1
|
Shulman M, Mathew T, Trivedi A, Gholizadeh A, Colcord C, Wiley R, Allen KS, Thangam L, Voss K, Abbyad P. Stepwise Isolation of Diverse Metabolic Cell Populations Using Sorting by Interfacial Tension (SIFT). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.612740. [PMID: 39386539 PMCID: PMC11463469 DOI: 10.1101/2024.09.23.612740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
We present here a passive and label-free droplet microfluidic platform to sort cells stepwise by lactate and proton secretion from glycolysis. A technology developed in our lab, Sorting by Interfacial Tension (SIFT), sorts droplets containing single cells into two populations based on pH by using interfacial tension. Cellular glycolysis lowers the pH of droplets through proton secretion, enabling passive selection based on interfacial tension and hence single-cell glycolysis. The SIFT technique is expanded here by exploiting the dynamic droplet acidification from surfactant adsorption that leads to a concurrent increase in interfacial tension. This allows multiple microfabricated rails at different downstream positions to isolate cells with distinct glycolytic levels. The device is used to correlate sorted cells with three levels of glycolysis with a conventional surface marker for T-cell activation. As glycolysis is associated with both disease and cell state, this technology facilitates the sorting and analysis of crucial cell subpopulations for applications in oncology, immunology and immunotherapy.
Collapse
|
2
|
Liu Y, Cui X, Lu R, Yang D, Ai Y, Cheow LF. Digital Sort-Enabled Counting Allows Absolute Electrical Quantification of Target Nucleic Acid. ACS Sens 2024; 9:2695-2702. [PMID: 38747895 DOI: 10.1021/acssensors.4c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Quantitative nucleic acid amplification tests are of great importance for diagnostics, but current approaches require complex and costly optical setups that limit their nonlaboratory applications. Herein we describe the implementation of a microfluidics platform that can perform binary DNA-amplification-activated droplet sorting. The digital sort-enabled counting (DISCO) platform enables label-free absolute quantification of the nucleic acid. This is achieved by provoking a pH change in droplets through a loop-mediated isothermal amplification (LAMP) reaction, followed by using sorting by interfacial tension (SIFT) to direct positive and negative droplets to different outlets. With the use of on-chip electrodes at both outlets, we demonstrate that the digital electrical counting of target DNA and RNA can be realized. DISCO is a promising approach for realizing sensitive nucleic acid quantification in point-of-care settings.
Collapse
Affiliation(s)
- Yi Liu
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
| | - Xu Cui
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
| | - Ri Lu
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
| | - Dahou Yang
- Critical Analytics for Manufacturing Personalized Medicine, Singapore MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Ye Ai
- Critical Analytics for Manufacturing Personalized Medicine, Singapore MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 387372, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
- Critical Analytics for Manufacturing Personalized Medicine, Singapore MIT Alliance for Research and Technology, Singapore 138602, Singapore
| |
Collapse
|
3
|
Staskiewicz K, Dabrowska-Zawada M, Kozon L, Olszewska Z, Drewniak L, Kaminski TS. Droplet microfluidic system for high throughput and passive selection of bacteria producing biosurfactants. LAB ON A CHIP 2024; 24:1947-1956. [PMID: 38436364 DOI: 10.1039/d3lc00656e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Traditional methods for the enrichment of microorganisms rely on growth in a selective liquid medium or on an agar plate, followed by tedious characterization. Droplet microfluidic techniques have been recently used to cultivate microorganisms and preserve enriched bacterial taxonomic diversity. However, new methods are needed to select droplets comprising not only growing microorganisms but also those exhibiting specific properties, such as the production of value-added compounds. We describe here a droplet microfluidic screening technique for the functional selection of biosurfactant-producing microorganisms, which are of great interest in the bioremediation and biotechnology industries. Single bacterial cells are first encapsulated into picoliter droplets for clonal cultivation and then passively sorted at high throughput based on changes in interfacial tension in individual droplets. Our method expands droplet-based microbial enrichment with a novel approach that reduces the time and resources needed for the selection of surfactant-producing bacteria.
