1
|
Ofon EA, Metiadjoue MCC, Kante ST, Magang EMK, Mewamba EM, Kamga RMN, Fogue SP, Simo G. Evaluation of ITS1 rDNA primers for the detection and identification of African trypanosomes in mammalian hosts and tsetse flies. Acta Trop 2024; 258:107331. [PMID: 39059714 DOI: 10.1016/j.actatropica.2024.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Although several primers targeted to the internal transcribed-spacer 1 (ITS1) of the ribosomal DNA (rDNA) have been designed to improve the detection of African trypanosomes, no study tried to compare their agreement level and ability to amplify different trypanosome species in tsetse flies and mammals in various epidemiological settings. This study was designed to fill this gap, by targeting tsetse-infested areas of Cameroon. For this, archived DNA samples reporting at-least one trypanosome species with species-specific PCR primers were reviewed. Ten sets of primers targeting different ITS1 rDNA sequences of trypanosomes were selected for assessment using single-round and nested-PCR method. Amplification rates (sensitivity) and agreement level of different ITS1 assays were compared using Cohen's-Kappa and McNemar's x2 statistic. Little agreement level (k = 0.05-0.52) were observed between different ITS1-primers PCRs detection of African trypanosome species despite significant (X2=54.3, p = 0.0001) high amplification rate 91.6 % (339/370). This sensitivity varied from quite low for T. simiae (11.9 %) and T. vivax (27.3 %) to fairly good for T. congolence (51.9 %), Trypanozoon (32.4 %) and T. theileri (40.3 %). Primers set targeting ITS1-A sequence of trypanosome species recorded the highest sensitivity (50.5 %) with fairly good agreement compared to 39.2 % for ITS1-C (k = 0.52), 32.4 % for ITS1-R (k = 0.47), 29.7 % for ITS1-N (k = 0.48) and 23.0 % for ITS1-KIN (k = 0.43) respectively. This study revealed a diversity in the sensitivity of different trypanosome species with different sets of ITS-primers enhancing the need to use the same sets of primers in different bio-ecological settings. The use of nested-PCR instead of single-round PCR enabled improvement of trypanosome infections detection in both tsetse and mammals. Among the sets of ITS1-primers tested, those designed by to amplify ITS1-A can be considered as the most appropriate for the detection of trypanosome infections in mammals and tsetse flies.
Collapse
Affiliation(s)
- Elvis Amih Ofon
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon; Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | | | - Sartrien Tagueu Kante
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon; Faculty of Science and Technology, Evangelical University Institute of Cameroon, Mbouo-Bandjoun, Cameroon
| | - Eugenie Melaine Kemta Magang
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Estelle Mezajou Mewamba
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Rolin Mitterran Ndefo Kamga
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Soubgwi Pythagore Fogue
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Gustave Simo
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
2
|
Tsagmo JM, Njiokou F, Dziedziech A, Rofidal V, Hem S, Geiger A. Protein abundance in the midgut of wild tsetse flies (Glossina palpalis palpalis) naturally infected by Trypanosoma congolense s.l. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:723-736. [PMID: 37357577 DOI: 10.1111/mve.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Tsetse flies (Glossina spp.) are major vectors of African trypanosomes, causing either Human or Animal African Trypanosomiasis (HAT or AAT). Several approaches have been developed to control the disease, among which is the anti-vector Sterile Insect Technique. Another approach to anti-vector strategies could consist of controlling the fly's vector competence through hitherto unidentified regulatory factors (genes, proteins, biological pathways, etc.). The present work aims to evaluate the protein abundance in the midgut of wild tsetse flies (Glossina palpalis palpalis) naturally infected by Trypanosoma congolense s.l. Infected and non-infected flies were sampled in two HAT/AAT foci in Southern Cameroon. After dissection, the proteomes from the guts of parasite-infected flies were compared to that of uninfected flies to identify quantitative and/or qualitative changes associated with infection. Among the proteins with increased abundance were fructose-1,6-biphosphatase, membrane trafficking proteins, death proteins (or apoptosis proteins) and SERPINs (inhibitor of serine proteases, enzymes considered as trypanosome virulence factors) that displayed the highest increased abundance. The present study, together with previous proteomic and transcriptomic studies on the secretome of trypanosomes from tsetse fly gut extracts, provides data to be explored in further investigations on, for example, mammal host immunisation or on fly vector competence modification via para-transgenic approaches.
Collapse
Affiliation(s)
- Jean Marc Tsagmo
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
- Faculty of Science, University of Yaoundé I, Yaounde, Cameroon
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors and INSERM U1201, Institut Pasteur, Paris, France
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, Yaounde, Cameroon
| | - Alexis Dziedziech
- Biology of Host-Parasite Interactions Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Valerie Rofidal
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Sonia Hem
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
- Faculty of Science, University of Yaoundé I, Yaounde, Cameroon
- Center for Research on Filariasis and Other Tropical Diseases (CRFilMT), Yaounde, Cameroon
| |
Collapse
|
3
|
Magang EMK, Kamga RMN, Telleria J, Tichit M, Crouzols A, Kaboré J, Hardy D, Bouaka CUT, Jamonneau V, Rotureau B, Kuete V, Bart JM, Simo G. Prevalence of blood and skin trypanosomes in domestic and wild fauna from two sleeping sickness foci in Southern Cameroon. PLoS Negl Trop Dis 2023; 17:e0011528. [PMID: 37498955 PMCID: PMC10411957 DOI: 10.1371/journal.pntd.0011528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/08/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Although studies on African Trypanosomiases revealed a variety of trypanosome species in the blood of various animal taxa, animal reservoirs of Trypanosoma brucei gambiense and anatomical niches such as skin have been overlooked in most epidemiological settings. This study aims to update epidemiological data on trypanosome infections in animals from human African trypanosomiasis (HAT) foci of Cameroon. Blood and skin snips were collected from 291 domestic and wild animals. DNA was extracted from blood and skin snips and molecular approaches were used to identify different trypanosomes species. Immunohistochemical analyses were used to confirm trypanosome infections in skin snips. PCR revealed 137 animals (47.1%) with at least one trypanosome species in the blood and/or in the skin. Of these 137 animals, 90 (65.7%) and 32 (23.4%) had trypanosome infections respectively in the blood and skin. Fifteen (10.9%) animals had trypanosome infections in both blood and skin snip. Animals from the Campo HAT focus (55.0%) were significantly (X2 = 17.6; P< 0.0001) more infected than those (29.7%) from Bipindi. Trypanosomes of the subgenus Trypanozoon were present in 27.8% of animals while T. vivax, T. congolense forest type and savannah type were detected in 16.5%, 10.3% and 1.4% of animals respectively. Trypanosoma b. gambiense infections were detected in the blood of 7.6% (22/291) of animals. No T. b. gambiense infection was detected in skin. This study highlights the presence of several trypanosome species in the blood and skin of various wild and domestic animals. Skin appeared as an anatomical reservoir for trypanosomes in animals. Despite methodological limitations, pigs, sheep, goats and wild animals were confirmed as potential reservoirs of T. b. gambiense. These animal reservoirs must be considered for the designing of control strategies that will lead to sustainable elimination of HAT.
