1
|
Shen Y, Wu S, Wu Y, Cui C, Li H, Yang S, Liu X, Chen X, Huang C, Wang X. Radiomics model building from multiparametric MRI to predict Ki-67 expression in patients with primary central nervous system lymphomas: a multicenter study. BMC Med Imaging 2025; 25:54. [PMID: 39962371 DOI: 10.1186/s12880-025-01585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVES To examine the correlation of apparent diffusion coefficient (ADC), diffusion weighted imaging (DWI), and T1 contrast enhanced (T1-CE) with Ki-67 in primary central nervous system lymphomas (PCNSL). And to assess the diagnostic performance of MRI radiomics-based machine-learning algorithms in differentiating the high proliferation and low proliferation groups of PCNSL. METHODS 83 patients with PCNSL were included in this retrospective study. ADC, DWI and T1-CE sequences were collected and their correlation with Ki-67 was examined using Spearman's correlation analysis. The Kaplan-Meier method and log-rank test were used to compare the survival rates of the high proliferation and low proliferation groups. The radiomics features were extracted respectively, and the features were screened by machine learning algorithm and statistical method. Radiomics models of seven different sequence permutations were constructed. The area under the receiver operating characteristic curve (ROC AUC) was used to evaluate the predictive performance of all models. DeLong test was utilized to compare the differences of models. RESULTS Relative mean apparent diffusion coefficient (rADCmean) (ρ=-0.354, p = 0.019), relative mean diffusion weighted imaging (rDWImean) (b = 1000) (ρ = 0.273, p = 0.013) and relative mean T1 contrast enhancement (rT1-CEmean) (ρ = 0.385, p = 0.001) was significantly correlated with Ki-67. Interobserver agreements between the two radiologists were almost perfect for all parameters (rADCmean ICC = 0.978, 95%CI 0.966-0.986; rDWImean (b = 1000) ICC = 0.931, 95% CI 0.895-0.955; rT1-CEmean ICC = 0.969, 95% CI 0.953-0.980). The differences in PFS (p = 0.016) and OS (p = 0.014) between the low and high proliferation groups were statistically significant. The best prediction model in our study used a combination of ADC, DWI, and T1-CE achieving the highest AUC of 0.869, while the second ranked model used ADC and DWI, achieving an AUC of 0.828. CONCLUSION rDWImean, rADCmean and rT1-CEmean were correlated with Ki-67. The radiomics model based on MRI sequences combined is promising to distinguish low proliferation PCNSL from high proliferation PCNSL.
Collapse
Affiliation(s)
- Yelong Shen
- Department of Radiology, Shandong Provincial Hospital, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
- Department of Radiology, Shandong University, No. 44, West Wenhua Road, Jinan, 250021, Shandong, China
| | - Siyu Wu
- Department of Radiology, Shandong Provincial Hospital, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
- Department of Radiology, Shandong University, No. 44, West Wenhua Road, Jinan, 250021, Shandong, China
| | - Yanan Wu
- Department of Radiology, Shandong Provincial Hospital, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Chao Cui
- Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, Shandong, China
| | - Haiou Li
- Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shuang Yang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, 250021, Shandong, China
| | - Xuejun Liu
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xingzhi Chen
- Department of Research Collaboration, R&D center, Beijing Deepwise & League of PHD Technology Co., Ltd, 100080, Beijing, China
| | - Chencui Huang
- Department of Research Collaboration, R&D center, Beijing Deepwise & League of PHD Technology Co., Ltd, 100080, Beijing, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Radiology, Shandong University, No. 44, West Wenhua Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Wang Z, Wang L, Wang Y. Radiomics in glioma: emerging trends and challenges. Ann Clin Transl Neurol 2025. [PMID: 39901654 DOI: 10.1002/acn3.52306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 02/05/2025] Open
Abstract
Radiomics is a promising neuroimaging technique for extracting and analyzing quantitative glioma features. This review discusses the application, emerging trends, and challenges associated with using radiomics in glioma. Integrating deep learning algorithms enhances various radiomics components, including image normalization, region of interest segmentation, feature extraction, feature selection, and model construction and can potentially improve model accuracy and performance. Moreover, investigating specific tumor habitats of glioblastomas aids in a better understanding of glioblastoma aggressiveness and the development of effective treatment strategies. Additionally, advanced imaging techniques, such as diffusion-weighted imaging, perfusion-weighted imaging, magnetic resonance spectroscopy, magnetic resonance fingerprinting, functional MRI, and positron emission tomography, can provide supplementary information for tumor characterization and classification. Furthermore, radiomics analysis helps understand the glioma immune microenvironment by predicting immune-related biomarkers and characterizing immune responses within tumors. Integrating multi-omics data, such as genomics, transcriptomics, proteomics, and pathomics, with radiomics, aids the understanding of the biological significance of the underlying radiomics features and improves the prediction of genetic mutations, prognosis, and treatment response in patients with glioma. Addressing challenges, such as model reproducibility, model generalizability, model interpretability, and multi-omics data integration, is crucial for the clinical translation of radiomics in glioma.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Wang
- Department of Neurosurgery, Guiqian International General Hospital, Guiyang, Guizhou, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Karabacak M, Patil S, Gersey ZC, Komotar RJ, Margetis K. Radiomics-Based Machine Learning with Natural Gradient Boosting for Continuous Survival Prediction in Glioblastoma. Cancers (Basel) 2024; 16:3614. [PMID: 39518054 PMCID: PMC11544787 DOI: 10.3390/cancers16213614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
(1) Background: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with an aggressive disease course that requires accurate prognosis for individualized treatment planning. This study aims to develop and evaluate a radiomics-based machine learning (ML) model to estimate overall survival (OS) for patients with GBM using pre-treatment multi-parametric magnetic resonance imaging (MRI). (2) Methods: The MRI data of 865 patients with GBM were assessed, comprising 499 patients from the UPENN-GBM dataset and 366 patients from the UCSF-PDGM dataset. A total of 14,598 radiomic features were extracted from T1, T1 with contrast, T2, and FLAIR MRI sequences using PyRadiomics. The UPENN-GBM dataset was used for model development (70%) and internal validation (30%), while the UCSF-PDGM dataset served as an external test set. The NGBoost Survival model was developed to generate continuous probability estimates as well as predictions for 6-, 12-, 18-, and 24-month OS. (3) Results: The NGBoost Survival model successfully predicted survival, achieving a C-index of 0.801 on internal validation and 0.725 on external validation. For 6-month OS, the model attained an AUROC of 0.791 (95% CI: 0.742-0.832) and 0.708 (95% CI: 0.654-0.748) for internal and external validation, respectively. (4) Conclusions: The radiomics-based ML model demonstrates potential to improve the prediction of OS for patients with GBM.
Collapse
Affiliation(s)
- Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York, NY 10029, USA;
| | - Shiv Patil
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Zachary Charles Gersey
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (Z.C.G.); (R.J.K.)
| | - Ricardo Jorge Komotar
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (Z.C.G.); (R.J.K.)
| | | |
Collapse
|
4
|
Ni J, Zhang H, Yang Q, Fan X, Xu J, Sun J, Zhang J, Hu Y, Xiao Z, Zhao Y, Zhu H, Shi X, Feng W, Wang J, Wan C, Zhang X, Liu Y, You Y, Yu Y. Machine-Learning and Radiomics-Based Preoperative Prediction of Ki-67 Expression in Glioma Using MRI Data. Acad Radiol 2024; 31:3397-3405. [PMID: 38458887 DOI: 10.1016/j.acra.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Gliomas are the most common primary brain tumours and constitute approximately half of all malignant glioblastomas. Unfortunately, patients diagnosed with malignant glioblastomas typically survive for less than a year. In light of this circumstance, genotyping is an effective means of categorising gliomas. The Ki67 proliferation index, a widely used marker of cellular proliferation in clinical contexts, has demonstrated potential for predicting tumour classification and prognosis. In particular, magnetic resonance imaging (MRI) plays a vital role in the diagnosis of brain tumours. Using MRI to extract glioma-related features and construct a machine learning model offers a viable avenue to classify and predict the level of Ki67 expression. METHODS This study retrospectively collected MRI data and postoperative immunohistochemical results from 613 glioma patients from the First Affliated Hospital of Nanjing Medical University. Subsequently, we performed registration and skull stripping on the four MRI modalities: T1-weighted (T1), T2-weighted (T2), T1-weighted with contrast enhancement (T1CE), and Fluid Attenuated Inversion Recovery (FLAIR). Each modality's segmentation yielded three distinct tumour regions. Following segmentation, a comprehensive set of features encompassing texture, first-order, and shape attributes were extracted from these delineated regions. Feature selection was conducted using the least absolute shrinkage and selection operator (LASSO) algorithm with subsequent sorting to identify the most important features. These selected features were further analysed using correlation analysis to finalise the selection for machine learning model development. Eight models: logistic regression (LR), naive bayes, decision tree, gradient boosting tree, and support vector classification (SVM), random forest (RF), XGBoost, and LightGBM were used to objectively classify Ki67 expression. RESULTS In total, 613 patients were enroled in the study, and 24,455 radiomic features were extracted from each patient's MRI. These features were eventually reduced to 36 after LASSO screening, RF importance ranking, and correlation analysis. Among all the tested machine learning models, LR and linear SVM exhibited superior performance. LR achieved the highest area under the curve score of 0.912 ± 0.036, while linear SVM obtained the top accuracy with a score of 0.884 ± 0.031. CONCLUSION This study introduced a novel approach for classifying Ki67 expression levels using MRI, which has been proven to be highly effective. With the LR model at its core, our method demonstrated its potential in signalling a promising avenue for future research. This innovative approach of predicting Ki67 expression based on MRI features not only enhances our understanding of cell activity but also represents a significant leap forward in brain glioma research. This underscores the potential of integrating machine learning with medical imaging to aid in the diagnosis and prognosis of complex diseases.
