1
|
Zhang Q, Ao Y, Liu J, Tang S, Tian F, Tian X, Luo X, Xie M. Red-emissive carbon dot as fluorescent probe for the sensitive detection of sunset yellow in foodstuffs. Food Chem 2024; 463:141477. [PMID: 39357312 DOI: 10.1016/j.foodchem.2024.141477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
The highly efficient red-emissive carbon dots (R-CDs) were synthesized from citric acid, polyethyleneimine, and benzil via a facile solvothermal process. The R-CDs displayed maximum fluorescence properties at excitation and emission wavelengths of 550 and 631 nm, respectively, which fall within the red wavelength range. Moreover, the R-CDs exhibited a high fluorescence quantum yield of 11.3 %, and this fluorescence was effectively quenched by Sunset Yellow (SY). Consequently, a novel fluorescent probe was developed for SY detection. This probe exhibited a linear range of 0.085-11.31 μg/mL and limit of detection of 0.026 μg/mL. The R-CDs were validated for SY quantification in various food samples, including carbonate beverages, powdered beverage, cider vinegar, fruit flavored drinks, chocolate, and hard candy samples, achieving recovery rates of 91.2-122 % and a relative standard deviation of 1.0-3.5 %. The synthesized R-CDs therefore show promise for application as a probe for the detection of SY in foods.
Collapse
Affiliation(s)
- Qianchun Zhang
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi 562400, PR China.
| | - Yongxia Ao
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi 562400, PR China
| | - Jiaxin Liu
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi 562400, PR China
| | - Shan Tang
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi 562400, PR China
| | - Fengling Tian
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi 562400, PR China.
| | - Xiaofang Tian
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi 562400, PR China
| | - Xinyu Luo
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi 562400, PR China
| | - Meijie Xie
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi 562400, PR China
| |
Collapse
|
2
|
Wang Q, He X, Mao J, Wang J, Wang L, Zhang Z, Li Y, Huang F, Zhao B, Chen G, He H. Carbon Dots: A Versatile Platform for Cu 2+ Detection, Anti-Counterfeiting, and Bioimaging. Molecules 2024; 29:4211. [PMID: 39275059 PMCID: PMC11397538 DOI: 10.3390/molecules29174211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Carbon dots (CDs) have garnered extensive interest in basic physical chemistry as well as in biomedical applications due to their low cost, good biocompatibility, and great aqueous solubility. However, the synthesis of multi-functional carbon dots has always been a challenge for researchers. Here, we synthesized novel CDs with a high quantum yield of 28.2% through the straightforward hydrothermal method using Diaminomaleonitrile and Boc-D-2, 3-diaminopropionic acid. The size, chemical functional group, and photophysical properties of the CDs were characterized by TEM, FTIR, XPS, UV, and fluorescence. It was demonstrated in this study that the prepared CDs have a high quantum yield, excellent photostability, and low cytotoxicity. Regarding the highly water-soluble property of CDs, they were proven to possess selective and sensitive behavior against Cu2+ ions (linear range = 0-9 μM and limit of detection = 1.34 μM). Moreover, the CDs were utilized in fluorescent ink in anti-counterfeiting measures. Because of their low cytotoxicity and good biocompatibility, the CDs were also successfully utilized in cell imaging. Therefore, the as-prepared CDs have great potential in fluorescence sensing, anti-counterfeiting, and bioimaging.
Collapse
Affiliation(s)
- Qian Wang
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Xinyi He
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Jian Mao
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Junxia Wang
- PetroChina Changqing Petrochemical Company, Xi'an 710032, China
| | - Liangliang Wang
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Zhongchi Zhang
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Yongfei Li
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Fenglin Huang
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Bin Zhao
- Department of Statistics, North Dakota State University, Fargo, North Dakota, ND 58102, USA
| | - Gang Chen
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
3
|
Heng C, He B, Wang L. A Dual-mode Ratiometric Fluorometric and Colorimetric Platform Based on Nitrogen-doped Carbon Dots and o-phenylenediamine for the Detection of Nitrite. J Fluoresc 2024; 34:2157-2167. [PMID: 37713014 DOI: 10.1007/s10895-023-03432-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
In this study, a dual-mode ratiometric fluorometric and colorimetric platform for the determination of nitrite in pickles was proposed by exquisitely employing the fact that non-fluorescent o-Phenylenediamine (OPD) was oxidized by nitrite under acidic conditions to form fluorescent 2,3-diaminophenazine (DAP) (Em = 575), which meanwhile quench the fluorescent nitrogen-doped carbon dots (N-CDs) at 455 nm, the ratio of fluorescence intensity of DAP to N-CDs (F575/F455) changed with the increase of nitrite accompanied by visible color changes. Thus, nitrite can be quantitatively detected within a wide linear range (10-500 µM) with a low detection limit of 0.45 µM due to the high quantum yield of 39.7% of N-CDs. In addition, the colour of the N-CDs/OPD system changed from transparent to yellow when the nitrite was introduced, enabling colorimetric and on-site visual detection. The detection limit of the colorimetric method was 3.03 µM with a linear range of 10-500 µM. The proposed ratiometric fluorometric method has pleasant selectivity and good immunity to interference.
Collapse
Affiliation(s)
- Chendi Heng
- Department of Applied Chemistry, College of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha University Town, No.18, Xuezheng St, Hangzhou, 310018, China
| | - Bowen He
- Department of Applied Chemistry, College of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha University Town, No.18, Xuezheng St, Hangzhou, 310018, China
| | - Li Wang
- Department of Applied Chemistry, College of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha University Town, No.18, Xuezheng St, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Wu JY, Huang YC. Low-energy-consumption rapid synthesis of carbon dots at room temperature from combusted food waste with versatile analytical applications. Food Chem 2024; 446:138908. [PMID: 38471413 DOI: 10.1016/j.foodchem.2024.138908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
In this study, we developed a low-energy-consumption green method for synthesising carbon dots (CD) at room temperature using watermelon rind as the carbon source through a cutting process based on NaCl crystals. The synthesis process was rapid (<5 min) and facile. The synthesised CD were characterised using photoluminescence (PL) spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy. The results revealed that the synthesised dots exhibited robust adsorption, a spherical shape and a uniform size distribution. The PL intensity of the quantum dots decrease due to the temperature rising, metal ions and ponceau 4R added. In contrast with PH, PL intensity increase, so these CD can serve as multifunctional sensing materials. Overall, this study presents an environmentally friendly method for the rapid synthesis of CD that are suitable for temperature, pH, metal ion and food sensing applications.