Collapse
Affiliation(s)
- Eugenie Melaine Kemta Magang
- Molecular Parasitology & Entomology Sub-unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
- Univ. Montpellier, CIRAD, IRD, Intertryp, Montpellier, France
| | - Rolin Mitterran Ndefo Kamga
- Molecular Parasitology & Entomology Sub-unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Jenny Telleria
- Univ. Montpellier, CIRAD, IRD, Intertryp, Montpellier, France
| | - Magali Tichit
- Histopathology Platform, Institut Pasteur, Paris, France
| | - Aline Crouzols
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur Paris, Université Paris Cité, Paris, France
| | - Jacques Kaboré
- Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Unité de recherche sur les maladies à vecteurs et biodiversité, Bobo-Dioulasso, Burkina Faso
| | - David Hardy
- Histopathology Platform, Institut Pasteur, Paris, France
| | | | - Vincent Jamonneau
- Univ. Montpellier, CIRAD, IRD, Intertryp, Montpellier, France
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur Paris, Université Paris Cité, Paris, France
- Parasitology Unit, Institut Pasteur of Guinea, Conakry, Guinea
| | - Victor Kuete
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | | - Gustave Simo
- Molecular Parasitology & Entomology Sub-unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
4
|
Mewamba EM, Magang EMK, Tiofack AAZ, Woguia GF, Bouaka CUT, Kamga RMN, Farikou O, Fogue PS, Tume C, Ravel S, Simo G. Trypanosome infections in animals from tsetse infected areas of Cameroon and their sensitivity and resistance molecular profiles for diminazene aceturate and isometamidium chloride. Vet Parasitol Reg Stud Reports 2023; 41:100868. [PMID: 37208078 DOI: 10.1016/j.vprsr.2023.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
Monitoring and assessment of control strategies for African trypanosomoses' elimination require not only updating data on trypanosome infections, but also to have an overview on the molecular profiles of trypanocides resistance in different epidemiological settings. This study was designed to determine, in animals from six tsetse-infested areas of Cameroon, the prevalence of trypanosome infections as well as the diminazene aceturate (DA) and isometamidium chloride (ISM) sensitivity/resistance molecular profiles of these trypanosomes. From 2016 to 2019, blood was collected in pigs, dogs, sheep, goats and cattle from six tsetse infested areas of Cameroon. DNA was extracted from blood and trypanosome species were identified by PCR. The sensitivity/resistance molecular profiles of trypanosomes to DA and ISM were investigated using PCR-RFLP. From 1343 blood samples collected, Trypanosoma vivax, Trypanosoma congolense forest and savannah, Trypanosoma theileri and trypanosomes of the sub-genus Trypanozoon were identified. The overall prevalence of trypanosome infections was 18.7%. These prevalence vary between trypanosome species, animal taxa, within and between sampling sites. Trypanosoma theileri was the predominant species with an infection rate of 12.1%. Trypanosomes showing resistant molecular profiles for ISM and DA were identified in animals from Tibati (2.7% for ISM and 65.6% for DA) and Kontcha (0.3% for ISM and 6.2% for DA). No trypanosome carrying resistant molecular profile for any of the two trypanocides was detected in animals from Fontem, Campo, Bipindi and Touboro. Mixed molecular profiles of sensitive/resistant trypanosomes were detected in animals from Tibati and Kontcha. Results of this study highlighted the presence of various trypanosome species as well as parasites carrying sensitive/resistant molecular profiles for DA and ISM in animals of tsetse infested areas of Cameroon. They indicate that the control strategies must be adapted according to epidemiological settings. The diversity of trypanosomes indicates that AAT remains a serious threat for animal breeding and animal health in these tsetse infested areas.
Collapse
Affiliation(s)
- Estelle Mezajou Mewamba
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Eugenie Melaine Kemta Magang
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Arnol Auvaker Zebaze Tiofack
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Gilles-Fils Woguia
- Department of Public Health, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Calmes Ursain Tsakeng Bouaka
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon; Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Rolin Mitterran Ndeffo Kamga
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Oumarou Farikou
- Special Mission for Eradication of Tsetse flies, Regional tsetse Division of Adamawa, MINEPIA, Ngaoundere, Cameroon; Department of Biological Sciences, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Pythagore Sobgwi Fogue
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Christopher Tume
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon; Department of Biochemistry, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Sophie Ravel
- IRD INTERTRYP, CIRAD, University of Montpellier, Montpellier, France
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| |
Collapse
|
5
|
Hulme J. COVID-19 and Diarylamidines: The Parasitic Connection. Int J Mol Sci 2023; 24:6583. [PMID: 37047556 PMCID: PMC10094973 DOI: 10.3390/ijms24076583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
As emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants (Omicron) continue to outpace and negate combinatorial vaccines and monoclonal antibody therapies targeting the spike protein (S) receptor binding domain (RBD), the appetite for developing similar COVID-19 treatments has significantly diminished, with the attention of the scientific community switching to long COVID treatments. However, treatments that reduce the risk of "post-COVID-19 syndrome" and associated sequelae remain in their infancy, particularly as no established criteria for diagnosis currently exist. Thus, alternative therapies that reduce infection and prevent the broad range of symptoms associated with 'post-COVID-19 syndrome' require investigation. This review begins with an overview of the parasitic-diarylamidine connection, followed by the renin-angiotensin system (RAS) and associated angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSSR2) involved in SARS-CoV-2 infection. Subsequently, the ability of diarylamidines to inhibit S-protein binding and various membrane serine proteases associated with SARS-CoV-2 and parasitic infections are discussed. Finally, the roles of diarylamidines (primarily DIZE) in vaccine efficacy, epigenetics, and the potential amelioration of long COVID sequelae are highlighted.
Collapse
Affiliation(s)
- John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
6
|
Melachio Tanekou TT, Bouaka Tsakeng CU, Tirados I, Torr SJ, Njiokou F, Acho A, Wondji CS. Environmental mutations in the Campo focus challenge elimination of sleeping sickness transmission in Cameroon. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:260-268. [PMID: 35593526 PMCID: PMC10138755 DOI: 10.1111/mve.12579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/03/2022] [Indexed: 05/13/2023]
Abstract
Sleeping sickness is still prevalent in Campo, southern Cameroon, despite the efforts of World Health Organization and the National Control Programme in screening and treating cases. Reducing disease incidence still further may need the control of tsetse vectors. We update entomological and parasitological parameters necessary to guide tsetse control in Campo. Tsetse flies were trapped, their apparent densities were evaluated as the number of flies captured per trap per day and mapped using GIS tools. Polymerase chain reaction based methods were used to identify their trypanosome infection rates. Glossina palpalis palpalis was the dominant vector species representing 93.42% and 92.85% of flies captured respectively during the heavy and light dry seasons. This species presented high densities, that is, 3.87, 95% CI [3.84-3.91], and 2.51, 95% CI [2.49-2.53] flies/trap/day in the two seasons. Moreover, 16.79% (of 1054) and 20.23% (of 1132 flies) were found infected with at least 1 trypanosome species for the 2 seasons respectively, Trypanosoma congolense being the most prevalent species, and Trypanosoma. brucei gambiense identified in 4 samples. Tsetse flies are abundant in Campo and present high trypanosome infection rates. The detection of tsetse infected with human trypanosomes near the newly created palm grove show workers' exposition. Tsetse densities maps built will guide vector control with 'Tiny Targets'.
Collapse
Affiliation(s)
- Tito Tresor Melachio Tanekou
- Centre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Biological Sciences, Faculty of ScienceUniversity of BamendaBamendaCameroon
| | - Calmes Ursain Bouaka Tsakeng
- Centre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Biochemistry, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
| | - Inaki Tirados
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Steve J. Torr
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
| | - Alphonse Acho
- Programme National de Lutte contre la Trypanosomose Humaine Africaine (PNLTHA)Ministry of Public HealthYaoundéCameroon
| | - Charles Sinclair Wondji
- Centre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
7
|
Fetene E, Leta S, Regassa F, Büscher P. Global distribution, host range and prevalence of Trypanosoma vivax: a systematic review and meta-analysis. Parasit Vectors 2021; 14:80. [PMID: 33494807 PMCID: PMC7830052 DOI: 10.1186/s13071-021-04584-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/06/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Trypanosomosis caused by Trypanosoma vivax is one of the diseases threatening the health and productivity of livestock in Africa and Latin America. Trypanosoma vivax is mainly transmitted by tsetse flies; however, the parasite has also acquired the ability to be transmitted mechanically by hematophagous dipterans. Understanding its distribution, host range and prevalence is a key step in local and global efforts to control the disease. METHODS The study was conducted according to the methodological recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. A systematic literature search was conducted on three search engines, namely PubMed, Scopus and CAB Direct, to identify all publications reporting natural infection of T. vivax across the world. All the three search engines were screened using the search term Trypanosoma vivax without time and language restrictions. Publications on T. vivax that met our inclusion criteria were considered for systematic review and meta-analysis. RESULT The study provides a global database of T. vivax, consisting of 899 records from 245 peer-reviewed articles in 41 countries. A total of 232, 6277 tests were performed on 97 different mammalian hosts, including a wide range of wild animals. Natural infections of T. vivax were recorded in 39 different African and Latin American countries and 47 mammalian host species. All the 245 articles were included into the qualitative analysis, while information from 186 cross-sectional studies was used in the quantitative analysis mainly to estimate the pooled prevalence. Pooled prevalence estimates of T. vivax in domestic buffalo, cattle, dog, dromedary camel, equine, pig, small ruminant and wild animals were 30.6%, 6.4%, 2.6%, 8.4%, 3.7%, 5.5%, 3.8% and 12.9%, respectively. Stratified according to the diagnostic method, the highest pooled prevalences were found with serological techniques in domesticated buffalo (57.6%) followed by equine (50.0%) and wild animals (49.3%). CONCLUSION The study provides a comprehensive dataset on the geographical distribution and host range of T. vivax and demonstrates the potential of this parasite to invade other countries out of Africa and Latin America.
