1
|
Zhang C, Liu H, Zhou F, Long X, Liu S, Wu Y. Enhancing remediation efficiency of hyperaccumulators through earthworm addition: Evidence from a pot study on cadmium-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173169. [PMID: 38735339 DOI: 10.1016/j.scitotenv.2024.173169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Soil cadmium (Cd) contamination is an urgent environmental problem, which endangers human health through the food chain. Bioremediation attracted extensive attention around the world due to the high cost-efficiency. However, the remediation efficiency of different plant and earthworm species of soil Cd pollution is still unclear, it is thus of great significance to explore the combined effects of different remediation plants and earthworm species to improve the bioremediation capacity. In the present study, we consequently selected three species of Cd hyperaccumulator plants (vetiver, P. vittata and S. emarginatum) and three species of earthworms (E. fetida P1, E. fetida P2, and P. guillelmi) to compare the differences in Cd accumulation among various earthworm-plant combinations. Results indicated that the changes of soil pH and SOM in plant-animal combined application induced the higher soil Cd removal efficiency. The Cd removal efficiency showed highest in combination groups P. vittata-E. fetida P2 and P. vittata-P. guillelmi. Meanwhile, the improvements of biomass of plants and animals also were consistent with the increasing of Cd concentration in both plants and earthworms after combined application. It showed that the Cd concentrations in P. vittata were the highest while the TFs of Cd in S. emarginatum displays significantly more than that in others. In conclusion, the recommended combined system of earthworm-plant (P. vittata-E. fetida P2 and P. vittata-P. guillelmi) to provide reference for soil Cd bioremediation system in practice.
Collapse
Affiliation(s)
- Chengming Zhang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China; Sichuan Philosophy and Social Key Laboratory of Monitoring and Assessing for Rural Land Utilization, Chengdu Normal University, Chengdu 611130, China
| | - Hongling Liu
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China
| | - Fengwu Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Xizi Long
- School of the Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China; Sichuan Philosophy and Social Key Laboratory of Monitoring and Assessing for Rural Land Utilization, Chengdu Normal University, Chengdu 611130, China
| | - Yong Wu
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China; Sichuan Philosophy and Social Key Laboratory of Monitoring and Assessing for Rural Land Utilization, Chengdu Normal University, Chengdu 611130, China.
| |
Collapse
|
2
|
Brindhadevi K, Chinnathambi A, Al Obaid S. An investigation on the conversion of infertile soil into fertile soil using crop waste as a remedial (compost) approach and its influence on Vigna mungo biometric and biomolecule profile. ENVIRONMENTAL RESEARCH 2024; 258:119351. [PMID: 38844030 DOI: 10.1016/j.envres.2024.119351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/17/2024]
Abstract
The sustainable management of huge volume of agricultural waste in India can be resolved through composting and used as soil amendment. Agriculture waste compost amendments can optimistically alter the physicochemical (pH, C, N, & P) as well as biological nature (microbial activity/biomass and enzymatic activity) of infertile soil. Hence this study, the agriculture wastes such as sugarcane trash, corn stover, and pearl millet stalks were converted to composite through decomposition pit. Interestingly, test crops residues individual composites and their mixed form contained considerable quantity of vital elements like TC, TN, TP, TK, and C:N ratio and can effectively convert infertile soil to fertile soil. These test crop composites also had a significant impact on MBN (42.3 μg g-1), MBC (198.4 μg g-1), and MBP (196.4 μg g-1) in test soil, as well as dehydrogenase and alkaline phosphatase enzyme activity. However, the mixed composite effects are significantly greater than the individual test crop composite effects. Furthermore, it effectively remediates/converts infertile soil to fertile soil, and it ultimately demonstrated positive effects on Vigna mungo biometric (SH, RH, WB, and DB) and biomolecule (total chlorophyll, total carbohydrate, and total proteins) profiles, followed by individual test crop composites. According to the findings of this study, the incorporation of crop residue-based mixed composite significantly transforms infertile soil into fertile soil and promotes the growth of V. mungo.