Collapse
Affiliation(s)
- Jun Yi Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan, ROC.
| | - Yi Chen Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan, ROC.
| |
Collapse
|
5
|
Chen S, Li R, Zhao B, Fang M, Tian Y, Lei Y, Li Y, Geng L. Multifunctional N, Fe-doped carbon dots with peroxidase-like activity for the determination of H 2O 2 and ascorbic acid and cell protection against oxidation. Mikrochim Acta 2024; 191:384. [PMID: 38861028 DOI: 10.1007/s00604-024-06456-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Multifunctional N, Fe-doped carbon dots (N, Fe-CDs) were synthesized by the one-step hydrothermal method using ferric ammonium citrate and dicyandiamide as raw materials. The N, Fe-CDs exhibited peroxidase-like (POD) activity by catalyzing the oxidization of 3,3',5,5'-tetramethylbenzidine (TMB) to the green oxidation state ox-TMB in the presence of hydrogen peroxide (H2O2). Subsequently, based on the POD activity of N, Fe-CDs, an efficient and sensitive colorimetric method for the detection of H2O2 and ascorbic acid (AA) was established with a limit of detection of 0.40 µM and 2.05 µM. The proposed detection method has been successfully applied to detect AA in fruit juice, vitamin C tablets, and human serum samples and has exhibited excellent application prospects in biotechnology and food fields. Furthermore, N, Fe-CDs also showed a protective effect on the cell damage caused by H2O2 and could be used as an antioxidant agent.
Collapse
Affiliation(s)
- Shenna Chen
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Ronghui Li
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Bo Zhao
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Mei Fang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Yun Tian
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Yuhua Lei
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Yayong Li
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, 050000, P. R. China
| | - Lina Geng
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| |
Collapse
|
6
|
Al-Mashriqi HS, Sanga P, Chen J, Li X, Xiao J, Li Y, Qiu H. Green-emitting carbon dots as a "turn on" fluorescence bio-probe for highly sensitive and selective detection of lipase in human serum. Anal Bioanal Chem 2024; 416:971-981. [PMID: 38082135 DOI: 10.1007/s00216-023-05086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024]
Abstract
Enzyme activity assays play a crucial role in numerous fields, including biotechnology, the food industry, and clinical diagnostics. Lipases are particularly important enzymes due to their widespread use in lipid metabolism and esterification reactions. Here, we present a pioneering method for the sensitive and selective determination of lipase activity using green carbon dots (G-CDs) for first time. G-CDs are a fascinating class of carbon nanomaterials with unique optical properties and biocompatibility, making them ideal candidates for enzyme activity assays. This approach eliminates the need for traditional fluorophores or chromogenic substrates, reducing costs, fast response time (1 min), and environmental impact with a quantum yield (QY) of 7.42%. As designed, the G-CDs fluorescent probe turn-on demonstrated a reliable linear detection range from 0 to 9 mg/mL under ideal conditions, with detection limit of 0.01 mg/mL and limit of quantification (LOQ) of 0.045 mg/mL, respectively. Furthermore, the G-CDs system was thoroughly evaluated in human serum samples, showing recoveries ranging from 100.0 to 105.0%. These findings highlight the promising applicability of the G-CDs probe for lipase detection, yielding highly favorable results.
Collapse
Affiliation(s)
- Haitham Saad Al-Mashriqi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Pascaline Sanga
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi, 830000, China.
| | - Xin Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Xiao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Yan Li
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi, 830000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
7
|
Chen J, Mao C, Ye H, Gao X, Zhao L. Natural biomass carbon Dots-Based fluorescence sensor for high precision detection of vitamin B12 in serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123459. [PMID: 37827002 DOI: 10.1016/j.saa.2023.123459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023]
Abstract
Vitamin B12(Vit B12) is an essential micronutrient for body growth, and abnormal levels of Vit B12 in the human body are closely associated with the prediction of certain diseases. Hence, a rapid, sensitive, and environment-friendly approach for Vit B12 detection was set up. Herein, the Bird's nest carbon dots (B-CDs) are synthesized by using a bird's nest and distilled water as precursors. One-step hydrothermal synthesis has created B-CDs without toxic ingredients or surface chemical modifications. The prepared B-CDs exhibited outstanding characteristics including excellent water solubility, brilliant fluorescence performance great biocompatibility, and fine stability in a broad pH range of 3.0-11.0 and high ionic strength solution. The experiment revealed that the fluorescence of the reaction system showed a regular decrease after the interaction of B-CDs with Vit B12. Additionally, there was an excellent linear relationship between the F/F0 of B-CDs and the concentration of Vit B12. The linear range was 0 ∼ 100 µM, R2 was 0.9929, and the detection limit was 0.24 µM. Finally, the proposed method successfully detected Vit B12 in human serum samples with recoveries of 96.2 %-100.3 %, showing broad clinical prospects.
Collapse
Affiliation(s)
- Jueling Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Chunling Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Heng Ye
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xun Gao
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang222001,China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
8
|
Guo Y, Wang R, Wei C, Li Y, Fang T, Tao T. Carbon quantum dots for fluorescent detection of nitrite: A review. Food Chem 2023; 415:135749. [PMID: 36848836 DOI: 10.1016/j.foodchem.2023.135749] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
NO2- is commonly found in foods and the environment, and excessive intake of NO2- poses serious hazards to human health. Thus, rapid and accurate assay of NO2- is of considerable significance. Traditional instrumental approaches for detection of NO2- faced with limitations of expensive instruments and complicated operations. Current gold standards for sensing NO2- are Griess assay and 2,3-diaminonaphthalene assay, which suffer from slow detection kinetics and bad water solubility. The newly emerged carbon quantum dots (CQDs) exhibit integrated merits including easy fabrication, low-cost, high quantum yield, excellent photostability, tunable emission behavior, good water solubility and low toxicity, which make CQDs be widely applied to fluorescent assay of NO2-. In this review, synthetic strategies of CQDs are briefly presented. Advances of CQDs for fluorescent detection of NO2- are systematically highlighted. Lastly, the challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Ruiqing Wang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chengwei Wei
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yijin Li
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tiancheng Fang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tao Tao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
9
|
Yang Y, Wei S, Wang J, Li J, Tang J, Aaron AA, Cai Q, Wang N, Li Z. Highly sensitive and ratiometric detection of nitrite in food based on upconversion-carbon dots nanosensor. Anal Chim Acta 2023; 1263:341245. [PMID: 37225331 DOI: 10.1016/j.aca.2023.341245] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
Nitrite (NO2-) is extensively found in the daily dietary environment. However, consuming too much NO2- can pose serious health risks. Thus, we designed a NO2--activated ratiometric upconversion luminescence (UCL) nanosensor which could realize NO2- detection via the inner filter effect (IFE) between NO2--sensitive carbon dots (CDs) and upconversion nanoparticles (UCNPs). Due to the exceptional optical properties of UCNPs and the remarkable selectivity of CDs, the UCL nanosensor exhibited a good response to NO2-. By taking advantage of NIR excitation and ratiometric detection signal, the UCL nanosensor could eliminate the autofluorescence thereby increasing the detection accuracy effectively. Additionally, the UCL nanosensor proved successful in detecting NO2- quantitatively in actual samples. The UCL nanosensor provides a simple as well as sensitive sensing strategy for NO2- detection and analysis, which is anticipated to extend the utilization of upconversion detection in food safety.