Collapse
Affiliation(s)
- Eyerusalem Fetene
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Samson Leta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.
| | - Fikru Regassa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.,FDRE Ministry of Agriculture, P.O.Box 62347/3735, Addia Ababa, Ethiopia
| | - Philippe Büscher
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, 2000, Antwerp, Belgium
| |
Collapse
|
8
|
Vourchakbé J, Tiofack AAZ, Mbida M, Simo G. Trypanosome infections in naturally infected horses and donkeys of three active sleeping sickness foci in the south of Chad. Parasit Vectors 2020; 13:323. [PMID: 32576240 PMCID: PMC7310289 DOI: 10.1186/s13071-020-04192-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/17/2020] [Indexed: 02/02/2023] Open
Abstract
Background Equine trypanosomiases are complex infectious diseases with overlapping clinical signs defined by their mode of transmission. Despite their economic impacts, these diseases have been neglected by the scientific community, the veterinary authorities and regulatory organizations. To fill the observed knowledge gap, we undertook the identification of different trypanosome species and subspecies naturally infecting horses and donkeys within the Chadian sleeping sickness focus. The objective of the study was to investigate the potential role of these domestic animals as reservoirs of the human-infective Trypanosoma brucei gambiense. Method Blood samples were collected from 155 donkeys and 131 horses in three human African trypanosomiasis (HAT) foci in Chad. Rapid diagnostic test (RDT) and capillary tube centrifugation (CTC) test were used to search for trypanosome infections. DNA was extracted from each blood sample and different trypanosome species and subspecies were identified with molecular tools. Results From 286 blood samples collected, 54 (18.9%) and 36 (12.6%) were positive for RDT and CTC, respectively. PCR revealed 101 (35.3%) animals with trypanosome infections. The Cohen’s kappa coefficient used to evaluate the concordance between the diagnostic methods were low; ranging from 0.09 ± 0.05 to 0.48 ± 0.07. Trypanosomes of the subgenus Trypanozoon were the most prevalent (29.4%), followed by T. congolense forest (11.5%), Trypanosoma congolense savannah (4.9%) and Trypanosoma vivax (4.5%). Two donkeys and one horse from the Maro HAT focus were found with T. b. gambiense infections. No significant differences were observed in the infection rates of different trypanosomes between animal species and HAT foci. Conclusions This study revealed several trypanosome species and subspecies in donkeys and horses, highlighting the existence of AAT in HAT foci in Chad. The identification of T. b. gambiense in donkeys and horses suggests considering these animals as potential reservoir for HAT in Chad. The presence of both human-infective and human non-infective trypanosomes species highlights the need for developing joint control strategies for HAT and AAT.![]()
Collapse
Affiliation(s)
- Joël Vourchakbé
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon.,Department of Chemistry-Biology-Geology, Faculty of Science and Technology, University of Doba, PO Box 03, Doba, Chad
| | - Arnol Auvaker Z Tiofack
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Mpoame Mbida
- Laboratory of Applied Biology and Ecology (LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, PO Box 067, Dschang, Cameroon
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon.
| |
Collapse
|
9
|
Simo G, Magang EMK, Mewamba EM, Farikou O, Kamga RMN, Tume C, Solano P, Ravel S. Molecular identification of diminazene aceturate resistant trypanosomes in tsetse flies from Yoko in the Centre region of Cameroon and its epidemiological implications. Parasite Epidemiol Control 2020; 9:e00135. [PMID: 31956704 PMCID: PMC6957779 DOI: 10.1016/j.parepi.2020.e00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 11/24/2022] Open
Abstract
African animal trypanosomiases are caused by trypanosomes cyclically or mechanically transmitted by tsetse and other biting flies. Although molecular tools have been developed to identify drug-resistant trypanosomes in mammals, little or no investigation on drug-resistance has been undertaken on trypanosomes harbored by tsetse flies. Moreover, no data on mechanical vectors of African trypanosomes is available in most endemic areas of Cameroon. This study was designed to update our knowledge on the cyclical and mechanical vectors of African trypanosomes, and using molecular tools to identify different trypanosome species as well as diminazene aceturate resistant trypanosomes in tsetse flies trapped at Yoko in the Centre region of Cameroon. For this study, traps were used to catch tsetse and mechanical vectors of African trypanosomes. The flies trapped were counted and identified by sex and species. DNA was extracted from tsetse and species-specific primers were used to identify different trypanosome species. PCR-RFLP was used to detect diminazene aceturate resistant strains of Trypanosoma congolense. In all, 454 flies comprising 168 (37%) Tabanus spp., 71 (15.6%) Stomoxys spp. and 215 (47.4%) tsetse fly (i.e. 107 (49.8%) Glossina fusca congolensis, 71 (33%) Glossina fusca fusca and 37 (17.2%) Glossina palpalis palpalis) were trapped. Trypanosome infections were identified in 12.6% (27/215) of tsetse flies: 13 in G. f. congolensis, 6 in G. p. palpalis and 5 in G. f. fusca. From 24 T. congolense positive samples, PCR-RFLP was successful on 37.5% of the samples. Four samples (16.2%) harbored T. congolense strains that were resistant to diminazene aceturate while the remaining samples had drug-sensitive strains. These results show for the first time the applicability of molecular tools for the identification of drug-resistant trypanosomes in tsetse. They revealed the existence of diminazene aceturate resistant strains of T. congolense in the tsetse-infested area of Yoko in the Centre region of Cameroon. Detection of drug-resistant trypanosomes in tsetse may enable scientists to map with accuracy specific areas where these parasites are transmitted. With such mapping, control strategies against African trypanosomiases could be improved by adapting control measures according to drug resistance distribution.
Collapse
Affiliation(s)
- Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Eugenie Melaine Kemta Magang
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Estelle Mezajou Mewamba
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Oumarou Farikou
- Mission Spéciale d'Eradication des Glossines, Division Régionale tsetse Adamaoua, PO Box 263, Ngaoundéré, Cameroon
| | - Rolin Mitterran Ndeffo Kamga
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Christopher Tume
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Philippe Solano
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier Cedex 5, France
| | - Sophie Ravel
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier Cedex 5, France
| |
Collapse
|
10
|
Molecular identification of different trypanosome species in tsetse flies caught in the wildlife reserve of Santchou in the western region of Cameroon. Parasitol Res 2020; 119:805-813. [PMID: 32006230 DOI: 10.1007/s00436-020-06606-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Abstract
Addressing the problems linked to tsetse-transmitted trypanosomiases requires considerable data on tsetse distribution and trypanosome infections. Although efforts to map tsetse and trypanosome infections have been undertaken at continental level, published data are still rare in wildlife reserves of West and Central Africa. To fill this gap, data on tsetse distribution and trypanosome infections were generated in the wildlife reserve of Santchou. For this study, each tsetse caught was identified and its DNA extracted. Different trypanosome species were identified by PCR. Entomological and parasitological data were transported onto a satellite image in order to visualize their distributions. From 195 Glossina palpalis palpalis that were caught, 33.8% (66/195) carried trypanosome infections with 89.4% (59/66) of single infections and 10.6% (7/66) mixed infections. From the 66 flies with trypanosome infections, 54.5% (36/66), 27.3% (18/66) and 18.2% (12/66) were respectively due to Trypanosoma congolense, Trypanosoma brucei s.l. and Trypanosoma vivax. The global infection rates were 18.5% (36/195) for Trypanosoma congolense (forest and savannah), 9.2% (18/195) for Trypanosoma brucei s.l. and 6.1% (12/195) for Trypanosoma vivax. The maps generated show the distribution of tsetse and trypanosome infections. This study showed an active transmission of trypanosomes in the wildlife reserve of Santchou. The maps enabled to identify areas with high transmission risk and where control operations must be implemented in order to eliminate tsetse and the diseases that they transmit.