Collapse
Affiliation(s)
- Jiaying Ni
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongjian Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qing Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiao Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Junqing Xu
- The second Clinical Medical School, Nanjing Medical University, Nanjing 211166, China
| | - Jianing Sun
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yifang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zheming Xiao
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuhong Zhao
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongli Zhu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xian Shi
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Feng
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junjie Wang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Institute of Medical Informatics and Management, Nanjing Medical University, Jiangsu 210029, China
| | - Cheng Wan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Institute of Medical Informatics and Management, Nanjing Medical University, Jiangsu 210029, China
| | - Xin Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Institute of Medical Informatics and Management, Nanjing Medical University, Jiangsu 210029, China
| | - Yun Liu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Institute of Medical Informatics and Management, Nanjing Medical University, Jiangsu 210029, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yun Yu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Institute of Medical Informatics and Management, Nanjing Medical University, Jiangsu 210029, China.
| |
Collapse
|
5
|
Al-Rahbi A, Al-Mahrouqi O, Al-Saadi T. Uses of artificial intelligence in glioma: A systematic review. MEDICINE INTERNATIONAL 2024; 4:40. [PMID: 38827949 PMCID: PMC11140312 DOI: 10.3892/mi.2024.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Glioma is the most prevalent type of primary brain tumor in adults. The use of artificial intelligence (AI) in glioma is increasing and has exhibited promising results. The present study performed a systematic review of the applications of AI in glioma as regards diagnosis, grading, prediction of genotype, progression and treatment response using different databases. The aim of the present study was to demonstrate the trends (main directions) of the recent applications of AI within the field of glioma, and to highlight emerging challenges in integrating AI within clinical practice. A search in four databases (Scopus, PubMed, Wiley and Google Scholar) yielded a total of 42 articles specifically using AI in glioma and glioblastoma. The articles were retrieved and reviewed, and the data were summarized and analyzed. The majority of the articles were from the USA (n=18) followed by China (n=11). The number of articles increased by year reaching the maximum number in 2022. The majority of the articles studied glioma as opposed to glioblastoma. In terms of grading, the majority of the articles were about both low-grade glioma (LGG) and high-grade glioma (HGG) (n=23), followed by HGG/glioblastoma (n=13). Additionally, three articles were about LGG only; two articles did not specify the grade. It was found that one article had the highest sample size among the other studies, reaching 897 samples. Despite the limitations and challenges that face AI, the use of AI in glioma has increased in recent years with promising results, with a variety of applications ranging from diagnosis, grading, prognosis prediction, and reaching to treatment and post-operative care.
Collapse
Affiliation(s)
- Adham Al-Rahbi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | - Omar Al-Mahrouqi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | - Tariq Al-Saadi
- Department of Neurosurgery, Khoula Hospital, Muscat 123, Sultanate of Oman
- Department of Neurology and Neurosurgery-Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
6
|
Saluja S, Trivedi MC, Sarangdevot SS. Advancing glioma diagnosis: Integrating custom U-Net and VGG-16 for improved grading in MR imaging. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:4328-4350. [PMID: 38549330 DOI: 10.3934/mbe.2024191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
In the realm of medical imaging, the precise segmentation and classification of gliomas represent fundamental challenges with profound clinical implications. Leveraging the BraTS 2018 dataset as a standard benchmark, this study delves into the potential of advanced deep learning models for addressing these challenges. We propose a novel approach that integrates a customized U-Net for segmentation and VGG-16 for classification. The U-Net, with its tailored encoder-decoder pathways, accurately identifies glioma regions, thus improving tumor localization. The fine-tuned VGG-16, featuring a customized output layer, precisely differentiates between low-grade and high-grade gliomas. To ensure consistency in data pre-processing, a standardized methodology involving gamma correction, data augmentation, and normalization is introduced. This novel integration surpasses existing methods, offering significantly improved glioma diagnosis, validated by high segmentation dice scores (WT: 0.96, TC: 0.92, ET: 0.89), and a remarkable overall classification accuracy of 97.89%. The experimental findings underscore the potential of integrating deep learning-based methodologies for tumor segmentation and classification in enhancing glioma diagnosis and formulating subsequent treatment strategies.
Collapse
Affiliation(s)
- Sonam Saluja
- Department of Computer Science and Engineering, National Institute of Technology Agartala, Tripura, 799046, India
| | - Munesh Chandra Trivedi
- Department of Computer Science and Engineering, National Institute of Technology Agartala, Tripura, 799046, India
| | | |
Collapse
|
7
|
Hajianfar G, Haddadi Avval A, Hosseini SA, Nazari M, Oveisi M, Shiri I, Zaidi H. Time-to-event overall survival prediction in glioblastoma multiforme patients using magnetic resonance imaging radiomics. LA RADIOLOGIA MEDICA 2023; 128:1521-1534. [PMID: 37751102 PMCID: PMC10700216 DOI: 10.1007/s11547-023-01725-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE Glioblastoma Multiforme (GBM) represents the predominant aggressive primary tumor of the brain with short overall survival (OS) time. We aim to assess the potential of radiomic features in predicting the time-to-event OS of patients with GBM using machine learning (ML) algorithms. MATERIALS AND METHODS One hundred nineteen patients with GBM, who had T1-weighted contrast-enhanced and T2-FLAIR MRI sequences, along with clinical data and survival time, were enrolled. Image preprocessing methods included 64 bin discretization, Laplacian of Gaussian (LOG) filters with three Sigma values and eight variations of Wavelet Transform. Images were then segmented, followed by the extraction of 1212 radiomic features. Seven feature selection (FS) methods and six time-to-event ML algorithms were utilized. The combination of preprocessing, FS, and ML algorithms (12 × 7 × 6 = 504 models) was evaluated by multivariate analysis. RESULTS Our multivariate analysis showed that the best prognostic FS/ML combinations are the Mutual Information (MI)/Cox Boost, MI/Generalized Linear Model Boosting (GLMB) and MI/Generalized Linear Model Network (GLMN), all of which were done via the LOG (Sigma = 1 mm) preprocessing method (C-index = 0.77). The LOG filter with Sigma = 1 mm preprocessing method, MI, GLMB and GLMN achieved significantly higher C-indices than other preprocessing, FS, and ML methods (all p values < 0.05, mean C-indices of 0.65, 0.70, and 0.64, respectively). CONCLUSION ML algorithms are capable of predicting the time-to-event OS of patients using MRI-based radiomic and clinical features. MRI-based radiomics analysis in combination with clinical variables might appear promising in assisting clinicians in the survival prediction of patients with GBM. Further research is needed to establish the applicability of radiomics in the management of GBM in the clinic.
Collapse
Affiliation(s)
- Ghasem Hajianfar
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva, Switzerland
| | | | - Seyyed Ali Hosseini
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montréal, QC, Canada
| | - Mostafa Nazari
- Department of Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Oveisi
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva, Switzerland.
- Geneva University Neurocenter, Geneva University, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
8
|
Choi Y, Jang J, Kim BS, Ahn KJ. Pretreatment MR-based radiomics in patients with glioblastoma: A systematic review and meta-analysis of prognostic endpoints. Eur J Radiol 2023; 168:111130. [PMID: 37827087 DOI: 10.1016/j.ejrad.2023.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Recent studies have shown promise of MR-based radiomics in predicting the survival of patients with untreated glioblastoma. This study aimed to comprehensively collate evidence to assess the prognostic value of radiomics in glioblastoma. METHODS PubMed-MEDLINE, Embase, and Web of Science were searched to find original articles investigating the prognostic value of MR-based radiomics in glioblastoma published up to July 14, 2023. Concordance indexes (C-indexes) and Cox proportional hazards ratios (HRs) of overall survival (OS) and progression-free survival (PFS) were pooled via random-effects modeling. For studies aimed at classifying long-term and short-term PFS, a hierarchical regression model was used to calculate pooled sensitivity and specificity. Between-study heterogeneity was assessed using the Higgin inconsistency index (I2). Subgroup regression analysis was performed to find potential factors contributing to heterogeneity. Publication bias was assessed via funnel plots and the Egger test. RESULTS Among 1371 abstracts, 18 and 17 studies were included for qualitative and quantitative data synthesis, respectively. Respective pooled C-indexes and HRs for OS were 0.65 (95 % confidence interval [CI], 0.58-0.72) and 2.88 (95 % CI, 2.28-3.64), whereas those for PFS were 0.61 (95 % CI, 0.55-0.66) and 2.78 (95 % CI, 1.91-4.03). Among 4 studies that predicted short-term PFS, the pooled sensitivity and specificity were 0.77 (95 % CI, 0.58-0.89) and 0.60 (95 % CI, 0.45-0.73), respectively. There was a substantial between-study heterogeneity among studies with the survival endpoint of OS C-index (n = 9, I2 = 83.8 %). Publication bias was not observed overall. CONCLUSION Pretreatment MR-based radiomics provided modest prognostic value in both OS and PFS in patients with glioblastoma.