Collapse
Affiliation(s)
- Yaqing Yang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Simin Wei
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jialin Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Junjie Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jinlu Tang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Albert Aryee Aaron
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Qiyong Cai
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Ningning Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China
| |
Collapse
|
10
|
La Ferla B, Vercelli B. Red-Emitting Carbon Quantum Dots for Biomedical Applications: Synthesis and Purification Issues of the Hydrothermal Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101635. [PMID: 37242053 DOI: 10.3390/nano13101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
The possibility of performing the synthesis of red-emitting carbon quantum dots (r-CDs), in a well-controllable, large scale and environmentally sustainable way is undoubtedly of fundamental importance, as it will pave the way to their employment in advanced medical large-scale applications. Knowledge of the difficulties involved in producing r-CDs with reproducible optical, structural, and chemical characteristics, might help in their large-scale production, making the process standardizable. In this work, we present an experimental study, also supported by results reported in the literature, on the issues encountered during the synthesis and post-synthesis purification treatments of r-CDS. We focused on the hydrothermal approach as it was found to be more suitable for future large-scale industrial applications. We propose three synthetic strategies and observed that employing p-phenylenediamine (p-PDA), as a precursor, the synthetic process showed low efficiency with low yields of r-CDs, large amounts of unreacted precursor, and reaction intermediates. Changing reaction parameters does not improve performance. The r-CDs obtained using citric acid (CA) and urea, as precursors, resulted to be sensitive to pH and difficult to separate from the reaction mixture. Furthermore, the proposed synthetic strategies show that the hydrothermal preparation of r-CDS requires approaches that are not fully sustainable.
Collapse
Affiliation(s)
- Barbara La Ferla
- Dipartimento di Biotecnologie e di Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Barbara Vercelli
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, CNR-ICMATE, Via Cozzi, 53, 20125 Milano, Italy
| |
Collapse
|
11
|
Fu T, Wan Y, Jin F, Liu B, Wang J, Yin X, Fu X, Tian B, Feng Z. Efficient imaging based on P - and N-codoped carbon dots for tracking division and viability assessment of lactic acid bacteria. Colloids Surf B Biointerfaces 2023; 223:113155. [PMID: 36724563 DOI: 10.1016/j.colsurfb.2023.113155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Assessment of lactic acid bacteria (LAB) activity plays a key role in the fermented food industry. Fluorescence imaging method based on dye is facile to detect LAB viability. However, it is difficult to obtain stable fluorescence, non-toxic and low-cost dyes. In this study, we prepare P- and N-doped carbon dots (PN-CDs) via microwave-assisted hydrothermal synthesis. The properties of high quantum yield (60.36%) and excitation dependence allowed for multicolor imaging of LAB (Lactobacillus plantarum [L.p] and Streptococcus thermophilus [S.t]). The abundant functional groups and positive charges (+2.34 mV) on the surface of PN-CDs facilitated their quickly integrated into cell wall of live LAB with obvious fluorescence or into dead cells. As a result, PN-CDs can not only be used to rapidly and efficiently monitor bacterial viability (one minute), but can also be used to visualize LAB division using fluorescence imaging. Importantly, the PN-CDs have potential to rapidly detect LAB activity in LAB-fermented juices.
Collapse
Affiliation(s)
- Tianxin Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Wan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Furong Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Buwei Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jindi Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyue Yin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiangbo Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bo Tian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhibiao Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Zhang GQ, Shi YH, Wu W, Zhao Y, Xu ZH. A fluorescent carbon dots synthesized at room temperature for automatic determination of nitrite in Sichuan pickles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122025. [PMID: 36308829 DOI: 10.1016/j.saa.2022.122025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
In this paper, highly fluorescent carbon dots were synthesized from sodium ascorbate and polyethyleneimine at room temperature (R-CDs). The proposed green synthesis method was energy-saving, environmentally friendly and easy online. R-CDs exhibit an optimal emission peak of 490 nm under excitation at 380 nm with a quantum yield of 32 %. R-CDs morphology, composition, and properties were characterized using TEM, FTIR, XPS, UV-vis and fluorescence spectroscopy. The study revealed that nitrite quenched the fluorescence of R-CDs under acidic conditions. Subsequently, this discovered reaction of R-CDs and nitrite was combined with flow-injection technology, and a simple, precise and automatic fluorescence strategy for nitrite determination was accomplished. The response to nitrite was linear in 5-300 μg·L-1 concentration range and the limit of detection was 2.85 μg·L-1 (3.3 S/k). This method was applied to nitrite determination in Sichuan pickles during the pickling process and results were consistent with the standard method, demonstrating its feasibility in practical applications.
