags. The loading density of Au NSs on GO was tuned to change the number of SERS active sites. In this proposal, E. coli and S. aureus were first captured by capture probes and then bound with SERS tags to form a sandwich-like structure, which caused enhanced electromagnetic field because of the dual enhancement strategy. Under optimal conditions, SERS platform could detect E. coli and S. aureus simultaneously, and the detection limit was as low as 10 cfu/mL. Our sandwich assay-based dual-enhanced SERS platform provides a new idea for simultaneously detecting multiple pathogens with high selectivity and sensitivity, and thus will have more hopeful prospects in the field of food safety.
Collapse
Affiliation(s)
- Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Yang
- College of Science, Changchun University, Changchun 130022, China
| | - Daxin Zhang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yuhong Jiang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China.
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China.
| |
Collapse
|
20
|
He Y, Liao X, Wu H, Huang J, Zhang Y, Peng Y, Wang Z, Cao X, Wu C, Luo X. A controllable SERS biosensor for ultrasensitive detection of miRNAs based on porous MOFs and subject-object recognition ability. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122134. [PMID: 36512966 DOI: 10.1016/j.saa.2022.122134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
In this work, a simple and sensitive SERS-based miRNA biosensor was constructed based on porous MOFs nanoparticles and efficient subject-object recognition ability. MOFs as a container can package lots of signal probe neutral red (NR) for the advantages of three dimensional structure and porosity. The partially complementary duplex DNA can as a "lock" to lock up the hole for obtaining a weak Raman signal. In the present of miRNA, miRNA just like a "key" to open the duplex structure with the results of releasing NR. At this time, the released NR can be captured by SERS substrate AuNS@CB[7] for the subject-object recognition ability to produce a strong Raman signal which was positive correlation to target miRNA. By this way, the proposed SERS biosensor can achieve sensitively and selectively detect miRNA with a detection limit of 0.562 fM. This MOF-based SERS biosensor also be hopeful application for clinical diagnostics.
Collapse
Affiliation(s)
- Yi He
- School of Science, Xihua University, Chengdu 610039, PR China.
| | - Xiangjian Liao
- Chengdu BOE optoelectronics technology Co., Ltd, PR China
| | - Haonan Wu
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Jialiang Huang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Yi Zhang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Yanyu Peng
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Zhen Wang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Xin Cao
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Caijun Wu
- School of Science, Xihua University, Chengdu 610039, PR China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu 610039, PR China.
| |
Collapse
|
21
|
Zhu A, Ali S, Jiao T, Wang Z, Ouyang Q, Chen Q. Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens. Compr Rev Food Sci Food Saf 2023; 22:1466-1494. [PMID: 36856528 DOI: 10.1111/1541-4337.13118] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 03/02/2023]
Abstract
Rapid control and prevention of diseases caused by foodborne pathogens is one of the existing food safety regulatory issues faced by various countries and has received wide attention from all sectors of society. The development of rapid and reliable detection methods for foodborne pathogens remains a hot research area for food safety and public health because of the limitations of complex steps, time-consuming, low sensitivity, or poor selectivity of commonly used methods. Surface-enhanced Raman spectroscopy (SERS), as a novel spectroscopic technique, has the advantages of high sensitivity, selectivity, rapid and nondestructive detection and has exhibited broad application prospects in the determination of pathogenic bacteria. In this study, the enhancement mechanisms of SERS are briefly introduced, then the characteristics and properties of liquid-phase, rigid solid-phase, and flexible solid-phase are categorized. Furthermore, a comprehensive review of the advances in label-free or label-based SERS strategies and SERS-compatible techniques for the detection of foodborne pathogens is provided, and the advantages and disadvantages of these methods are reviewed. Finally, the current challenges of SERS technology applied in practical applications are listed, and the possible development trends of SERS in the field of foodborne pathogens detection in the future are discussed.
Collapse
Affiliation(s)
- Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, P. R. China
| | - Tianhui Jiao
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| | - Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China.,College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
22
|
A universal approach for sensitive and rapid detection of different pathogenic bacteria based on aptasensor-assisted SERS technique. Anal Bioanal Chem 2023; 415:1529-1543. [PMID: 36705734 DOI: 10.1007/s00216-023-04551-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
An assembled-aptasensor based on Fe3O4@Au@Ag nanocomposites grafting onto the gold foil was prepared, which can be developed into a universal approach for sensitive and rapid detection of various pathogenic bacteria, such as Escherichia coli (E. coli), Salmonella typhimurium (S. typhimurium), Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes), Pseudomonas aeruginosa (P. aeruginosa), and Shigella flexneri (S. flexneri). Firstly, the gold foil paper was modified with thiolated capture probe and SERS tag in proportion, and at the same time, the specific thiolated aptamer probe for corresponding pathogenic bacteria was fixed with Fe3O4@Au@Ag nanocomposites. An obvious Raman signal can be subsequently increased about 106 times by the external electromagnetic field enhancement at the "hot spots" caused by the hybridization of aptamer and capture probe. But in the presence of target pathogenic bacteria, Raman intensity will decrease as Fe3O4@Au@Ag nanocomposites are dissociated from gold foil. Thus, all of the concentrations of the six kinds of pathogenic bacteria both in PBS and liquorice extract showed an obvious negative linear correlation with the Raman intensity of SERS tag in the range of 10-107 CFU/mL with detection limits were all lower than 10 CFU/mL. And there was no significant difference between our method and the plate counting method. Besides, the assembled-aptasensor had superior specific recognition ability even in the mixed interfering bacteria. Our study showed that this assembled-aptasensor had good specific detection ability to a variety of foodborne pathogens based on magnetic field-assisted SERS technique, which can be used for rapid and sensitive detection of a variety of pathogens in complex substrates.