Collapse
Affiliation(s)
- Klaudia Staskiewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Maria Dabrowska-Zawada
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| | - Lukasz Kozon
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Zofia Olszewska
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Poland
| | - Lukasz Drewniak
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| | - Tomasz S Kaminski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Poland
| |
Collapse
|
4
|
Yan W, Li X, Zhao D, Xie M, Li T, Qian L, Ye C, Shi T, Wu L, Wang Y. Advanced strategies in high-throughput droplet screening for enzyme engineering. Biosens Bioelectron 2024; 248:115972. [PMID: 38171222 DOI: 10.1016/j.bios.2023.115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/05/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Enzymes, as biocatalysts, play a cumulatively important role in environmental purification and industrial production of chemicals and pharmaceuticals. However, natural enzymes are limited by their physiological properties in practice, which need to be modified driven by requirements. Screening and isolating certain enzyme variants or ideal industrial strains with high yielding of target product enzymes is one of the main directions of enzyme engineering research. Droplet-based high-throughput screening (DHTS) technology employs massive monodisperse emulsion droplets as microreactors to achieve single strain encapsulation, as well as continuous monitoring for the inside mutant library. It can effectively sort out strains or enzymes with desired characteristics, offering a throughput of 108 events per hour. Much of the early literature focused on screening various engineered strains or designing signalling sorting strategies based on DHTS technology. However, the field of enzyme engineering lacks a comprehensive overview of advanced methods for microfluidic droplets and their cutting-edge developments in generation and manipulation. This review emphasizes the advanced strategies and frontiers of microfluidic droplet generation and manipulation facilitating enzyme engineering development. We also introduce design for various screening signals that cooperate with DHTS and devote to enzyme engineering.
Collapse
Affiliation(s)
- Wenxin Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Xiang Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Danshan Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Meng Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Ting Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Lu Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, Nanjing 210046, China.
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China.
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
5
|
Zhang Y, Lin Y, Hong X, Di C, Xin Y, Wang X, Qi S, Liu BF, Zhang Z, Du W. Demand-driven active droplet generation and sorting based on positive pressure-controlled fluid wall. Anal Bioanal Chem 2023; 415:5311-5322. [PMID: 37392212 DOI: 10.1007/s00216-023-04806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
Droplet microfluidics is a rapidly advancing area of microfluidic technology, which offers numerous advantages for cell analysis, such as isolation and accumulation of signals, by confining cells within droplets. However, controlling cell numbers in droplets is challenging due to the uncertainty of random encapsulation which result in many empty droplets. Therefore, more precise control techniques are needed to achieve efficient encapsulation of cells within droplets. Here, an innovative microfluidic droplet manipulation platform had been developed, which employed positive pressure as a stable and controllable driving force for manipulating fluid within chips. The air cylinder, electro-pneumatics proportional valve, and the microfluidic chip were connected through a capillary, which enabled the formation of a fluid wall by creating a difference in hydrodynamic resistance between two fluid streams at the channel junction. Lowering the pressure of the driving oil phase eliminates hydrodynamic resistance and breaks the fluid wall. Regulating the duration of the fluid wall breakage controls the volume of the introduced fluid. Several important droplet microfluidic manipulations were demonstrated on this microfluidic platform, such as sorting of cells/droplets, sorting of droplets co-encapsulated cells and hydrogels, and active generation of droplets encapsulated with cells in a responsive manner. The simple, on-demand microfluidic platform was featured with high stability, good controllability, and compatibility with other droplet microfluidic technologies.