Collapse
Affiliation(s)
- Guo-Qi Zhang
- Department of Chemisty, School of Science, Xihua University, Chengdu 610039, PR China; School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Yu-Han Shi
- Department of Chemisty, School of Science, Xihua University, Chengdu 610039, PR China
| | - Wei Wu
- Department of Chemisty, School of Science, Xihua University, Chengdu 610039, PR China
| | - Yang Zhao
- The College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Shenzhen Changlong Technology Co Ltd., Longgang District, Shenzhen 518117, PR China
| | - Zhi-Hong Xu
- Department of Chemisty, School of Science, Xihua University, Chengdu 610039, PR China.
| |
Collapse
|
13
|
Wang B, Guo L, Yan X, Hou F, Zhong L, Xu H. Dual-mode detection sensor based on nitrogen-doped carbon dots from pine needles for the determination of Fe 3+ and folic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121891. [PMID: 36152507 DOI: 10.1016/j.saa.2022.121891] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
In this study, nitrogen-doped carbon dots (N-CDs) from pine needles were obtained by one-step hydrothermal synthesis without any chemical reagents. The fluorescence quenching and absorbance enhancement of N-CDs occurred when Fe3+ and folic acid (FA) were added. Based on this, the dual-mode detection sensor by fluorescence and ultraviolet-visible (UV-Vis) spectrophotometry for the determination of Fe3+ and FA was established. Detected by the dual-mode detection sensor under the optimized condition, the linear range of Fe3+ was 0.1-540 μM and FA was 0.1-165 μM. At the same time, the two inputs "NOR" and "OR" logic gates are constructed successfully according to the dual-mode sensor signals. The proposed dual-mode detection sensor is simple, efficient and stable; it can be applied to determinate Fe3+ and FA in practical samples successfully and the results are satisfactory.
Collapse
Affiliation(s)
- Bingying Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Lijun Guo
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Xiangtong Yan
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Faju Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China.
| | - Linlin Zhong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Hui Xu
- Department of Material Chemistry, Huzhou College, Huzhou 313000, PR China.
| |
Collapse
|
14
|
Sahu Y, Hashmi A, Patel R, Singh AK, Susan MABH, Carabineiro SAC. Potential Development of N-Doped Carbon Dots and Metal-Oxide Carbon Dot Composites for Chemical and Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3434. [PMID: 36234561 PMCID: PMC9565249 DOI: 10.3390/nano12193434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 05/31/2023]
Abstract
Among carbon-based nanomaterials, carbon dots (CDs) have received a surge of interest in recent years due to their attractive features such as tunable photoluminescence, cost effectiveness, nontoxic renewable resources, quick and direct reactions, chemical and superior water solubility, good cell-membrane permeability, and simple operation. CDs and their composites have a large potential for sensing contaminants present in physical systems such as water resources as well as biological systems. Tuning the properties of CDs is a very important subject. This review discusses in detail heteroatom doping (N-doped CDs, N-CDs) and the formation of metal-based CD nanocomposites using a combination of matrices, such as metals and metal oxides. The properties of N-CDs and metal-based CDs nanocomposites, their syntheses, and applications in both chemical sensing and biosensing are reviewed.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Ayesha Hashmi
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Rajmani Patel
- Hemchand Yadav University, Durg 491001, Chhattisgarh, India
| | - Ajaya K. Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | | | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
15
|
Carneiro SV, Oliveira JJP, Rodrigues VSF, Fechine LMUD, Antunes RA, Neto MLA, de Moura TA, César CL, de Carvalho HF, Paschoal AR, Freire RM, Fechine PBA. Doped Carbon Quantum Dots/PVA Nanocomposite as a Platform to Sense Nitrite Ions in Meat. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43597-43611. [PMID: 36103380 DOI: 10.1021/acsami.2c09197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A sensor device based on doped-carbon quantum dots is proposed herein for detection of nitrite in meat products by fluorescence quenching. For the sensing platform, carbon quantum dots doped with boron and functionalized with nitrogen (B,N-Cdot) were synthesized with an excellent 44.3% quantum yield via a one-step hydrothermal route using citric acid, boric acid, and branched polyethylenimine as carbon, boron, and nitrogen sources, respectively. After investigation of their chemical structure and fluorescent properties, the B,N-Cdot at aqueous suspensions showed high selectivity for NO2- in a linear range from 20 to 50 mmol L-1 under optimum conditions at pH 7.4 and a 340 nm excitation. Furthermore, the prepared B,N-Cdots successfully detected NO2- in a real meat sample with recovery of 91.4-104% within the analyzed range. In this manner, a B,N-Cdot/PVA nanocomposite film with blue emission under excitation at 360 nm was prepared, and a first assay detection of NO2- in meat products was tested using a smartphone application. The potential application of the newly developed sensing device containing a highly fluorescent probe should aid in the development of a rapid and inexpensive strategy for NO2- detection.
Collapse
Affiliation(s)
- Samuel Veloso Carneiro
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - José Joelson Pires Oliveira
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Vivian Stephanie Ferreira Rodrigues
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Lillian Maria Uchoa Dutra Fechine
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Renato Altobelli Antunes
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, CEP 09210-580 Santo André, São Paulo, Brazil
| | - Manoel Lourenço Alves Neto
- Department of Physics, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
- National Institute of Photonics Applied to Cell Biology, State University of Campinas, IFGW - Unicamp Cid. Universitária, 13083863 Campinas, São Paulo, Brazil
| | - Thiago Alves de Moura
- Department of Physics, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Carlos Lenz César
- Department of Physics, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
- National Institute of Photonics Applied to Cell Biology, State University of Campinas, IFGW - Unicamp Cid. Universitária, 13083863 Campinas, São Paulo, Brazil
| | - Hernandes Faustino de Carvalho
- National Institute of Photonics Applied to Cell Biology, State University of Campinas, IFGW - Unicamp Cid. Universitária, 13083863 Campinas, São Paulo, Brazil
- State University of Campinas, Institute of Biology, Department of Cell Biology, Department of Cell Biology - IB - CP, 6109 UNICAMP Cid. Universitária, 13083863 Campinas, São Paulo, Brazil
| | - Alexandre Rocha Paschoal
- Department of Physics, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Rafael Melo Freire
- Laboratory of Pesticide Residues and Environment, Instituto de Investigaciones Agropecuarias, INIA Centro Regional La Platina, Santiago 8820000, Chile
| | - Pierre Basílio Almeida Fechine
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| |
Collapse
|
16
|