Collapse
|
11
|
Tsagmo Ngoune JM, Reveillaud J, Sempere G, Njiokou F, Melachio TT, Abate L, Tchioffo MT, Geiger A. The composition and abundance of bacterial communities residing in the gut of Glossina palpalis palpalis captured in two sites of southern Cameroon. Parasit Vectors 2019; 12:151. [PMID: 30940213 PMCID: PMC6444424 DOI: 10.1186/s13071-019-3402-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/20/2019] [Indexed: 01/10/2023] Open
Abstract
Background A number of reports have demonstrated the role of insect bacterial flora on their host’s physiology and metabolism. The tsetse host and vector of trypanosomes responsible for human sleeping sickness (human African trypanosomiasis, HAT) and nagana in animals (African animal trypanosomiasis, AAT) carry bacteria that influence its diet and immune processes. However, the mechanisms involved in these processes remain poorly documented. This underscores the need for increased research into the bacterial flora composition and structure of tsetse flies. The aim of this study was to identify the diversity and relative abundance of bacterial genera in Glossina palpalis palpalis flies collected in two trypanosomiasis foci in Cameroon. Methods Samples of G. p. palpalis which were either negative or naturally trypanosome-positive were collected in two foci located in southern Cameroon (Campo and Bipindi). Using the V3V4 and V4 variable regions of the small subunit of the 16S ribosomal RNA gene, we analyzed the respective bacteriome of the flies’ midguts. Results We identified ten bacterial genera. In addition, we observed that the relative abundance of the obligate endosymbiont Wigglesworthia was highly prominent (around 99%), regardless of the analyzed region. The remaining genera represented approximately 1% of the bacterial flora, and were composed of Salmonella, Spiroplasma, Sphingomonas, Methylobacterium, Acidibacter, Tsukamurella, Serratia, Kluyvera and an unidentified bacterium. The genus Sodalis was present but with a very low abundance. Globally, no statistically significant difference was found between the bacterial compositions of flies from the two foci, and between positive and trypanosome-negative flies. However, Salmonella and Serratia were only described in trypanosome-negative flies, suggesting a potential role for these two bacteria in fly refractoriness to trypanosome infection. In addition, our study showed the V4 region of the small subunit of the 16S ribosomal RNA gene was more efficient than the V3V4 region at describing the totality of the bacterial diversity. Conclusions A very large diversity of bacteria was identified with the discovering of species reported to secrete anti-parasitic compounds or to modulate vector competence in other insects. For future studies, the analyses should be enlarged with larger sampling including foci from several countries. Electronic supplementary material The online version of this article (10.1186/s13071-019-3402-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean Marc Tsagmo Ngoune
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France.,Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Julie Reveillaud
- ASTRE, INRA, CIRAD, University of Montpellier, Montpellier, France
| | - Guilhem Sempere
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Trésor T Melachio
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Luc Abate
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224-Centre National de la Recherche Scientifique, 5290-UM1-UM2, Montpellier, France
| | - Majoline T Tchioffo
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224-Centre National de la Recherche Scientifique, 5290-UM1-UM2, Montpellier, France
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France. .,Center for Research on Filariasis and other Tropical Diseases (CRFilMT), P.O. Box 5797, Yaoundé, Cameroon. .,Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
12
|
Kariithi HM, Meki IK, Schneider DI, De Vooght L, Khamis FM, Geiger A, Demirbaş-Uzel G, Vlak JM, iNCE IA, Kelm S, Njiokou F, Wamwiri FN, Malele II, Weiss BL, Abd-Alla AMM. Enhancing vector refractoriness to trypanosome infection: achievements, challenges and perspectives. BMC Microbiol 2018; 18:179. [PMID: 30470182 PMCID: PMC6251094 DOI: 10.1186/s12866-018-1280-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural & Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Rd, Loresho, Nairobi, Kenya
| | - Irene K Meki
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - Daniela I Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Linda De Vooght
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, 00100, Nairobi, Kenya
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Guler Demirbaş-Uzel
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - ikbal Agah iNCE
- Institute of Chemical, Environmental & Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Sorge Kelm
- Department of Medical Microbiology, Acıbadem Mehmet Ali Aydınlar University, School of Medicine, 34752, Ataşehir, Istanbul, Turkey
| | - Flobert Njiokou
- Centre for Biomolecular Interactions Bremen, Faculty for Biology & Chemistry, Universität Bremen, Bibliothekstraße 1, 28359 Bremen, Germany
| | - Florence N Wamwiri
- Laboratory of Parasitology and Ecology, Faculty of Sciences, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, BP 812 Cameroon
| | - Imna I Malele
- Trypanosomiasis Research Centre, Kenya Agricultural & Livestock Research Organization, P.O. Box 362-00902, Kikuyu, Kenya
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Adly M M Abd-Alla
- Molecular Department, Vector and Vector Borne Diseases Institute, Tanzania Veterinary Laboratory Agency, Majani Mapana, Off Korogwe Road, Box, 1026 Tanga, Tanzania
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| |
Collapse
|
13
|
Ngomtcho SCH, Weber JS, Ngo Bum E, Gbem TT, Kelm S, Achukwi MD. Molecular screening of tsetse flies and cattle reveal different Trypanosoma species including T. grayi and T. theileri in northern Cameroon. Parasit Vectors 2017; 10:631. [PMID: 29287598 PMCID: PMC5747950 DOI: 10.1186/s13071-017-2540-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND African trypanosomes are mainly transmitted through the bite of tsetse flies (Glossina spp.). The present study investigated the occurrence of pathogenic trypanosomes in tsetse flies and cattle in tsetse fly-infested areas of Northern Cameroon. RESULTS Trypanosomes were identified using nested polymerase chain reaction (PCR) analysis of internal transcribed spacer 1 (ITS1) region, both by size estimation and sequencing of PCR products. Apparent density indices recorded in Gamba and Dodeo were 3.1 and 3.6 tsetse flies per trap and day, respectively. Trypanosoma prevalence infection rate for the tsetse fly gut (40%) and proboscis (19%) were recorded. Among the flies where trypanosomes were detected in the gut, 41.7% were positive for T. congolense and 14.6% for T. brucei ssp., whereas in the proboscis 36% harboured T. congolense and 62% contained T. vivax. T. grayi was highly prevalent in tsetse fly gut (58%). The most common mixed infections were the combination of T. congolense and T. grayi. Trypanosome prevalence rate in cattle blood was 6%. Among these, T. vivax represented 26%, T. congolense 35%, T. brucei ssp. 17% and T. theileri 17% of the infections. Surprisingly, in one case T. grayi was found in cattle. The mean packed cell volume (PCV) of cattle positive for trypanosomes was significantly lower (24.1 ± 5.6%; P < 0.05) than that of cattle in which trypanosomes were not detected (27.1 ± 4.9%). Interestingly, the occurrence of T. theileri or T. grayi DNA in cattle also correlated with low PCV at pathological levels. CONCLUSION This molecular epidemiological study of Trypanosoma species in Northern Cameroon revealed active foci of trypanosomes in Dodeo and Gamba. These findings are relevant in assessing the status of trypanosomosis in these regions and will serve as a guide for setting the priorities of the government in the control of the disease.
Collapse
Affiliation(s)
- Sen Claudine Henriette Ngomtcho
- Department of Biological Sciences, University Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
- Ministry of Public Health, Regional Hospital of Ngaoundéré, Ngaoundéré, Cameroon
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University Bremen, 28334 Bremen, Germany
| | - Judith Sophie Weber
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University Bremen, 28334 Bremen, Germany
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, University Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Thaddeus Terlumun Gbem
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
- Department of Biology, Ahmadu Bello University, Zaria, Nigeria
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University Bremen, 28334 Bremen, Germany
| | | |
Collapse
|
14
|
Jacob F, Melachio TT, Njitchouang GR, Gimonneau G, Njiokou F, Abate L, Christen R, Reveillaud J, Geiger A. Intestinal Bacterial Communities of Trypanosome-Infected and Uninfected Glossina palpalis palpalis from Three Human African Trypanomiasis Foci in Cameroon. Front Microbiol 2017; 8:1464. [PMID: 28824591 PMCID: PMC5541443 DOI: 10.3389/fmicb.2017.01464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/20/2017] [Indexed: 11/27/2022] Open
Abstract
Glossina sp. the tsetse fly that transmits trypanosomes causing the Human or the Animal African Trypanosomiasis (HAT or AAT) can harbor symbiotic bacteria that are known to play a crucial role in the fly's vector competence. We hypothesized that other bacteria could be present, and that some of them could also influence the fly's vector competence. In this context the objectives of our work were: (a) to characterize the bacteria that compose the G. palpalis palpalis midgut bacteriome, (b) to evidence possible bacterial community differences between trypanosome-infected and non-infected fly individuals from a given AAT and HAT focus or from different foci using barcoded Illumina sequencing of the hypervariable V3-V4 region of the 16S rRNA gene. Forty G. p. palpalis flies, either infected by Trypanosoma congolense or uninfected were sampled from three trypanosomiasis foci in Cameroon. A total of 143 OTUs were detected in the midgut samples. Most taxa were identified at the genus level, nearly 50% at the species level; they belonged to 83 genera principally within the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Prominent representatives included Wigglesworthia (the fly's obligate symbiont), Serratia, and Enterobacter hormaechei. Wolbachia was identified for the first time in G. p. palpalis. The average number of bacterial species per tsetse sample was not significantly different regarding the fly infection status, and the hierarchical analysis based on the differences in bacterial community structure did not provide a clear clustering between infected and non-infected flies. Finally, the most important result was the evidence of the overall very large diversity of intestinal bacteria which, except for Wigglesworthia, were unevenly distributed over the sampled flies regardless of their geographic origin and their trypanosome infection status.