Collapse
|
23
|
Beeram R, Vepa KR, Soma VR. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. BIOSENSORS 2023; 13:328. [PMID: 36979540 PMCID: PMC10046859 DOI: 10.3390/bios13030328] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.
Collapse
Affiliation(s)
| | | | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia—Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
24
|
Integration of three non-interfering SERS probes combined with ConA-functionalized magnetic nanoparticles for extraction and detection of multiple foodborne pathogens. Mikrochim Acta 2023; 190:103. [PMID: 36821058 DOI: 10.1007/s00604-023-05676-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023]
Abstract
A sandwich-structured SERS biosensor has been constructed for simultaneous detection of multiple pathogenic bacteria, consisting of non-interfering SERS probes for bacterial labeling and ConA-functionalizd magnetic nanoparticles for bacteria extraction. A the preparation method of PP3 SERS probe with high Raman activity is reported for the first time. Since the PP3 SERS probe has a very strong Raman peak at 2081 cm-1 in the "Raman silent region," the mixed SERS probe formed with MP1 and DP2 can meet the needs of multiple foodborne pathogen detection. Significantly, S. aureus, E. coli, and P. aeruginosa can be successfully extracted upon external magnetic field, and the limit of detection (LOD) is 1 CFU‧mL-1, lower than that of the congeneric detectors. This work paves a new way for the construction of a novel detector and absorbent for different bacteria in complex samples by using SERS probe.
Collapse
|
25
|
Implementing Vancomycin Population Pharmacokinetic Models: An App for Individualized Antibiotic Therapy in Critically Ill Patients. Antibiotics (Basel) 2023; 12:antibiotics12020301. [PMID: 36830212 PMCID: PMC9952184 DOI: 10.3390/antibiotics12020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
In individualized therapy, the Bayesian approach integrated with population pharmacokinetic models (PopPK) for predictions together with therapeutic drug monitoring (TDM) to maintain adequate objectives is useful to maximize the efficacy and minimize the probability of toxicity of vancomycin in critically ill patients. Although there are limitations to implementation, model-informed precision dosing (MIPD) is an approach to integrate these elements, which has the potential to optimize the TDM process and maximize the success of antibacterial therapy. The objective of this work was to present an app for individualized therapy and perform a validation of the implemented vancomycin PopPK models. A pragmatic approach was used for selecting the models of Llopis, Goti and Revilla for developing a Shiny app with R. Through ordinary differential equation (ODE)-based mixed effects models from the mlxR package, the app simulates the concentrations' behavior, estimates whether the model was simulated without variability and predicts whether the model was simulated with variability. Moreover, we evaluated the predictive performance with retrospective trough concentration data from patients admitted to the adult critical care unit. Although there were no significant differences in the performance of the estimates, the Llopis model showed better accuracy (mean 80.88%; SD 46.5%); however, it had greater bias (mean -34.47%, SD 63.38%) compared to the Revilla et al. (mean 10.61%, SD 66.37%) and Goti et al. (mean of 13.54%, SD 64.93%) models. With respect to the RMSE (root mean square error), the Llopis (mean of 10.69 mg/L, SD 12.23 mg/L) and Revilla models (mean of 10.65 mg/L, SD 12.81 mg/L) were comparable, and the lowest RMSE was found in the Goti model (mean 9.06 mg/L, SD 9 mg/L). Regarding the predictions, this behavior did not change, and the results varied relatively little. Although our results are satisfactory, the predictive performance in recent studies with vancomycin is heterogeneous, and although these three models have proven to be useful for clinical application, further research and adaptation of PopPK models is required, as well as implementation in the clinical practice of MIPD and TDM in real time.
