1
|
Lin W, Liu Z, Zhang J, Xu J, Fu F, Lin Z, Chen Y, Dong Y. Paper-based SERS chips for the rapid detection of thiram. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125812. [PMID: 39893735 DOI: 10.1016/j.saa.2025.125812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
A simple one-pot method is developed to prepare positively charged aggregated silver nanoparticles (a-AgNPs). The obtained a-AgNPs show strong localized surface plasmon resonance (LSPR) absorption, whose wavelength can be easily tuned to match the commonly used lasers in surface enhanced Raman scattering (SERS). Furthermore, the obtained a-AgNPs can be easily fabricated into paper-based SERS chips by filtering against a negatively charged filter membrane. On the basis, a convenient SERS sensor has been developed for the detection of thiram using a 785 nm handheld Raman spectrometer.
Collapse
Affiliation(s)
- Wei Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zesong Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Jingwen Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Jinhua Xu
- Fujian Inspection and Research Institute for Product Quality, National Center of Processed Foods Quality Supervision and Inspection, Fuzhou 350002, China
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yiquan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China.
| | - Yongqiang Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
2
|
Mool-Am-Kha P, Phetduang S, Phongsanam N, Surawanitkun C, Ngamdee K, Ngeontae W. A fluorescence biosensor for organophosphorus pesticide detection with a portable fluorescence device-based smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125330. [PMID: 39486239 DOI: 10.1016/j.saa.2024.125330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
An innovative fluorescence biosensor was successfully developed to detect organophosphorus pesticide (OPs) by utilizing smartphone technology. The assay relied on the enzymatic activity of alkaline phosphatase (ALP), which facilitated the conversion of L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAP) into L-ascorbic acid (AA). The AA that generated was then reactedwith o-phenylenediamine (OPD) to yield a fluorescent marker identified as 3-(1,2-dihydroxyethyl)furo[3,4-b]quinoxalin-1(3H)-one (DFQ). A novel bandpass approach was specifically developed for a smartphone that was integrated with a customized portable fluorescence device to measure the fluorescence emission of DFQ. The device has a unique application that converts the fluorescence intensity into an RGB signal. In the presence of OPs, malathion was chosen as the representative of the OPs substance; the enzymatic activity of the ALP was inhibited, resulting in a decrease in fluorescence intensity, which was proportional to the concentration of malathion. Smartphones can be used to measure fluorescence emission, offering a calibration sensitivity more than 70 times higher than that of conventional spectrofluorometer. The recently developed methodology can be employed to identify malathion within the concentration range of 0.1-1 ppm, with a detection limit of 0.05 ppm. The practical applicability of the method was established using vegetable samples, and the acquired results were in good agreement with those obtained using the standard HPLC approach. This innovative method provides both portability and accuracy, while also exhibiting a notable degree of sensitivity in detecting traceamounts of OPs.
Collapse
Affiliation(s)
- Pijika Mool-Am-Kha
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Construction Materials Group, Engineering Materials Division, Department of Science Service, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Samuch Phetduang
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nopphakon Phongsanam
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chayada Surawanitkun
- Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Nong Khai 43000, Thailand
| | - Kessarin Ngamdee
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wittaya Ngeontae
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
3
|
Mohamed MM, Alsaiari RA, Abbas AM, Khairy GM. High-Sensitivity Fluorescent Sensing Platform for Rapid and Selective Detection of Chlorpyrifos Pesticide in Water Samples Using Terbium-Isatin-3-allyl Complex. J Fluoresc 2025:10.1007/s10895-024-04101-0. [PMID: 39853505 DOI: 10.1007/s10895-024-04101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025]
Abstract
The detection of organophosphorus pesticides, particularly chlorpyrifos, in environmental samples is essential due to their widespread use and associated health risks. In this study, we developed a high-sensitivity fluorescent sensing platform utilizing an Isatin-3-allyl-terbium (IS-Tb) complex in solution for the rapid and selective detection of chlorpyrifos in various water samples. The proposed chemical structure of the complex in solution was evaluated using molar ratio method. The IS-Tb complex was characterized in solution, as it was not isolated in the solid state. To assess its structural and optical properties, several characterization techniques were employed. UV-Vis spectrophotometry was used to evaluate the absorption characteristics, and spectrofluorimetry was applied to assess the fluorescence properties. Additionally, the stoichiometry of the complex was determined using the molar ratio method, which confirmed a 1:1 ligand-to-metal ratio and provided the optimal conditions for sensing chlorpyrifos. The IS-Tb complex exhibited weak intrinsic fluorescence, which was significantly enhanced upon interaction with chlorpyrifos, enabling sensitive and quantitative analysis. Methanol was identified as the best solvent for maximizing the sensitivity of chlorpyrifos detection. The sensor demonstrated a wide linear detection range from 0.006 to 28 µg/L, with a low limit of detection (LOD) of 2 ng/L. The sensor's selectivity for chlorpyrifos over other commonly encountered pesticides (13 organophosphorus) and environmental contaminants was high, ensuring minimal interference. The performance of the sensor was validated using spiked water samples, yielding an average recovery of 101% with a relative standard deviation (RSD) of less than 5%. These results suggest that the proposed sensing platform is a powerful tool for the environmental monitoring of chlorpyrifos, with significant implications for public health protection and regulatory compliance.
