1
|
Bao C, Deng L, Huang F, Yang M, Li X. Signal amplification strategies in photoelectrochemical sensing of carcinoembryonic antigen. Biosens Bioelectron 2024; 262:116543. [PMID: 38963951 DOI: 10.1016/j.bios.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Early detection of cancer markers is critical for cancer diagnosis and cancer therapy since these markers may indicate cancer risk, incidence, and disease prognosis. Carcinoembryonic antigen (CEA) is a type of non-specific and broad-spectrum cancer biomarker commonly utilized for early cancer diagnosis. Moreover, it serves as an essential tool to assess the efficacy of cancer treatment and monitor tumor recurrence as well as metastasis, thus garnering significant attention for precise and sensitive CEA detection. In recent years, photoelectrochemical (PEC) techniques have emerged as prominent methods in CEA detection due to the advantages of PEC, such as simple equipment requirements, cost-effectiveness, high sensitivity, low interference from background signals, and easy of instrument miniaturization. Different signal amplification methods have been reported in PEC sensors for CEA analysis. Based on these, this article reviews PEC sensors based on various signal amplification strategies for detection of CEA during the last five years. The advantages and drawbacks of these sensors were discussed, as well as future challenges.
Collapse
Affiliation(s)
- Chengqi Bao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Feng Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Furong Labratory, Changsha, 410083, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410083, China.
| | - Xiaoqing Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China; Furong Labratory, Changsha, 410083, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410083, China.
| |
Collapse
|
2
|
Wang S, Yuan J, Wang C, Wang T, Zhao F, Zeng B. CdS/Bi 2S 3/NiS ternary heterostructure-based photoelectrochemical immunosensor for the sensitive detection of carbohydrate antigen 125. Anal Chim Acta 2024; 1312:342765. [PMID: 38834279 DOI: 10.1016/j.aca.2024.342765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
The sensitive, accurate and rapid detection of carbohydrate antigen 125 (CA125) is essential for the early diagnosis and clinical management of ovarian cancer, but there is still challenge. Herein, a photoelectrochemical (PEC) immunosensor based on CdS/Bi2S3/NiS ternary sulfide heterostructured photocatalyst was presented for the detection of CA125. The CdS/Bi2S3/NiS was synthesized by a one-step hydrothermal approach. The heterojunction comprising of CdS and Bi2S3 could separate photogenerated carriers, the introduced narrow bandgap NiS could act as electron-conducting bridge to facilitate the transfer of interfacial photogenerated electrons, thereby improving the photoelectric conversion efficiency. Due to their synergistic effect, the photocurrent response produced by the composite was up to 14.6 times of pure CdS. On the basis, a PEC immunosensor was constructed by introducing the CA125 antibody through thioglycolic acid linkage. It was found that the resulting immunosensor showed good performance. Under the optimized conditions, its linear detection range was as wide as 1 pg mL-1-50 ng mL-1, and the detection limit was low to 0.85 pg mL-1. Furthermore, we experimentally tested its anti-interference, stability and reproducibility, and satisfactory results were achieved. The practicable feasibility of the sensor was confirmed by testing serum sample. Thus this work provided a simple, fast and enough sensitive approach for CA125 monitoring.
Collapse
Affiliation(s)
- Shulei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Jingxia Yuan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Chunfang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Tingting Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China.
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China.
| |
Collapse
|
3
|
Ren X, Wang M, Zhao J, Zhang J, Chen J, Li F, Wei Q, Ju H. A novel split PEC sensor based on magneto-optic nanostructure and photocurrent polarity switching strategy. Anal Chim Acta 2024; 1310:342703. [PMID: 38811134 DOI: 10.1016/j.aca.2024.342703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Photoelectrochemical (PEC) sensors have attracted much attention due to their low cost, simple instrumentation and high sensitivity. However, conventional PEC sensors require layer-by-layer modification of the photoelectrode surface, which has the disadvantages of being time-consuming and unstable. In addition, complex interfering substances in real samples may lead to false-positive or false-negative detection results. It was thought that the above drawbacks could be eliminated by the construction of a polarity inversion PEC sensor. In this work, a magnetically separated PEC sensor was constructed for the detection of Carcinoembryonic antigen (CEA). RESULTS During the experiment, the construction of the sensor was used for sensitive detection of CEA. In the experimental process, Fe3O4@SiO2@CdS, a semiconductor material with magnetic properties, was chosen as the substrate material, and ZnO/CuO was used as the marker on the DNA2 molecule, and a split magnetic separation PEC sensor was constructed, which was used to realize the sensitive detection of CEA. Eventually, the detection range of the sensor for CEA detection is 1-10000 pg/mL, with the detection limit of 0.34 pg/mL. Additionally, the PEC sensor has the advantages of high speed, high efficiency, high sensitivity, good specificity, and high stability. The sensing platform constructed in this work can also be extended to detect other targets, which provides a new idea for PEC sensing platforms. SIGNIFICANCE In this experiment, we developed a split PEC immunosensor based on magneto-optic nanostructure and photocurrent polarity switching strategy. Specifically, the proposed magnetic nanostructure Fe3O4@SiO2@CdS-DNA1 exhibits good paramagnetism and dispersion ability. By magnetic separation process, the PEC signals of opposite polarity can be obtained.