Collapse
Affiliation(s)
- Yangsean Choi
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea; Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Centre, Seoul, Republic of Korea
| | - Jinhee Jang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Bum-Soo Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Kook-Jin Ahn
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea.
| |
Collapse
|
9
|
Gu S, Qian J, Yang L, Sun Z, Hu C, Wang X, Hu S, Xie Y. Multiparametric MRI radiomics for the differentiation of brain glial cell hyperplasia from low-grade glioma. BMC Med Imaging 2023; 23:116. [PMID: 37653513 PMCID: PMC10472728 DOI: 10.1186/s12880-023-01086-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Differentiating between low-grade glioma and brain glial cell hyperplasia is crucial for the customized clinical treatment of patients. OBJECTIVE Based on multiparametric MRI imaging and clinical risk factors, a radiomics-clinical model and nomogram were constructed for the distinction of brain glial cell hyperplasia from low-grade glioma. METHODS Patients with brain glial cell hyperplasia and low-grade glioma who underwent surgery at the First Affiliated Hospital of Soochow University from March 2016 to March 2022 were retrospectively included. In this study, A total of 41 patients of brain glial cell hyperplasia and 87 patients of low-grade glioma were divided into training group and validation group randomly at a ratio of 7:3. Radiomics features were extracted from T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), contrast-enhanced T1-weighted imaging (T1-enhanced). Then, LASSO, SVM, and RF models were created in order to choose a model with a greater level of efficiency for calculating each patient's Rad-score (radiomics score). The independent risk factors were identified via univariate and multivariate logistic regression analysis to filter the Rad-score and clinical risk variables in turn. A radiomics-clinical model was next built of which effectiveness was assessed. RESULTS Brain glial cell hyperplasia and low-grade gliomas from the 128 cases were randomly divided into 10 groups, of which 7 served as training group and 3 as validation group. The mass effect and Rad-score were two independent risk variables used in the construction of the radiomics-clinical model, and their respective AUCs for the training group and validation group were 0.847 and 0.858. The diagnostic accuracy, sensitivity, and specificity of the validation group were 0.821, 0.750, and 0.852 respectively. CONCLUSION Combining with radiomics constructed by multiparametric MRI images and clinical features, the radiomics-clinical model and nomogram that were developed to distinguish between brain glial cell hyperplasia and low-grade glioma had a good performance.
Collapse
Affiliation(s)
- Siqian Gu
- Department of Radiology, The First Affiliated Hosptial of Soochow University, 215006, Suzhou, China
| | - Jing Qian
- Department of Radiology, The First Affiliated Hosptial of Soochow University, 215006, Suzhou, China
| | - Ling Yang
- Department of Radiology, The First Affiliated Hosptial of Soochow University, 215006, Suzhou, China.
| | - Zhilei Sun
- Department of Radiology, The First Affiliated Hosptial of Soochow University, 215006, Suzhou, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hosptial of Soochow University, 215006, Suzhou, China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hosptial of Soochow University, 215006, Suzhou, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hosptial of Soochow University, 215006, Suzhou, China
| | - Yuyang Xie
- Soochow University, 215006, Suzhou, China
| |
Collapse
|
10
|
Skouras P, Markouli M, Kalamatianos T, Stranjalis G, Korkolopoulou P, Piperi C. Advances on Liquid Biopsy Analysis for Glioma Diagnosis. Biomedicines 2023; 11:2371. [PMID: 37760812 PMCID: PMC10525418 DOI: 10.3390/biomedicines11092371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Gliomas comprise the most frequent primary central nervous system (CNS) tumors, characterized by remarkable genetic and epigenetic heterogeneity, difficulty in monitoring, and increased relapse and mortality rates. Tissue biopsy is an established method of tumor cell collection and analysis that enables diagnosis, classification of different tumor types, and prediction of prognosis upon confirmation of tumor's location for surgical removal. However, it is an invasive and often challenging procedure that cannot be used for frequent patient screening, detection of mutations, disease monitoring, or resistance to therapy. To this end, the minimally invasive procedure of liquid biopsy has emerged, allowing effortless tumor sampling and enabling continuous monitoring. It is considered a novel preferable way to obtain faster data on potential tumor risk, personalized diagnosis, prognosis, and recurrence evaluation. The purpose of this review is to describe the advances on liquid biopsy for glioma diagnosis and management, indicating several biomarkers that can be utilized to analyze tumor characteristics, such as cell-free DNA (cfDNA), cell-free RNA (cfRNA), circulating proteins, circulating tumor cells (CTCs), and exosomes. It further addresses the benefit of combining liquid biopsy with radiogenomics to facilitate early and accurate diagnoses, enable precise prognostic assessments, and facilitate real-time disease monitoring, aiming towards more optimal treatment decisions.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Theodosis Kalamatianos
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - George Stranjalis
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - Penelope Korkolopoulou
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
11
|
Wang Y, Li L, Li C, Xi Y, Lin Y, Wang S. Expert knowledge guided manifold representation learning for magnetic resonance imaging-based glioma grading. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
12
|
Xu M, Ouyang Y, Yuan Z. Deep Learning Aided Neuroimaging and Brain Regulation. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23114993. [PMID: 37299724 DOI: 10.3390/s23114993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Currently, deep learning aided medical imaging is becoming the hot spot of AI frontier application and the future development trend of precision neuroscience. This review aimed to render comprehensive and informative insights into the recent progress of deep learning and its applications in medical imaging for brain monitoring and regulation. The article starts by providing an overview of the current methods for brain imaging, highlighting their limitations and introducing the potential benefits of using deep learning techniques to overcome these limitations. Then, we further delve into the details of deep learning, explaining the basic concepts and providing examples of how it can be used in medical imaging. One of the key strengths is its thorough discussion of the different types of deep learning models that can be used in medical imaging including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial network (GAN) assisted magnetic resonance imaging (MRI), positron emission tomography (PET)/computed tomography (CT), electroencephalography (EEG)/magnetoencephalography (MEG), optical imaging, and other imaging modalities. Overall, our review on deep learning aided medical imaging for brain monitoring and regulation provides a referrable glance for the intersection of deep learning aided neuroimaging and brain regulation.
Collapse
Affiliation(s)
- Mengze Xu
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau SAR 999078, China
| | - Yuanyuan Ouyang
- Nanomicro Sino-Europe Technology Company Limited, Zhuhai 519031, China
- Jiangfeng China-Portugal Technology Co., Ltd., Macau SAR 999078, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau SAR 999078, China
| |
Collapse
|
13
|
Hu P, Xu L, Qi Y, Yan T, Ye L, Wen S, Yuan D, Zhu X, Deng S, Liu X, Xu P, You R, Wang D, Liang S, Wu Y, Xu Y, Sun Q, Du S, Yuan Y, Deng G, Cheng J, Zhang D, Chen Q, Zhu X. Combination of multi-modal MRI radiomics and liquid biopsy technique for preoperatively non-invasive diagnosis of glioma based on deep learning: protocol for a double-center, ambispective, diagnostical observational study. Front Mol Neurosci 2023; 16:1183032. [PMID: 37201155 PMCID: PMC10185782 DOI: 10.3389/fnmol.2023.1183032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
Background 2021 World Health Organization (WHO) Central Nervous System (CNS) tumor classification increasingly emphasizes the important role of molecular markers in glioma diagnoses. Preoperatively non-invasive "integrated diagnosis" will bring great benefits to the treatment and prognosis of these patients with special tumor locations that cannot receive craniotomy or needle biopsy. Magnetic resonance imaging (MRI) radiomics and liquid biopsy (LB) have great potential for non-invasive diagnosis of molecular markers and grading since they are both easy to perform. This study aims to build a novel multi-task deep learning (DL) radiomic model to achieve preoperative non-invasive "integrated diagnosis" of glioma based on the 2021 WHO-CNS classification and explore whether the DL model with LB parameters can improve the performance of glioma diagnosis. Methods This is a double-center, ambispective, diagnostical observational study. One public database named the 2019 Brain Tumor Segmentation challenge dataset (BraTS) and two original datasets, including the Second Affiliated Hospital of Nanchang University, and Renmin Hospital of Wuhan University, will be used to develop the multi-task DL radiomic model. As one of the LB techniques, circulating tumor cell (CTC) parameters will be additionally applied in the DL radiomic model for assisting the "integrated diagnosis" of glioma. The segmentation model will be evaluated with the Dice index, and the performance of the DL model for WHO grading and all molecular subtype will be evaluated with the indicators of accuracy, precision, and recall. Discussion Simply relying on radiomics features to find the correlation with the molecular subtypes of gliomas can no longer meet the need for "precisely integrated prediction." CTC features are a promising biomarker that may provide new directions in the exploration of "precision integrated prediction" based on the radiomics, and this is the first original study that combination of radiomics and LB technology for glioma diagnosis. We firmly believe that this innovative work will surely lay a good foundation for the "precisely integrated prediction" of glioma and point out further directions for future research. Clinical trail registration This study was registered on ClinicalTrails.gov on 09/10/2022 with Identifier NCT05536024.