Collapse
Affiliation(s)
- Mervate M Mohamed
- Department of Chemistry, Faculty of Science and Arts in Sharurah, Najran University, Najran, 68342, Saudi Arabia.
| | - Raiedhah A Alsaiari
- Department of Chemistry, Faculty of Science and Arts in Sharurah, Najran University, Najran, 68342, Saudi Arabia
| | - Abbas M Abbas
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Gasser M Khairy
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
4
|
Peng Y, Meng T, Yao B, Sheng M, Wang Q, Jin Z, Zhang T, Huang J, Yang X. Cu 3(HITP) 2 with peroxidase- and ascorbic acid oxidase-like catalytic activity for fluorescence/chemiluminescence sensing of ascorbic acid. Talanta 2025; 282:126988. [PMID: 39395307 DOI: 10.1016/j.talanta.2024.126988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Nanomaterials with intrinsic enzyme mimicking activity have achieved widespread application. However, developing novel nanomaterials with multienzyme mimicry activity remains challenging. Herein, Cu3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) with ascorbic acid oxidase (AAO)- and peroxidase (POD)-like activity are successfully synthesized. Cu3(HITP)2 exhibits excellent AAO-like activity and can specifically catalyze the oxidation reaction of ascorbic acid (AA). Dehydroascorbic acid (DHAA) obtained from the oxidation of AA is allowed to react with nonfluorescent o-phenylenediamine (OPD) to form 3-(1,2-dihydrox-yethyl) furo[3,4-b]quinoxaline-1-one (DFQ) with strong fluorescence emission. Moreover, Cu3(HITP)2 is able to catalyze the chemiluminescence (CL) reaction of ABEI-H2O2 to generate a strong and glow-type emission based on its POD activity. Inspired by the multienzyme mimicry activity of Cu3(HITP)2, the simple and sensitive fluorescence and chemiluminescence sensing platforms are successfully constructed and applied for the detection of AA. The sensors show high sensitivity and excellent selectivity. We believe that this multienzyme mimicry activity nanomaterial not only can be used to construct the multiple-mode biosensing platform, but also enables the extensive applications in the fields of biomedicine, energy, and environment.