Collapse
Affiliation(s)
- Xiang Ren
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Man Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jinxiu Zhao
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Jinhuan Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jingui Chen
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Faying Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, PR China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Huangxian Ju
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
4
|
Zhang R, Zheng D, Chen J, Zhang C, Wang C. Design of NiS@Ni3S2/CdS heterostructure with intimate contact interface for sensitive photoelectrochemical detection of lincomycin. Food Chem 2023; 418:136028. [PMID: 37015148 DOI: 10.1016/j.foodchem.2023.136028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Owing to their internal electric field effect and abundant photo-induced carriers, photoactive heterostructured materials are considered a feasible approach to improve the sensitivity of a photoelectrochemical (PEC) sensor. Herein, a novel NiS@Ni3S2/CdS heterostructure composite is derived from Ni-loaded zeolitic imidazolate framework (Ni-ZIF). The PEC experiments showed the NiS@Ni3S2/CdS composite exhibits superior photocurrent response than NiS@Ni3S2 and CdS. This is attributed to the fact that the type II heterojunction of NiS@Ni3S2/CdS with a tightly connected interface reduces the transport distance of carriers and facilitates electron-hole separation. Next, using the NiS@Ni3S2/CdS modified electrode, an aptamer/glutaraldehyde/chitosan/NiS@Ni3S2/CdS/ITO PEC biosensor is developed, which exhibits excellent sensitivity for lincomycin (Lin) detection with a wide linear range (0.0001 ∼ 1.25 nM) and a low detection limit of 0.067 pM. The prepared sensor is further employed to monitor Lin in the actual milk. The results confirm that the prepared sensing electrode displays good selectivity, repeatability and stability.
Collapse
|
5
|
Song Y, Yuan M, Wang G. Update value and clinical application of MUC16 (cancer antigen 125). Expert Opin Ther Targets 2023; 27:745-756. [PMID: 37584221 DOI: 10.1080/14728222.2023.2248376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/25/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
INTRODUCTION The largest transmembrane mucin, mucin 16 (MUC16), contains abundant glycosylation sites on the molecular surface, allowing it to participate in various molecular pathways. When cells lose polarity and become cancerous, MUC16 is overexpressed, and more of the extracellular region (cancer antigen [CA]125) is released into serum and possibly, promote the development of diseases. Thus, MUC16 plays an indispensable role in clinical research and application. AREAS COVERED This review summarizes the update proposed role of MUC16 in carcinogenesis and metastasis. Most importantly, we prospect its potential value in targeted therapy after screening 1226 articles published within the last 10 years from PubMed. Two reviewers screened each record and each report retrieved independently. We have summarized the progress of MUC16/CA125 in basic research and clinical application, and predicted its possible future development directions. EXPERT OPINION As an important noninvasive co-factor in the diagnosis of gynecological diseases, MUC16 has been used for a long time, especially in the diagnosis and treatment of ovarian cancer. The overexpression of MUC16 plays a very obvious role in regulating inflammatory response, supporting immune suppression, and promoting the proliferation, division, and metastasis of cancer cells. In the next 20 years, there will be a luxuriant clinical application of MUC16 as a target for immune monitoring and immunotherapy.