Collapse
Affiliation(s)
- Kathirvel Brindhadevi
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Mohali, 140103, India.
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Gao F, Ye L, Mu X, Xu L, Shi Z, Luo Y. Synergistic effects of earthworms and cow manure under reduced chemical fertilization modified microbial community structure to mitigate continuous cropping effects on Chinese flowering cabbage. Front Microbiol 2023; 14:1285464. [PMID: 37954241 PMCID: PMC10637444 DOI: 10.3389/fmicb.2023.1285464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
The substitution of chemical fertilizers with organic fertilizers is a viable strategy to enhance crop yield and soil quality. In this study, the aim was to investigate the changes in soil microorganisms, soil chemical properties, and growth of Chinese flowering cabbage under different fertilization treatments involving earthworms and cow manure. Compared with the control (100% chemical fertilizer), CE (30% reduction in chemical fertilizer + earthworms) and CFE (30% reduction in chemical fertilizer + cow dung + earthworms) treatments at soil pH 8.14 and 8.07, respectively, and CFC (30% reduction in chemical fertilizer + cow manure) and CFE treatments increased soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), and available potassium (AK) contents. Earthworms and cow manure promoted the abundance of Bacillus and reduced that of the pathogens Plectosphaerella and Gibberella. The mantle test revealed that pH was not correlated with the microbial community. Random forest analysis verified that AN, SOM, and TN were important factors that jointly influenced bacterial and fungal diversity. Overall, the synergistic effect of earthworms and cow manure increased soil fertility and microbial diversity, thereby promoting the growth and development of Chinese flowering cabbage. This study enhanced the understanding of how bioregulation affects the growth and soil quality of Chinese flowering cabbage, and thus provided a guidance for the optimization of fertilization strategies to maximize the yield and quality of Chinese flowering cabbage while reducing environmental risks.
Collapse
Affiliation(s)
| | - Lin Ye
- College of Wine and Horticulture, Ningxia University, Yinchuan, China
| | | | | | | | | |
Collapse
|
4
|
Ant invasion is associated with lower root density and different root distribution of a foundational savanna tree species. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
da Silva Rodrigues Pinto LA, de Sousa Morais I, Ozório JMB, de Melo TR, Rosset JS, Pereira MG. Soil aggregation and associated organic matter under management systems in sandy-textured soils, subtropical region of Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:253. [PMID: 36585992 DOI: 10.1007/s10661-022-10892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Increasing the diversity of plant species in agricultural production areas favors the maintenance or improvement of soil quality, particularly for soils with a sandy texture. This beneficial effect is related to the formation of aggregates of different origins. This study aimed to (i) verify whether soil use and management affect the proportion of biogenic (Bio) and physicogenic (Phy) aggregates and (ii) verify whether biogenic aggregation is more likely to lead to soil improvement than physicogenic aggregation. Three management systems were evaluated (permanent pasture, PP; no-tillage system, NT; and no-tillage + Brachiaria system, NT + B) as well as a reference area (Atlantic Forest biome vegetation, NF). According to their origin or formation pathway, the aggregates were separated, identified, and classified as Bio (formed by biological processes) and Phy (resulting from chemical and physical actions). The differentiation between Bio and Phy aggregates was performed based on the visualization of morphological features, such as shape, size, presence of roots, porosity, and subunit arrangements, and junctions. Only the PP area was able to promote greater aggregate formation of biological origin, with greater amounts of Bio aggregates. The highest total organic carbon (TOC) contents and the least negative δ13C values were also quantified in the aggregates of the PP area. The NT + B system provided an increase in the TOC content of its aggregates in comparison with aggregates in the NT and NF areas. Among the formation pathways, the Bio aggregates had the highest TOC and soil organic matter fractions contents and the most negative δ13C values. Perennial forage grasses vegetation was more important than the plant species diversity in favoring Bio aggregate formation. The beneficial effect of Brachiaria can be observed when incorporated as part of intercropping with corn in grain production systems. The biogenic aggregates favored the concentration of more labile soil organic matter fractions. The results of this study can provide important theoretical information for future studies focused on the combination of different plant species in agricultural food production areas on sandy-textured soils.