Collapse
Affiliation(s)
- Franck Jacob
- UMR INTERTRYP, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/GMontpellier, France
| | - Trésor T Melachio
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1Yaounde, Cameroon
| | - Guy R Njitchouang
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1Yaounde, Cameroon
| | - Geoffrey Gimonneau
- UMR INTERTRYP, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/GMontpellier, France
| | - Flobert Njiokou
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1Yaounde, Cameroon
| | - Luc Abate
- UMR MIVEGEC, Institut de Recherche pour le Développement 224-Centre National de la Recherche Scientifique 5290Montpellier, France
| | - Richard Christen
- UMR 7138, Systématique Adaptation Evolution, Université de Nice-Sophia AntipolisNice, France
| | - Julie Reveillaud
- Institut National de la Recherche Agronomique, UMR 1309 ASTREMontpellier, France.,CIRAD, UMR ASTREMontpellier, France
| | - Anne Geiger
- UMR INTERTRYP, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/GMontpellier, France
| |
Collapse
|
15
|
Tsagmo Ngoune JM, Njiokou F, Loriod B, Kame-Ngasse G, Fernandez-Nunez N, Rioualen C, van Helden J, Geiger A. Transcriptional Profiling of Midguts Prepared from Trypanosoma/T. congolense-Positive Glossina palpalis palpalis Collected from Two Distinct Cameroonian Foci: Coordinated Signatures of the Midguts' Remodeling As T. congolense-Supportive Niches. Front Immunol 2017; 8:876. [PMID: 28804485 PMCID: PMC5532377 DOI: 10.3389/fimmu.2017.00876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Our previous transcriptomic analysis of Glossina palpalis gambiensis experimentally infected or not with Trypanosoma brucei gambiense aimed to detect differentially expressed genes (DEGs) associated with infection. Specifically, we selected candidate genes governing tsetse fly vector competence that could be used in the context of an anti-vector strategy, to control human and/or animal trypanosomiasis. The present study aimed to verify whether gene expression in field tsetse flies (G. p. palpalis) is modified in response to natural infection by trypanosomes (T. congolense), as reported when insectary-raised flies (G. p. gambiensis) are experimentally infected with T. b. gambiense. This was achieved using the RNA-seq approach, which identified 524 DEGs in infected vs. non-infected tsetse flies, including 285 downregulated genes and 239 upregulated genes (identified using DESeq2). Several of these genes were highly differentially expressed, with log2 fold change values in the vicinity of either +40 or −40. Downregulated genes were primarily involved in transcription/translation processes, whereas encoded upregulated genes governed amino acid and nucleotide biosynthesis pathways. The BioCyc metabolic pathways associated with infection also revealed that downregulated genes were mainly involved in fly immunity processes. Importantly, our study demonstrates that data on the molecular cross-talk between the host and the parasite (as well as the always present fly microbiome) recorded from an experimental biological model has a counterpart in field flies, which in turn validates the use of experimental host/parasite couples.
Collapse
Affiliation(s)
- Jean M Tsagmo Ngoune
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.,UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier, France
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Béatrice Loriod
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | | | - Nicolas Fernandez-Nunez
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Claire Rioualen
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Jacques van Helden
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Anne Geiger
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier, France
| |
Collapse
|
16
|
Grébaut P, Melachio T, Nyangmang S, Eyenga VE, Njitchouang GR, Ofon E, Njiokou F, Simo G. Xenomonitoring of sleeping sickness transmission in Campo (Cameroon). Parasit Vectors 2016; 9:201. [PMID: 27071554 PMCID: PMC4830064 DOI: 10.1186/s13071-016-1479-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/29/2016] [Indexed: 11/30/2022] Open
Abstract
Background The sleeping sickness focus of Campo in South Cameroon is still active, at a low endemic level, for more than a century, despite a regular medical surveillance. The present study focuses on the spatial distribution of xenomonitoring information obtained from an entomological survey performed in the dry season 2012. It appears that humans constitute a third of the blood meals and that the flies’ densities were coherent with those classically observed in the different biotopes. Paradoxically, the epicenter of the focus is the place where the risk indicators are the lowest ones. Methods Particular attention was paid to the entomological device so that it covered the main part of human activities in the study area. One hundred and sixty-two pyramidal traps were used to catch tsetse flies twice a day that were identified, counted, dissected. Molecular analysis using classical and specific molecular markers was conducted to determine the importance of trypanosome infections and the nature of the feeding hosts. This information was used to calculate a Transmission Risk Index and to define a gradient of risk that was projected into a Geographical Information System. Results Conventional entomological indicators such as species identification of tsetse flies or the Apparent Density per Trap per day, show that Glossina palpalis palpalis is the main species in the campo area which is classically distributed into the different biotopes of the study area. Molecular analysis reveals that humans constitute a third of the blood feeding hosts and that 20 % of the dissected flies were infected with trypanosomes, principally with Nannomonas. Nevertheless, one fly was carrying Trypanosoma brucei gambiense, the pathogen agent of sleeping sickness, showing that the reservoir is still active in the epicenter of the focus. Paradoxically, the Transmission Risk Index is not important in the epicenter, demonstrating that endemic events are not only depending on the man/vector contact. Conclusion Xenomonitoring provides a valuable guide/tool to determine places at higher risk for vector/human contact and to identify trypanosomes species circulating in the focus. This information from xenomonitoring demonstrates that decision makers should include a veterinary device in a control strategy.
Collapse
Affiliation(s)
- Pascal Grébaut
- UMR177 IRD/CIRAD INTERTRYP, TA A17 G, Campus International de Baillarguet, 34398, Montpellier cedex 5, France.
| | - Trésor Melachio
- Department of Animal Biology and Physiology, Parasitology and Ecology Laboratory, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Simplice Nyangmang
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Ministry of Health, Yaoundé, Cameroon
| | - Vincent Ebo'o Eyenga
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Ministry of Health, Yaoundé, Cameroon
| | - Guy-Roger Njitchouang
- Center for Research on Filariasis and other Tropical Diseases, P.O. Box 5797, Yaoundé, Cameroon
| | - Elvis Ofon
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Parasitology and Ecology Laboratory, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| |
Collapse
|
17
|
Simo G, Rayaisse JB. Challenges facing the elimination of sleeping sickness in west and central Africa: sustainable control of animal trypanosomiasis as an indispensable approach to achieve the goal. Parasit Vectors 2015; 8:640. [PMID: 26671582 PMCID: PMC4681034 DOI: 10.1186/s13071-015-1254-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/10/2015] [Indexed: 11/10/2022] Open
Abstract
African trypanosomiases are infectious diseases caused by trypanosomes. African animal trypanosomiasis (AAT) remains an important threat for livestock production in some affected areas whereas human African trypanosomiasis (HAT) is targeted for elimination in 2020. In West and Central Africa, it has been shown that the parasites causing these diseases can coexist in the same tsetse fly or the same animal. In such complex settings, the control of these diseases must be put in the general context of trypanosomiasis control or "one health" concept where the coordination of control operations will be beneficial for both diseases. In this context, implementing control activities on AAT will help to sustain HAT control. It will also have a positive impact on animal health and economic development of the regions. The training of inhabitants on how to implement and sustain vector control tools will enable a long-term sustainability of control operations that will lead to the elimination of HAT and AAT.