Collapse
Affiliation(s)
- Yaan Song
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| |
Collapse
|
6
|
Wang Y, Rong Y, Ma T, Li L, Li X, Zhu P, Zhou S, Yu J, Zhang Y. Photoelectrochemical sensors based on paper and their emerging applications in point-of-care testing. Biosens Bioelectron 2023; 236:115400. [PMID: 37271095 DOI: 10.1016/j.bios.2023.115400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023]
Abstract
Point-of-care testing (POCT) technology is urgently required owing to the prevalence of the Internet of Things and portable electronics. In light of the attractive properties of low background and high sensitivity caused by the complete separation of excitation source and detection signal, the paper-based photoelectrochemical (PEC) sensors, featured with fast in analysis, disposable and environmental-friendly have become one of the most promising strategies in POCT. Therefore, in this review, the latest advances and principal issues in the design and fabrication of portable paper-based PEC sensors for POCT are systematically discussed. Primarily, the flexible electronic devices that can be constructed by paper and the reasons why they can be used in PEC sensors are expounded. Afterwards, the photosensitive materials involved in paper-based PEC sensor and the signal amplification strategies are emphatically introduced. Subsequently, the application of paper-based PEC sensors in medical diagnosis, environmental monitoring and food safety are further discussed. Finally, the main opportunities and challenges of paper-based PEC sensing platforms for POCT are briefly summarized. It provides a distinct perspective for researchers to construct paper-based PEC sensors with portable and cost-effective, hoping to enlighten the fast development of POCT soon after, as well as benefit human society.
Collapse
Affiliation(s)
- Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yumeng Rong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shuang Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
7
|
Li Y, Shan P, Yu F, Li H, Peng L. Fabrication and characterization of waste fish scale-derived gelatin/sodium alginate/carvacrol loaded ZIF-8 nanoparticles composite films with sustained antibacterial activity for active food packaging. Int J Biol Macromol 2023; 230:123192. [PMID: 36634795 DOI: 10.1016/j.ijbiomac.2023.123192] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
An environmental-friendly composite films containing waste fish scale-derived gelatin (FSG), sodium alginate (SA) and carvacrol loaded ZIF-8 (CV@ZIF-8) nanoparticles were designed and fabricated to develop active food packaging materials capable of sustained antibacterial activity. The microstructure and physicochemical properties of the FSG/SA/CV@ZIF-8 composite films were investigated. The incorporation of CV@ZIF-8 into FSG/SA matrix significantly enhanced the UV-light blocking and the elongation at break, improved water resistance and reduced water vapor permeability, and improved the thermal stability of composite film. The FSG/SA/CV@ZIF-8 film not only exhibited strong antioxidant activity with DPPH radical scavenging rate of 92.35 %, but also showed the satisfactory and long-acting antibacterial ability against E. coli and S. aureus due to slow release of CV from composite film. Strawberry preservation experiment revealed that FSG/SA/CV@ZIF-8 film decelerated the texture deterioration and retarded the growth of spoilage microorganism, resulting in the prolonged shelf-life of 8 days under ambient condition, indicating its promising application prospect in food preservation packaging.
Collapse
Affiliation(s)
- Yongshi Li
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Shan
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Fuyou Yu
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Li
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
8
|
Jiang H, Liu Q, Zhang H, Yang P, You T. A self-powered photoelectrochemical oxytetracycline aptasensor: An integrated heterojunction photoanode of metal-organic framework derived ZnO nanopolyhedra/graphitic carbon nitride with high carrier density. J Colloid Interface Sci 2023; 632:35-43. [PMID: 36403375 DOI: 10.1016/j.jcis.2022.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
The development of effective strategies for the detection of oxytetracycline (OTC) in soil is of great importance for preserving agri-environmental safety and human health. Herein, a novel photoactive material of metal-organic framework (MOF) derived ZnO nanopolyhedra/graphitic carbon nitride (ZnO/g-C3N4) heterojunction was designed by mixing calcination of zeolite imidazole framework-8 (ZIF-8) and melamine. A self-powered photoelectrochemical aptasensor for the sensitive and selective detection of OTC in soil was proposed using ZnO/g-C3N4 as the photoanode. The photoactivity of the MOF derived ZnO nanopolyhedra was regulated effectively by the introduction of g-C3N4, which resulted in a 7-fold increase in the photocurrent of the ZnO nanopolyhedra at a bias potential of 0 V. It was assigned to the higher carrier density of ZnO/g-C3N4. By virtue of the amplified photocurrent of ZnO/g-C3N4, the specificity of the OTC aptamer and the anti-interference ability of the self-powered sensing method, the designed aptasensor demonstrated the advantages of a wide linear range (0.005-200 nM), low limit of detection (1.49 × 10-3 nM), good selectivity and good reproducibility. For real soil sample analysis, satisfactory recoveries were obtained and further verified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).