Collapse
Affiliation(s)
- Ping Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ling Xu
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tengfeng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liguo Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shen Wen
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Dalong Yuan
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Xinyi Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuhang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xun Liu
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Panpan Xu
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Ran You
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Dongfang Wang
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Shanwen Liang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Senlin Du
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong Zhang
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Frosina G. Recapitulating the Key Advances in the Diagnosis and Prognosis of High-Grade Gliomas: Second Half of 2021 Update. Int J Mol Sci 2023; 24:ijms24076375. [PMID: 37047356 PMCID: PMC10094646 DOI: 10.3390/ijms24076375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
High-grade gliomas (World Health Organization grades III and IV) are the most frequent and fatal brain tumors, with median overall survivals of 24–72 and 14–16 months, respectively. We reviewed the progress in the diagnosis and prognosis of high-grade gliomas published in the second half of 2021. A literature search was performed in PubMed using the general terms “radio* and gliom*” and a time limit from 1 July 2021 to 31 December 2021. Important advances were provided in both imaging and non-imaging diagnoses of these hard-to-treat cancers. Our prognostic capacity also increased during the second half of 2021. This review article demonstrates slow, but steady improvements, both scientifically and technically, which express an increased chance that patients with high-grade gliomas may be correctly diagnosed without invasive procedures. The prognosis of those patients strictly depends on the final results of that complex diagnostic process, with widely varying survival rates.
Collapse
|
15
|
Li X, Lan M, Wang X, Zhang J, Gong L, Liao F, Lin H, Dai S, Fan B, Dong W. Development and validation of a MRI-based combined radiomics nomogram for differentiation in chondrosarcoma. Front Oncol 2023; 13:1090229. [PMID: 36925933 PMCID: PMC10012421 DOI: 10.3389/fonc.2023.1090229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Objective This study aims to develop and validate the performance of an unenhanced magnetic resonance imaging (MRI)-based combined radiomics nomogram for discrimination between low-grade and high-grade in chondrosarcoma. Methods A total of 102 patients with 44 in low-grade and 58 in high-grade chondrosarcoma were enrolled and divided into training set (n=72) and validation set (n=30) with a 7:3 ratio in this retrospective study. The demographics and unenhanced MRI imaging characteristics of the patients were evaluated to develop a clinic-radiological factors model. Radiomics features were extracted from T1-weighted (T1WI) images to construct radiomics signature and calculate radiomics score (Rad-score). According to multivariate logistic regression analysis, a combined radiomics nomogram based on MRI was constructed by integrating radiomics signature and independent clinic-radiological features. The performance of the combined radiomics nomogram was evaluated in terms of calibration, discrimination, and clinical usefulness. Results Using multivariate logistic regression analysis, only one clinic-radiological feature (marrow edema OR=0.29, 95% CI=0.11-0.76, P=0.012) was found to be independent predictors of differentiation in chondrosarcoma. Combined with the above clinic-radiological predictor and the radiomics signature constructed by LASSO [least absolute shrinkage and selection operator], a combined radiomics nomogram based on MRI was constructed, and its predictive performance was better than that of clinic-radiological factors model and radiomics signature, with the AUC [area under the curve] of the training set and the validation set were 0.78 (95%CI =0.67-0.89) and 0.77 (95%CI =0.59-0.94), respectively. DCA [decision curve analysis] showed that combined radiomics nomogram has potential clinical application value. Conclusion The MRI-based combined radiomics nomogram is a noninvasive preoperative prediction tool that combines clinic-radiological feature and radiomics signature and shows good predictive effect in distinguishing low-grade and high-grade bone chondrosarcoma, which may help clinicians to make accurate treatment plans.
Collapse
Affiliation(s)
- Xiaofen Li
- Medical College of Nanchang University, Nanchang, China.,Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Min Lan
- Department of Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xiaolian Wang
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jingkun Zhang
- Department of Radiology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lianggeng Gong
- Department of Medical Imaging Center, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fengxiang Liao
- Department of Nuclear Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Huashan Lin
- Department of Pharmaceutical Diagnosis, General Electric Healthcare, Changsha, China
| | - Shixiang Dai
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Wentao Dong
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
16
|
Dang K, Vo T, Ngo L, Ha H. A deep learning framework integrating MRI image preprocessing methods for brain tumor segmentation and classification. IBRO Neurosci Rep 2022; 13:523-532. [PMID: 36590099 PMCID: PMC9795279 DOI: 10.1016/j.ibneur.2022.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Glioma grading is critical in treatment planning and prognosis. This study aims to address this issue through MRI-based classification to develop an accurate model for glioma diagnosis. Here, we employed a deep learning pipeline with three essential steps: (1) MRI images were segmented using preprocessing approaches and UNet architecture, (2) brain tumor regions were extracted using segmentation, then (3) high-grade gliomas and low-grade gliomas were classified using the VGG and GoogleNet implementations. Among the additional preprocessing techniques used in conjunction with the segmentation task, the combination of data augmentation and Window Setting Optimization was found to be the most effective tool, resulting in the Dice coefficient of 0.82, 0.91, and 0.72 for enhancing tumor, whole tumor, and tumor core, respectively. While most of the proposed models achieve comparable accuracies of about 93 % on the testing dataset, the pipeline of VGG combined with UNet segmentation obtains the highest accuracy of 97.44 %. In conclusion, the presented architecture illustrates a realistic model for detecting gliomas; moreover, it emphasizes the significance of data augmentation and segmentation in improving model performance.
Collapse
Affiliation(s)
- Khiet Dang
- School of Biomedical Engineering, International University, Vietnam National University – Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Vietnam National University – Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Toi Vo
- School of Biomedical Engineering, International University, Vietnam National University – Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Vietnam National University – Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Lua Ngo
- School of Biomedical Engineering, International University, Vietnam National University – Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Vietnam National University – Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Corresponding authors at: School of Biomedical Engineering, International University, Vietnam National University – Ho Chi Minh City, Ho Chi Minh City, Viet Nam.
| | - Huong Ha
- School of Biomedical Engineering, International University, Vietnam National University – Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Vietnam National University – Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Corresponding authors at: School of Biomedical Engineering, International University, Vietnam National University – Ho Chi Minh City, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
17
|
Ong W, Zhu L, Zhang W, Kuah T, Lim DSW, Low XZ, Thian YL, Teo EC, Tan JH, Kumar N, Vellayappan BA, Ooi BC, Quek ST, Makmur A, Hallinan JTPD. Application of Artificial Intelligence Methods for Imaging of Spinal Metastasis. Cancers (Basel) 2022; 14:4025. [PMID: 36011018 PMCID: PMC9406500 DOI: 10.3390/cancers14164025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal metastasis is the most common malignant disease of the spine. Recently, major advances in machine learning and artificial intelligence technology have led to their increased use in oncological imaging. The purpose of this study is to review and summarise the present evidence for artificial intelligence applications in the detection, classification and management of spinal metastasis, along with their potential integration into clinical practice. A systematic, detailed search of the main electronic medical databases was undertaken in concordance with the PRISMA guidelines. A total of 30 articles were retrieved from the database and reviewed. Key findings of current AI applications were compiled and summarised. The main clinical applications of AI techniques include image processing, diagnosis, decision support, treatment assistance and prognostic outcomes. In the realm of spinal oncology, artificial intelligence technologies have achieved relatively good performance and hold immense potential to aid clinicians, including enhancing work efficiency and reducing adverse events. Further research is required to validate the clinical performance of the AI tools and facilitate their integration into routine clinical practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Lei Zhu
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Wenqiao Zhang
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Tricia Kuah
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Desmond Shi Wei Lim
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Xi Zhen Low
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Yee Liang Thian
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Ee Chin Teo
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Jiong Hao Tan
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Balamurugan A. Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, Singapore 119074, Singapore
| | - Beng Chin Ooi
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Swee Tian Quek
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
18
|
Xu C, Peng Y, Zhu W, Chen Z, Li J, Tan W, Zhang Z, Chen X. An automated approach for predicting glioma grade and survival of LGG patients using CNN and radiomics. Front Oncol 2022; 12:969907. [PMID: 36033433 PMCID: PMC9413530 DOI: 10.3389/fonc.2022.969907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives To develop and validate an efficient and automatically computational approach for stratifying glioma grades and predicting survival of lower-grade glioma (LGG) patients using an integration of state-of-the-art convolutional neural network (CNN) and radiomics. Method This retrospective study reviewed 470 preoperative MR images of glioma from BraTs public dataset (n=269) and Jinling hospital (n=201). A fully automated pipeline incorporating tumor segmentation and grading was developed, which can avoid variability and subjectivity of manual segmentations. First, an integrated approach by fusing CNN features and radiomics features was employed to stratify glioma grades. Then, a deep-radiomics signature based on the integrated approach for predicting survival of LGG patients was developed and subsequently validated in an independent cohort. Results The performance of tumor segmentation achieved a Dice coefficient of 0.81. The intraclass correlation coefficients (ICCs) of the radiomics features between the segmentation network and physicians were all over 0.75. The performance of glioma grading based on integrated approach achieved the area under the curve (AUC) of 0.958, showing the effectiveness of the integrated approach. The multivariable Cox regression results demonstrated that the deep-radiomics signature remained an independent prognostic factor and the integrated nomogram showed significantly better performance than the clinical nomogram in predicting overall survival of LGG patients (C-index: 0.865 vs. 0.796, P=0.005). Conclusion The proposed integrated approach can be noninvasively and efficiently applied in prediction of gliomas grade and survival. Moreover, our fully automated pipeline successfully achieved computerized segmentation instead of manual segmentation, which shows the potential to be a reproducible approach in clinical practice.