Collapse
Affiliation(s)
- Gustave Simo
- Department of Biochemistry, Molecular Parasitology and Entomology Unit, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon.
| | | |
Collapse
|
18
|
Simo G, Fongho P, Farikou O, Ndjeuto-Tchouli PIN, Tchouomene-Labou J, Njiokou F, Asonganyi T. Trypanosome infection rates in tsetse flies in the "silent" sleeping sickness focus of Bafia in the Centre Region in Cameroon. Parasit Vectors 2015; 8:528. [PMID: 26458386 PMCID: PMC4603914 DOI: 10.1186/s13071-015-1156-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/07/2015] [Indexed: 11/27/2022] Open
Abstract
Background The Bafia sleeping sickness focus of Cameroon is considered as “silent” with no case reported for about 20 years despite medical surveys performed during the last decades. In this focus, all epidemiological factors that can contribute to trypanosomes transmission are present. To update our knowledge on the current risks of Human and Animal African trypanosomiases, different trypanosome species were identified in midguts of tsetse flies captured in the Bafia focus. Methods Tsetse flies were trapped using pyramidal traps. Each tsetse fly was identified and live flies were dissected and their midguts collected. DNA was extracted from each midgut and thereafter, blood meals and different trypanosome species were identified with molecular tools. The biological data were transported onto maps in order to have their distribution. Results Of the 98 traps set up, 461 Glossina palpalis palpalis were captured; 322 (69.8 %) tsetse flies were dissected and 49 (15.2 %) teneral flies identified. The average apparent density of tsetse flies per day was 1.18. Of the 35 (10.9 %) blood meals collected, 82 % were taken on pigs and 17.6 % on humans. Eighty two (25.5 %) trypanosome infections were identified: 56 (17.4 %) T. congolense savannah, 17 (5.3 %) T. congolense forest, 5 (1.6 %) T. vivax and 4 (1.2 %) T. brucei s.l. No infection of T. simiae and T. b. gambiense was identified. Sixty seven (81.7 %) infections were single and 15 (18.3 %) mixed involving one triple infection (T. congolense forest, T. brucei and T. vivax) and 14 double infections: 11 T. congolense forest and T. congolense savannah, two T. congolense savannah and T. brucei, and one of T. brucei and T. vivax. The generated maps show the distribution of tsetse flies and trypanosome infections across the focus. Conclusion This study has shown that animal trypanosomes remain an important problem in this region. Meanwhile, it is very likely that HAT does not seem anymore to be a public health problem in this focus. The generated maps enabled us to define high risk transmission areas for AAT, and where disease control must be focused in order to improve animal health as well as the quantity of animal proteins.
Collapse
Affiliation(s)
- Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon.
| | - Pierre Fongho
- Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon.
| | - Oumarou Farikou
- Ministry of Livestock, Fisheries and Animal Industries, Special Mission for TseTse Flies Eradication, PO Box 263, Ngaoundéré, Cameroon.
| | | | | | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon.
| | - Tazoacha Asonganyi
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon.
| |
Collapse
|
19
|
Mohapatra RK, Panda S, Nair MV, Acharjyo LN. Check list of parasites and bacteria recorded from pangolins ( Manis sp.). J Parasit Dis 2015; 40:1109-1115. [PMID: 27876899 DOI: 10.1007/s12639-015-0653-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 01/24/2015] [Indexed: 11/30/2022] Open
Abstract
Sound knowledge on parasite fauna of pangolins is crucial for evaluation of their health status. In the present review, a checklist of 34 genera of parasites and bacteria, including 4 genera of protozoan, 13 genera of helminthes, 8 genera of ticks, 2 genera of mites and 7 genera of bacteria reported from pangolins was compiled and their zoonotic potential were discussed. The aim of this checklist is to underline the information gap and to provide a reference list of parasites and bacteria known for pangolins to assist in their further investigation.
Collapse
Affiliation(s)
- Rajesh Kumar Mohapatra
- Pangolin Conservation Breeding Center, Nandankanan Zoological Park, Baranga, Khurda, 754005 Odisha India
| | - Sudarsan Panda
- Nandankanan Biological Park, Mayur Bhawan, Saheed Nagar, Bhubaneswar, 751007 Odisha India
| | - Manoj V Nair
- Nandankanan Zoological Park, Baranga, Khurda, 754005 Odisha India
| | | |
Collapse
|
20
|
Simo G, Mbida JAM, Eyenga VE, Asonganyi T, Njiokou F, Grébaut P. Challenges towards the elimination of Human African Trypanosomiasis in the sleeping sickness focus of Campo in southern Cameroon. Parasit Vectors 2014; 7:374. [PMID: 25129168 PMCID: PMC4262263 DOI: 10.1186/1756-3305-7-374] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 07/27/2014] [Indexed: 11/29/2022] Open
Abstract
The sleeping sickness focus of Campo lies along the Atlantic coast and extends along the Ntem River, which constitutes the Cameroonian and Equatorial Guinean border. It is a hypo-endemic focus with the disease prevalence varying from 0.3 to 0.86% during the last few decades. Investigations on animal reservoirs revealed a prevalence of Trypanosoma brucei gambiense of 0.6% in wild animals and 4.83% in domestic animals of this focus. From 2001 to 2012, about 19 931 tsetse were collected in this focus and five tsetse species including Glossina palpalis palpalis, G. pallicera, G. nigrofusca, G. tabaniformis and G. caliginea were identified. The analysis of blood meals of these flies showed that they feed on human, pig, goat, sheep, and wild animals such as antelope, duiker, wild pig, turtle and snake. The percentage of blood meals taken on these hosts varies according to sampling periods. For instance, 6.8% of blood meals from pig were reported in 2004 and 22% in 2008. This variation is subjected to considerable evolutions because the Campo HAT focus is submitted to socio-economic mutations including the reopening of a new wood company, the construction of autonomous port at "Kribi" as well as the dam at "Memve ele". These activities will bring more that 3000 inhabitants around Campo and induce the deforestation for the implementation of farmlands as well as breeding of domestic animals. Such mutations have impacts on the transmission and the epidemiology of sleeping sickness due to the modification of the fauna composition, the nutritional behavior of tsetse, the zoophilic/anthropophilic index. To achieve the elimination goal in the sleeping sickness focus of Campo, we report in this paper the current epidemiological situation of the disease, the research findings of the last decades notably on the population genetics of trypanosomes, the modifications of nutritional behavior of tsetse, the prevalence of T. b. gambiense in humans, domestic and wild animals. An overview on the types of mutations occurring in the region has been raised and a discussion on the strategies that can be implemented to achieve the elimination of the disease has been made.
Collapse
Affiliation(s)
- Gustave Simo
- />Molecular Parasitology and Entomology Unit (MPEU), Department of Biochemistry, Faculty of science, University of Dschang, PO Box 67, Dschang, Cameroon
| | | | | | - Tazoacha Asonganyi
- />Faculty of Medicine and Biomedical Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Flobert Njiokou
- />Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Pascal Grébaut
- />Institut de Recherche pour le Développement, Unité Mixte de Recherche 177 IRD-CIRAD, Campus International de Baillarguet, TA A17/G, 34398 Montpellier Cedex 5, France
| |
Collapse
|
21
|
Ahmed HA, Picozzi K, Welburn SC, MacLeod ET. A comparative evaluation of PCR- based methods for species- specific determination of African animal trypanosomes in Ugandan cattle. Parasit Vectors 2013; 6:316. [PMID: 24499678 PMCID: PMC4029050 DOI: 10.1186/1756-3305-6-316] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022] Open
Abstract
Background In recent years, PCR has been become widely applied for the detection of trypanosomes overcoming many of the constraints of parasitological and serological techniques, being highly sensitive and specific for trypanosome detection. Individual species-specific multi-copy trypanosome DNA sequences can be targeted to identify parasites. Highly conserved ribosomal RNA (rRNA) genes are also useful for comparisons between closely related species. The internal transcribed spacer regions (ITS) in particular are relatively small, show variability among related species and are flanked by highly conserved segments to which PCR primers can be designed. Individual variations in inter-species length makes the ITS region a useful marker for identification of multiple trypanosome species within a sample. Methods Six hundred blood samples from cattle collected in Uganda on FTA cards were screened using individual species-specific primers for Trypanosoma congolense, Trypanosoma brucei and Trypanosoma vivax and compared to a modified (using eluate extracted using chelex) ITS-PCR reaction. Results The comparative analysis showed that the species-specific primer sets showed poor agreement with the ITS primer set. Using species-specific PCR for Trypanozoon, a prevalence of 10.5% was observed as compared to 0.2% using ITS PCR (Kappa = 0.03). For Trypanosoma congolense, the species-specific PCR reaction indicated a prevalence of 0% compared to 2.2% using ITS PCR (Kappa = 0). For T. vivax, species-specific PCR detected prevalence of 5.7% compared to 2.8% for ITS PCR (Kappa = 0.29). Conclusions When selecting PCR based tools to apply to epidemiological surveys for generation of prevalence data for animal trypanosomiasis, it is recommended that species-specific primers are used, being the most sensitive diagnostic tool for screening samples to identify members of Trypanozoon (T. b. brucei s.l). While ITS primers are useful for studying the prevalence of trypanosomes causing nagana (in this study the species-specific primers did not detect the presence of T. congolense) there were discrepancies between both the species-specific primers and ITS for the detection of T. vivax.