Collapse
Affiliation(s)
- Huihui Jiang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hang Zhang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Peilin Yang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Zhang G, Han Y, Liu Z, Fan L, Guo Y. Triple Amplification Ratiometric Electrochemical Aptasensor for CA125 Based on H-Gr/SH-β-CD@PdPtNFs. Anal Chem 2023; 95:1294-1300. [PMID: 36576891 DOI: 10.1021/acs.analchem.2c04161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A triple-amplified and ratiometric electrochemical aptasensor for CA125 was designed based on hemin-graphene/SH-β-cyclodextrin@PdPt nanoflower (H-Gr/SH-β-CD@PdPtNF) composites and an exonuclease I (Exo I)-assisted strategy. In the nanocomposite, hemin acts as an internal reference signal owing to the reversible heminox/heminred pair. PdPtNFs can significantly improve the electron transfer rate. SH-β-CD can efficiently enrich quercetin probes through host-guest recognition and increase the second indicator signal. In the presence of CA125, due to the specific binding between the aptamer and CA125, the conformational change of dsDNA (designed by the CA125 aptamer and its complementary DNA) results in the release of quercetin embedded in dsDNA. Subsequently, the free quercetin and DNA fragments are enriched on the H-Gr/SH-β-CD@PdPtNF-modified electrode. Thus, an enhanced oxidation peak from quercetin (IQ) and a reduced peak from hemin (Ihemin) can indicate the same biological identification event. In addition, the recycling amplification of CA125 by Exo I can effectively assist the increase of the quercetin signal. The value of IQ/Ihemin is linear with the concentration of CA125 in the range from 6.0 × 10-4 to 1.0 × 103 ng/mL, and the limit of detection is 1.4 × 10-4 ng/mL. The recovery of CA125 in human blood serum samples was from 99.2 to 104.4%. The proposed sensor is sensitive and reliable, which provides an avenue for the development of triple amplification and ratiometric signal strategies for detecting tumor markers in clinical diagnostics.
Collapse
Affiliation(s)
- Guojuan Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China.,Department of Basic Courses, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Yujie Han
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhiguang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lifang Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
10
|
Pourmadadi M, Moammeri A, Shamsabadipour A, Moghaddam YF, Rahdar A, Pandey S. Application of Various Optical and Electrochemical Nanobiosensors for Detecting Cancer Antigen 125 (CA-125): A Review. BIOSENSORS 2023; 13:99. [PMID: 36671934 PMCID: PMC9856029 DOI: 10.3390/bios13010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, diagnosing early-stage cancers can be vital for saving patients and dramatically decreases mortality rates. Therefore, specificity and sensitivity in the detection of cancer antigens should be elaborately ensured. Some early-stage cancers can be diagnosed via detecting the cancer antigen CA-125, such as ovarian cancer, and required treatments can be applied more efficiently. Thus, detection of CA-125 by employing various optical or electrochemical biosensors is a preliminary and crucial step to treating cancers. In this review, a diverse range of optical and electrochemical means of detecting CA-125 are reviewed. Furthermore, an applicable comparison of their performance and sensitivity is provided, several commercial detection kits are investigated, and their applications are compared and discussed to determine whether they are applicable and accurate enough.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
Tan AYS, Lo NW, Cheng F, Zhang M, Tan MTT, Manickam S, Muthoosamy K. 2D carbon materials based photoelectrochemical biosensors for detection of cancer antigens. Biosens Bioelectron 2023; 219:114811. [PMID: 36308836 DOI: 10.1016/j.bios.2022.114811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a leading cause of death globally and early diagnosis is of paramount importance for identifying appropriate treatment pathways to improve cancer patient survival. However, conventional methods for cancer detection such as biopsy, CT scan, magnetic resonance imaging, endoscopy, X-ray and ultrasound are limited and not efficient for early cancer detection. Advancements in molecular technology have enabled the identification of various cancer biomarkers for diagnosis and prognosis of the deadly disease. The detection of these biomarkers can be done by biosensors. Biosensors are less time consuming compared to conventional methods and has the potential to detect cancer at an earlier stage. Compared to conventional biosensors, photoelectrochemical (PEC) biosensors have improved selectivity and sensitivity and is a suitable tool for detecting cancer agents. Recently, 2D carbon materials have gained interest as a PEC sensing platform due to their high surface area and ease of surface modifications for improved electrical transfer and attachment of biorecognition elements. This review will focus on the development of 2D carbon nanomaterials as electrode platform in PEC biosensors for the detection of cancer biomarkers. The working principles, biorecognition strategies and key parameters that influence the performance of the biosensors will be critically discussed. In addition, the potential application of PEC biosensor in clinical settings will also be explored, providing insights into the future perspective and challenges of exploiting PEC biosensors for cancer diagnosis.