Collapse
Affiliation(s)
- Chenan Xu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China
| | - Yuanyuan Peng
- School of Electronics and Information Engineering and Medical Image Processing, Analysis and Visualization Lab, Soochow University, Suzhou, China
| | - Weifang Zhu
- School of Electronics and Information Engineering and Medical Image Processing, Analysis and Visualization Lab, Soochow University, Suzhou, China
| | - Zhongyue Chen
- School of Electronics and Information Engineering and Medical Image Processing, Analysis and Visualization Lab, Soochow University, Suzhou, China
| | - Jianrui Li
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenhao Tan
- School of Electronics and Information Engineering and Medical Image Processing, Analysis and Visualization Lab, Soochow University, Suzhou, China
| | - Zhiqiang Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- *Correspondence: Zhiqiang Zhang, ; Xinjian Chen,
| | - Xinjian Chen
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China
- School of Electronics and Information Engineering and Medical Image Processing, Analysis and Visualization Lab, Soochow University, Suzhou, China
- *Correspondence: Zhiqiang Zhang, ; Xinjian Chen,
| |
Collapse
|
19
|
A Pipeline for the Implementation and Visualization of Explainable Machine Learning for Medical Imaging Using Radiomics Features. SENSORS 2022; 22:s22145205. [PMID: 35890885 PMCID: PMC9318445 DOI: 10.3390/s22145205] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023]
Abstract
Machine learning (ML) models have been shown to predict the presence of clinical factors from medical imaging with remarkable accuracy. However, these complex models can be difficult to interpret and are often criticized as “black boxes”. Prediction models that provide no insight into how their predictions are obtained are difficult to trust for making important clinical decisions, such as medical diagnoses or treatment. Explainable machine learning (XML) methods, such as Shapley values, have made it possible to explain the behavior of ML algorithms and to identify which predictors contribute most to a prediction. Incorporating XML methods into medical software tools has the potential to increase trust in ML-powered predictions and aid physicians in making medical decisions. Specifically, in the field of medical imaging analysis the most used methods for explaining deep learning-based model predictions are saliency maps that highlight important areas of an image. However, they do not provide a straightforward interpretation of which qualities of an image area are important. Here, we describe a novel pipeline for XML imaging that uses radiomics data and Shapley values as tools to explain outcome predictions from complex prediction models built with medical imaging with well-defined predictors. We present a visualization of XML imaging results in a clinician-focused dashboard that can be generalized to various settings. We demonstrate the use of this workflow for developing and explaining a prediction model using MRI data from glioma patients to predict a genetic mutation.
Collapse
|
20
|
Faridzadeh A, Salimi Y, Ghasemirad H, Kargar M, Rashtchian A, Mahmoudvand G, Karimi MA, Zerangian N, Jahani N, Masoudi A, Sadeghian Dastjerdi B, Salavatizadeh M, Sadeghsalehi H, Deravi N. Neuroprotective Potential of Aromatic Herbs: Rosemary, Sage, and Lavender. Front Neurosci 2022; 16:909833. [PMID: 35873824 PMCID: PMC9297920 DOI: 10.3389/fnins.2022.909833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hundreds of millions of people around the world suffer from neurological disorders or have experienced them intermittently, which has significantly reduced their quality of life. The common treatments for neurological disorders are relatively expensive and may lead to a wide variety of side effects including sleep attacks, gastrointestinal side effects, blood pressure changes, etc. On the other hand, several herbal medications have attracted colossal popularity worldwide in the recent years due to their availability, affordable prices, and few side effects. Aromatic plants, sage (Salvia officinalis), lavender (Lavandula angustifolia), and rosemary (Salvia Rosmarinus) have already shown anxiolytics, anti-inflammatory, antioxidant, and neuroprotective effects. They have also shown potential in treating common neurological disorders, including Alzheimer's disease, Parkinson's disease, migraine, and cognitive disorders. This review summarizes the data on the neuroprotective potential of aromatic herbs, sage, lavender, and rosemary.
Collapse
Affiliation(s)
- Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Salimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamidreza Ghasemirad
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Meraj Kargar
- Student Research Committee, Afzalipour Faculty of Medicine Kerman University of Medical Sciences, Kerman, Iran
| | - Ava Rashtchian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasibeh Zerangian
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Jahani
- Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anahita Masoudi
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Bahare Sadeghian Dastjerdi
- Student Research Committee, Department of Midwifery, Faculty of Nursing and Midwifery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marieh Salavatizadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Niloofar Deravi
| |
Collapse
|
21
|
Admoni-Elisha L, Elbaz T, Chopra A, Shapira G, Bedford M, Fry C, Shomron N, Biggar K, Feldman M, Levy D. TWIST1 methylation by SETD6 selectively antagonizes LINC-PINT expression in glioma. Nucleic Acids Res 2022; 50:6903-6918. [PMID: 35694846 PMCID: PMC9262621 DOI: 10.1093/nar/gkac485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Gliomas are one of the most common and lethal brain tumors among adults. One process that contributes to glioma progression and recurrence is the epithelial to mesenchymal transition (EMT). EMT is regulated by a set of defined transcription factors which tightly regulate this process, among them is the basic helix-loop-helix family member, TWIST1. Here we show that TWIST1 is methylated on lysine-33 at chromatin by SETD6, a methyltransferase with expression levels correlating with poor survival in glioma patients. RNA-seq analysis in U251 glioma cells suggested that both SETD6 and TWIST1 regulate cell adhesion and migration processes. We further show that TWIST1 methylation attenuates the expression of the long-non-coding RNA, LINC-PINT, thereby promoting EMT in glioma. Mechanistically, TWIST1 methylation represses the transcription of LINC-PINT by increasing the occupancy of EZH2 and the catalysis of the repressive H3K27me3 mark at the LINC-PINT locus. Under un-methylated conditions, TWIST1 dissociates from the LINC-PINT locus, allowing the expression of LINC-PINT which leads to increased cell adhesion and decreased cell migration. Together, our findings unravel a new mechanistic dimension for selective expression of LINC-PINT mediated by TWIST1 methylation.
Collapse
Affiliation(s)
- Lee Admoni-Elisha
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Be'er-Sheva, Israel,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Be’er-Sheva 84105, Israel
| | - Tzofit Elbaz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Be'er-Sheva, Israel,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Be’er-Sheva 84105, Israel
| | - Anand Chopra
- Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Guy Shapira
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Mark T Bedford
- Department of Carcinogenesis, M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Kyle Biggar
- Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Michal Feldman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Be'er-Sheva, Israel,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Be’er-Sheva 84105, Israel
| | - Dan Levy
- To whom correspondence should be addressed. Tel: +972 8 647 7251;
| |
Collapse
|
22
|
Balana C, Castañer S, Carrato C, Moran T, Lopez-Paradís A, Domenech M, Hernandez A, Puig J. Preoperative Diagnosis and Molecular Characterization of Gliomas With Liquid Biopsy and Radiogenomics. Front Neurol 2022; 13:865171. [PMID: 35693015 PMCID: PMC9177999 DOI: 10.3389/fneur.2022.865171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are a heterogenous group of central nervous system tumors with different outcomes and different therapeutic needs. Glioblastoma, the most common subtype in adults, has a very poor prognosis and disabling consequences. The World Health Organization (WHO) classification specifies that the typing and grading of gliomas should include molecular markers. The molecular characterization of gliomas has implications for prognosis, treatment planning, and prediction of treatment response. At present, gliomas are diagnosed via tumor resection or biopsy, which are always invasive and frequently risky methods. In recent years, however, substantial advances have been made in developing different methods for the molecular characterization of tumors through the analysis of products shed in body fluids. Known as liquid biopsies, these analyses can potentially provide diagnostic and prognostic information, guidance on choice of treatment, and real-time information on tumor status. In addition, magnetic resonance imaging (MRI) is another good source of tumor data; radiomics and radiogenomics can link the imaging phenotypes to gene expression patterns and provide insights to tumor biology and underlying molecular signatures. Machine and deep learning and computational techniques can also use quantitative imaging features to non-invasively detect genetic mutations. The key molecular information obtained with liquid biopsies and radiogenomics can be useful not only in the diagnosis of gliomas but can also help predict response to specific treatments and provide guidelines for personalized medicine. In this article, we review the available data on the molecular characterization of gliomas using the non-invasive methods of liquid biopsy and MRI and suggest that these tools could be used in the future for the preoperative diagnosis of gliomas.