Cheng S, Wang X, Yan X, Xiao Y, Zhang Y. Simple synthesis of green luminescent N-doped carbon dots for malachite green determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2616-2622. [PMID: 35734888 DOI: 10.1039/d2ay00682k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, novel N-doped carbon dots (N-CDs) were prepared from fuchsin basic and ethylenediamine tetraacetic acid-disodium salt (EDTA-2Na). The N-CDs were characterized by a series of techniques and it was found that the average particle size was 2.75 nm, and the surface had functional groups such as -NH2 and -COOH. Interestingly, N-CDs exhibited a fast and sensitive response to malachite green (MG), which may be due to the inner filter effect (IFE). A method for the detection of MG in water samples from Jinyang Lake was developed using N-CDs, with a limit of detection (LOD) as low as 27.28 nM. Furthermore, N-CDs were utilized in the biological imaging of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sijie Cheng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Xuerong Yan
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yanteng Xiao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
17
|
Zhang Q, Tian F, Zhou Q, Zhang C, Tang S, Jiang L, Du S. Targeted ginkgo kernel biomass precursor using eco-friendly synthesis of efficient carbon quantum dots for detection of trace nitrite ions and cell imaging. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Facile synthesis of yellowish-green emitting carbon quantum dots and their applications for phoxim sensing and cellular imaging. Anal Chim Acta 2022; 1206:338685. [DOI: 10.1016/j.aca.2021.338685] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022]
|
19
|
Tao H, Zhang Z, Cao Q, Li L, Xu S, Jiang C, Li Y, Liu Y. Ratiometric fluorescent sensors for nitrite detection in the environment based on carbon dot/Rhodamine B systems. RSC Adv 2022; 12:12655-12662. [PMID: 35480346 PMCID: PMC9039988 DOI: 10.1039/d2ra00973k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
A novel carbon dot/Rhodamine B-based ratiometric fluorescent probe was developed for a highly sensitivity and selective detection of nitrite (NO2−). The probe showed colour changes from blue to orange under ultraviolet light in response to NO2− with a detection limit as low as 67 nM in the range of 0 to 40 μM. A ratiometric fluorescent test paper was successfully prepared using the probe solution, which demonstrated its feasibility towards a rapid and semi-quantitative detection of NO2− in real samples. A visual ratiometric fluorescent sensor based on blue carbon dot/Rhodamine B is used to selectively detect NO2− in the environment.![]()
Collapse
Affiliation(s)
- Huihui Tao
- School of Resources and Environmental Engineering, Anhui University Hefei 230601 Anhui Province P. R. China .,Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Zhao Zhang
- School of Resources and Environmental Engineering, Anhui University Hefei 230601 Anhui Province P. R. China .,Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Qiao Cao
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Lingfei Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University Hefei 230601 Anhui Province P. R. China
| | - Yingying Liu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 P. R. China
| |
Collapse
|
20
|
M P A, Pardhiya S, Rajamani P. Carbon Dots: An Excellent Fluorescent Probe for Contaminant Sensing and Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105579. [PMID: 35001502 DOI: 10.1002/smll.202105579] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Pollution-induced degradation of the environment is a serious problem for both developing and developed countries. Existing remediation methods are restricted, necessitating the development of novel remediation technologies. Nanomaterials with unique characteristics have recently been developed for remediation. Quantum dots (QDs) are semiconductor nanoparticles (1-10 nm) with optical and electrical characteristics that differ from bigger particles owing to quantum mechanics, making them intriguing for sensing and remediation applications. Carbon dots (CDs) offer better characteristics than typical QDs, such as, CdSe QDs in terms of contaminant sensing and remediation. Non-toxicity, chemical inertness, photo-induced electron transfer, good biocompatibility, and adjustable photoluminescence behavior are all characteristics of CDs. CDs are frequently made from sustainable raw materials as they are cost-effective, environmentally compactable, and excellent in reducing waste generation. The goal of this review article is to briefly describe CDs fabrication methods, to deeply investigate the criteria and properties of CDs that make them suitable for sensing and remediation of contaminants, and also to highlight recent advances in their use in sensing and remediation of contaminants.
Collapse
Affiliation(s)
- Ajith M P
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
21
|
Sandwich Fluorescence Detection of Foodborne Pathogen Staphylococcus aureus with CD Fluorescence Signal Amplification in Food Samples. Foods 2022; 11:foods11070945. [PMID: 35407032 PMCID: PMC8997861 DOI: 10.3390/foods11070945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
Timely detection of Staphylococcus aureus (S. aureus) is critical because it can multiply to disease−causing levels in a matter of hours. Herein, a simple and sensitive DNA tetrahedral (Td) fluorescence signal amplifier with blue carbon quantum dots (bCDs) was prepared for sandwich detection of S. aureus. bCD was modified at the apex of Td, and an aptamer on Td was used to accurately identify and “adsorb” the amplifier to the surface of S. aureus. Atomic force microscopy (AFM) demonstrates the successful preparation of this signal amplifier. The fluorescence intensity emitted in this strategy increased 4.72 times. The strategy showed a stronger fluorescence intensity change, sensitivity (linear range of 7.22 × 100–1.44 × 109 CFU/mL with a LOD of 4 CFU/mL), and selectivity. The recovery rate in qualified pasteurized milk and drinking water samples was 96.54% to 104.72%. Compared with simple aptamer sandwich detection, these fluorescence signal amplifiers have improved fluorescence detection of S. aureus. Additionally, this fluorescent signal amplification strategy may be applied to the detection of other food pathogens or environmental microorganisms in the future.
Collapse
|
22
|
Wang L, Jana J, Chung JS, Choi WM, Hur SH. Designing an intriguingly fluorescent N, B-doped carbon dots based fluorescent probe for selective detection of NO 2- ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120657. [PMID: 34862138 DOI: 10.1016/j.saa.2021.120657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/11/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Low-cost nitrogen and boron-doped carbon nanodots (CPAP-CDs) with a high quantum yield (64.07%) were synthesized through a facile hydrothermal treatment. The obtained CPAP-CDs exhibited wide absorption, strong fluorescence, and pH-dependent behavior. The high fluorescence of CPAP-CDs was quenching in the presence of the nitrite ion in a concentration-dependent manner. The detection limit was as low as 6.6 nM with a wide linear detection range of 2 μM - 1 mM. Diazotization between the NO2- ion and CPAP-CDs resulted in the aggregation of CPAP-CDs and aggregation-induced emission quenching. The as-designed method was tested further with different water samples, such as tap, drinking, and seawater.