Collapse
Affiliation(s)
- Adriel Yan Sheng Tan
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Newton Well Lo
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Min Zhang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Michelle T T Tan
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kasturi Muthoosamy
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
12
|
Hang T, Meng X, Wu Y, Zhu XD, Li C. Ion-Exchange Reaction-Mediated Hierarchical Dual Z-Scheme Heterojunction for Split-Type Photoelectrochemical Immunoassays. Anal Chem 2022; 94:17295-17302. [PMID: 36451079 DOI: 10.1021/acs.analchem.2c04302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Photoelectrochemical (PEC) immunoassays with ultrasensitive detection abilities are highly desirable for in vitro PEC diagnosis and biological detection. In this paper, dual Z-scheme PEC immunoassays with hierarchical nanostructures (TiO2@NH2-MIL-125@CdS) are synthesized through epitaxial growth of MOF-on-MOF and further in situ derivatization. The dual Z-scheme configuration not only extends the light absorption range but also increases the redox ability due to the interface structure nanoengineering, which synergistically suppresses bulk carrier recombination and promotes the charge transfer efficiency at the electron level. Furthermore, a smart MOF-derived labeling probe (CuO@ZnO nanocube) is designed to develop a split-type PEC biosensor by using prostate-specific antigen (PSA) as a target biomarker. In the presence of PSA, the Ab2-labeled CuO@ZnO would specifically bond to the dual Z-scheme electrode. Then, the MOF-derived CuO@ZnO is dissolved by hydrochloric acid to release Cu2+, which could replace Cd2+ via an ion-exchange reaction, thus leading to the decrease of the photocurrent due to the destruction of the dual Z-scheme configuration. In typical applications, the split-type PEC immunoassay exhibits an excellent detection performance for PSA with a LOD as low as 0.025 pg·mL-1.
Collapse
Affiliation(s)
- Tianxiang Hang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Xingxing Meng
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Yueyue Wu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Xian-Dong Zhu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Chuanping Li
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
| |
Collapse
|
13
|
Meng S, Liu D, Li Y, Dong N, Chen T, You T. Engineering the Signal Transduction between CdTe and CdSe Quantum Dots for in Situ Ratiometric Photoelectrochemical Immunoassay of Cry1Ab Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13583-13591. [PMID: 36251948 DOI: 10.1021/acs.jafc.2c05910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Controllable modulation of a response mode is extremely attracting to fabricate biosensor with programmable analytical performances. Here, we reported a proof-of-concept ratiometric photoelectrochemical (PEC) immunoassay of Cry1Ab protein based on the signal transduction regulation at the sensing interface. A sandwich-type PEC structure was designed so that gold nanorods sensitized quantum dots to fix primary antibody (Au NRs/QDs-Ab1) and methylene blue sensitized QDs to combine a second antibody (MB/QDs-Ab2), which served as photoelectric substrate and signal amplifier, respectively. Unlike common recognition element, such a sandwich-type PEC structure allowed for the in situ generation of two specific response signals. For analysis, Cry1Ab captured by Au NRs/QDs-Ab1 led to a decreased photocurrent (ICry1Ab), while the subsequently anchored MB/QDs-Ab2 produced another photocurrent (IMB). Noteworthy, by taking advantage of the different energy band gaps of QDs, varying locations of CdTe and CdSe QDs could realize different signal transduction strategies (i.e., Mode 1 and Mode 2). Investigations on data analysis of ICry1Ab and IMB via different routes demonstrated the superior analytical performances of ratiometry (Mode 1). Consequently, the ratiometric PEC immunosensor offered a linear range of 0.01-100 ng mL-1 with a detection limit of 1.4 pg mL-1. This work provides an efficient strategy for in situ collection of multiple photocurrents to design ratiometric PEC sensors.