Collapse
Affiliation(s)
- Yao Peng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Tian Meng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Bohan Yao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Mengting Sheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qian Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Zhiying Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Tingting Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | - Xiurong Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| |
Collapse
|
5
|
Zhang S, Wang Z, Feng Y, Jiang C, Li H, Yu Z, Xiao Y, Hou R, Wan X, Liu Y. A novel fluorescent and photothermal probe based on nanozyme-mediated cascade reaction for detecting organophosphorus pesticide residues. Talanta 2024; 279:126620. [PMID: 39068829 DOI: 10.1016/j.talanta.2024.126620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
In this study, a nanozyme (ZIF-Co-Cys) with high oxidase-like catalytic activity was prepared, and a ratiometric fluorescent/photothermal dual-mode probe was constructed for organophosphorus pesticides (OPs) detection based on the competitive effect of ZIF-Co-Cys and the enzymatic reaction product of acid phosphatase (ACP) on o-phenylenediamine and the inhibition effect of OPs on ACP activity. Using dimethyl dichloroviny phosphate (DDVP) as the model, both the fluorescence intensity ratio and the temperature change of the probe solution exhibited an excellent correlation with OPs concentration. The detection limits were 1.64 ng/mL and 0.084 ng/mL, respectively. Additionally, the detection of DDVP residues in real samples verified the outstanding anti-interference and accuracy of the probe. This work not only provided a complementary dual-mode method for the accurate and rapid detection of OPs residues in complex samples, but also supplied a new insight into the design of a multi-mode sensing platform based on the cascade reaction of nanozyme.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Zheng Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yingying Feng
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Chuang Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Hui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenyu Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yaqing Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
| | - Yingnan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
6
|
Zhao D, Jiao Y, Zhang C, Xiao X. β-Galactosidase-triggered in situ synthesis of yellow emitting silicon nanoparticle and its application in visual detection of E. coli O157:H7 and drug susceptibility test. Food Chem 2024; 450:139331. [PMID: 38621310 DOI: 10.1016/j.foodchem.2024.139331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
The sensitive detection of foodborne pathogenic and rapid antibiotic susceptibility testing (AST) is of great significance. This paper reports the enzyme-triggered in situ synthesis of yellow emitting silicon nanoparticles (SiNPs) and the detection of Escherichia coli (E. coli) O157:H7 in food samples and the rapid AST. The rapid counting of E. coli O157:H7 has been achieved through direct visual observation, equipment detection, and smartphone digitalization. A simple detection platform based on smartphone senses and cotton swabs has been established. Meanwhile, rapid AST based on enzyme-catalyzed SiNPs can intuitively obtain colorimetric samples. This paper established a system for bacterial enzyme-triggered in situ synthesis of SiNPs, with high responsiveness, luminescence ratio, and specificity. The detection limit for E. coli O157:H7 can reach 100 CFU/mL during 5 h, and the recovery efficiency ranges from 90.14% to 110.16%, which makes it a promising strategy for the rapid detection of E. coli O157:H7 and AST.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| | - Yan Jiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Changpeng Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| |
Collapse
|
7
|
Li H, Chen J, Xu W, Huang B, Peng C, Cai H, Hou R, Wen K, Li L, Dong B, Wang Z. A facile fluorescence microplate immunoassay based on an in situ fluorogenic reaction for the detection of two highly toxic anticoagulant rodenticides in food and biological matrix. Food Chem 2024; 437:137792. [PMID: 37866338 DOI: 10.1016/j.foodchem.2023.137792] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/23/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Bromadiolone and brodifacoum, the most frequently used anticoagulant rodenticides, are highly toxic and pose a threat to public health by causing food poisoning incidents. Here, we developed a fluorescence microplate immunoassay for facile and sensitive detection of bromadiolone and brodifacoum by introducing three commercial chemicals (p-phenylenediamine, polyethyleneimine, H2O2) as a new substrate of horseradish peroxidase and then generating fluorescence signals based on an in situ fluorogenic reaction (detection time within 75 min). This assay exhibited higher efficiency in generating fluorescence signals, thereby exhibiting a 6-fold improvement in sensitivity compared with colorimetric ELISA. The limit of detection was 0.23-0.28 ng/mL (ng/g) for bromadiolone and 0.34-0.61 ng/mL (ng/g) for brodifacoum in corn and human serum, with recovery ratios higher than 82.3 %. These satisfactory results illustrated our proposed assay was a potential tool for food analysis and poisoning diagnosis caused by bromadiolone and brodifacoum.
Collapse
Affiliation(s)
- Hongfang Li
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Jie Chen
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Wenqing Xu
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Baowei Huang
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Chuanyi Peng
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Huimei Cai
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Ruyan Hou
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Lin Li
- College of Animal Science and Technology, Anhui Agricultural University, 230036 Hefei, China.
| | - Baolei Dong
- College of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China.
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
8
|
Cao J, Wang M, She Y, Zheng L, Jin F, Shao Y, Wang J, Abd El-Aty AM. Highly Sensitive and Rapid Screening Technique for the Detection of Organophosphate Pesticides and Copper Compounds Using Bifunctional Recombinant TrxA-PvCarE1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5003-5013. [PMID: 38408326 DOI: 10.1021/acs.jafc.3c08618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Enabling the detection of organophosphate pesticide (OP) residues through enzyme inhibition-based technology is crucial for ensuring food safety and human health. However, the use of acetylcholinesterase, the primary target enzyme for OPs, isolated from animals in practical production poses challenges in terms of sensitivity and batch stability. To address this issue, we identified a highly sensitive and reproducible biorecognition element, TrxA-PvCarE1, derived from red kidney beans and successfully overexpressed it in Escherichia coli. The resulting recombinant TrxA-PvCarE1 exhibited remarkable sensitivity toward 10 OPs, surpassing that of commercial acetylcholinesterase. Additionally, this approach demonstrated the capability to simultaneously detect copper compounds with high sensitivity, expanding the range of pesticides detectable using the traditional enzyme inhibition method. Spiking recovery tests conducted on cowpea and carrot samples verified the suitability of the TrxA-PvCarE1-based technique for real-life sample analysis. In summary, this study highlights a promising comprehensive candidate for the rapid detection of pesticide residues.
