1
|
Cui X, Tang M, Zhu T. A water probe for direct pH measurement of individual particles via micro-Raman spectroscopy. J Environ Sci (China) 2025; 149:200-208. [PMID: 39181634 DOI: 10.1016/j.jes.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 08/27/2024]
Abstract
The acidity of atmospheric aerosols influences fundamental physicochemical processes that affect climate and human health. We recently developed a novel and facile water-probe-based method for directly measuring of the pH for micrometer-size droplets, providing a promising technique to better understand aerosol acidity in the atmosphere. The complex chemical composition of fine particles in the ambient air, however, poses certain challenges to using a water-probe for pH measurement, including interference from interactions between compositions and the influence of similar compositions on water structure. To explore the universality of our method, it was employed to measure the pH of ammonium, nitrate, carbonate, sulfate, and chloride particles. The pH of particles covering a broad range (0-14) were accurately determined, thereby demonstrating that our method can be generally applied, even to alkaline particles. Furthermore, a standard spectral library was developed by integrating the standard spectra of common hydrated ions extracted through the water-probe. The library can be employed to identify particle composition and overcome the spectral overlap problem resulting from similar effects. Using the spectral library, all ions were identified and their concentrations were determined, in turn allowing successful pH measurement of multicomponent (ammonium-sulfate-nitrate-chloride) particles. Insights into the synergistic effect of Cl-, NO3-, and NH4+ depletion obtained with our approach revealed the interplay between pH and volatile partitioning. Given the ubiquity of component partitioning and pH variation in particles, the water probe may provide a new perspective on the underlying mechanisms of aerosol aging and aerosol-cloud interaction.
Collapse
Affiliation(s)
- Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Fang Z, Dong S, Huang C, Jia S, Wang F, Liu H, Meng H, Luo L, Chen Y, Zhang H, Li R, Zhu Y, Tang M. On using an aerosol thermodynamic model to calculate aerosol acidity of coarse particles. J Environ Sci (China) 2025; 148:46-56. [PMID: 39095180 DOI: 10.1016/j.jes.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/04/2024]
Abstract
Thermodynamic modeling is still the most widely used method to characterize aerosol acidity, a critical physicochemical property of atmospheric aerosols. However, it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamic models are employed to estimate the acidity of coarse particles. In this work, field measurements were conducted at a coastal city in northern China across three seasons, and covered wide ranges of temperature, relative humidity and NH3 concentrations. We examined the performance of different modes of ISORROPIA-II (a widely used aerosol thermodynamic model) in estimating aerosol acidity of coarse and fine particles. The M0 mode, which incorporates gas-phase data and runs the model in the forward mode, provided reasonable estimation of aerosol acidity for coarse and fine particles. Compared to M0, the M1 mode, which runs the model in the forward mode but does not include gas-phase data, may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles; M2, which runs the model in the reverse mode, results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations. However, M1 significantly underestimates liquid water contents for both fine and coarse particles, while M2 provides reliable estimation of liquid water contents. In summary, our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity, and thus may help improve our understanding of acidity of coarse particles.
Collapse
Affiliation(s)
- Zhengyang Fang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuwei Dong
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengpeng Huang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Shiguo Jia
- School of Atmospheric Sciences and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China.
| | - Fu Wang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Haoming Liu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
| | - He Meng
- Qingdao Eco-environment Monitoring Center of Shandong Province, Qingdao 266003, China
| | - Lan Luo
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Yizhu Chen
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Huanhuan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Rui Li
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yujiao Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Song X, Wu D, Su Y, Li Y, Li Q. Review of health effects driven by aerosol acidity: Occurrence and implications for air pollution control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176839. [PMID: 39414033 DOI: 10.1016/j.scitotenv.2024.176839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Acidity, generally expressed as pH, plays a crucial role in atmospheric processes and ecosystem evolution. Atmospheric acidic aerosol, triggering severe air pollution in the industrialization process (e.g., London Great Smoke in 1952), has detrimental effects on human health. Despite global endeavors to mitigate air pollution, the variation of aerosol acidity remains unclear and further restricts the knowledge of the acidity-driven toxicity of fine particles (PM2.5) in the atmosphere. Here, we summarize the toxicological effects and mechanisms of inhalable acidic aerosol and its response to air pollution control. The acidity could adjust toxic components (e.g., metals, quinones, and organic peroxides) bonded in aerosol and synergize with oxidant gaseous pollutants (e.g., O3 and NO2) in epithelial lining fluid to induce oxidative stress and inflammation. The inhaled aerosol from the ambient air with higher acidity might elevate airway responsiveness and cause worse pulmonary dysfunction. Furthermore, historical observation data and model simulation indicate that PM2.5 can retain its acidic property despite considerable reductions in acidifying gaseous pollutants (e.g., SO2 and NOx) from anthropogenic emissions, suggesting its continuing adverse impacts on human health. The study highlights that aerosol acidity could partially offset the health benefits of emission reduction, indicating that acidity-related health effects should be considered for future air pollution control policies.