Collapse
|
26
|
Li J, Chen J, Dai Y, Liu Z, Zhao J, Liu S, Xiao R. Magnetic SERS Strip Based on 4-mercaptophenylboronic Acid-Modified Fe 3O 4@Au for Active Capture and Simultaneous Detection of Respiratory Bacteria. BIOSENSORS 2023; 13:210. [PMID: 36831976 PMCID: PMC9953780 DOI: 10.3390/bios13020210] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The rapid diagnosis and detection of respiratory bacteria at the early stage can effectively control the epidemic spread and bacterial infection. Here, we designed a rapid, ultrasensitive, and quantitative lateral flow immunoassay (LFA) strip for simultaneous detection of respiratory bacteria S. aureus and S. pneumoniae. In this assay, the surface enhanced Raman scattering (SERS) tags were designed through combining magnetite Raman enhancement nanoparticle Fe3O4@Au/DTNB and recognition element 4-mercaptophenylboronic acid (4-MPBA). Further, 4-MPBA could capture multiple bacteria in a complex environmental solution. Based on the strategies, Fe3O4@Au/DTNB-mediated magnetic enrichment and 4-MPBA-mediated universal capture capabilities improved the detection sensitivity, the limits of detection for S. aureus and S. pneumoniae were as low as 8 and 13 CFU mL-1, respectively, which were more sensitive than those of colloidal gold method. The Fe3O4@Au/DTNB/Au/4-MPBA-LFA also exhibited good reproducibility, excellent specificity, and high recovery rates in sputum samples, indicating its potential application in the detection of respiratory bacteria samples.
Collapse
Affiliation(s)
- Jingfei Li
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jin Chen
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yuwei Dai
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhenzhen Liu
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Junnan Zhao
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Rui Xiao
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
27
|
Guo Z, Gao L, Jiang S, El-Seedi HR, El-Garawani IM, Zou X. Sensitive determination of Patulin by aptamer functionalized magnetic surface enhanced Raman spectroscopy (SERS) sensor. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Dina NE, Tahir MA, Bajwa SZ, Amin I, Valev VK, Zhang L. SERS-based antibiotic susceptibility testing: Towards point-of-care clinical diagnosis. Biosens Bioelectron 2023; 219:114843. [PMID: 36327563 DOI: 10.1016/j.bios.2022.114843] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Emerging antibiotic resistant bacteria constitute one of the biggest threats to public health. Surface-enhanced Raman scattering (SERS) is highly promising for detecting such bacteria and for antibiotic susceptibility testing (AST). SERS is fast, non-destructive (can probe living cells) and it is technologically flexible (readily integrated with robotics and machine learning algorithms). However, in order to integrate into efficient point-of-care (PoC) devices and to effectively replace the current culture-based methods, it needs to overcome the challenges of reliability, cost and complexity. Recently, significant progress has been made with the emergence of both new questions and new promising directions of research and technological development. This article brings together insights from several representative SERS-based AST studies and approaches oriented towards clinical PoC biosensing. It aims to serve as a reference source that can guide progress towards PoC routines for identifying antibiotic resistant pathogens. In turn, such identification would help to trace the origin of sporadic infections, in order to prevent outbreaks and to design effective medical treatment and preventive procedures.
Collapse
Affiliation(s)
- Nicoleta Elena Dina
- Department of Molecular and Biomolecular Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293, Cluj-Napoca, Romania.
| | - Muhammad Ali Tahir
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, People's Republic of China
| | - Sadia Z Bajwa
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, 38000, Faisalabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, 38000, Faisalabad, Pakistan
| | - Ventsislav K Valev
- Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Bath, BA2 7AY, United Kingdom; Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom; Centre for Nanoscience and Nanotechnology, University of Bath, Bath, United Kingdom.
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
29
|
Yuan K, Jurado-Sánchez B, Escarpa A. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: a review. J Nanobiotechnology 2022; 20:537. [PMID: 36544151 PMCID: PMC9771791 DOI: 10.1186/s12951-022-01711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) is a very promising tool for the direct detection of biomarkers for the diagnosis of i.e., cancer and pathogens. Yet, current SERS strategies are hampered by non-specific interactions with co-existing substances in the biological matrices and the difficulties of obtaining molecular fingerprint information from the complex vibrational spectrum. Raman signal enhancement is necessary, along with convenient surface modification and machine-based learning to address the former issues. This review aims to describe recent advances and prospects in SERS-based approaches for cancer and pathogens diagnosis. First, direct SERS strategies for key biomarker sensing, including the use of substrates such as plasmonic, semiconductor structures, and 3D order nanostructures for signal enhancement will be discussed. Secondly, we will illustrate recent advances for indirect diagnosis using active nanomaterials, Raman reporters, and specific capture elements as SERS tags. Thirdly, critical challenges for translating the potential of the SERS sensing techniques into clinical applications via machine learning and portable instrumentation will be described. The unique nature and integrated sensing capabilities of SERS provide great promise for early cancer diagnosis or fast pathogens detection, reducing sanitary costs but most importantly allowing disease prevention and decreasing mortality rates.