Collapse
Affiliation(s)
| | | | | | - Ewan T MacLeod
- Division of Pathway Medicine and Centre for Infectious Diseases, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
22
|
Simo G, Sobgwi PF, Njitchouang GR, Njiokou F, Kuiate JR, Cuny G, Asonganyi T. Identification and genetic characterization of Trypanosoma congolense in domestic animals of Fontem in the South-West region of Cameroon. INFECTION GENETICS AND EVOLUTION 2013; 18:66-73. [PMID: 23624186 DOI: 10.1016/j.meegid.2013.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/30/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
To understand the circulation and the spread of Trypanosoma congolense genotypes in animals of Fontem in the southwest region of Cameroon, T. congolense forest and T. congolense savannah were investigated in 397 domestic animals in eight villages. Out of the 397 domestic animals, 86 (21.7%) were found infected by trypanosomes, using the capillary tube centrifugation test. The PCR with specific primers identified 163 (41.1%) and 81 (20.4%) animals infected by T. congolense forest and T. congolense savannah, respectively; showing for the first time the circulation of T. congolense savannah in the Fontem region. No infection with T. congolense savannah was found in pigs whereas goats and sheep were infected by T. congolense forest and/or T. congolense savannah. The prevalence of trypanosomes varied significantly amongst villages and animal species. The genotyping of T. congolense forest positive samples using microsatellites markers showed that multiple genotypes occurred in 27.2% (44/163) of animals sampled, whereas single genotypes were found in 73.8% (119/163) of samples. Some alleles were found in all animal species as well as in all villages and were responsible for major genotypes, whereas others (rare alleles) were identified only in some animals of few villages. These rare alleles were characteristic of specific genotypes, assimilated to minor genotypes which can be spread in the region through tsetse flies. The microsatellite markers show a low genetic variability and an absence of sub-structuration within T. congolense forest. The analysis of the microsatellite data revealed a predominant clonal reproduction within T. congolense forest. Pigs were the animal species with the highest number of different genotypes of T. congolense forest. They seem to play an important epidemiological role in the propagation and spread of different genotypes of T. congolense.
Collapse
Affiliation(s)
- Gustave Simo
- Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon.
| | | | | | | | | | | | | |
Collapse
|
23
|
Guegan F, Plazolles N, Baltz T, Coustou V. Erythrophagocytosis of desialylated red blood cells is responsible for anaemia during Trypanosoma vivax infection. Cell Microbiol 2013; 15:1285-303. [PMID: 23421946 DOI: 10.1111/cmi.12123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/26/2022]
Abstract
Trypanosomal infection-induced anaemia is a devastating scourge for cattle in widespread regions. Although Trypanosoma vivax is considered as one of the most important parasites regarding economic impact in Africa and South America, very few in-depth studies have been conducted due to the difficulty of manipulating this parasite. Several hypotheses were proposed to explain trypanosome induced-anaemia but mechanisms have not yet been elucidated. Here, we characterized a multigenic family of trans-sialidases in T. vivax, some of which are released into the host serum during infection. These enzymes are able to trigger erythrophagocytosis by desialylating the major surface erythrocytes sialoglycoproteins, the glycophorins. Using an ex vivo assay to quantify erythrophagocytosis throughout infection, we showed that erythrocyte desialylation alone results in significant levels of anaemia during the acute phase of the disease. Characterization of virulence factors such as the trans-sialidases is vital to develop a control strategy against the disease or parasite.
Collapse
Affiliation(s)
- Fabien Guegan
- Microbiologie fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, Bordeaux, France
| | | | | | | |
Collapse
|
24
|
Nakayima J, Nakao R, Alhassan A, Mahama C, Afakye K, Sugimoto C. Molecular epidemiological studies on animal trypanosomiases in Ghana. Parasit Vectors 2012; 5:217. [PMID: 23025330 PMCID: PMC3480844 DOI: 10.1186/1756-3305-5-217] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/20/2012] [Indexed: 11/30/2022] Open
Abstract
Background African trypanosomes are extracellular protozoan parasites that are transmitted between mammalian hosts by the bite of an infected tsetse fly. Human African Trypanosomiasis (HAT) or sleeping sickness is caused by Trypanosoma brucei rhodesiense or T. brucei gambiense, while African Animal Trypanosomiasis (AAT) is caused mainly by T. vivax, T. congolense, T. simiae,T. evansi and T. brucei brucei. Trypanosomiasis is of public health importance in humans and is also the major constraint for livestock productivity in sub-Saharan African countries. Scanty information exists about the trypanosomiasis status in Ghana especially regarding molecular epidemiology. Therefore, this study intended to apply molecular tools to identify and characterize trypanosomes in Ghana. Methods A total of 219 tsetse flies, 248 pigs and 146 cattle blood samples were collected from Adidome and Koforidua regions in Ghana in 2010. Initial PCR assays were conducted using the internal transcribed spacer one (ITS1) of ribosomal DNA (rDNA) primers, which can detect most of the pathogenic trypanosome species and T. vivax-specific cathepsin L-like gene primers. In addition, species- or subgroup-specific PCRs were performed for T. b. rhodesiense, T. b. gambiense, T. evansi and three subgroups of T. congolense. Results The overall prevalence of trypanosomes were 17.4% (38/219), 57.5% (84/146) and 28.6% (71/248) in tsetse flies, cattle and pigs, respectively. T. congolense subgroup-specific PCR revealed that T. congolense Savannah (52.6%) and T. congolense Forest (66.0%) were the endemic subgroups in Ghana with 18.6% being mixed infections. T. evansi was detected in a single tsetse fly. Human infective trypanosomes were not detected in the tested samples. Conclusion Our results showed that there is a high prevalence of parasites in both tsetse flies and livestock in the study areas in Ghana. This enhances the need to strengthen control policies and institute measures that help prevent the spread of the parasites.
Collapse
Affiliation(s)
- Jesca Nakayima
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Simo G, Silatsa B, Flobert N, Lutumba P, Mansinsa P, Madinga J, Manzambi E, De Deken R, Asonganyi T. Identification of different trypanosome species in the mid-guts of tsetse flies of the Malanga (Kimpese) sleeping sickness focus of the Democratic Republic of Congo. Parasit Vectors 2012; 5:201. [PMID: 22992486 PMCID: PMC3468371 DOI: 10.1186/1756-3305-5-201] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/11/2012] [Indexed: 11/29/2022] Open
Abstract
Background The Malanga sleeping sickness focus of the Democratic Republic of Congo has shown an epidemic evolution of disease during the last century. However, following case detection and treatment, the prevalence of the disease decreased considerably. No active survey has been undertaken in this focus for a couple of years. To understand the current epidemiological status of sleeping sickness as well as the animal African trypanosomiasis in the Malanga focus, we undertook the identification of tsetse blood meals as well as different trypanosome species in flies trapped in this focus. Methods Pyramidal traps were use to trap tsetse flies. All flies caught were identified and live flies were dissected and their mid-guts collected. Fly mid-gut was used for the molecular identification of the blood meal source, as well as for the presence of different trypanosome species. Results About 949 Glossina palpalis palpalis were trapped; 296 (31.2%) of which were dissected, 60 (20.3%) blood meals collected and 57 (19.3%) trypanosome infections identified. The infection rates were 13.4%, 5.1%, 3.5% and 0.4% for Trypanosoma congolense savannah type, Trypanosoma brucei s.l., Trypanosoma congolense forest type and Trypanosoma vivax, respectively. Three mixed infections including Trypanosoma brucei s.l. and Trypanosoma congolense savannah type, and one mixed infection of Trypanosoma vivax and Trypanosoma congolense savannah type were identified. Eleven Trypanosoma brucei gambiense infections were identified; indicating an active circulation of this trypanosome subspecies. Of all the identified blood meals, about 58.3% were identified as being taken on pigs, while 33.3% and 8.3% were from man and other mammals, respectively. Conclusion The presence of Trypanosoma brucei in tsetse mid-guts associated with human blood meals is indicative of an active transmission of this parasite between tsetse and man. The considerable number of pig blood meals combined with the circulation of Trypanosoma brucei gambiense in this focus suggests a transmission cycle involving humans and domestic animals and could hamper eradication strategies. The various species of trypanosomes identified in the Malanga sleeping sickness focus indicates the coexistence of animal and human African Trypanosomiasis. The development of new strategies integrating control measures for human and animal trypanosomiasis may enable the reduction of the control costs in this locality.