Collapse
Affiliation(s)
- Linlin Wang
- School of Chemical Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 44610, Republic of Korea
| | - Jayasmita Jana
- School of Chemical Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 44610, Republic of Korea
| | - Jin Suk Chung
- School of Chemical Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 44610, Republic of Korea
| | - Won Mook Choi
- School of Chemical Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 44610, Republic of Korea.
| | - Seung Hyun Hur
- School of Chemical Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 44610, Republic of Korea.
| |
Collapse
|
23
|
Feng P, Jia J, Peng S, Shuai Y, Pan H, Bai X, Shuai C. Transcrystalline growth of PLLA on carbon fiber grafted with nano-SiO 2 towards boosting interfacial bonding in bone scaffold. Biomater Res 2022; 26:2. [PMID: 35057863 PMCID: PMC8772069 DOI: 10.1186/s40824-021-00248-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The reinforcement effect of fiber-reinforced polymer composites is usually limited because of the poor interfacial interaction between fiber and polymer, though fiber reinforcement is regarded as an effective method to enhance the mechanical properties of polymer. METHODS In this study, nano-SiO2 particles grafted by 3-Glycidoxypropyltrimethoxysilane (KH560) were introduced onto the surface of 3-Aminopropyltriethoxysilane (KH550) modified carbon fiber (CF) by a self-assembly strategy to improve the interfacial bonding between CF and biopolymer poly (lactic acid) (PLLA). RESULTS The results indicated that PLLA chains preferred to anchor at the surface of nano-SiO2 particles and then formed high order crystalline structures. Subsequently, PLLA spherulites could epitaxially grow on the surface of functionalized CF, forming a transcrystalline structure at the CF/PLLA interface. Meanwhile, the nano-SiO2 particles were fixed in the transcrystalline structure, which induced a stronger mechanical locking effect between CF and PLLA matrix. The results of tensile experiments indicated that the PLLA/CF-SiO2 scaffold with a ratio of CF to SiO2 of 9:3 possessed the optimal strength and modulus of 10.11 MPa and 1.18 GPa, respectively. In addition, in vitro tests including cell adhesion and fluorescence indicated that the scaffold had no toxicity and could provide a suitable microenvironment for the growth and proliferation of cell. CONCLUSION In short, the PLLA/CF-SiO2 scaffold with good mechanical properties and cytocompatibility had great potential in the application of bone tissue engineering.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Jiye Jia
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Yang Shuai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Pan
- Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410013, China
| | - Xinna Bai
- Department of Conservative Dentistry & Endodontics, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410013, China.
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China.
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, 330013, China.
| |
Collapse
|
24
|
Zhu M, He Z, Guo L, Zhang R, Anadebe VC, Obot IB, Zheng X. Corrosion inhibition of eco-friendly nitrogen-doped carbon dots for carbon steel in acidic media: Performance and mechanism investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117583] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Wang Y, Liu Y, Zhou J, Yue J, Xu M, An B, Ma C, Li W, Liu S. Hydrothermal synthesis of nitrogen-doped carbon quantum dots from lignin for formaldehyde determination. RSC Adv 2021; 11:29178-29185. [PMID: 35479568 PMCID: PMC9040886 DOI: 10.1039/d1ra05370a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023] Open
Abstract
This work assessed the fabrication of nitrogen-doped CQDs (NCQDs) from alkali lignin (AL) obtained from spruce, representing a green, low-cost biomass generated by the pulp and biorefinery industries. The AL was found to retain its original lignin skeleton and could be used to produce NCQDs with excellent photoluminescence properties by one-pot hydrothermal treatment of AL and m-phenylenediamine. These NCQDs exhibited blue-green fluorescence (FL) with excitation/emission of 390/490 nm under optimal conditions. The NCQDs showed pH and excitation wavelength-dependent FL emission behaviors. On the basis of the exceptional selective response of these NCQDs to specific solvents, we developed a FL probe for the detection of formaldehyde (FA). The FL intensity of NCQDs was found to be directly proportional to the concentration of FA in the range of 0.05 to 2 mM (R2 = 0.993), with a detection limit of 4.64 µM (based on 3σ/K). A composite film comprising NCQDs with poly(vinyl alcohol) was found to act as a sensor with a good FL response to FA gas. When exposed to gaseous FA, this film exhibited increased FL intensity and transitioned from blue-green to blue. A mechanism is proposed in which the NCQDs react rapidly with FA to generate Schiff bases that result in enhanced FL emission and the observed blue shift in color. A hydrothermal method for synthesis of lignin-based N-doped carbon quantum dots (NCQDs) proposes a mechanism for rapid reaction of NCQDs with formaldehyde to generate Schiff bases, which leads to enhanced FL emission and the observed blue shift.![]()
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Yushan Liu
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Jin Zhou
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Jinquan Yue
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Mingcong Xu
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Bang An
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Wei Li
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science &Technology, Northeast Forestry University, Ministry of Education Harbin 150040 P. R. China
| |
Collapse
|
26
|
Yu C, Qin D, Jiang X, Zheng X, Deng B. Facile synthesis of bright yellow fluorescent nitrogen-doped carbon quantum dots and their applications to an off–on probe for highly sensitive detection of methimazole. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Guo Z, Liu X, Yu H, Hou F, Gao S, Zhong L, Xu H, Yu Y, Meng J, Wang R. Continuous response fluorescence sensor for three small molecules based on nitrogen-doped carbon quantum dots from prunus lannesiana and their logic gate operation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119774. [PMID: 33872952 DOI: 10.1016/j.saa.2021.119774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
In this study, an environmentally friendly and water-soluble nitrogen-doped carbon quantum dots (N-CQDs) with quantum yield (QY) of 8.59% were prepared by one-step hydrothermal synthesis without any chemical reagent using the leaves of prunus lannesiana as precursors. The properties and quality of N-CQDs were investigated by Ultraviolet-visible absorption spectroscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential, high-resolution transmission electron microscopy and fluorescence spectroscopy. The fluorescence of the prepared N-CQDs can be quenched by Fe3+ through the synergistic effect of the formation of non-fluorescent complex and internal filtration effect (IFE) between Fe3+ and N-CQDs. And the quenched fluorescence can be "turned on" after adding ascorbic acid (AA) because Fe3+ can be released from the surface of N-CQDs through the redox reaction between AA and Fe3+. While the restored fluorescence can be "turned off" again by hydrogen peroxide (H2O2) due to the re-oxidation of Fe2+ to Fe3+. So, the three inputs "logic gate" is achieved and the "on-off-on-off" continuous response fluorescence sensor is formed, which can be applied for the continuous detection of Fe3+, AA and H2O2 with the linear range of 40-260 μM, 10-200 μM and 40-140 μM, respectively. Finally, the sensor was successfully applied to determine Fe3+, AA and H2O2 in real samples with the satisfactory recoveries (95.35%-104.10%) and repeatability (relative standard deviation (RSD) ≤ 1.68%). The continuous response fluorescence sensor prepared by simple green synthesis route has the characteristics of fast response, acceptable sensitivity and good selectivity.