Collapse
Affiliation(s)
- Jing Cao
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing 100081, China
| | - Miao Wang
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing 100081, China
| | - Lufei Zheng
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing 100081, China
| | - Yunling Shao
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing 100081, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
9
|
Yang CL, Yu LH, Pang YH, Shen XF. A colorimetric sensing platform with smartphone for organophosphorus pesticides detection based on PANI-MnO 2 nanozyme. Anal Chim Acta 2024; 1286:342045. [PMID: 38049237 DOI: 10.1016/j.aca.2023.342045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023]
Abstract
Organophosphorus pesticides (OPs) are of great concern due to its potential harms on human health and the environment. Herein, a budget-friendly, rapid and convenient colorimetric sensing platform is developed for detection of OPs in the environmental and food samples. The sensing element, PANI-MnO2 nanozyme with excellent oxidase mimetic activity is synthesized at room temperature, which is able to directly oxidize 3,3,5,5-tetramethylbenzidine (TMB) to generate blue colored oxidized TMB (OxTMB) within 2 min. Ascorbic acid (AA) can inhibit the oxidization reaction of TMB, consequently causing the blue color fading. Ascorbic acid 2-phosphate (AAP) could be hydrolyzed to produce AA by alkaline phosphatase (ALP). In the presence of OPs can effectively decrease ALP activity, resulting in the recovery of catalytic activity of PANI-MnO2. Therefore, sensitive and selective OPs detection is achieved. Under the optimal conditions, excellent detection performance in term of glyphosate as a model is achieved with a linear range from 0.50 to 50 μM, the detection limit is 0.39 μM (S/N = 3). The utility of method is further improved by combining a portable smartphone platform with a color picking application. The colorimetric platform achieves instrument-free detection of OPs and overcomes the uneven color distribution of traditional paper-based chip, providing an alternative strategy for the qualitative discernment and semi-quantitative analysis of OPs on-site.
Collapse
Affiliation(s)
- Cheng-Lin Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Li-Hong Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Tao C, Jiang Y, Chu S, Miao Y, Zhang J, Lu Y, Niu L. Natural Enzyme-Inspired Design of the Single-Atom Cu Nanozyme as Dual-Enzyme Mimics for Distinguishing Total Antioxidant Capacity and the Ascorbic Acid Level. Anal Chem 2024. [PMID: 38221749 DOI: 10.1021/acs.analchem.3c05245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Although various oxidase mimetic or peroxidase (POD) mimetic nanozymes have been extensively studied, their poor substrate selectivity significantly inhibits their practical applications. Nanozymes with specific biomolecules as substrates, especially ascorbic acid oxidase (AAO) mimetic nanozymes with ascorbic acid (AA) as a substrate, have scarcely been studied. Herein, inspired by the multi-Cu atom sites and the redox electron transfer pathway of Cu2+/Cu+ in the natural AAO, atomically dispersed Cu sites immobilized on N-doped porous carbon (Cu-N/C) are artificially designed to simulate the function of natural AAO. Compared with their natural counterparts, the Cu-N/C catalysts exhibited higher catalytic efficiency and superior stability. Combined theoretical calculation and experimental characterizations reveal that the Cu-N/C nanozymes could catalyze the AA oxidation through a 2e- oxygen reduction pathway with H2O2 as the product. Moreover, the Cu-N/C nanozymes also possess high POD activity. As a proof-of-concept application, Cu-N/C can simultaneously realize AA detection in fluorescent mode based on its AAO activity and total antioxidant capacity detection in colorimetric mode utilizing its POD activity.