Collapse
Affiliation(s)
| | - Igor de Sousa Morais
- Department of Soils, Federal Rural University of Rio de Janeiro, BR 465 Km 7, Seropédica, RJ, Brazil
| | | | | | - Jean Sérgio Rosset
- University Unit, State University of Mato Grosso Do Sul, Mundo Novo, MS, 79980-000, Brazil
| | - Marcos Gervasio Pereira
- Department of Soils, Federal Rural University of Rio de Janeiro, BR 465 Km 7, Seropédica, RJ, Brazil.
| |
Collapse
|
6
|
Zhang M, Jouquet P, Dai J, Xiao L, Du Y, Liu K, Motelica-Heino M, Lavelle P, Zhong H, Zhang C. Assessment of bioremediation potential of metal contaminated soils (Cu, Cd, Pb and Zn) by earthworms from their tolerance, accumulation and impact on metal activation and soil quality: A case study in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:152834. [PMID: 34999072 DOI: 10.1016/j.scitotenv.2021.152834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
This study was aimed to evaluate the potential of four earthworm species commonly found in South China for the bioremediation of soils contaminated by Cu, Cd, Pb and Zn. Survival rates and metal accumulation of Eisenia fetida, Amynthas morrisi, A. robustus and A. corticis and changes in soil physico-chemical properties were investigated in a 60-day incubation experiment with a metal-polluted soil. At the end of the experiment, the survival rates of E. fetida, A. morrisi and A. robustus were significantly higher than that of A. corticis. Principal component analysis showed that earthworm activity improved soil quality with the averaging soil quality index being 0.66, 0.64, 0.56, 0.53, and 0.12 for the A. corticis, A. morrisi, A. robustus, E. fetida, and control treatments, respectively. The highest total available Cd, Cu, and Pb in casts were found in the treatment with A. morrisi, and this species accumulated the smallest amount of metals. Results indicate that A. morrisi may be the best candidate for earthworm-assisted bioremediation of metal contaminated soils in South China.
Collapse
Affiliation(s)
- Menghao Zhang
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China/Centre of Land consolidation and soil bioremediation, College of Natural Resources and Environment, South China Agricultural University, 510642 Guangzhou, China
| | - Pascal Jouquet
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institut d'Ecologie et des Sciences de l'Environnement, IESS, 93143 Bondy, France
| | - Jun Dai
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China/Centre of Land consolidation and soil bioremediation, College of Natural Resources and Environment, South China Agricultural University, 510642 Guangzhou, China
| | - Ling Xiao
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China/Centre of Land consolidation and soil bioremediation, College of Natural Resources and Environment, South China Agricultural University, 510642 Guangzhou, China
| | - Yan Du
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China/Centre of Land consolidation and soil bioremediation, College of Natural Resources and Environment, South China Agricultural University, 510642 Guangzhou, China
| | - Kexue Liu
- Department of Resources and the Urban Planning, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | | | - Patrick Lavelle
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institut d'Ecologie et des Sciences de l'Environnement, IESS, 93143 Bondy, France
| | - Hesen Zhong
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China/Centre of Land consolidation and soil bioremediation, College of Natural Resources and Environment, South China Agricultural University, 510642 Guangzhou, China
| | - Chi Zhang
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China/Centre of Land consolidation and soil bioremediation, College of Natural Resources and Environment, South China Agricultural University, 510642 Guangzhou, China.