Collapse
Affiliation(s)
- Xiwen Song
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Di Wu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Yi Su
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Yang Li
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Qing Li
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Yoo H, Seo D, Shin D, Ro CU. Direct Observation of Particle-To-Particle Variability in Ambient Aerosol pH Using a Novel Analytical Approach Based on Surface-Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7977-7985. [PMID: 38664901 DOI: 10.1021/acs.est.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The pH of atmospheric aerosols is a key characteristic that profoundly influences their impacts on climate change, human health, and ecosystems. Despite widely performed aerosol pH research, determining the pH levels of individual atmospheric aerosol particles has been a challenge. This study presents a novel analytical technique that utilizes surface-enhanced Raman spectroscopy to assess the pH of individual ambient PM2.5-10 aerosol particles in conjunction with examining their hygroscopic behavior, morphology, and elemental compositions. The results revealed a substantial pH variation among simultaneously collected aerosol particles, ranging from 3.3 to 5.7. This variability is likely related to each particle's unique reaction and aging states. The extensive particle-to-particle pH variability suggests that atmospheric aerosols present at the same time and location can exhibit diverse reactivities, reaction pathways, phase equilibria, and phase separation properties. This pioneering study paves the way for in-depth investigations into particle-to-particle variability, size dependency, and detailed spatial and temporal variations of aerosol pH, thus deepening our understanding of atmospheric chemistry and its environmental implications.
Collapse
Affiliation(s)
- Hanjin Yoo
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
- Particle Pollution Management Center, Inha University, Incheon 21999, Republic of Korea
| | - Dongkwon Seo
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Dongha Shin
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Chul-Un Ro
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
- Particle Pollution Management Center, Inha University, Incheon 21999, Republic of Korea
| |
Collapse
|
5
|
Zhu T, Tang M, Gao M, Bi X, Cao J, Che H, Chen J, Ding A, Fu P, Gao J, Gao Y, Ge M, Ge X, Han Z, He H, Huang RJ, Huang X, Liao H, Liu C, Liu H, Liu J, Liu SC, Lu K, Ma Q, Nie W, Shao M, Song Y, Sun Y, Tang X, Wang T, Wang T, Wang W, Wang X, Wang Z, Yin Y, Zhang Q, Zhang W, Zhang Y, Zhang Y, Zhao Y, Zheng M, Zhu B, Zhu J. Recent Progress in Atmospheric Chemistry Research in China: Establishing a Theoretical Framework for the "Air Pollution Complex". ADVANCES IN ATMOSPHERIC SCIENCES 2023; 40:1-23. [PMID: 37359906 PMCID: PMC10140723 DOI: 10.1007/s00376-023-2379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/06/2023] [Accepted: 04/10/2023] [Indexed: 06/28/2023]
Abstract
Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the "air pollution complex" was first proposed by Professor Xiaoyan TANG in 1997. For papers published in 2021 on air pollution (only papers included in the Web of Science Core Collection database were considered), more than 24 000 papers were authored or co-authored by scientists working in China. In this paper, we review a limited number of representative and significant studies on atmospheric chemistry in China in the last few years, including studies on (1) sources and emission inventories, (2) atmospheric chemical processes, (3) interactions of air pollution with meteorology, weather and climate, (4) interactions between the biosphere and atmosphere, and (5) data assimilation. The intention was not to provide a complete review of all progress made in the last few years, but rather to serve as a starting point for learning more about atmospheric chemistry research in China. The advances reviewed in this paper have enabled a theoretical framework for the air pollution complex to be established, provided robust scientific support to highly successful air pollution control policies in China, and created great opportunities in education, training, and career development for many graduate students and young scientists. This paper further highlights that developing and low-income countries that are heavily affected by air pollution can benefit from these research advances, whilst at the same time acknowledging that many challenges and opportunities still remain in atmospheric chemistry research in China, to hopefully be addressed over the next few decades.