Collapse
Affiliation(s)
- Chenyu Tao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Shushu Chu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yanrong Miao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Jiqing Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Li Niu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
11
|
Tong F, Yang Z, Wang Z, Liu W, Jiang W, Zhu L, Wang L, Zheng M, Hou R, Zhou Y, Liu Y. Enzyme-mediated Ru@UiO-66@MnO 2 NSs/thiamine-based ratiometric fluorescence sensor for visual detection of organophosphorus pesticide residues. Food Chem 2023; 429:136945. [PMID: 37487398 DOI: 10.1016/j.foodchem.2023.136945] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
In view of the potential hazards of organophosphorus pesticides (OPs), this paper constructed a ratiometric fluorescent probe utilizing a functionalized metal-organic framework to detect OPs. Ru(bpy)3Cl2 was encapsulated inside UiO-66 as a reference signal, and MnO2 nanosheets (MnO2 NSs) were grown on the surface to obtain Ru@UiO-66@MnO2 NSs. Acetylcholinesterase catalyzed the decomposition of acetylcholine into reductive thiocholine, which consumed MnO2 NSs, thus restoring the Ru@UiO-66 fluorescence. Due to the enzymatic inhibition of OPs and the redox reaction between MnO2 NSs and thiamine, this probe emitted blue fluorescence in the presence of OPs. The probe achieved linear responses to dichlorvos and chlorpyrifos with LODs of 9.99 × 10-6 μg mL-1 and 9.99 × 10-5 μg mL-1. The probe exhibited a satisfactory recovery rate for OPs in green tea. Furthermore, a hydrogel detection platform was developed by embedding the probe into sodium alginate. Overall, this work provides a visual approach to detect OPs in agricultural products.
Collapse
Affiliation(s)
- Fei Tong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Zan Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Zheng Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Wanqi Jiang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Lu Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Lei Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Ruyan Hou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
12
|
Zhang M, Chen Z, Liu X, Song C, Zeng C, Lv T, Xu Z, Chen X, Wang L, Liu B, Peng X. Dual-mode supramolecular fluorescent probe for rapid and on-site detection of chlorpyrifos in the environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131177. [PMID: 36966627 DOI: 10.1016/j.jhazmat.2023.131177] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Chlorpyrifos (CPF) as a classic organophosphorus pesticide has been widely used in agricultural applications to control insects and worms. CPF in the environment can cause deaths of diverse kinds of aquatic organism and bring a high risk to human health. Therefore, the development of effective analytical method for CPF is of great importance. In this work, a novel dual-mode albumin (ALB)-based supramolecular probe FD@ALB was designed and prepared for rapid detection of CPF in the environment. The limit of detection is 0.57 μM (∼ 0.2 ppm) with a wider detection range up to 200 μM, which is satisfactory for application. The sensing mechanism can be ascribed to CPF-induced phosphorylation of ALB, thus leading to a change in the binding microenvironment of FD dye. Moreover, the paper-based test strips were used in conjunction with the FD@ALB, realizing the portable detection of CPF. This method was demonstrated to be suitable for on-site detection of CPF in various kinds of environmental samples, including water, soil, and food samples, with the aid of a smartphone. To the best of our knowledge, this is the first analytical method achieving a combination of the rapid and ratiometric detection of CPF in the environment.
Collapse
Affiliation(s)
- Mingyuan Zhang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Zihao Chen
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Xinhe Liu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Chao Song
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Conghui Zeng
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Zhongyong Xu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoqiang Chen
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Lei Wang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China
| | - Bin Liu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China.