| |
Collapse
|
7
|
Morales‐Márquez J, Meloni F. Soil fauna and its potential use in the ecological restoration of dryland ecosystems. Restor Ecol 2022. [DOI: 10.1111/rec.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jimmy Morales‐Márquez
- Ecological World for Life. Environmental Management. Calle Castelló 23, segundo izquierda 28001 Madrid Spain
| | - Fernando Meloni
- Department of Physics, FFCLRP University of São Paulo, Av Bandeirantes 3900 Ribeirão Preto Brazil
- Instituto Nacional de Ciência e Tecnologia de Sistemas Complexos (INCT‐SC), Dr. Xavier Sigaud ‐ 150 Rio de Janeiro Brazil
| |
Collapse
|
8
|
Galindo V, Giraldo C, Lavelle P, Armbrecht I, Fonte SJ. Land use conversion to agriculture impacts biodiversity, erosion control, and key soil properties in an Andean watershed. Ecosphere 2022. [DOI: 10.1002/ecs2.3979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Víctor Galindo
- Fundación CIPAV Cali Colombia
- Universidad del Valle, Facultad de Ciencias, Biology Department Cali Colombia
| | | | - Patrick Lavelle
- Sorbonne Université, Institute of Ecological and Environmental Sciences Paris France
| | - Inge Armbrecht
- Universidad del Valle, Facultad de Ciencias, Biology Department Cali Colombia
| | - Steven J. Fonte
- Department of Soil and Crop Sciences Colorado State University Fort Collins Colorado USA
- Graduate Degree Program in Ecology, Colorado State University Fort Collins Colorado USA
| |
Collapse
|
9
|
Vanolli BS, Canisares LP, Franco AL, Delabie JH, Cerri CE, Cherubin MR. Epigeic fauna (with emphasis on ant community) response to land-use change for sugarcane expansion in Brazil. ACTA OECOLOGICA 2021. [DOI: 10.1016/j.actao.2021.103702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Deckmyn G, Flores O, Mayer M, Domene X, Schnepf A, Kuka K, Van Looy K, Rasse DP, Briones MJ, Barot S, Berg M, Vanguelova E, Ostonen I, Vereecken H, Suz LM, Frey B, Frossard A, Tiunov A, Frouz J, Grebenc T, Öpik M, Javaux M, Uvarov A, Vindušková O, Henning Krogh P, Franklin O, Jiménez J, Curiel Yuste J. KEYLINK: towards a more integrative soil representation for inclusion in ecosystem scale models. I. review and model concept. PeerJ 2020; 8:e9750. [PMID: 32974092 PMCID: PMC7486829 DOI: 10.7717/peerj.9750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/27/2020] [Indexed: 11/20/2022] Open
Abstract
The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale.
Collapse
Affiliation(s)
- Gaby Deckmyn
- Department of Biology, Plants and Ecosystems (PLECO), Universiteit Antwerpen, Antwerpen, Belgium
| | - Omar Flores
- Department of Biology, Plants and Ecosystems (PLECO), Universiteit Antwerpen, Antwerpen, Belgium
- Biogeography and Global Change, National Museum of Natural Sciences-Spanish National Research Council (MNCN-CSIC), Madrid, Spain
| | - Mathias Mayer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Biogeochemistry Group, Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Xavier Domene
- CREAF, Cerdanyola del Vallès, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Andrea Schnepf
- Agrosphere Institute, IBG, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katrin Kuka
- Institute for Crop and Soil Science, Julius Kühn-Institut (JKI), Braunschwei, Germany
| | - Kris Van Looy
- OVAM, Flemish Institute for Materials and Soils, Mechelen, Belgium
| | - Daniel P. Rasse
- Department of Biogeochemistry and Soil Quality, Norwegian Institute of Bioeconomy Research (NIBIO), Aas, Norway
| | - Maria J.I. Briones
- Departamento de Ecología y Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Sébastien Barot
- Institute of Ecology and Environmental Sciences, IRD, UPEC, CNRS, INRA, Sorbonne Université, Paris, France
| | - Matty Berg
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Harry Vereecken
- Agrosphere Institute, IBG, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Laura M. Suz
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, London, UK
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Aline Frossard
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Alexei Tiunov