Collapse
Affiliation(s)
- Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| |
Collapse
|
30
|
Shang L, Xu L, Wang Y, Liu K, Liang P, Zhou S, Chen F, Peng H, Zhou C, Lu Z, Li B. Rapid detection of beer spoilage bacteria based on label-free SERS technology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5056-5064. [PMID: 36448743 DOI: 10.1039/d2ay01221a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Beer spoilage bacteria have been a headache for major breweries. In order to rapidly identify spoilage bacteria and improve the sensitivity and signal-to-noise ratio of bacterial SERS detection, the label-free SERS technique was used as a starting point, and we found eight bacteria species that led to beer spoilage. The impact of AgNP concentration and AgNP and bacterial binding time on the final results were thoroughly investigated. To maximize the increase in the SERS signal, an aluminized chip was created. We merged the t-SNE reduced dimensional analysis algorithm, and SVM, KNN, and LDA machine learning algorithms to further investigate the effect of the approach on the final identification rate. The results demonstrate that SERS spectra had an increased intensity and signal-to-noise ratio. The machine learning classification accuracy rates were all above 90%, indicating that the bacteria were correctly classified and identified.
Collapse
Affiliation(s)
- Lindong Shang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yu Wang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kunxiang Liu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Peng Liang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuangjun Zhou
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, P. R. China
| | - Fuyuan Chen
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Peng
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chunyang Zhou
- College of Life Sciences and Technology, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Zhenming Lu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
| | - Bei Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- HOOKE Instruments Ltd, Changchun, 130031, P. R. China
| |
Collapse
|
31
|
Bai X, Wang Z, Li W, Xiao F, Xu H. Portable sensor based on magnetic separation and enzyme-mediated immune nanomaterials for point-of-care testing of Listeria monocytogenes in food. Anal Chim Acta 2022; 1236:340576. [PMID: 36396231 DOI: 10.1016/j.aca.2022.340576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/03/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Listeria monocytogenes (L. monocytogenes), a typical foodborne pathogen, poses a serious threat to public health safety. This stimulates to develop a point-of-care testing (POCT) method to achieve rapid, sensitive detection of L. monocytogenes. In this study, polyethylene glycol (PEG) mediated ampicillin functionalized magnetic beads (Amp-PEG-MBs) was prepared successfully and it achieved high efficiency (>90%) and rapid (5 min) capture for L. monocytogenes at room temperature. The innovative combination of antibody (Ab), glucose oxidase (GOD) and graphene oxide (GO) prepared Ab@GO@GOD for the specific recognition of L. monocytogenes. Finally, Amp-PEG-MBs and Ab@GO@GOD were successfully assembled into Amp-PEG-MBs@L. monocytogenes-Ab@GO@GOD sandwich structure which could catalyze the glucose, and the final detection results were recorded by a blood glucose meter (BGM). Magnetic separation (MS) combined with enzyme-catalyzed sensor (MS-Ab@GO@GOD-BGM) was successfully established to achieve the detection of L. monocytogenes in artificially contaminated juice within 66 min with the limit of detection was 101 CFU/mL. This sensor has potential for other pathogens detection by modifying specific antibodies.
Collapse
Affiliation(s)
- Xuekun Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Zhengzheng Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
32
|
Tuckmantel Bido A, Azarakhshi A, Brolo AG. Exploring Intensity Distributions and Sampling in SERS-Based Immunoassays. Anal Chem 2022; 94:17031-17038. [PMID: 36455025 DOI: 10.1021/acs.analchem.2c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a sensitive, widely used spectroscopic technique. However, SERS is perceived as poorly reproducible and insufficiently robust for standard applications in analytical chemistry. Here, we demonstrated that reliable SERS immunoassay quantification at low concentrations (pM range) can be achieved by careful experimental design and appropriate data analysis statistics. A SERS-based immunoassay for IgG in human serum (3.1-50.0 ng mL-1 or 20.6-333 pM) was developed as a proof of concept. Calibration curves were created using the population median of the band area, centered at 592 cm-1, of a SERS reporter (Nile Blue A). Histograms of 7200 SERS spectra show lognormal distributions. SEM images of the sensor platform confirm a correlation between the number of SERS probes (ERLs) at the surface and the SERS intensity response. The IgG immunosensor reported here presented a limit of detection of 1.11 ng mL-1 or 7.39 pM and a limit of quantification of 9.04 ng mL-1 or 60.30 pM, within a 95% confidence level. The % error of the predicted versus the actual response of a quality control (QC) sample was 0.13%. The percent error of the QC sample decreases exponentially with the number of measurements. Randomly selected spatially separated measurements provided lower QC % error than a larger number of measurements that were closely spaced. We propose that it is necessary to describe the measured populations using an appropriate sample size for good statistics and consider the interrogation of sufficiently large and well-separated areas of the sensor surface to achieve a reliable sampling.