| | - Xiaojun Peng
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, PR China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
13
|
Gyanjyoti A, Guleria P, Awasthi A, Singh K, Kumar V. Recent advancement in fluorescent materials for optical sensing of pesticides. MATERIALS TODAY COMMUNICATIONS 2023; 34:105193. [DOI: 10.1016/j.mtcomm.2022.105193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
14
|
Jiang Y, Miao Y, Ding Z, Lu Y. In situ formed silicon-based nanoparticles enabled highly efficient dual-mode biosensing of chlorpyrifos. Food Chem 2023; 403:134243. [DOI: 10.1016/j.foodchem.2022.134243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
|
15
|
Ding Y, Lin T, Shen J, Wei Y, Wang C. In situ reaction-based ratiometric fluorescent assay for alkaline phosphatase activity and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121698. [PMID: 35940067 DOI: 10.1016/j.saa.2022.121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Alkaline phosphatase (ALP) is an important biomarker, it is of great significance to develop a sensitive and efficient analytical method for ALP. In this study, an in situ reaction based ratiometric fluorescence assay for ALP was proposed. l-ascorbic acid-2-phosphate (AA2P) was used as a substrate for ALP, and Cu2+/o-phenylenediamine (OPD) were involved in this system. Cu2+ can oxidize OPD to 2,3-diaminophenazine (OPDox) with an emission centered at 566 nm. The presence of ALP can catalyze the hydrolysis of AA2P to ascorbic acid (AA), which will inhibit the production of OPDox and reduce the corresponding fluorescence intensity, and AA will react with OPD to generate 3-(dihydroxyethyl)furan[3,4-b]quinoxalin-1-one (DFQ) with an emission peak at 447 nm. The fluorescence ratio of F447/F566 has a linear relationship with ALP activity. The proposed method is highly sensitive, finely selective, cost efficiency and easy to operate, it exhibits good linearity in the range of 0.5-22 and 22-40 mU·mL-1, with a detection limit as low as 0.06 mU·mL-1. The excellent applicability of this strategy in human serum samples and MCF-7 cells imaging suggests that this method has promising prospects for biomedical research.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Tianxia Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
16
|
Cheng W, Wu X, Zhang Y, Wu D, Meng L, Chen Y, Tang X. Recent applications of hydrogels in food safety sensing: Role of hydrogels. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
KARAKUŞ S, TASALTIN C, GÜROL İ, AKKURT B, BAYTEMİR G, TAŞALTIN N. Comparison of Polyacrylonitrile-and Polypyrrole-based Electrochemical Sensors for Detection of Propamocarb in Food Samples. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1087096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
18
|
Zhang H, Qu Y, Zhang Y, Yan Y, Gao H. Thioglycolic acid-modified AuNPs as a colorimetric sensor for the rapid determination of the pesticide chlorpyrifos. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1996-2002. [PMID: 35535744 DOI: 10.1039/d2ay00237j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we report the preparation of a gold nanoparticle-thioglycolic acid (TGA@AuNP) suspension for the label-free colorimetric detection of the organophosphorus pesticide chlorpyrifos. This colorimetric sensor was synthesized by a one-pot method, providing thioglycolic acid (TGA)-modified gold nanoparticles with a negatively charged surface. The formation of TGA@AuNPs was confirmed by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and dynamic light scattering (DLS). In addition, chlorpyrifos was quantitatively determined by UV-vis spectrophotometry. The modification time, TGA concentration, pH, incubation time, temperature, ionic strength, and interference of other pesticides were also investigated. The synthesized TGA@AuNP colorimetric sensor possesses a detection limit as low as 20 μg L-1 and a selective sensing response, and the detection time is less than 2 minutes. In addition, this method can also be applied to detect various practical samples in life, such as environmental water samples and tea.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Yuan Qu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Yanchao Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Yumei Yan
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| |
Collapse
|
19
|
Zhang L, Gao X, Chen X, Zhao M, Wu H, Liu Y. A smartphone integrated ratiometric fluorescent sensor for point-of-care testing of fluoride ions. Anal Bioanal Chem 2022; 414:3999-4009. [DOI: 10.1007/s00216-022-04046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022]
|
20
|
Xu L, Chen P. Novel alkaline phosphatase/lipase-responsive composite hydrogel guar gum/pyruvic acid sodium modified by Zn2+ for mold and yeast biochemical signal exhibition. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Dewangan L, Korram J, Karbhal I, Nagwanshi R, Ghosh KK, Pervez S, Satnami ML. Alkaline Phosphatase Immobilized CdTe/ZnS Quantum Dots for Dual-Purpose Fluorescent and Electrochemical Detection of Methyl Paraoxon. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lakshita Dewangan