Collapse
Affiliation(s)
- Carmen Balana
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
- *Correspondence: Carmen Balana
| | - Sara Castañer
- Diagnostic Imaging Institute (IDI), Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Cristina Carrato
- Department of Pathology, Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Teresa Moran
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Assumpció Lopez-Paradís
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Marta Domenech
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Ainhoa Hernandez
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Josep Puig
- Department of Radiology IDI [Girona Biomedical Research Institute] IDIBGI, Hospital Universitari Dr Josep Trueta, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Comparative Medicine and Bioimage of Catalonia, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| |
Collapse
|
23
|
Qing Z, Xiaoai K, Caiqiang X, Shenglin L, Xiaoyu H, Bin Z, Junlin Z. Nomogram for predicting early recurrence in patients with high-grade gliomas. World Neurosurg 2022; 164:e619-e628. [PMID: 35589036 DOI: 10.1016/j.wneu.2022.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To develop a nomogram to predict early recurrence of high-grade glioma (HGG) based on clinical pathology, genetic factors and MRI parameters. METHODS 154 patients with HGG were classified into recurrence and non-recurrence groups based on the pathological diagnosis and RANO criteria. Clinical pathology information included age, sex, preoperative Karnofsky performance status (KPS) scores,grade, and cell proliferation index (Ki-67). Gene information included P53, IDH1, MGMT, and TERT expression status. All patients underwent baseline MRIs before treatment, including T1WI, T2WI, T1C, Flair, and DWI examinations. Tumor location, single/multiple tumors, tumor diameter, peritumoral edema, necrotic cyst, hemorrhage, average apparent diffusion coefficient(ADC) value, and minimum ADC values were evaluated. Univariate and multivariate logistic regression analyses were used to determine the predictors of early recurrence and build nomogram. RESULTS Univariate analysis showed that the number of tumors (OR, 0.258; 95% CI: 0.104, 0.639; P = 0.003) and peritumoral edema (OR, 0.965; 95% CI 0.942, 0.988; P = 0.003; mean in the recurrence group 22.04±17.21 mm; mean in the non-recurrence group 14.22±12.84 mm) were statistically significantly different in patients with early recurrence. Genetic factors associated with early recurrence included IDH1 (OR, 4.405; 95% CI 1.874, 10.353; P= 0.001), and MGMT (OR, 2.389; 95% CI 1.234, 4.628; P= 0.010). Multivariate logistic regression analysis revealed that the number of tumors (OR, 0.227; 95% CI 0.084, 0.616; P = 0.004), peritumoral edema (OR, 0.969; 95% CI 0.945, 0.993; P = 0.013), and IDH1 (OR, 4.200; 95% CI 1.602, 10.013; P= 0.004) were independent risk factors for early recurrence. The nomogram showed the highest net benefit when the threshold probability was less than 60%. CONCLUSION A nomogram prediction model can effectively aid in clinical treatment decisions for patients with newly diagnosed HGG .
Collapse
Affiliation(s)
- Zhou Qing
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Ke Xiaoai
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Xue Caiqiang
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Li Shenglin
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Huang Xiaoyu
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Zhang Bin
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Zhou Junlin
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China.
| |
Collapse
|
24
|
Kalasauskas D, Kosterhon M, Keric N, Korczynski O, Kronfeld A, Ringel F, Othman A, Brockmann MA. Beyond Glioma: The Utility of Radiomic Analysis for Non-Glial Intracranial Tumors. Cancers (Basel) 2022; 14:cancers14030836. [PMID: 35159103 PMCID: PMC8834271 DOI: 10.3390/cancers14030836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Tumor qualities, such as growth rate, firmness, and intrusion into healthy tissue, can be very important for operation planning and further treatment. Radiomics is a promising new method that allows the determination of some of these qualities on images performed before surgery. In this article, we provide a review of the use of radiomics in various tumors of the central nervous system, such as metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors. Abstract The field of radiomics is rapidly expanding and gaining a valuable role in neuro-oncology. The possibilities related to the use of radiomic analysis, such as distinguishing types of malignancies, predicting tumor grade, determining the presence of particular molecular markers, consistency, therapy response, and prognosis, can considerably influence decision-making in medicine in the near future. Even though the main focus of radiomic analyses has been on glial CNS tumors, studies on other intracranial tumors have shown encouraging results. Therefore, as the main focus of this review, we performed an analysis of publications on PubMed and Web of Science databases, focusing on radiomics in CNS metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Naureen Keric
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Oliver Korczynski
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Florian Ringel
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
- Correspondence:
| |
Collapse
|
25
|
Zhou Q, Xue C, Ke X, Zhou J. Treatment Response and Prognosis Evaluation in High-Grade Glioma: An Imaging Review Based on MRI. J Magn Reson Imaging 2022; 56:325-340. [PMID: 35129845 DOI: 10.1002/jmri.28103] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
In recent years, the development of advanced magnetic resonance imaging (MRI) technology and machine learning (ML) have created new tools for evaluating treatment response and prognosis of patients with high-grade gliomas (HGG); however, patient prognosis has not improved significantly. This is mainly due to the heterogeneity between and within HGG tumors, resulting in standard treatment methods not benefitting all patients. Moreover, the survival of patients with HGG is not only related to tumor cells, but also to noncancer cells in the tumor microenvironment (TME). Therefore, during preoperative diagnosis and follow-up treatment of patients with HGG, noninvasive imaging markers are needed to characterize intratumoral heterogeneity, and then to evaluate treatment response and predict prognosis, timeously adjust treatment strategies, and achieve individualized diagnosis and treatment. In this review, we summarize the research progress of conventional MRI, advanced MRI technology, and ML in evaluation of treatment response and prognosis of patients with HGG. We further discuss the significance of the TME in the prognosis of HGG patients, associate imaging features with the TME, indirectly reflecting the heterogeneity within the tumor, and shifting treatment strategies from tumor cells alone to systemic therapy of the TME, which may be a major development direction in the future. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 4.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| |
Collapse
|
26
|
Cheung BMF, Lau KS, Lee VHF, Leung TW, Kong FMS, Luk MY, Yuen KK. Computed tomography-based radiomic model predicts radiological response following stereotactic body radiation therapy in early-stage non-small-cell lung cancer and pulmonary oligo-metastases. Radiat Oncol J 2022; 39:254-264. [PMID: 34986546 PMCID: PMC8743458 DOI: 10.3857/roj.2021.00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose Radiomic models elaborate geometric and texture features of tumors extracted from imaging to develop predictors for clinical outcomes. Stereotactic body radiation therapy (SBRT) has been increasingly applied in the ablative treatment of thoracic tumors. This study aims to identify predictors of treatment responses in patients affected by early stage non-small cell lung cancer (NSCLC) or pulmonary oligo-metastases treated with SBRT and to develop an accurate machine learning model to predict radiological response to SBRT. Materials and Methods Computed tomography (CT) images of 85 tumors (stage I–II NSCLC and pulmonary oligo-metastases) from 69 patients treated with SBRT were analyzed. Gross tumor volumes (GTV) were contoured on CT images. Patients that achieved complete response (CR) or partial response (PR) were defined as responders. One hundred ten radiomic features were extracted using PyRadiomics module based on the GTV. The association of features with response to SBRT was evaluated. A model using support vector machine (SVM) was then trained to predict response based solely on the extracted radiomics features. Receiver operating characteristic curves were constructed to evaluate model performance of the identified radiomic predictors. Results Sixty-nine patients receiving thoracic SBRT from 2008 to 2018 were retrospectively enrolled. Skewness and root mean squared were identified as radiomic predictors of response to SBRT. The SVM machine learning model developed had an accuracy of 74.8%. The area under curves for CR, PR, and non-responder prediction were 0.86 (95% confidence interval [CI], 0.794–0.921), 0.946 (95% CI, 0.873–0.978), and 0.857 (95% CI, 0.789–0.915), respectively. Conclusion Radiomic analysis of pre-treatment CT scan is a promising tool that can predict tumor response to SBRT.
Collapse
Affiliation(s)
| | - Kin Sang Lau
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong
| | | | - To Wai Leung
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong
| | | | - Mai Yee Luk
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong
| | - Kwok Keung Yuen
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong
| |
Collapse
|
27
|
Wan Y, Zhou S, Zhang Y, Deng X, Xu L. Radiomic Analysis of Contrast-Enhanced MRI Predicts DNA Copy-Number Subtype and Outcome in Lower-Grade Gliomas. Acad Radiol 2021; 29:e189-e196. [PMID: 34916150 DOI: 10.1016/j.acra.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
RATIONALE AND OBJECTIVES DNA copy-number (CN)2-subtype impairs outcomes in patients with lower-grade gliomas (LGG). We aimed to determine the value of preoperative nomograms integrating radiomic and radiographic (RR) features in predicting DNA copy-number subtype. METHODS Data of 153 consecutive patients were retrospectively analyzed. A total of 1167 radiomics features were extracted from contrast-enhanced MR images. LASSO logistic regression was performed to choose the key features and construct a radiomics signature. Three CN-related RR model were built with multivariate logistic regression. RESULTS CN2-subtype was associated with shortest median PFS(p <0.001) and OS (p <0.001). The radiomics nomogram, which incorporated the signature (AUC:0.891, OR: 2.345; p = 0.001), extranodular growth (OR: 14.413; p <0.001) and width (OR: 0.194; p = 0.027), distinguished CN2-subtype with an AUC of 0.924(95%CI: 0.869-0.979).The radiomics nomogram, which incorporated the signature (AUC:0.730, OR: 2.408; p = 0.001), hemorrhage (OR: 0.100; p <0.001), poorly-defined margin (OR:4.433; p = 0.001) and volume>=60cm3 (OR: 4.195; p = 0.002) were associated with CN1-subtype (AUC:0.829,95%CI:0.765-0.892).The radiomics nomogram, which incorporated the signature (AUC:0.660, OR: 2.518; p = 0.003), necrosis/cystic(OR:6.975; p = 0.008), hemorrhage (OR:3.723; p = 0.024), poorly-defined margin (OR:0.124; p <0.001) and frontal lobe tumors (OR: 4.870; p <0.001) were associated with CN3-subtype (AUC: 0.837,95%CI: 0.767-0.909).All three RR models showed good discrimination and calibration. Decision curve analysis indicated that all RR models were clinically useful. The average accuracy of the ten-fold cross validation was 92.8% for CN2-subtype, 72.6% for CN1-subtype and 79.0% for CN3-subtype. CONCLUSION The shortest PFS and OS was observed in LGG patients with CN2-subtype. The RR models, integrating radiomic and radiographic features, demonstrates good performance for predicting DNA copy-number subtype and clinical outcomes.