Collapse
Affiliation(s)
- Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ting Chen
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
14
|
Zhang L, Chen FZ, Sun H, Meng R, Zeng Q, Wang X, Zhou H. Stimulus-Responsive Metal-Organic Framework Signal-Reporting System for Photoelectrochemical and Fluorescent Dual-Mode Detection of ATP. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46103-46111. [PMID: 36173115 DOI: 10.1021/acsami.2c14376] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dual-mode bioanalysis integrating photoelectrochemical (PEC) and other modes is emerging and allows signal cross-checking for more reliable results. Metal-organic frameworks (MOFs) have been shown to be attractive materials in various biological applications. This work presents the utilization of MOF encapsulation and stimuli-responsive decapsulation for dual-mode PEC and fluorescence (FL) bioanalysis. Photoactive dye methylene violet (MV) was encapsulated in zeolitic imidazolate framework-90 (ZIF-90) to form an MV@ZIF-90 hybrid material, and MV could be released by adenosine triphosphate (ATP)-induced ZIF-90 disintegration. The released MV not only had FL emission but also had a sensitization effect on the ZnIn2S4 (ZnInS) photoanode. Based on the MV-dependent sensitization effect and FL emission characteristic, a dual-mode PEC-FL strategy was established for ATP detection with low detection limits, that is, 3.2 and 4.1 pM for PEC and FL detection, respectively. This study features and will inspire the construction and implementation of smart MOF materials for dual-mode bioanalysis.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feng-Zao Chen
- School of Pharmaceutical Chemical and Materials Engineering, Taizhou University, Jiaojiang, Taizhou 318000, China
| | - Haodi Sun
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Runze Meng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qingsheng Zeng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinxing Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hong Zhou
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
15
|
Bagherzadeh M, Safarkhani M, Ghadiri AM, Kiani M, Fatahi Y, Taghavimandi F, Daneshgar H, Abbariki N, Makvandi P, Varma RS, Rabiee N. Bioengineering of CuO porous (nano)particles: role of surface amination in biological, antibacterial, and photocatalytic activity. Sci Rep 2022; 12:15351. [PMID: 36097028 PMCID: PMC9467996 DOI: 10.1038/s41598-022-19553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 01/10/2023] Open
Abstract
Nanotechnology is one of the most impressive sciences in the twenty-first century. Not surprisingly, nanoparticles/nanomaterials have been widely deployed given their multifunctional attributes and ease of preparation via environmentally friendly, cost-effective, and simple methods. Although there are assorted optimized preparative methods for synthesizing the nanoparticles, the main challenge is to find a comprehensive method that has multifaceted properties. The goal of this study has been to synthesize aminated (nano)particles via the Rosmarinus officinalis leaf extract-mediated copper oxide; this modification leads to the preparation of (nano)particles with promising biological and photocatalytic applications. The synthesized NPs have been fully characterized, and biological activity was evaluated in antibacterial assessment against Bacillus cereus as a model Gram-positive and Pseudomonas aeruginosa as a model Gram-negative bacterium. The bio-synthesized copper oxide (nano)particles were screened by MTT assay by applying the HEK-293 cell line. The aminated (nano)particles have shown lower cytotoxicity (~ 21%), higher (~ 50%) antibacterial activity, and a considerable increase in zeta potential value (~ + 13.4 mV). The prepared (nano)particles also revealed considerable photocatalytic activity compared to other studies wherein the dye degradation process attained 97.4% promising efficiency in only 80 min and just 7% degradation after 80 min under dark conditions. The biosynthesized copper oxide (CuO) (nano)particle's biomedical investigation underscores an eco-friendly synthesis of (nano)particles, their noticeable stability in the green reaction media, and impressive biological activity.
Collapse
Affiliation(s)
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, 15875-4413, Iran
| | | | - Hossein Daneshgar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Nikzad Abbariki
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025, Pisa, Italy
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Slechtitel, ů 11, 783 71, Olomouc, Czech Republic
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
16
|
An Z, Shi Z, Lv J, Li X, Liu G, Li Y, Yan Z, Lu Y, Wang D, Jiang J, Zhang F, Liu Q. Elimination of oxygen interference in the photoelectrochemical sensor with ferricyanide shield oxygen reduction for point of care testing. Anal Chim Acta 2022; 1206:339796. [DOI: 10.1016/j.aca.2022.339796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
|
17
|
Operando Photo-Electrochemical Catalysts Synchrotron Studies. NANOMATERIALS 2022; 12:nano12050839. [PMID: 35269331 PMCID: PMC8912469 DOI: 10.3390/nano12050839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023]
Abstract
The attempts to develop efficient methods of solar energy conversion into chemical fuel are ongoing amid climate changes associated with global warming. Photo-electrocatalytic (PEC) water splitting and CO2 reduction reactions show high potential to tackle this challenge. However, the development of economically feasible solutions of PEC solar energy conversion requires novel efficient and stable earth-abundant nanostructured materials. The latter are hardly available without detailed understanding of the local atomic and electronic structure dynamics and mechanisms of the processes occurring during chemical reactions on the catalyst–electrolyte interface. This review considers recent efforts to study photo-electrocatalytic reactions using in situ and operando synchrotron spectroscopies. Particular attention is paid to the operando reaction mechanisms, which were established using X-ray Absorption (XAS) and X-ray Photoelectron (XPS) Spectroscopies. Operando cells that are needed to perform such experiments on synchrotron are covered. Classical and modern theoretical approaches to extract structural information from X-ray Absorption Near-Edge Structure (XANES) spectra are discussed.