Collapse
Affiliation(s)
- Tong Zhu
- Peking University, Beijing, 100871 China
| | - Mingjin Tang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 China
| | - Meng Gao
- Hong Kong Baptist University, Hong Kong SAR, China
| | - Xinhui Bi
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Huizheng Che
- Chinese Academy of Meteorological Sciences, Beijing, 100081 China
| | | | - Aijun Ding
- Nanjing University, Nanjing, 210023 China
| | | | - Jian Gao
- Chinese Research Academy of Environmental Sciences, Beijing, 100012 China
| | - Yang Gao
- Ocean University of China, Qingdao, 266100 China
| | - Maofa Ge
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Xinlei Ge
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Zhiwei Han
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Hong He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Ru-Jin Huang
- Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 China
| | - Xin Huang
- Nanjing University, Nanjing, 210023 China
| | - Hong Liao
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Cheng Liu
- University of Science and Technology of China, Hefei, 230026 China
| | - Huan Liu
- Tsinghua University, Beijing, 100084 China
| | - Jianguo Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | | | - Keding Lu
- Peking University, Beijing, 100871 China
| | - Qingxin Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Wei Nie
- Nanjing University, Nanjing, 210023 China
| | - Min Shao
- Jinan University, Guangzhou, 510632 China
| | - Yu Song
- Peking University, Beijing, 100871 China
| | - Yele Sun
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Xiao Tang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Tao Wang
- Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Weigang Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | | | - Zifa Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Yan Yin
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | | | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | - Yanlin Zhang
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Yunhong Zhang
- Beijing Institute of Technology, Beijing, 100081 China
| | - Yu Zhao
- Nanjing University, Nanjing, 210023 China
| | - Mei Zheng
- Peking University, Beijing, 100871 China
| | - Bin Zhu
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Jiang Zhu
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| |
Collapse
|
6
|
Estefany C, Sun Z, Hong Z, Du J. Raman spectroscopy for profiling physical and chemical properties of atmospheric aerosol particles: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114405. [PMID: 36508807 DOI: 10.1016/j.ecoenv.2022.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Atmosphere aerosols have significant impact on human health and the environment. Aerosol particles have a number of characteristics that influence their health and environmental effects, including their size, shape, and chemical composition. A great deal of difficulty is associated with quantifying and identifying atmospheric aerosols because these parameters are highly variable on a spatial and temporal scale. An important component of understanding aerosol fate is Raman Spectroscopy (RS), which is capable of resolving chemical compositions of individual particles. This review presented strategic techniques, especially RS methods for characterizing atmospheric aerosols. The nature and properties of atmospheric aerosols and their influence on environment and human health were briefly described. Analytical methodologies that offer insight into the chemistry and multidimensional properties of aerosols were discussed. In addition, perspectives for practical applications of atmospheric aerosols using RS are featured.
Collapse
Affiliation(s)
- Cedeño Estefany
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Resources and Environmental System Optimization of Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhenli Sun
- Key Laboratory of Resources and Environmental System Optimization of Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zijin Hong
- Key Laboratory of Resources and Environmental System Optimization of Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
7
|
Jing X, Chen Z, Huang Q, Liu P, Zhang YH. Spatiotemporally Resolved pH Measurement in Aerosol Microdroplets Undergoing Chloride Depletion: An Application of In Situ Raman Microspectrometry. Anal Chem 2022; 94:15132-15138. [PMID: 36251492 DOI: 10.1021/acs.analchem.2c03381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acidity is a defining property of atmospheric aerosols that profoundly affects environmental systems, human health, and climate. However, directly measuring the pH of aerosol microdroplets remains a challenge, especially when the microdroplets' composition is nonhomogeneous or dynamically evolving or both. As a result, a pH measurement technique with high spatiotemporal resolution is needed. Here, we report a spatiotemporally resolved pH measurement technique in microdroplets using spontaneous Raman spectroscopy. Our target sample was the microdroplets comprising sodium chloride and oxalic acid─laboratory surrogates of sea spray aerosols and water-soluble organic compounds, respectively. Our measurements show that the chloride depletion from the microdroplets caused a continuous increase in pH by ∼0.5 units in 2 hours. Meanwhile, the surface propensity of chloride anions triggers a stable pH gradient inside a single droplet, with the pH at the droplet surface lower than that at the core by ∼ 0.4 units. The uncertainties arising from the Raman detection limit (±0.08 pH units) and from the nonideal solution conditions (-0.06 pH units) are constrained. Our findings indicate that spontaneous Raman spectroscopy is a simple yet robust technique for precise pH measurement in aerosols with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Xinbo Jing
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Zhe Chen
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Qishen Huang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China.,Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania16801, United States
| | - Pai Liu
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Yun-Hong Zhang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
8
|
Li M, Su H, Zheng G, Kuhn U, Kim N, Li G, Ma N, Pöschl U, Cheng Y. Aerosol pH and Ion Activities of HSO 4- and SO 42- in Supersaturated Single Droplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12863-12872. [PMID: 36047919 PMCID: PMC9494740 DOI: 10.1021/acs.est.2c01378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Accurate determination of acidity (pH) and ion activities in aqueous droplets is a major experimental and theoretical challenge for understanding and simulating atmospheric multiphase chemistry. Here, we develop a ratiometric Raman spectroscopy method to measure the equilibrium concentration of sulfate (SO42-) and bisulfate (HSO4-) in single microdroplets levitated by aerosol optical tweezers. This approach enables determination of ion activities and pH in aqueous sodium bisulfate droplets under highly supersaturated conditions. The experimental results were compared against aerosol thermodynamic model calculations in terms of simulating aerosol ion concentrations, ion activity coefficients, and pH. We found that the Extended Aerosol Inorganics Model (E-AIM) can well reproduce the experimental results. The alternative model ISORROPIA, however, exhibits substantial deviations in SO42- and HSO4- concentrations and up to a full unit of aerosol pH under acidic conditions, mainly due to discrepancies in simulating ion activity coefficients of SO42--HSO4- equilibrium. Globally, this may cause an average deviation of ISORROPIA from E-AIM by 25 and 65% in predicting SO42- and HSO4- concentrations, respectively. Our results show that it is important to determine aerosol pH and ion activities in the investigation of sulfate formation and related aqueous phase chemistry.