Collapse
Affiliation(s)
- Zicheng Guo
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xuerui Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Haiyu Yu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Faju Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Shanmin Gao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Linlin Zhong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hui Xu
- Qiuzhen College, Huzhou University, Huzhou 313000, China.
| | - Yang Yu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Junli Meng
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Ruru Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
28
|
Shan F, Xia H, Xie X, Fu L, Yang H, Zhou Q, Zhang Y, Wang Z, Yu X. Novel N-doped carbon dots prepared via citric acid and benzoylurea by green synthesis for high selectivity Fe(III) sensing and imaging in living cells. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Rapid Response and High Selectivity for Reactive Nitrogen Species Based on Carbon Quantum Dots Fluorescent Probes. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Ng HM, Lim G, Leo C. Comparison between hydrothermal and microwave-assisted synthesis of carbon dots from biowaste and chemical for heavy metal detection: A review. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106116] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Sun L, Zhang H, Wang Y, Xiong Z, Zhao X, Xia Y. Chitosan-derived N-doped carbon dots for fluorescent determination of nitrite and bacteria imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119468. [PMID: 33508683 DOI: 10.1016/j.saa.2021.119468] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
N-doped carbon dots (N-CDs) were successfully synthesized via simple one-step hydrothermal carbonization using chitosan as carbon and nitrogen sources. The obtained N-CDs contained a variety of functional groups on the NCDs surface, and exhibited excitation-independent behavior and strong blue fluorescence with a relatively higher fluorescence quantum yield (QY = 35%). It also presented excellent water solubility, resistance to pH change, high ion strength and UV irradiation. Since the fluorescence of the N-CDs could be selectively quenched by NO2-, they could act as a fluorescent sensor for the determination of NO2- in real tap water and lake water samples with a wide linear range (1-500 μM) and low detection limit (0.1 μM). They could also be used for bacterial imaging as multicolor fluorescent probes. The results indicated that N-CDs could be a promising candidate material for biomedical applications.
Collapse
Affiliation(s)
- Lili Sun
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Hongmei Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Yesheng Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Zhong Xiong
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Xihui Zhao
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China.
| | - Yanzhi Xia
- State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| |
Collapse
|
32
|
Deng H, Wu Z, Zhao Z, Zhu L, Tang M, Yu R, Wang J. Dual-channel fluorescent signal readout strategy for cysteine sensing. Talanta 2021; 231:122331. [PMID: 33965012 DOI: 10.1016/j.talanta.2021.122331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/24/2022]
Abstract
Cysteine (Cys) is a biological thiol. Aberrant changes in thiol levels are associated with the development and pathogenesis of various diseases, including liver damage, Alzheimer's disease, weakness, and cardiovascular diseases. Therefore, thiol detection in biological samples has great importance in health monitoring and disease prediction. In this study, we developed a ratiometric fluorescence nanosensor combined with carbon dots (CDs)-doped mesoporous silica and fluorescein-based fluorescent probes loaded in pores for Cys detection. The nanosensor emitted fluorescence at 450 nm upon excitation at 370 nm. In the presence of Cys, the fluorescence emission from the probe could be selectively enhanced, whereas that from CDs could be changed. Thus, a ratiometric fluorescent sensor was developed. This sensor can eliminate the potential influence of background fluorescence and other analyte-independent external environmental factors. The nanosensor was utilized to monitor Cys levels in human serum, and satisfactory results were obtained. Results indicated that the nanosensor can be utilized as an excellent fluorescent nanocomposite material in practical biological applications.
Collapse
Affiliation(s)
- Huajuan Deng
- Colleges of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zitong Wu
- Colleges of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zexu Zhao
- Colleges of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lin Zhu
- Colleges of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Minggen Tang
- Colleges of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ruijin Yu
- Colleges of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jinyi Wang
- Colleges of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
33
|
Ansari L, Hallaj S, Hallaj T, Amjadi M. Doped-carbon dots: Recent advances in their biosensing, bioimaging and therapy applications. Colloids Surf B Biointerfaces 2021; 203:111743. [PMID: 33872828 DOI: 10.1016/j.colsurfb.2021.111743] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 04/01/2021] [Indexed: 12/28/2022]
Abstract
As a fascinating class of fluorescent carbon dots (CDs), doped-CDs are now sparked intense research interest, particularly in the diverse fields of biomedical applications due to their unique advantages, including low toxicity, physicochemical, photostability, excellent biocompatibility, and so on. In this review, we have summarized the most recent developments in the literature regarding the employment of doped-CDs for pharmaceutical and medical applications, which are published over approximately the past five years. Accordingly, we discuss the toxicity and optical properties of these nanomaterials. Beyond the presentation of successful examples of the application of these multifunctional nanoparticles in photothermal therapy, photodynamic therapy, and antibacterial activity, we further highlight their application in the cellular labeling, dual imaging, and in vitro and in vivo bioimaging by use of fluorescent-, photoacoustic-, magnetic-, and computed tomography (CT)-imaging. The potency of doped-CDs was also described in the biosensing of ions, small molecules, and drugs in biological samples or inside the cells. Finally, the advantages, disadvantages, and common limitations of doped-CD technologies are reviewed, along with the future prospects in biomedical research. Therefore, this review provides a concise insight into the current developments and challenges in the field of doped-CDs, especially for biological and biomedical researchers.
Collapse
Affiliation(s)
- Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Shahin Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
34
|
MU J, YANG JL, ZHANG DW, JIA Q. Progress in Preparation of Metal Nanoclusters and Their Application in Detection of Environmental Pollutants. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60082-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Wang D, Mei X, Wang S, Li J, Dong C. A one-pot synthesis of fluorescent N,P-codoped carbon dots for vitamin B12 determination and bioimaging application. NEW J CHEM 2021. [DOI: 10.1039/d0nj05597b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N,P-codoped carbon dots were synthesised using l-arginine and phosphoric acid and explored for the detection of vitamin B12 (VB12) and bioimaging.