Collapse
Affiliation(s)
| | - Arash Azarakhshi
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V9P 5C2, Canada
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
33
|
Dayalan S, Gedda G, Li R, Zulfajri M, Huang GG. Vancomycin functionalization of gold nanostars for sensitive detection of foodborne pathogens through surface‐enhanced Raman scattering. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sandhiya Dayalan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
| | - Gangaraju Gedda
- Department of Chemistry, School of Engineering Presidency University Bangalore India
| | - Ruei–Nian Li
- Department of Biomedical Science and Environmental Biology Kaohsiung Medical University Kaohsiung Taiwan
| | - Muhammad Zulfajri
- Department of Chemistry Education Universitas Serambi Mekkah Banda Aceh Indonesia
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
- Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung Taiwan
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
| |
Collapse
|
34
|
Bai X, Wang Z, Li W, Xiao F, Huang J, Xu Q, Xu H. Rapid and accurate detection for Listeria monocytogenes in milk using ampicillin-mediated magnetic separation coupled with quantitative real-time PCR. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Wang X, Chen C, Waterhouse GIN, Qiao X, Xu Z. Ultra-sensitive detection of streptomycin in foods using a novel SERS switch sensor fabricated by AuNRs array and DNA hydrogel embedded with DNAzyme. Food Chem 2022; 393:133413. [PMID: 35751206 DOI: 10.1016/j.foodchem.2022.133413] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022]
Abstract
Detrimental health effects caused by the intake of food contaminated with streptomycin have drawn concerns on effective monitoring using sensitive and selective methods. In this work, a DNA hydrogel surface enhanced Raman spectroscopy (SERS) sensor was successfully developed for the ultrasensitive determination of streptomycin residues in foods. The sensor used a DNA hydrogel containing DNAzyme (Pb-DNAzyme), triggering release of the Raman reporter 4-mercaptobenzonitrile, which was detected using a gold nanorods (AuNRs) array. The linear range of the sensor was 0.01-150 nM and the limit of detection was 4.85 × 10-3 nM. Tests conducted with four streptomycin structural analogues confirmed the sensor was specific. Milk and honey samples spiked with streptomycin were analysed, resulting in standard recoveries in the range 98.2-117.3%. These findings demonstrated that such a sensor can be used for ultrasensitive detection of streptomycin in foods.
Collapse
Affiliation(s)
- Ximo Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Chen Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | | | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| |
Collapse
|
36
|
Kukushkin V, Ambartsumyan O, Astrakhantseva A, Gushchin V, Nikonova A, Dorofeeva A, Zverev V, Gambaryan A, Tikhonova D, Sovetnikov T, Akhmetova A, Yaminsky I, Zavyalova E. Lithographic SERS Aptasensor for Ultrasensitive Detection of SARS-CoV-2 in Biological Fluids. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213854. [PMID: 36364630 PMCID: PMC9659100 DOI: 10.3390/nano12213854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 05/27/2023]
Abstract
In this paper, we propose a technology for the rapid and sensitive detection of the whole viral particles of SARS-CoV-2 using double-labeled DNA aptamers as recognition elements together with the SERS method for detecting the optical response. We report on the development of a SERS-aptasensor based on a reproducible lithographic SERS substrate, featuring the combination of high speed, specificity, and ultrasensitive quantitative detection of SARS-CoV-2 virions. The sensor makes it possible to identify SARS-CoV-2 in very low concentrations (the limit of detection was 100 copies/mL), demonstrating a sensitivity level comparable to the existing diagnostic golden standard-the reverse transcription polymerase chain reaction.
Collapse
Affiliation(s)
- Vladimir Kukushkin
- Osipyan Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia
| | - Oganes Ambartsumyan
- Department of Microbiology, Virology and Immunology, I.M. Sechenov First Moscow State Medical University, 125009 Moscow, Russia
| | - Anna Astrakhantseva
- Osipyan Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vladimir Gushchin
- N. F. Gamaleya Federal Research Center for Epidemiology & Microbiology, 123098 Moscow, Russia
| | - Alexandra Nikonova
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | | | - Vitaly Zverev
- Department of Microbiology, Virology and Immunology, I.M. Sechenov First Moscow State Medical University, 125009 Moscow, Russia
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia
| | - Daria Tikhonova
- Osipyan Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Timofei Sovetnikov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Assel Akhmetova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor Yaminsky
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
37
|
Biorecognition elements appended gold nanoparticle biosensors for the detection of food-borne pathogens - A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
38
|
Xia J, Li W, Sun M, Wang H. Application of SERS in the Detection of Fungi, Bacteria and Viruses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3572. [PMID: 36296758 PMCID: PMC9609009 DOI: 10.3390/nano12203572] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/12/2023]
Abstract
In this review, we report the recent advances of SERS in fungi, bacteria, and viruses. Firstly, we briefly introduce the advantage of SERS over fluorescence on virus identification and detection. Secondly, we review the feasibility analysis of Raman/SERS spectrum analysis, identification, and fungal detection on SERS substrates of various nanostructures with a signal amplification mechanism. Thirdly, we focus on SERS spectra for nucleic acid, pathogens for the detection of viruses and bacteria, and furthermore introduce SERS-based microdevices, including SERS-based microfluidic devices, and three-dimensional nanostructured plasmonic substrates.