Collapse
Affiliation(s)
- Yiwei Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Lin
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianzhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Di
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuelai Xin
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinru Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuhong Qi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhihong Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
6
|
Gantz M, Neun S, Medcalf EJ, van Vliet LD, Hollfelder F. Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments. Chem Rev 2023; 123:5571-5611. [PMID: 37126602 PMCID: PMC10176489 DOI: 10.1021/acs.chemrev.2c00910] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 05/03/2023]
Abstract
Novel and improved biocatalysts are increasingly sourced from libraries via experimental screening. The success of such campaigns is crucially dependent on the number of candidates tested. Water-in-oil emulsion droplets can replace the classical test tube, to provide in vitro compartments as an alternative screening format, containing genotype and phenotype and enabling a readout of function. The scale-down to micrometer droplet diameters and picoliter volumes brings about a >107-fold volume reduction compared to 96-well-plate screening. Droplets made in automated microfluidic devices can be integrated into modular workflows to set up multistep screening protocols involving various detection modes to sort >107 variants a day with kHz frequencies. The repertoire of assays available for droplet screening covers all seven enzyme commission (EC) number classes, setting the stage for widespread use of droplet microfluidics in everyday biochemical experiments. We review the practicalities of adapting droplet screening for enzyme discovery and for detailed kinetic characterization. These new ways of working will not just accelerate discovery experiments currently limited by screening capacity but profoundly change the paradigms we can probe. By interfacing the results of ultrahigh-throughput droplet screening with next-generation sequencing and deep learning, strategies for directed evolution can be implemented, examined, and evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
7
|
Sun G, Qu L, Azi F, Liu Y, Li J, Lv X, Du G, Chen J, Chen CH, Liu L. Recent progress in high-throughput droplet screening and sorting for bioanalysis. Biosens Bioelectron 2023; 225:115107. [PMID: 36731396 DOI: 10.1016/j.bios.2023.115107] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Owing to its ability to isolate single cells and perform high-throughput sorting, droplet sorting has been widely applied in several research fields. Compared with flow cytometry, droplet allows the encapsulation of single cells for cell secretion or lysate analysis. With the rapid development of this technology in the past decade, various droplet sorting devices with high throughput and accuracy have been developed. A droplet sorter with the highest sorting throughput of 30,000 droplets per second was developed in 2015. Since then, increased attention has been paid to expanding the possibilities of droplet sorting technology and strengthening its advantages over flow cytometry. This review aimed to summarize the recent progress in droplet sorting technology from the perspectives of device design, detection signal, actuating force, and applications. Technical details for improving droplet sorting through various approaches are introduced and discussed. Finally, we discuss the current limitations of droplet sorting for single-cell studies along with the existing gap between the laboratory and industry and provide our insights for future development of droplet sorters.
Collapse
Affiliation(s)
- Guoyun Sun
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Lisha Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology GTIIT, Shantou, Guangdong, 515063, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Chia-Hung Chen
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
8
|
Shao F, Lee PW, Li H, Hsieh K, Wang TH. Emerging platforms for high-throughput enzymatic bioassays. Trends Biotechnol 2023; 41:120-133. [PMID: 35863950 PMCID: PMC9789168 DOI: 10.1016/j.tibtech.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022]
Abstract
Enzymes have essential roles in catalyzing biological reactions and maintaining metabolic systems. Many in vitro enzymatic bioassays have been developed for use in industrial and research fields, such as cell biology, enzyme engineering, drug screening, and biofuel production. Of note, many of these require the use of high-throughput platforms. Although the microtiter plate remains the standard for high-throughput enzymatic bioassays, microfluidic arrays and droplet microfluidics represent emerging methods. Each has seen significant advances and offers distinct advantages; however, drawbacks in key performance metrics, including reagent consumption, reaction manipulation, reaction recovery, real-time measurement, concentration gradient range, and multiplexity, remain. Herein, we compare recent high-throughput platforms using the aforementioned metrics as criteria and provide insights into remaining challenges and future research trends.
Collapse
Affiliation(s)
- Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Neun S, van Vliet L, Hollfelder F, Gielen F. High-Throughput Steady-State Enzyme Kinetics Measured in a Parallel Droplet Generation and Absorbance Detection Platform. Anal Chem 2022; 94:16701-16710. [DOI: 10.1021/acs.analchem.2c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Stefanie Neun
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Liisa van Vliet
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Fabrice Gielen
- Living Systems Institute and College of Engineering Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QD, U.K
| |
Collapse
|
10
|
Zielke C, Gutierrez Ramirez AJ, Voss K, Ryan MS, Gholizadeh A, Rathmell JC, Abbyad P. Droplet Microfluidic Technology for the Early and Label-Free Isolation of Highly-Glycolytic, Activated T-Cells. MICROMACHINES 2022; 13:1442. [PMID: 36144067 PMCID: PMC9503730 DOI: 10.3390/mi13091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
A label-free, fixation-free and passive sorting method is presented to isolate activated T-cells shortly after activation and prior to the display of activation surface markers. It uses a recently developed sorting platform dubbed "Sorting by Interfacial Tension" (SIFT) that sorts droplets based on pH. After polyclonal (anti-CD3/CD28 bead) activation and a brief incubation on chip, droplets containing activated T-cells display a lower pH than those containing naive cells due to increased glycolysis. Under specific surfactant conditions, a change in pH can lead to a concurrent increase in droplet interfacial tension. The isolation of activated T-cells on chip is hence achieved as flattened droplets are displaced as they encounter a micro-fabricated trench oriented diagonally with respect to the direction of flow. This technique leads to an enrichment of activated primary CD4+ T-cells to over 95% from an initial mixed population of naive cells and cells activated for as little as 15 min. Moreover, since the pH change is correlated to successful activation, the technique allows the isolation of T-cells with the earliest activation and highest glycolysis, an important feature for the testing of T-cell activation modulators and to determine regulators and predictors of differentiation outcomes.