Collapse
Affiliation(s)
- Meng Li
- Minerva
Research Group, Max Planck Institute for
Chemistry, 55128 Mainz, Germany
| | - Hang Su
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Guangjie Zheng
- Minerva
Research Group, Max Planck Institute for
Chemistry, 55128 Mainz, Germany
| | - Uwe Kuhn
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Najin Kim
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Guo Li
- Minerva
Research Group, Max Planck Institute for
Chemistry, 55128 Mainz, Germany
| | - Nan Ma
- Minerva
Research Group, Max Planck Institute for
Chemistry, 55128 Mainz, Germany
- Institute
for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Yafang Cheng
- Minerva
Research Group, Max Planck Institute for
Chemistry, 55128 Mainz, Germany
| |
Collapse
|
9
|
Water as a Probe for Standardization of Near-Infrared Spectra by Mutual-Individual Factor Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186069. [PMID: 36144801 PMCID: PMC9503549 DOI: 10.3390/molecules27186069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
The standardization of near-infrared (NIR) spectra is essential in practical applications, because various instruments are generally employed. However, standardization is challenging due to numerous perturbations, such as the instruments, testing environments, and sample compositions. In order to explain the spectral changes caused by the various perturbations, a two-step standardization technique was presented in this work called mutual–individual factor analysis (MIFA). Taking advantage of the sensitivity of a water probe to perturbations, the spectral information from a water spectral region was gradually divided into mutual and individual parts. With aquaphotomics expertise, it can be found that the mutual part described the overall spectral features among instruments, whereas the individual part depicted the difference of component structural changes in the sample caused by operation and the measurement conditions. Furthermore, the spectral difference was adjusted by the coefficients in both parts. The effectiveness of the method was assessed by using two NIR datasets of corn and wheat, respectively. The results showed that the standardized spectra can be successfully predicted by using the partial least squares (PLS) models developed with the spectra from the reference instrument. Consequently, the MIFA offers a viable solution to standardize the spectra obtained from several instruments when measurements are affected by multiple factors.
Collapse
|
10
|
Li LF, Chen Z, Liu P, Zhang YH. Direct Measurement of pH Evolution in Aerosol Microdroplets Undergoing Ammonium Depletion: A Surface-Enhanced Raman Spectroscopy Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6274-6281. [PMID: 35476405 DOI: 10.1021/acs.est.1c08626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurately measuring the pH of atmospheric aerosols is a prerequisite for understanding the multiphase chemistry that profoundly affects the environment and climate systems. Despite the advancements of experimental techniques for in situ pH measurements in aerosols, current studies are limited to measuring the static pH of aerosol microdroplets with an unperturbed composition. This steady-state scenario, however, deviates from the real-world aerosols undergoing atmospheric aging reactions, specifically, those characterized with a spontaneous displacement of strong bases (or acids) with high volatility. Here, we introduce a continuous and in situ measurement of aerosol pH by using a 4-mercaptopyridine-functionalized silver nanoparticle probe and surface-enhanced Raman spectroscopy. We find that the ammonium depletion─a spontaneous displacement of ammonium by dicarboxylic acid salts─continuously acidifies aerosol water over time. The decaying trends of pH in the aerosols under various humidity conditions can be unified with a universal exponential function. Such an exponentially decaying function further indicates that the ammonium depletion reaction is a self-limiting process. Our technique can be applied to study the dynamic change of aerosol acidity during the complex atmospheric aging processes, toward elucidating their implications on atmospheric chloride, nitrate, and ammonium cycles.
Collapse
Affiliation(s)
- Lin-Fang Li
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhe Chen
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Pai Liu
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yun-Hong Zhang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|