Collapse
Affiliation(s)
- Jiarui Xia
- Institute of Health Sciences, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang 110001, China
| | - Wenwen Li
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Huiting Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
39
|
Michałowska A, Krajczewski J, Kudelski A. Magnetic iron oxide cores with attached gold nanostructures coated with a layer of silica: An easily, homogeneously deposited new nanomaterial for surface-enhanced Raman scattering measurements. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121266. [PMID: 35452900 DOI: 10.1016/j.saa.2022.121266] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 05/13/2023]
Abstract
Nanostructures made of magnetic cores (Fe3O4) with many smaller plasmonic (Au) nanostructures attached were covered with a very thin layer of silica. The first example of the application of this type of material for surface-enhanced Raman scattering (SERS) measurements is presented. (Fe3O4@Au)@SiO2 nanoparticles turned out to be very efficient substrates for SERS measurements. Moreover, due to the nanomaterial's strong magnetic properties, it can be easily manipulated using a magnetic field, and it is therefore possible to form homogeneous layers (with no significant 'coffee-ring' effect) of (Fe3O4@Au)@SiO2 nanoparticles using a very simple procedure: depositing a drop of a sol of such nanoparticles and evaporating the solvent after placing the sample in a strong magnetic field. Synthesised (Fe3O4@Au)@SiO2 nanostructures have been used for the SERS detection of penicillin G in milk. Good quality SERS spectra of penicillin G were obtained even at a concentration of penicillin G in milk of 1 nmol/l - this means that the SERS detection of penicillin G in milk is possible at a concentration lower than the maximum residue limit of penicillin G in milk established by the European Commission. .
Collapse
Affiliation(s)
| | - Jan Krajczewski
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
40
|
Arano-Martinez JA, Martínez-González CL, Salazar MI, Torres-Torres C. A Framework for Biosensors Assisted by Multiphoton Effects and Machine Learning. BIOSENSORS 2022; 12:710. [PMID: 36140093 PMCID: PMC9496380 DOI: 10.3390/bios12090710] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022]
Abstract
The ability to interpret information through automatic sensors is one of the most important pillars of modern technology. In particular, the potential of biosensors has been used to evaluate biological information of living organisms, and to detect danger or predict urgent situations in a battlefield, as in the invasion of SARS-CoV-2 in this era. This work is devoted to describing a panoramic overview of optical biosensors that can be improved by the assistance of nonlinear optics and machine learning methods. Optical biosensors have demonstrated their effectiveness in detecting a diverse range of viruses. Specifically, the SARS-CoV-2 virus has generated disturbance all over the world, and biosensors have emerged as a key for providing an analysis based on physical and chemical phenomena. In this perspective, we highlight how multiphoton interactions can be responsible for an enhancement in sensibility exhibited by biosensors. The nonlinear optical effects open up a series of options to expand the applications of optical biosensors. Nonlinearities together with computer tools are suitable for the identification of complex low-dimensional agents. Machine learning methods can approximate functions to reveal patterns in the detection of dynamic objects in the human body and determine viruses, harmful entities, or strange kinetics in cells.
Collapse
Affiliation(s)
- Jose Alberto Arano-Martinez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Claudia Lizbeth Martínez-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Ma Isabel Salazar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Carlos Torres-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| |
Collapse
|
41
|
DNA-mediated Au@Ag@silica nanopopcorn fluorescent probe for in vivo near-infrared imaging of probiotic Lactobacillus Plantarum. Biosens Bioelectron 2022; 212:114421. [DOI: 10.1016/j.bios.2022.114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022]
|
42
|
Banu K, Mondal B, Rai B, Monica N, Hanumegowda R. Prospects for the application of aptamer based assay platforms in pathogen detection. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Liu Y, Deng Y, Li S, Wang-Ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Zhang T, Chu X, Jin F, Xu M, Zhai Y, Li J. Superparamagnetic MoS 2@Fe 3O 4 nanoflowers for rapid resonance-Raman scattering biodetection. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS 2022; 33:15754-15762. [PMID: 38625216 PMCID: PMC9206837 DOI: 10.1007/s10854-022-08477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/24/2022] [Indexed: 04/17/2024]
Abstract
Sensors for rapid and reliable detection of biomolecules are crucial for clinical medical diagnoses. Here, a rapid, ultra-sensitive, magnetic-assisted biosensor based on resonance Raman scattering at MoS2@Fe3O4 composite nanoflowers is presented. Raman shifts and X-ray photoelectron spectra indicated that the composite was formed via Fe-S covalent bonds. Convenient magnetic separations could be performed because of the superparamagnetic Fe3O4 nanoparticles. MoS2 E12g and A1g Raman peaks were used as probe signals for anti-interference immunoassays. The probe unit of the immunoassay also included goat anti-human IgG molecules that were used as the target analyte. Au substrates coupled with the goat anti-human IgG were used as capture units to form sandwich biosensors. Because of the magnetic enrichment, the detection limit was improved by three orders-of-magnitude and the detection time was reduced from 1.5 h to 1 min. Sandwich biosensors using MoS2@Fe3O4 nanoflowers as Raman probes could be very promising sensors for proteins, antigens, and other immunogenic biopolymers, as well as for corpuscular viruses and cells.