Collapse
Affiliation(s)
- Claudia Zielke
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA 95053, USA
| | | | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maya S. Ryan
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA 95053, USA
| | - Azam Gholizadeh
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA 95053, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paul Abbyad
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA 95053, USA
| |
Collapse
|
11
|
Fu X, Zhang Y, Xu Q, Sun X, Meng F. Recent Advances on Sorting Methods of High-Throughput Droplet-Based Microfluidics in Enzyme Directed Evolution. Front Chem 2021; 9:666867. [PMID: 33996758 PMCID: PMC8114877 DOI: 10.3389/fchem.2021.666867] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Droplet-based microfluidics has been widely applied in enzyme directed evolution (DE), in either cell or cell-free system, due to its low cost and high throughput. As the isolation principles are based on the labeled or label-free characteristics in the droplets, sorting method contributes mostly to the efficiency of the whole system. Fluorescence-activated droplet sorting (FADS) is the mostly applied labeled method but faces challenges of target enzyme scope. Label-free sorting methods show potential to greatly broaden the microfluidic application range. Here, we review the developments of droplet sorting methods through a comprehensive literature survey, including labeled detections [FADS and absorbance-activated droplet sorting (AADS)] and label-free detections [electrochemical-based droplet sorting (ECDS), mass-activated droplet sorting (MADS), Raman-activated droplet sorting (RADS), and nuclear magnetic resonance-based droplet sorting (NMR-DS)]. We highlight recent cases in the last 5 years in which novel enzymes or highly efficient variants are generated by microfluidic DE. In addition, the advantages and challenges of different sorting methods are briefly discussed to provide an outlook for future applications in enzyme DE.
Collapse
Affiliation(s)
- Xiaozhi Fu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yueying Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qiang Xu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaomeng Sun
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fanda Meng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
12
|
Yang J, Tu R, Yuan H, Wang Q, Zhu L. Recent advances in droplet microfluidics for enzyme and cell factory engineering. Crit Rev Biotechnol 2021; 41:1023-1045. [PMID: 33730939 DOI: 10.1080/07388551.2021.1898326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Enzymes and cell factories play essential roles in industrial biotechnology for the production of chemicals and fuels. The properties of natural enzymes and cells often cannot meet the requirements of different industrial processes in terms of cost-effectiveness and high durability. To rapidly improve their properties and performances, laboratory evolution equipped with high-throughput screening methods and facilities is commonly used to tailor the desired properties of enzymes and cell factories, addressing the challenges of achieving high titer and the yield of the target products at high/low temperatures or extreme pH, in unnatural environments or in the presence of unconventional media. Droplet microfluidic screening (DMFS) systems have demonstrated great potential for exploring vast genetic diversity in a high-throughput manner (>106/h) for laboratory evolution and have been increasingly used in recent years, contributing to the identification of extraordinary mutants. This review highlights the recent advances in concepts and methods of DMFS for library screening, including the key factors in droplet generation and manipulation, signal sources for sensitive detection and sorting, and a comprehensive summary of success stories of DMFS implementation for engineering enzymes and cell factories during the past decade.