Collapse
Affiliation(s)
- Yun Wan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine& Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, GP 510120, China
| | - Shuqin Zhou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine& Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, GP 510120, China
| | - Ying Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine& Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, GP 510120, China
| | - Xianqin Deng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine& Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, GP 510120, China
| | - Li Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine& Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, GP 510120, China.
| |
Collapse
|
28
|
Abdel Razek AAK, Alksas A, Shehata M, AbdelKhalek A, Abdel Baky K, El-Baz A, Helmy E. Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging 2021; 12:152. [PMID: 34676470 PMCID: PMC8531173 DOI: 10.1186/s13244-021-01102-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
This article is a comprehensive review of the basic background, technique, and clinical applications of artificial intelligence (AI) and radiomics in the field of neuro-oncology. A variety of AI and radiomics utilized conventional and advanced techniques to differentiate brain tumors from non-neoplastic lesions such as inflammatory and demyelinating brain lesions. It is used in the diagnosis of gliomas and discrimination of gliomas from lymphomas and metastasis. Also, semiautomated and automated tumor segmentation has been developed for radiotherapy planning and follow-up. It has a role in the grading, prediction of treatment response, and prognosis of gliomas. Radiogenomics allowed the connection of the imaging phenotype of the tumor to its molecular environment. In addition, AI is applied for the assessment of extra-axial brain tumors and pediatric tumors with high performance in tumor detection, classification, and stratification of patient's prognoses.
Collapse
Affiliation(s)
| | - Ahmed Alksas
- Biomaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Mohamed Shehata
- Biomaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Amr AbdelKhalek
- Internship at Mansoura University Hospital, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Khaled Abdel Baky
- Department of Diagnostic Radiology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Ayman El-Baz
- Biomaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Eman Helmy
- Department of Diagnostic Radiology, Faculty of Medicine, Mansoura University, Elgomheryia Street, Mansoura, 3512, Egypt.
| |
Collapse
|
29
|
Radiomics and radiogenomics in gliomas: a contemporary update. Br J Cancer 2021; 125:641-657. [PMID: 33958734 PMCID: PMC8405677 DOI: 10.1038/s41416-021-01387-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
The natural history and treatment landscape of primary brain tumours are complicated by the varied tumour behaviour of primary or secondary gliomas (high-grade transformation of low-grade lesions), as well as the dilemmas with identification of radiation necrosis, tumour progression, and pseudoprogression on MRI. Radiomics and radiogenomics promise to offer precise diagnosis, predict prognosis, and assess tumour response to modern chemotherapy/immunotherapy and radiation therapy. This is achieved by a triumvirate of morphological, textural, and functional signatures, derived from a high-throughput extraction of quantitative voxel-level MR image metrics. However, the lack of standardisation of acquisition parameters and inconsistent methodology between working groups have made validations unreliable, hence multi-centre studies involving heterogenous study populations are warranted. We elucidate novel radiomic and radiogenomic workflow concepts and state-of-the-art descriptors in sub-visual MR image processing, with relevant literature on applications of such machine learning techniques in glioma management.
Collapse
|
30
|
Yan J, Zhang B, Zhang S, Cheng J, Liu X, Wang W, Dong Y, Zhang L, Mo X, Chen Q, Fang J, Wang F, Tian J, Zhang S, Zhang Z. Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients. NPJ Precis Oncol 2021; 5:72. [PMID: 34312469 PMCID: PMC8313682 DOI: 10.1038/s41698-021-00205-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Gliomas can be classified into five molecular groups based on the status of IDH mutation, 1p/19q codeletion, and TERT promoter mutation, whereas they need to be obtained by biopsy or surgery. Thus, we aimed to use MRI-based radiomics to noninvasively predict the molecular groups and assess their prognostic value. We retrospectively identified 357 patients with gliomas and extracted radiomic features from their preoperative MRI images. Single-layered radiomic signatures were generated using a single MR sequence using Bayesian-regularization neural networks. Image fusion models were built by combing the significant radiomic signatures. By separately predicting the molecular markers, the predictive molecular groups were obtained. Prognostic nomograms were developed based on the predictive molecular groups and clinicopathologic data to predict progression-free survival (PFS) and overall survival (OS). The results showed that the image fusion model incorporating radiomic signatures from contrast-enhanced T1-weighted imaging (cT1WI) and apparent diffusion coefficient (ADC) achieved an AUC of 0.884 and 0.669 for predicting IDH and TERT status, respectively. cT1WI-based radiomic signature alone yielded favorable performance in predicting 1p/19q status (AUC = 0.815). The predictive molecular groups were comparable to actual ones in predicting PFS (C-index: 0.709 vs. 0.722, P = 0.241) and OS (C-index: 0.703 vs. 0.751, P = 0.359). Subgroup analyses by grades showed similar findings. The prognostic nomograms based on grades and the predictive molecular groups yielded a C-index of 0.736 and 0.735 in predicting PFS and OS, respectively. Accordingly, MRI-based radiomics may be useful for noninvasively detecting molecular groups and predicting survival in gliomas regardless of grades.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shuaitong Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhao Dong
- Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lu Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaokai Mo
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qiuying Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jin Fang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China. .,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China. .,School of Engineering Medicine, Beihang University, Beijing, China. .,Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi, China.
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Artificial intelligence has become popular in medical applications, specifically as a clinical support tool for computer-aided diagnosis. These tools are typically employed on medical data (i.e., image, molecular data, clinical variables, etc.) and used the statistical and machine-learning methods to measure the model performance. In this review, we summarized and discussed the most recent radiomic pipeline used for clinical analysis. RECENT FINDINGS Currently, limited management of cancers benefits from artificial intelligence, mostly related to a computer-aided diagnosis that avoids a biopsy analysis that presents additional risks and costs. Most artificial intelligence tools are based on imaging features, known as radiomic analysis that can be refined into predictive models in noninvasively acquired imaging data. This review explores the progress of artificial intelligence-based radiomic tools for clinical applications with a brief description of necessary technical steps. Explaining new radiomic approaches based on deep-learning techniques will explain how the new radiomic models (deep radiomic analysis) can benefit from deep convolutional neural networks and be applied on limited data sets. SUMMARY To consider the radiomic algorithms, further investigations are recommended to involve deep learning in radiomic models with additional validation steps on various cancer types.
Collapse
Affiliation(s)
- Ahmad Chaddad
- School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin, China
| | - Yousef Katib
- Department of Radiology, Taibah University, Al-Madinah, Saudi Arabia
| | - Lama Hassan
- School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin, China
| |
Collapse
|
32
|
Prabhu VC, Pappu S, Borys E, Ormston L, Lomasney LM. Commentary: Machine-Learning Approach to Differentiation of Benign and Malignant Peripheral Nerve Sheath Tumors: A Multicenter Study. Neurosurgery 2021; 89:E156-E157. [PMID: 34131751 DOI: 10.1093/neuros/nyab224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vikram C Prabhu
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, Illinois, USA
| | - Suguna Pappu
- Section of Neurosurgery, Department of Surgery, Edward Hines Veterans Administration Hospital, Hines, Illinois, USA
| | - Ewa Borys
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Leighanne Ormston
- Department of Oncology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Laurie M Lomasney
- Department of Radiology, Loyola University Medical Center, Maywood, Illinois, USA
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW To highlight some of the recent advances in magnetic resonance imaging (MRI), in terms of acquisition, analysis, and interpretation for primary diagnosis, treatment planning, and surveillance of patients with a brain tumour. RECENT FINDINGS The rapidly emerging field of radiomics associates large numbers of imaging features with clinical characteristics. In the context of glioma, attempts are made to correlate such imaging features with the tumour genotype, using so-called radiogenomics. The T2-fluid attenuated inversion recovery (FLAIR) mismatch sign is an easy to apply imaging feature for identifying isocitrate dehydrogenase-mutant 1p/19q intact glioma with very high specificity.For treatment planning, resting state functional MRI (fMRI) may become as powerful as task-based fMRI. Functional ultrasound has shown the potential to identify functionally active cortex during surgery.For tumour response assessment automated techniques have been developed. Multiple new guidelines have become available, including those for adult and paediatric glioma and for leptomeningeal metastases, as well as on brain metastasis and perfusion imaging. SUMMARY Neuroimaging plays a central role but still often falls short on essential questions. Advanced imaging acquisition and analysis techniques hold great promise for answering such questions, and are expected to change the role of neuroimaging for patient management substantially in the near future.
Collapse
|
34
|
Abstract
The 2016 World Health Organization brain tumor classification is based on genomic and molecular profile of tumor tissue. These characteristics have improved understanding of the brain tumor and played an important role in treatment planning and prognostication. There is an ongoing effort to develop noninvasive imaging techniques that provide insight into tissue characteristics at the cellular and molecular levels. This article focuses on the molecular characteristics of gliomas, transcriptomic subtypes, and radiogenomic studies using semantic and radiomic features. The limitations and future directions of radiogenomics as a standalone diagnostic tool also are discussed.