Collapse
Affiliation(s)
- Ting Zhang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Changchun University of Science and Technology, 130022 Changchun, People’s Republic of China
| | - Xueying Chu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Changchun University of Science and Technology, 130022 Changchun, People’s Republic of China
| | - Fangjun Jin
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Changchun University of Science and Technology, 130022 Changchun, People’s Republic of China
| | - Mingze Xu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Changchun University of Science and Technology, 130022 Changchun, People’s Republic of China
| | - Yingjiao Zhai
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Changchun University of Science and Technology, 130022 Changchun, People’s Republic of China
| | - Jinhua Li
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Changchun University of Science and Technology, 130022 Changchun, People’s Republic of China
| |
Collapse
|
45
|
Chen W, Lai Q, Zhang Y, Liu Z. Recent Advances in Aptasensors For Rapid and Sensitive Detection of Staphylococcus Aureus. Front Bioeng Biotechnol 2022; 10:889431. [PMID: 35677308 PMCID: PMC9169243 DOI: 10.3389/fbioe.2022.889431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
The infection of Staphylococcus aureus (S.aureus) and the spread of drug-resistant bacteria pose a serious threat to global public health. Therefore, timely, rapid and accurate detection of S. aureus is of great significance for food safety, environmental monitoring, clinical diagnosis and treatment, and prevention of drug-resistant bacteria dissemination. Traditional S. aureus detection methods such as culture identification, ELISA, PCR, MALDI-TOF-MS and sequencing, etc., have good sensitivity and specificity, but they are complex to operate, requiring professionals and expensive and complex machines. Therefore, it is still challenging to develop a fast, simple, low-cost, specific and sensitive S. aureus detection method. Recent studies have demonstrated that fast, specific, low-cost, low sample volume, automated, and portable aptasensors have been widely used for S. aureus detection and have been proposed as the most attractive alternatives to their traditional detection methods. In this review, recent advances of aptasensors based on different transducer (optical and electrochemical) for S. aureus detection have been discussed in details. Furthermore, the applications of aptasensors in point-of-care testing (POCT) have also been discussed. More and more aptasensors are combined with nanomaterials as efficient transducers and amplifiers, which appears to be the development trend in aptasensors. Finally, some significant challenges for the development and application of aptasensors are outlined.
Collapse
Affiliation(s)
- Wei Chen
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Wei Chen, ; Zhengchun Liu,
| | - Qingteng Lai
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| | - Yanke Zhang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| | - Zhengchun Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Wei Chen, ; Zhengchun Liu,
| |
Collapse
|
46
|
Abstract
In the last decade, there has been a rapid increase in the number of surface-enhanced Raman scattering (SERS) spectroscopy applications in medical research. In this article we review some recent, and in our opinion, most interesting and promising applications of SERS spectroscopy in medical diagnostics, including those that permit multiplexing within the range important for clinical samples. We focus on the SERS-based detection of markers of various diseases (or those whose presence significantly increases the chance of developing a given disease), and on drug monitoring. We present selected examples of the SERS detection of particular fragments of DNA or RNA, or of bacteria, viruses, and disease-related proteins. We also describe a very promising and elegant ‘lab-on-chip’ approach used to carry out practical SERS measurements via a pad whose action is similar to that of a pregnancy test. The fundamental theoretical background of SERS spectroscopy, which should allow a better understanding of the operation of the sensors described, is also briefly outlined. We hope that this review article will be useful for researchers planning to enter this fascinating field.