Collapse
Affiliation(s)
- Jianhua Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ran Tu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Huiling Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Leilei Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
13
|
Method for Passive Droplet Sorting after Photo-Tagging. MICROMACHINES 2020; 11:mi11110964. [PMID: 33126559 PMCID: PMC7692103 DOI: 10.3390/mi11110964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
We present a method to photo-tag individual microfluidic droplets for latter selection by passive sorting. The use of a specific surfactant leads to the interfacial tension to be very sensitive to droplet pH. The photoexcitation of droplets containing a photoacid, pyranine, leads to a decrease in droplet pH. The concurrent increase in droplet interfacial tension enables the passive selection of irradiated droplets. The technique is used to select individual droplets within a droplet array as illuminated droplets remain in the wells while other droplets are eluted by the flow of the external oil. This method was used to select droplets in an array containing cells at a specific stage of apoptosis. The technique is also adaptable to continuous-flow sorting. By passing confined droplets over a microfabricated trench positioned diagonally in relation to the direction of flow, photo-tagged droplets were directed toward a different chip exit based on their lateral movement. The technique can be performed on a conventional fluorescence microscope and uncouples the observation and selection of droplets, thus enabling the selection on a large variety of signals, or based on qualitative user-defined features.
Collapse
|
14
|
Neun S, Zurek PJ, Kaminski TS, Hollfelder F. Ultrahigh throughput screening for enzyme function in droplets. Methods Enzymol 2020; 643:317-343. [PMID: 32896286 DOI: 10.1016/bs.mie.2020.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Water-in-oil droplets, made and handled in microfluidic devices, provide a new experimental format, in which ultrahigh throughput experiments can be conducted faster and with minimal reagent consumption. An increasing number of studies have emerged that applied this approach to directed evolution and metagenomic screening of enzyme catalysts. Here, we review the considerations necessary to implement robust workflows, based on choices of device design, detection modes, emulsion formulations and substrates, and scope out which enzyme classes have become amenable to droplet screening.
Collapse
Affiliation(s)
- Stefanie Neun
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Paul J Zurek
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
15
|
Payne EM, Holland-Moritz DA, Sun S, Kennedy RT. High-throughput screening by droplet microfluidics: perspective into key challenges and future prospects. LAB ON A CHIP 2020; 20:2247-2262. [PMID: 32500896 DOI: 10.1039/d0lc00347f] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In two decades of development, impressive strides have been made for automating basic laboratory operations in droplet-based microfluidics, allowing the emergence of a new form of high-throughput screening and experimentation in nanoliter to femtoliter volumes. Despite advancements in droplet storage, manipulation, and analysis, the field has not yet been widely adapted for many high-throughput screening (HTS) applications. Broad adoption and commercial development of these techniques require robust implementation of strategies for the stable storage, chemical containment, generation of libraries, sample tracking, and chemical analysis of these small samples. We discuss these challenges for implementing droplet HTS and highlight key strategies that have begun to address these concerns. Recent advances in the field leave us optimistic about the future prospects of this rapidly developing technology.
Collapse
Affiliation(s)
- Emory M Payne
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
16
|
Zielke C, Pan CW, Gutierrez Ramirez AJ, Feit C, Dobson C, Davidson C, Sandel B, Abbyad P. Microfluidic Platform for the Isolation of Cancer-Cell Subpopulations Based on Single-Cell Glycolysis. Anal Chem 2020; 92:6949-6957. [PMID: 32297730 DOI: 10.1021/acs.analchem.9b05738] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High rates of glycolysis in tumors have been associated with cancer metastasis, tumor recurrence, and poor outcomes. In this light, single cells that exhibit high glycolysis are specific targets for therapy. However, the study of these cells requires efficient tools for their isolation. We use a droplet microfluidic technique developed in our lab, Sorting by Interfacial Tension (SIFT), to isolate cancer cell subpopulations based on glycolysis without the use of labels or active sorting components. By controlling the flow conditions on chip, the threshold of selection can be modified, enabling the isolation of cells with different levels of glycolysis. Hypoxia in tumors, that can be simulated with treatment with CoCl2, leads to an increase in glycolysis, and more dangerous tumors. The device was used to enrich CoCl2 treated MDA-MB 231 breast cancer cells from an untreated population. It is also used to sort K562 human chronic myelogenous leukemia cells that have either been treated or untreated with 2-deoxy-d-glucose (2DG), a pharmaceutical that targets cell metabolism. The technique provides a facile and robust way of separating cells based on elevated glycolytic activity; a biomarker associated with cancer cell malignancy.
Collapse
Affiliation(s)
- Claudia Zielke
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Ching W Pan
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Adriana J Gutierrez Ramirez
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Cameron Feit
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Chandler Dobson
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Catherine Davidson
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Brody Sandel
- Department of Biology, Santa Clara University, Santa Clara, California 95053, United States
| | - Paul Abbyad
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| |
Collapse
|