Collapse
Affiliation(s)
- Chaitra Badve
- Department of Radiology, Division of Neuroradiology, University Hospitals Cleveland Medical Center, BSH 5056, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Sangam Kanekar
- Department of Radiology and Neurology, Division of Neuroradiology, Penn State College of Medicine, Penn State Milton Hershey Medical Center, Mail Code H066 500, University Drive, Hershey, PA 17033, USA
| |
Collapse
|
35
|
Cheung HMC, Rubin D. Challenges and opportunities for artificial intelligence in oncological imaging. Clin Radiol 2021; 76:728-736. [PMID: 33902889 DOI: 10.1016/j.crad.2021.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
Imaging plays a key role in oncology, including the diagnosis and detection of cancer, determining clinical management, assessing treatment response, and complications of treatment or disease. The current use of clinical oncology is predominantly qualitative in nature with some relatively crude size-based measurements of tumours for assessment of disease progression or treatment response; however, it is increasingly understood that there may be significantly more information about oncological disease that can be obtained from imaging that is not currently utilized. Artificial intelligence (AI) has the potential to harness quantitative techniques to improve oncological imaging. These may include improving the efficiency or accuracy of traditional roles of imaging such as diagnosis or detection. These may also include new roles for imaging such as risk-stratifying patients for different types of therapy or determining biological tumour subtypes. This review article outlines several major areas in oncological imaging where there may be opportunities for AI technology. These include (1) screening and detection of cancer, (2) diagnosis and risk stratification, (3) tumour segmentation, (4) precision oncology, and (5) predicting prognosis and assessing treatment response. This review will also address some of the potential barriers to AI research in oncological imaging.
Collapse
Affiliation(s)
- H M C Cheung
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - D Rubin
- Department of Radiology, Stanford University, CA, USA.
| |
Collapse
|
36
|
Overcast WB, Davis KM, Ho CY, Hutchins GD, Green MA, Graner BD, Veronesi MC. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Curr Oncol Rep 2021; 23:34. [PMID: 33599882 PMCID: PMC7892735 DOI: 10.1007/s11912-021-01020-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review will explore the latest in advanced imaging techniques, with a focus on the complementary nature of multiparametric, multimodality imaging using magnetic resonance imaging (MRI) and positron emission tomography (PET). RECENT FINDINGS Advanced MRI techniques including perfusion-weighted imaging (PWI), MR spectroscopy (MRS), diffusion-weighted imaging (DWI), and MR chemical exchange saturation transfer (CEST) offer significant advantages over conventional MR imaging when evaluating tumor extent, predicting grade, and assessing treatment response. PET performed in addition to advanced MRI provides complementary information regarding tumor metabolic properties, particularly when performed simultaneously. 18F-fluoroethyltyrosine (FET) PET improves the specificity of tumor diagnosis and evaluation of post-treatment changes. Incorporation of radiogenomics and machine learning methods further improve advanced imaging. The complementary nature of combining advanced imaging techniques across modalities for brain tumor imaging and incorporating technologies such as radiogenomics has the potential to reshape the landscape in neuro-oncology.
Collapse
Affiliation(s)
- Wynton B. Overcast
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Blvd. Room 0663, Indianapolis, IN 46202 USA
| | - Korbin M. Davis
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Blvd. Room 0663, Indianapolis, IN 46202 USA
| | - Chang Y. Ho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Goodman Hall, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Gary D. Hutchins
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E124, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| | - Mark A. Green
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E124, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| | - Brian D. Graner
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Goodman Hall, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Michael C. Veronesi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E174, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| |
Collapse
|
37
|
Davendralingam N, Sebire NJ, Arthurs OJ, Shelmerdine SC. Artificial intelligence in paediatric radiology: Future opportunities. Br J Radiol 2021; 94:20200975. [PMID: 32941736 PMCID: PMC7774693 DOI: 10.1259/bjr.20200975] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial intelligence (AI) has received widespread and growing interest in healthcare, as a method to save time, cost and improve efficiencies. The high-performance statistics and diagnostic accuracies reported by using AI algorithms (with respect to predefined reference standards), particularly from image pattern recognition studies, have resulted in extensive applications proposed for clinical radiology, especially for enhanced image interpretation. Whilst certain sub-speciality areas in radiology, such as those relating to cancer screening, have received wide-spread attention in the media and scientific community, children's imaging has been hitherto neglected.In this article, we discuss a variety of possible 'use cases' in paediatric radiology from a patient pathway perspective where AI has either been implemented or shown early-stage feasibility, while also taking inspiration from the adult literature to propose potential areas for future development. We aim to demonstrate how a 'future, enhanced paediatric radiology service' could operate and to stimulate further discussion with avenues for research.
Collapse
Affiliation(s)
- Natasha Davendralingam
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | | | | |
Collapse
|
38
|
Diagnostic and Prognostic Potentials of Long Noncoding RNA ELF3-AS1 in Glioma Patients. DISEASE MARKERS 2020; 2020:8871746. [PMID: 33014189 PMCID: PMC7519982 DOI: 10.1155/2020/8871746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Objective Accumulating evidence implies that long noncoding RNAs (lncRNAs) play a crucial role in predicting survival for glioma patients. However, the potential function of lncRNA ELF3-antisense RNA 1 (ELF3-AS1) in tumors remained largely unclear. The aim of this study was to explore the expression of lncRNA ELF3-antisense RNA 1 (ELF3-AS1) and evaluate its functions in glioma patients. Patients and Methods. ELF3-AS1 expressions were examined by RT-PCR in 182 pairs of glioma specimens and adjacent normal tissues. The receiver operating characteristic (ROC) curve was performed to estimate the diagnostic value of ELF3-AS1. The chi-square tests were used to examine the associations between ELF3-AS1 expression and the clinicopathological characters. The overall survival (OS) and disease-free survival (DFS) were analyzed by log-rank test, and survival curves were plotted according to Kaplan-Meier. The prognostic value of the ELF3-AS1 expression in glioma patients was further analyzed using univariate and multivariate Cox regression analyses. Loss-of-function assays were performed to determine the potential function of ELF3-AS1 on the proliferation and invasion of glioma cells. Results The ELF3-AS1 expression level was significantly higher in glioma specimens compared with adjacent nontumor specimens (p < 0.01). A high expression of ELF3-AS1 was shown to be associated with the WHO grade (p = 0.023) and KPS score (p = 0.012). ROC assays revealed that high ELF3-AS1 expression had an AUC value of 0.8073 (95% CI: 0.7610 to 0.8535) for glioma. Using the Kaplan-Meier analysis, we found that patients with a high ELF3-AS1 expression had significantly poor OS (p = 0.006) and DFS (p = 0.0002). In a multivariate Cox model, we confirmed that ELF3-AS1 expression was an independent poor prognostic factor for glioma patients. The functional assay revealed that knockdown of ELF3-AS1 suppressed the proliferation and invasion of glioma cells. Conclusions Our findings confirmed that ELF3-AS1 functions as an oncogene in glioma and indicated that ELF3-AS1 is not only an important prognostic marker but also a potential therapy target for glioma.
Collapse
|
39
|
Pandey U, Saini J, Kumar M, Gupta R, Ingalhalikar M. Normative Baseline for Radiomics in Brain MRI: Evaluating the Robustness, Regional Variations, and Reproducibility on FLAIR Images. J Magn Reson Imaging 2020; 53:394-407. [PMID: 32864820 DOI: 10.1002/jmri.27349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Radiomics in neuroimaging has gained momentum as a noninvasive prediction tool not only to differentiate between types of brain tumors, but also to create phenotypic signatures in neurological and neuropsychiatric disorders. However, there is currently little understating about the robustness and reproducibility of radiomic features in a baseline normative population. PURPOSE To investigate the intra- and interscanner reproducibility, spatial robustness, and sensitivity of radiomics on fluid attenuation inversion recovery (FLAIR) images, which are widely used in neuro-oncology investigations. STUDY TYPE Retrospective. POPULATION Three separate datasets of healthy controls: 1) 87 subjects (age range 12-64 years), 2) intrascanner three timepoints, four subjects, and 3) interscanner, eight subjects at three different sites. FIELD STRENGTH/SEQUENCE T2 -weighted FLAIR at 1.5T and 3.0T. ASSESSMENT Spatial variance across lobes, and their relation with age/gender, intra- and inter-scanner reproducibility (with and without site harmonization) of radiomics. STATISTICAL TESTS Analysis of variance (ANOVA), interclass correlation (ICC), coefficient of variation (CoV), Bland-Altman analysis. RESULTS Analysis of data revealed no differences between genders; however, multiple radiomic features were highly associated with age (P < 0.05). Spatial variability was also evaluated where only 29.04% gray matter and 38.7% white matter features demonstrated an ICC >0.5. Furthermore, the results demonstrated intra-scanner reliability (ICC >0.5); however, inter-scanner reproducibility was poor, with ICC < 0.5 for 82% gray matter and 78.5% white matter features. The inter-scanner reliability improved (ICC < 0.5 for 39.67% gray matter and 38% white matter features) using site-harmonization techniques. DATA CONCLUSION These findings suggest that, accounting for age, spatial locations in radiomics-based analysis and use of intersite radiomics harmonization is crucial before interpreting these features for pathological inference. Level of Evidence 3. Technical Efficacy Stage 1. J. MAGN. RESON. IMAGING 2021;53:394-407.
Collapse
Affiliation(s)
- Umang Pandey
- Symbiosis Center for Medical Image Analysis, Symbiosis International University, Pune, India
| | - Jitender Saini
- Department of Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Manoj Kumar
- Department of Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Rakesh Gupta
- Department of Radiology, Fortis Hospital, Gurgaon, India
| | - Madhura Ingalhalikar
- Symbiosis Center for Medical Image Analysis, Symbiosis International University, Pune, India
| |
Collapse
|