Collapse
Affiliation(s)
- Dongxiu Wang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - XiPing Mei
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Songbai Wang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Junfen Li
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Chuan Dong
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
36
|
Jiang Q, jing Y, Ni Y, Gao R, Zhou P. Potentiality of carbon quantum dots derived from chitin as a fluorescent sensor for detection of ClO−. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105111] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Liu Y, Yang H, Ma C, Luo S, Xu M, Wu Z, Li W, Liu S. Luminescent Transparent Wood Based on Lignin-Derived Carbon Dots as a Building Material for Dual-Channel, Real-Time, and Visual Detection of Formaldehyde Gas. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36628-36638. [PMID: 32662973 DOI: 10.1021/acsami.0c10240] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Formaldehyde (FA) is a widespread indoor air pollutant, and its efficient detection is a major industrial challenge. The development of a building material with real-time and visual self-detection of FA gas is highly desirable for meeting both construction and human health demands. Herein, a luminescent transparent wood (LTW) as the building material was developed for dual-channel, real-time, and visual detection of FA gas. It was fabricated by encapsulating multicolor lignin-derived carbon dots (CDs) and poly(vinyl alcohol) (PVA) into a delignified wood framework. It exhibited 85% optical transmittance, tunable room-temperature phosphorescence (RTP), and ratiometric fluorescence (FL) emission. The tunable luminescence was attributed to different CD graphitization and surface functionalization. The color-responsive ratiometric FL and delayed RTP detections of FA were displayed over the range of 20-1500 μM (R2 = 0.966, LOD = 1.08 nM) and 20-2000 μM (R2 = 0.977, LOD = 45.8 nM), respectively. The LTW was also used as an encapsulation film on a UV-emitting InGaN chip to form white light-emitting diodes, indicating the feasibility as an FA-responsive planar light source. The operational notion of functional LTW can expand its applications to new fields such as a stimuli-responsive light-transmitting window or planar light sources while monitoring indoor air pollutants, temperature, and humidity.
Collapse
Affiliation(s)
- Yushan Liu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, P. R. China
| | - Haiyue Yang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, P. R. China
| | - Sha Luo
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, P. R. China
| | - Mingcong Xu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, P. R. China
| | - Zhenwei Wu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, P. R. China
| | - Wei Li
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, P. R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, P. R. China
| |
Collapse
|
38
|
Synthesis of Lanthanide-Functionalized Carbon Quantum Dots for Chemical Sensing and Photocatalytic Application. Catalysts 2020. [DOI: 10.3390/catal10080833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tunable photoluminescent-functionalized carbon quantum dots CQDs@Ln (TFA)3 (Ln = Eu, Tb; TFA: trifluoroacetylacetone) were designed and synthesized by introducing lanthanide complexes into the modified CQDs surface through the carboxyl group. The as-prepared CQDs@Ln (TFA)3 emit strong blue–green light with the peak at 435 nm and simultaneously show the characteristic emission of Ln3+ under irradiation of 365 nm light in aqueous solution. Moreover, these functionalized CQDs exhibit excellent photoluminescence properties. In addition, a white luminescent solution CQDs@Eu/Tb (TFA)3 was obtained by adjusting the ratio of Eu3+/Tb3+ and the excitation wavelengths. Moreover, CQDs@Tb (TFA)3 can be utilized as a fluorescent probe for the sensitive and selective detection of MnO4− without interference from other ions in aqueous solution. These results provide the meaningful data for the multicomponent assembly and the photoluminescent-functionalized materials based on the modified CQDs and lanthanide, which can be expected to have potential application in photocatalytic or sensors.
Collapse
|
39
|
Pawar S, Kaja S, Nag A. Red-Emitting Carbon Dots as a Dual Sensor for In 3+ and Pd 2+ in Water. ACS OMEGA 2020; 5:8362-8372. [PMID: 32309747 PMCID: PMC7161066 DOI: 10.1021/acsomega.0c00883] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/23/2020] [Indexed: 05/18/2023]
Abstract
We have demonstrated the synthesis, characterization, and application of nitrogen-doped red-emitting carbon dots (NRCDs) for dual sensing of indium (In3+) and palladium (Pd2+) in water. The detection of In3+ was associated with "turn-on" fluorescence response with a red shift, while in the presence of Pd2+, the fluorescence intensity of NRCDs was quenched to show a "turn-off" response. The interaction of NRCDs with the metal ions was investigated using 1H nuclear magnetic resonance and Fourier-transform infrared spectroscopy studies. The synthesized nanoprobes possessed good biocompatibility and photostability and were found to be suitable candidates for bioimaging due to their emission profiles in the near-infrared (NIR) window. Applicability of the as-prepared NRCDs was demonstrated in the NIR region when they were loaded in vesicle membranes with and without cations and subjected to confocal imaging successfully.
Collapse
Affiliation(s)
- Shweta Pawar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Sravani Kaja
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Amit Nag
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
40
|
Liu Y, Wu P, Wu X, Ma C, Luo S, Xu M, Li W, Liu S. Nitrogen and copper (II) co-doped carbon dots for applications in ascorbic acid determination by non-oxidation reduction strategy and cellular imaging. Talanta 2020; 210:120649. [DOI: 10.1016/j.talanta.2019.120649] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 01/26/2023]
|
41
|
Zan M, Li C, Liao F, Rao L, Meng QF, Xie W, Chen B, Qie X, Li L, Wang L, Dong WF, Liu W. One-step synthesis of green emission carbon dots for selective and sensitive detection of nitrite ions and cellular imaging application. RSC Adv 2020; 10:10067-10075. [PMID: 35498619 PMCID: PMC9050205 DOI: 10.1039/c9ra11009g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
Schematic route of the carbon dots and their applications for the nitrite detection.
Collapse
|
42
|
Omer KM, Idrees SA, Hassan AQ, Jamil LA. Amphiphilic fluorescent carbon nanodots as a selective nanoprobe for nitrite and tetracycline both in aqueous and organic solutions. NEW J CHEM 2020. [DOI: 10.1039/d0nj00435a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dispersibility of carbon dots in organic and/or aqueous solvents plays a critical role in various application fields.
Collapse
Affiliation(s)
- Khalid M. Omer
- Department of Chemistry
- University of Sulaimani
- Kurdistan Region
- Iraq
| | | | - Aso Q. Hassan
- Department of Chemistry
- University of Sulaimani
- Kurdistan Region
- Iraq
| | - Lazgin A. Jamil
- Department of Chemistry
- University of Zakho
- Kurdistan region
- Iraq
| |
Collapse
|