Collapse
|
47
|
The First Silver-Based Plasmonic Nanomaterial for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy with Magnetic Properties. Molecules 2022; 27:molecules27103081. [PMID: 35630560 PMCID: PMC9143147 DOI: 10.3390/molecules27103081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022] Open
Abstract
Nanostructures made of magnetic cores (from Fe3O4) with attached silver plasmonic nanostructures were covered with a very thin layer of silica. The (Fe3O4@Ag)@SiO2 magnetic–plasmonic nanomaterial can be manipulated using a magnetic field. For example, one can easily form homogeneous layers from this nanomaterial using a very simple procedure: deposition of a layer of a sol of such a nanostructure and evaporation of the solvent after placing the sample in a strong magnetic field. Due to the rapid magnetic immobilization of the magnetic–plasmonic nanomaterial on the investigated surface, no coffee-ring effect occurs during the evaporation of the solvent. In this contribution, we report the first example of a magnetic, silver-based plasmonic nanomaterial for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Nanoresonators based on silver plasmonic nanostructures locally enhance the intensity of the exciting electromagnetic radiation in a significantly broader frequency range than the previously used magnetic SHINERS nanoresonators with gold plasmonic nanostructures. Example applications where the resulting nanomaterial was used for the SHINERS investigation of a monolayer of mercaptobenzoic acid chemisorbed on platinum, and for a standard SERS determination of dopamine, are also presented.
Collapse
|
48
|
Liu M, Yue F, Kong Q, Liu Z, Guo Y, Sun X. Aptamers against Pathogenic Bacteria: Selection Strategies and Apta-assay/Aptasensor Application for Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5477-5498. [PMID: 35471004 DOI: 10.1021/acs.jafc.2c01547] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathogenic bacteria are primarily kinds of detrimental agents that cause mankind illness via contaminated food with traits of multiple types, universality, and low content. In view of the detection demands for rapidity, aptamer recognition factors emerged as a substitution for antibodies, which are short single strands of nucleic acid selected via in vitro. They display certain superiorities over antibodies, such as preferable stability, liable modification, and cost-efficiency. Taking advantage of the situation, numerous aptamers against pathogenic bacteria have been successfully selected and applied, yet there are still restrictions on commercial availability. In this review, the strategies/approaches to key sections in pathogen aptamers SELEX and post-SELEX are summarized and sorted out. Recently, optical, electrochemical, and piezoelectric aptamer-based assays or sensors dedicated to pathogen detection have been critically reviewed. Ultimately, the existing challenges and future trends in this field are proposed to further promote development prospects.
Collapse
Affiliation(s)
- Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Fengling Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Qianqian Kong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| |
Collapse
|
49
|
Dai B, Xu Y, Wang T, Wang S, Tang L, Tang J. Recent Advances in Agglomeration Detection and Dual-Function Application of Surface-Enhanced Raman Scattering (SERS). J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has been widely utilized in early detection of disease biomarkers, cell imaging, and trace contamination detection, owing to its ultra-high sensitivity. However, it is also subject to certain application restrictions in virtue of its expensive
detection equipment and long-term stability of SERS-active substrate. Recently, great progress has been made in SERS technology, represented by agglomeration method. Dual readout signal detection methods are combined with SERS, including electrochemical detection, fluorescence detection, etc.,
establishing a new fantastic viewpoint for application of SERS. In this review, we have made a comprehensive report on development of agglomeration detection and dual-function detection methods based on SERS. The synthesis methods for plasmonic materials and mainstream SERS enhancement mechanism
are also summarized. Finally, the key facing challenges are discussed and prospects are addressed.
Collapse
Affiliation(s)
- Bailin Dai
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Yue Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Tao Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| |
Collapse
|
50
|
Zhu C, Liu W, Wang D, Gong Z, Fan M. Boosting bacteria differentiation efficiency with multidimensional surface-enhanced Raman scattering: the example of Bacillus cereus. LUMINESCENCE 2022; 37:1145-1151. [PMID: 35481694 DOI: 10.1002/bio.4268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful tool for constructing biomolecular fingerprints, which play a vital role in differentiation of bacteria. Due to the rather subtle differences in the SERS spectra among different bacteria, artificial intelligence is usually adopted and enormous amounts of spectral data are required to improve the differentiation efficiency. However, in many cases, large volume data acquisition on bacteria is not only technical difficult but labour intensive. It is known that surface modification of SERS nanomaterials can bring additional dimensionality (difference) of the SERS fingerprints. Here in this work, we show that the concept could be used to improve the bacteria differentiation efficiency. Ag NPs were modified with 11-mercaptoundecanoic acid, 11-mercapto-1-undecanol, and 1-dodecanethiol to provide additional dimensionality. The modified NPs then were mixed with cell lysate from different strains of Bacillus cereus (B. cereus). Even by applying a simple PCA process to the resulting SERS spectra data, all the three modified Ag NPs showed superior differentiation results compared with bare Ag NPs, which could only separate Staphylococcus aureus (S. aureus) and B. cereus. It is believed that the multidimensional SERS could find great potential in bacteria differentiation.
Collapse
Affiliation(s)
- Chengye Zhu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Wen Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|