Collapse
|
18
|
Fu D, Ding Y, Guo R, Zhang J, Wang H, Niu B, Yan H. Polylactic acid/polyvinyl alcohol-quaternary ammonium chitosan double-layer films doped with novel antimicrobial agent CuO@ZIF-8 NPs for fruit preservation. Int J Biol Macromol 2022; 195:538-546. [PMID: 34914914 DOI: 10.1016/j.ijbiomac.2021.12.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022]
Abstract
ZIF-8, a subclass of metal organic frameworks (MOFs), was employed as the CuO carriers because of its high surface areas and good dispersibility. A novel antibacterial agent CuO@ZIF-8 was synthesized by environmentally-friendly direct calcination strategy, and introduced into the composite double-layer films for packing materials. The double-layer films were prepared via solution casting method with polylactic acid (PLA) and polyvinyl alcohol (PVA)-quaternary ammonium chitosan as the matrix of outer layer and inner layer, respectively; and CuO@ZIF-8 nanoparticles were introduced into the PVA-quaternary ammonium chitosan layer. The double-layer films exhibited superior antibacterial activity resulted from the uniform dispersion of CuO by ZIF-8 carriers. The elongation at break was enhanced and up to 17.13%, about 2.4-fold that of PLA films. Meanwhile, the films provided low water vapor permeability and strong UV-barrier ability which were attributed to the lay-by-layer casting, CuO@ZIF-8 doping and TiO2 addition. Cherry tomato preservation experiment revealed that the composite films retarded the growth of harmful microorganisms on the fruit surface. MTT assay confirmed the cytocompatibility of the films. The easily fabricated double-layer films presented potential possibility in the field of biodegradable food packaging.
Collapse
Affiliation(s)
- Dongsheng Fu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
| | - Yuanzheng Ding
- Department of Clinical Medicine, Fenyang college of Shanxi Medical University, Fenyang 032200, China
| | - Ruijie Guo
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China.
| | - Jie Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
| | - Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
| | - Baolong Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
| | - Hong Yan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China.
| |
Collapse
|
19
|
Zeng Q, Wei Q, Luo J, Qian Y, Yang M, Zou Y, Lu L. Novel photoelectrochemical immunosensor for MCF-7 cell detection based on n-p organic semiconductor heterojunction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Highly active ZIF-8 derived CuO@ZnO p-n heterojunction nanostructures for fast visible-light-driven photooxidation of antibiotic waste in water. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Liao XJ, Xiao HJ, Cao JT, Ren SW, Liu YM. A novel split-type photoelectrochemical immunosensor based on chemical redox cycling amplification for sensitive detection of cardiac troponin I. Talanta 2021; 233:122564. [PMID: 34215060 DOI: 10.1016/j.talanta.2021.122564] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Photoelectrochemical (PEC) immunoassay is a burgeoning and promising bioanalytical method. However, the practical application of PEC still exist some challenges such as the inevitable damage of biomolecules caused by the PEC system and the unsatisfactory sensitivity for biomarkers with low abundance in real sample. To solve the problems, we integrated the cosensitized structure of Ag2S/ZnO nanocomposities as photoelectrode with photogenerated hole-induced chemical redox cycling amplification (CRCA) strategy to develop a split-type PEC immunosensor for cardiac troponin I (cTnI) with high sensitivity. Initially, the immunoreaction was carried out on the 96-well plates in which alkaline phosphatase (ALP) could catalyze ascorbic acid 2-phosphate (AAP) to generate the signal-reporting species ascorbic acid (AA). Subsequently, the AA participated and the tris (2-carboxyethyl) phosphine (TCEP) mediated chemical redox cycling reaction took place on the photoelectrode, thus leading to signal amplification. Under the optimized conditions, the immunosensor demonstrated a detection limit (LOD) of 3.0 × 10-15 g mL-1 with a detection range of 1.0 × 10-14 g mL-1 to 1.0 × 10-9 g mL-1 for cTnI. Impressively, the proposed method could determine the cTnI in human serum samples with high sensitivity and satisfactory accuracy. Considering the virtues of the photoelectrode and the chemical redox cycling strategy, the method would hold great potential for highly sensitive biosensing and bioanalysis.