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Jan Frouz
- Institute for Environmental Studies, Charles University, Prague, Czech Republic
| | - Tine Grebenc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mathieu Javaux
- Agrosphere Institute, IBG, Forschungszentrum Jülich GmbH, Jülich, Germany
- Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Alexei Uvarov
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Olga Vindušková
- Department of Biology, Plants and Ecosystems (PLECO), Universiteit Antwerpen, Antwerpen, Belgium
| | | | - Oskar Franklin
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
- International Institute for Applied Systems Analysis IIASA, Laxenburg, Austria
| | - Juan Jiménez
- Department of Biodiversity Conservation and Ecosystem Restoration, ARAID/IPE-CSIC, Jaca, Spain
| | - Jorge Curiel Yuste
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, Bilbao, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
11
|
Unveiling the age and origin of biogenic aggregates produced by earthworm species with their NIRS fingerprint in a subalpine meadow of Central Pyrenees. PLoS One 2020; 15:e0237115. [PMID: 32785247 PMCID: PMC7423103 DOI: 10.1371/journal.pone.0237115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/19/2020] [Indexed: 11/23/2022] Open
Abstract
In this study the near-infrared reflectance (NIR) spectra signals (750–2,500 nm) of soil samples was compared with the NIR signals of the biogenic aggregates produced in the lab by three earthworm species, i.e., Aporrectodea rosea (Savigny 1826), Lumbricus friendi Cognetti, 1904 and Prosellodrilus pyrenaicus (Cognetti, 1904) from subalpine meadows in the Central Pyrenees. NIR spectral signatures of biogenic aggregates, root-aggregates, and non-aggregated soil were obtained together with soil carbon (C), nitrogen (N), NH4+ and NO3- determinations. The concentrations of C, N and C:N ratio in the three types of soil aggregates identified were not statistically significant (ANOVA, p>0.05) although non-macroaggregated soil had slightly higher C concentrations (66.3 g kg-1 dry soil) than biogenic aggregates (earthworm- and root-aggregates, 64.9 and 63.5 g kg-1 dry soil, respectively), while concentrations of NH4+ and NO3- were highest in the root-attached aggregates (3.3 and 0.31 mg kg dry soil-1). Total earthworm density and biomass in the sampled area was 137.6 ind. m-2, and 55.2 g fresh weight m-2, respectively. The biomass of aggregates attached to roots and non-macroaggregated soil was 122.3 and 134.8 g m-2, respectively, while biomass of free (particulate) organic matter and invertebrate biogenic aggregates was 62.9 and 41.7 g m-2, respectively. Multivariate analysis of NIR spectra signals of field aggregates separated root aggregates with high concentrations of NH4+ and NO3- (41.5% of explained variance, axis I) from those biogenic aggregates, including root aggregates, with large concentrations of C and high C:N ratio (21.6% of total variability, axis II). Partial Least Square (PLS) regressions were used to compare NIR spectral signals of samples (casts and soil) and develop calibration equations relating these spectral data to those data obtained for chemical variables in the lab. After a derivatization process, the NIR spectra of field aggregates were projected onto the PLS factorial plane of the NIR spectra from the lab incubation. The projection of the NIR spectral signals onto the PLSR models for C, N, NH4+ and NO3- from casts produced and incubated in the lab allowed us to identify the species and the age of the field biogenic aggregates. Our hypothesis was to test whether field aggregates would match or be in the vicinity of the NIR signals that corresponded to a certain species and the age of the depositions produced in the lab. A NIRS biogenic background noise (BBN) is present in the soil as a result of earthworm activity. This study provides insights on how to analyse the role of these organisms in important ecological processes of soil macro-aggregation and associated organic matter dynamics by means of analyzing the BBN in the soil matrix.
Collapse
|