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh-492010, India
| | - Jyoti Korram
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh-492010, India
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh-492010, India
| | - Rekha Nagwanshi
- Department of Chemistry, Gov’t. Madhav Science P. G. College, Ujjain, Madhya Pradesh-456010, India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh-492010, India
| | - Shamsh Pervez
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh-492010, India
| | - Manmohan L. Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh-492010, India
| |
Collapse
|
22
|
Research progress of acetylcholinesterase bioelectrochemical sensor based on carbon nanotube composite material in the detection of organophosphorus pesticides. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Hashemi Z, Ebrahimzadeh MA, Biparva P, Abedirad SM. Pyridine-2-yl Quinoxaline (2-CPQ) Derivative As a Novel Pink Fluorophore: Synthesis, and Chemiluminescence Characteristics. J Fluoresc 2022; 32:723-736. [PMID: 35044576 DOI: 10.1007/s10895-022-02890-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/03/2022] [Indexed: 01/05/2023]
Abstract
Quinoxaline derivatives are well-known N-heterocycles with pharmacological and fluorescence activities. Almost all quinoxaline derivatives with extensive π-conjugation have been introduced as fluorophores which emit blue and green light. For the first time, we designed and synthesized 6-chloro-2,3 di(Pyridine-2yl) quinoxaline (2-CPQ) as a pink fluorophore in acetonitrile medium by simple route at room temperature whitin 30 min. The synthesized quinoxaline was identified using 1H, 13C NMR, MS, and FT-IR spectroscopy. Our results showed that the iodine-catalyzed method for both oxidation and cyclization during the synthesis of quinoxaline from pyridine 2-carbaldehyde was straightforward, efficient, and clean. All of the mentioned characterization devices confirmed the synthesis of 2-CPQ.Moreover, we studied the photophysical properties of the synthesized fluorophore in which The UV-Vis absorption spectrum of 2-CPQ in DMF were three peaks at 451, 518 and 556 nm. Based on photophysical properties investigation, 2-CPQ shows good fluorescence with maximum peaks 607 and 653 nm in DMF as solvent (фF = 0.21). Hence, the fluorophore was applied in the peroxyoxalate chemiluminescence system. The reaction of imidazole, H2O2, and bis (2,4,6-trichlorophenyl) oxalate (TCPO) can transfer energy to a 6-chloro-2,3 di(pyridine-2yl) quinoxaline. In this process, dioxetane was synthesized, which chemically initiated the electron exchange luminescence (CIEEL) mechanism and led to pink light emission. We anticipate our synthesized fluorophores 2-CPQ will have great potential applications in imaging and medical markers.
Collapse
Affiliation(s)
- Zahra Hashemi
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, School of Pharmacy, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, School of Pharmacy, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Pourya Biparva
- Department of Basic Sciences, Sari University of Agricultural Sciences and Natural Resources, P.O.Box 578, Sari, Iran.
| | - Seyed Mohammad Abedirad
- Department of Basic Sciences, Sari University of Agricultural Sciences and Natural Resources, P.O.Box 578, Sari, Iran
| |
Collapse
|
24
|
Hu J, Zou Y, Sun B, Yu X, Shang Z, Huang J, Jin S, Liang P. Raman spectrum classification based on transfer learning by a convolutional neural network: Application to pesticide detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120366. [PMID: 34509888 DOI: 10.1016/j.saa.2021.120366] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Pesticide detection is of tremendous importance in agriculture, and Raman spectroscopy/Surface-Enhanced Raman Scattering (SERS) has proven extremely effective as a stand-alone method to detect pesticide residues. Machine learning may be able to automate such detection, but conventional algorithms require a complete database of Raman spectra, which is not feasible. To bypass this problem, the present study describes a transfer learning method that improves the algorithm's accuracy and speed to extract features and classify Raman spectra. The transfer learning model described here was developed through the following steps: (1) the classification model was pre-trained using an open-source Raman spectroscopy database; (2) the feature extraction layer was saved after training; and (3) the training model for the Raman spectroscopy database was re-established while using self-tested pesticides and keeping the feature extraction layer unchanged. Three models were evaluated with or without transfer learning: CNN-1D, Resnet-1D, and Inception-1D, and they have improved the accuracy of spectrum classification by 6%, 2%, and 3%, with reduced training time and increased curve smoothness. These results suggest that transfer learning can improve the feature extraction capability and therefore accuracy of Raman spectroscopy models, expanding the range of Raman-based applications where transfer learning model can be used to identify the spectra of different substances.