Collapse
Affiliation(s)
- Xiao-Jing Liao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Hui-Jin Xiao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China; Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
22
|
Core-shell ZnO@Cu2O encapsulated Ag NPs nanocomposites for photooxidation-adsorption of iodide anions under visible light. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Renewable photoelectrochemical cytosensing platform for rapid capture and detection of circulating tumor cells. Anal Chim Acta 2021; 1142:1-9. [PMID: 33280686 DOI: 10.1016/j.aca.2020.10.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Determination of circulating tumor cells (CTCs) is crucial for cancer diagnosis and therapy at an early stage. However, extremely low concentration of CTCs in peripheral blood makes the detection of CTCs challenging. In this study, a reusable cytosensor was developed for rapid detection of CTCs based on excellent photoelectrochemical (PEC) characteristic of semiconductor nanoarrays. Using typical breast cancer cell, MCF-7 cell, as a target model, a PEC sensing platform was constructed with polymerized aminophenylboronic acid (APBA) layer coated CdS/ZnO nanorod arrays, exhibiting outstanding performance for the capture and detection of CTCs. In this design, the polymerized APBA provides abundant binding sites for capturing terminal sialic acid (SA) molecules in CTCs. As a result, the PEC cytosensor shows good sensitivity and specificity with concentrations ranging from 50 to 1.0 × 106 cells/mL MCF-7 cells. Moreover, the PEC cytosensor can be rapidly and effectively recovered via a short-time bias triggered cell release and subsequent repair of APBA. This study establishes a new approach to refine a PEC cytosensor for stable monitoring and provides a robust PEC electrode with high sensitivity and low cost for clinical diagnosis related to CTCs.
Collapse
|
24
|
Zhang S, Feng L, Li P, Zhang L, Chen X, Chu S, Gao Y, Xie S, Jiang J, Wang H. In situ creation of ZnO@CdS nanoflowers on ITO electrodes for sensitive photoelectrochemical detection of copper ions in blood. J Mater Chem B 2021; 9:5869-5876. [PMID: 34259308 DOI: 10.1039/d1tb00989c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly selective and sensitive photoelectrochemical (PEC) detection method has been developed for the analysis of copper (Cu2+) ions using nanoflower-like ZnO@CdS heterojunctions, of which ZnO was first in situ grown onto the indium tin oxide electrodes by a hydrothermal method and then coated with CdS through the chemical bath deposition route. It was discovered that the ZnO@CdS heterojunction so formed could serve as a photosensitive catalyst with improved charge separation for visible-light-driven PEC responses. Enhanced visible-light harvesting of nanocomposites could also be expected with CdS as the visible-light sensitizer. Furthermore, the introduction of Cu2+ ions could cause a rational decrease in the photocurrents of nanocomposites through the specific interaction between CdS and Cu2+ ions. A ZnO@CdS heterojunction-based PEC sensor was thereby developed for the detection of Cu2+ ions in blood in the linear concentrations ranging from 0.50 to 80 nM, with a limit of detection of 0.18 nM. Such a heterojunction-based PEC detection platform constructed using two photocatalytic materials with matched band structures are promising for a wide range of applications for sensing Cu2+ ions in clinical diagnostics, food monitoring, and environmental analysis.
Collapse
Affiliation(s)
- Sheng Zhang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Luping Feng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| | - Pan Li
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Lixiang Zhang
- School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| | - Xi Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| | - Su Chu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Yuan Gao
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Shujing Xie
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jiatian Jiang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Hua Wang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China and School of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, P. R. China.
| |
Collapse
|
25
|
Sangili A, Kalyani T, Chen SM, Nanda A, Jana SK. Label-Free Electrochemical Immunosensor Based on One-Step Electrochemical Deposition of AuNP-RGO Nanocomposites for Detection of Endometriosis Marker CA 125. ACS APPLIED BIO MATERIALS 2020; 3:7620-7630. [DOI: 10.1021/acsabm.0c00821] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Arumugam Sangili
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
- Department of Biotechnology, National Institute of Technology, Papum Pare 791112, Arunachal Pradesh, India
| | - Thangapandi Kalyani
- Department of Biotechnology, National Institute of Technology, Papum Pare 791112, Arunachal Pradesh, India
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Amalesh Nanda
- Department of Biotechnology, National Institute of Technology, Papum Pare 791112, Arunachal Pradesh, India
| | - Saikat Kumar Jana
- Department of Biotechnology, National Institute of Technology, Papum Pare 791112, Arunachal Pradesh, India
| |
Collapse
|
26
|
ZnO micron rods as single dielectric resonator for optical sensing. Anal Chim Acta 2020; 1109:107-113. [DOI: 10.1016/j.aca.2020.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/11/2023]
|