Collapse
Affiliation(s)
- Jiaqi Hu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 China; Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanqiu Zou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 China
| | - Biao Sun
- School of Electrical and Information Engineering, Tianjin University, 300000 Tianjin, China
| | - Xinyao Yu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 China
| | - Ziyang Shang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 China
| | - Jie Huang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 China
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 China.
| |
Collapse
|
25
|
Xu L, Ntakatsane M, Wang L, Meng X, Sun W, Bi Y, Chen P, Ren D. Improved sensitive fluorescent/visible dual detection count plate for mold and yeast in food. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Loganathan C, Gowthaman N, Abraham John S. Chain-like 2-amino-4-thiazoleacetic acid tethered AuNPs as colorimetric and spectrophotometric probe for organophosphate pesticide in water and fruit samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Çubuk S, Kök Yetimoğlu E, Çalışkan A, Vezir Kahraman M. A novel polymer based fluorimetric sensor for fast and selective determination of chlorpyrifos. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
A Fluorescent Detection for Paraquat Based on β-CDs-Enhanced Fluorescent Gold Nanoclusters. Foods 2021; 10:foods10061178. [PMID: 34073830 PMCID: PMC8225061 DOI: 10.3390/foods10061178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
In this report, a fluorescent sensing method for paraquat based on gold nanoclusters (AuNCs) is proposed. It was found that paraquat could quench both glutathione-capped AuNCs (GSH-AuNCs) and β-cyclodextrin-modified GSH-AuNCs (GSH/β-CDs-AuNCs). The modification of β-CDs on the surface of GSH-AuNCs obviously enhanced the fluorescence intensity of GSH-AuNCs and improved the sensitivity of paraquat sensing more than 4-fold. This sensibilization was ascribed to the obvious fluorescence intensity enhancement of GSH-AuNCs by β-CDs and the “host–guest” interaction between paraquat and β-CDs. The fluorescence quenching was mainly due to the photoinduced energy transfer (PET) between GSH/β-CDs-AuNCs and paraquat. With the optimized β-CDs modification of the GSH-AuNC surfaces and under buffer conditions, the fluorescent detection for paraquat demonstrated a linear response in the range of 5.0–350 ng/mL with a detection limit of 1.2 ng/mL. The fluorescent method also showed high selectivity toward common pesticides. The interference from metal ions could be easily masked by ethylene diamine tetraacetic acid (EDTA). This method was applied to the measurement of paraquat-spiked water samples and good recoveries (93.6–103.8%) were obtained. The above results indicate that host molecule modification of fluorescent metal NC surfaces has high potential in the development of robust fluorescent sensors.
Collapse
|
29
|
Selective uptake determines the variation in degradation of organophosphorus pesticides by Lactobacillus plantarum. Food Chem 2021; 360:130106. [PMID: 34034058 DOI: 10.1016/j.foodchem.2021.130106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 01/10/2023]
Abstract
Organophosphorus pesticides (OPPs) are widely used worldwide, leading to varying degrees of residues in food. Lactic acid bacteria (LAB) can degrade OPPs by producing phosphatase. This study explored the reasons for the variation in the degradation of different OPPs by Lactobacillus plantarum. The results showed that the degradation effects of OPPs by L. plantarum (intact cells) varied greatly, the degradation rate constant of phoxim was 1.65-fold higher than that of dichlorvos. However, the phosphatase extracted from L. plantarum had no degradation selectivity for OPPs in vitro. It was speculated that the selective uptake of cells determines this degradation selectivity. The results of molecular docking supported this hypothesis because there was no difference in the binding energies between phosphatase and OPPs, while the binding energies between phosphate-binding protein and pesticides were different, and they were negatively correlated with the degradation rate constants of the eight OPPs by L. plantarum.
Collapse
|
30
|
Lyagin I, Efremenko E. Enzymes, Reacting with Organophosphorus Compounds as Detoxifiers: Diversity and Functions. Int J Mol Sci 2021; 22:1761. [PMID: 33578824 PMCID: PMC7916636 DOI: 10.3390/ijms22041761] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/05/2023] Open
Abstract
Organophosphorus compounds (OPCs) are able to interact with various biological targets in living organisms, including enzymes. The binding of OPCs to enzymes does not always lead to negative consequences for the body itself, since there are a lot of natural biocatalysts that can catalyze the chemical transformations of the OPCs via hydrolysis or oxidation/reduction and thereby provide their detoxification. Some of these enzymes, their structural differences and identity, mechanisms, and specificity of catalytic action are discussed in this work, including results of computational modeling. Phylogenetic analysis of these diverse enzymes was specially realized for this review to emphasize a great area for future development(s) and applications.
Collapse
Affiliation(s)
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia;
| |
Collapse
|