Collapse
Affiliation(s)
- Gustave Simo
- Department of Biochemistry, University of Dschang, Dschang, Cameroon
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hamilton PB, Teixeira MMG, Stevens JR. The evolution of Trypanosoma cruzi: the 'bat seeding' hypothesis. Trends Parasitol 2012; 28:136-41. [PMID: 22365905 DOI: 10.1016/j.pt.2012.01.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
Abstract
Recent discussions on the evolution of Trypanosoma cruzi have been dominated by the southern super-continent hypothesis, whereby T. cruzi and related parasites evolved in isolation in the mammals of South America, Antarctica and Australia. Here, we consider recent molecular evidence suggesting that T. cruzi evolved from within a broader clade of bat trypanosomes, and that bat trypanosomes have successfully made the switch into other mammalian hosts in both the New and Old Worlds. Accordingly, we propose an alternative hypothesis--the bat seeding hypothesis--whereby lineages of bat trypanosomes have switched into terrestrial mammals, thereby seeding the terrestrial lineages within the clade. One key implication of this finding is that T. cruzi may have evolved considerably more recently than previously envisaged.
Collapse
Affiliation(s)
- Patrick B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | | | |
Collapse
|
27
|
Geiger A, Fardeau ML, Njiokou F, Joseph M, Asonganyi T, Ollivier B, Cuny G. Bacterial diversity associated with populations of Glossina spp. from Cameroon and distribution within the Campo sleeping sickness focus. MICROBIAL ECOLOGY 2011; 62:632-643. [PMID: 21387098 DOI: 10.1007/s00248-011-9830-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 05/30/2023]
Abstract
Tsetse flies were sampled in three villages of the Campo sleeping sickness focus in South Cameroon. The aim of this study was to investigate the flies' gut bacterial composition using culture-dependent techniques. Out of the 32 flies analyzed (27 Glossina palpalis palpalis, two Glossina pallicera, one Glossina nigrofusca, and two Glossina caliginea), 17 were shown to be inhabited by diverse bacteria belonging to the Proteobacteria, the Firmicutes, or the Bacteroidetes phyla. Phylogenetic analysis based on 16S rRNA gene sequences indicated the presence of 16 bacteria belonging to the genera Acinetobacter (4), Enterobacter (4), Enterococcus (2), Providencia (1), Sphingobacterium (1), Chryseobacterium (1), Lactococcus (1), Staphylococcus (1), and Pseudomonas (1). Using identical bacterial isolation and identification processes, the diversity of the inhabiting bacteria analyzed in tsetse flies sampled in Cameroon was much higher than the diversity found previously in flies collected in Angola. Furthermore, bacterial infection rates differed greatly between the flies from the three sampling areas (Akak, Campo Beach/Ipono, and Mabiogo). Last, the geographic distribution of the different bacteria was highly uneven; two of them identified as Sphingobacterium spp. and Chryseobacterium spp. were only found in Mabiogo. Among the bacteria identified, several are known for their capability to affect the survival of their insect hosts and/or insect vector competence. In some cases, bacteria belonging to a given genus were shown to cluster separately in phylogenetic trees; they could be novel species within their corresponding genus. Therefore, such investigations deserve to be pursued in expanded sampling areas within and outside Cameroon to provide greater insight into the diverse bacteria able to infect tsetse flies given the severe human and animal sickness they transmit.
Collapse
Affiliation(s)
- Anne Geiger
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Njitchouang GR, Njiokou F, Nana-Djeunga H, Asonganyi T, Fewou-Moundipa P, Cuny G, Simo G. A new transmission risk index for human African trypanosomiasis and its application in the identification of sites of high transmission of sleeping sickness in the Fontem focus of southwest Cameroon. MEDICAL AND VETERINARY ENTOMOLOGY 2011; 25:289-296. [PMID: 21198712 DOI: 10.1111/j.1365-2915.2010.00936.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A new index for the risk for transmission of human African trypanosomiasis was developed from an earlier index by adding terms for the proportion of tsetse infected with Trypanosoma brucei gambiense group 1 and the contribution of animals to tsetse diet. The validity of the new index was then assessed in the Fontem focus of southwest Cameroon. Averages of 0.66 and 4.85 Glossina palpalis palpalis (Diptera: Glossinidae) were caught per trap/day at the end of one rainy season (November) and the start of the next (April), respectively. Of 1596 tsetse flies examined, 4.7% were positive for Trypanosoma brucei s.l. midgut infections and 0.6% for T. b. gambiense group 1. Among 184 bloodmeals identified, 55.1% were from pigs, 25.2% from humans, 17.6% from wild animals and 1.2% from goats. Of the meals taken from humans, 81.5% were taken at sites distant from pigsties. At the end of the rainy season, catches were low and similar between biotopes distant from and close to pigsties, but the risk for transmission was greatest at sites distant from the sties, suggesting that the presence of pigs reduced the risk to humans. At the beginning of the rainy season, catches of tsetse and risk for transmission were greatest close to the sties. In all seasons, there was a strong correlation between the old and new indices, suggesting that both can be used to estimate the level of transmission, but as the new index is the more comprehensive, it may be more accurate.
Collapse
Affiliation(s)
- G R Njitchouang
- General Biology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon.
| | | | | | | | | | | | | |
Collapse
|
29
|
Farikou O, Thevenon S, Njiokou F, Allal F, Cuny G, Geiger A. Genetic diversity and population structure of the secondary symbiont of tsetse flies, Sodalis glossinidius, in sleeping sickness foci in Cameroon. PLoS Negl Trop Dis 2011; 5:e1281. [PMID: 21886849 PMCID: PMC3160304 DOI: 10.1371/journal.pntd.0001281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 07/03/2011] [Indexed: 11/17/2022] Open
Abstract
Background Previous studies have shown substantial differences in Sodalis glossinidius and trypanosome infection rates between Glossina palpalis palpalis populations from two Cameroonian foci of human African trypanosomiasis (HAT), Bipindi and Campo. We hypothesized that the geographical isolation of the two foci may have induced independent evolution in the two areas, resulting in the diversification of symbiont genotypes. Methodology/Principal Findings To test this hypothesis, we investigated the symbiont genetic structure using the allelic size variation at four specific microsatellite loci. Classical analysis of molecular variance (AMOVA) and differentiation statistics revealed that most of the genetic diversity was observed among individuals within populations and frequent haplotypes were shared between populations. The structure of genetic diversity varied at different geographical scales, with almost no differentiation within the Campo HAT focus and a low but significant differentiation between the Campo and Bipindi HAT foci. Conclusions/Significance The data provided new information on the genetic diversity of the secondary symbiont population revealing mild structuring. Possible interactions between S. glossinidius subpopulations and Glossina species that could favor tsetse fly infections by a given trypanosome species should be further investigated. Human African trypanosomiasis remains a threat to the poorest people in Africa. The trypanosomes causing the disease are transmitted by tsetse flies. The drugs currently used are unsatisfactory: some are toxic and all are difficult to administer. Furthermore, drug resistance is increasing. Therefore, investigations for novel disease control strategies are urgently needed. Previous analyses showed the association between the presence of Glossina symbiont, Sodalis glossinidius, and the fly infection by trypanosomes in a south-western region in Cameroon: flies harbouring symbionts had a threefold higher probability of being infected by trypanosomes than flies devoid of symbionts. But the study also showed substantial differences in S. glossinidius and trypanosome infection rates between Glossina populations from two Cameroonian foci of sleeping sickness. We hypothesized that the geographical isolation of the two foci may have induced the independent evolution of each one, leading to the diversification of symbiont genotypes. Microsatellite markers were used and showed that genetic diversity structuring of S. glossinidius varies at different geographical scales with a low but significant differentiation between the Campo and Bipindi HAT foci. This encourages further work on interactions between S. glossinidius subpopulations and Glossina species that could favor tsetse fly infections by a given trypanosome species.
Collapse
Affiliation(s)
- Oumarou Farikou
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier, France
| | | | | | | | | | | |
Collapse
|
30
|
Nimpaye H, Njiokou F, Njine T, Njitchouang G, Cuny G, Herder S, Asonganyi T, Simo G. Trypanosoma vivax, T. congolense "forest type" and T. simiae: prevalence in domestic animals of sleeping sickness foci of Cameroon. Parasite 2011; 18:171-9. [PMID: 21678793 PMCID: PMC3671417 DOI: 10.1051/parasite/2011182171] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/28/2010] [Indexed: 11/26/2022] Open
Abstract
In order to better understand the epidemiology of Human and Animal trypanosomiasis that occur together in sleeping sickness foci, a study of prevalences of animal parasites (Trypanosoma vivax, T. congolense "forest type", and T. simiae) infections was conducted on domestic animals to complete the previous work carried on T. brucei gambiense prevalence using the same animal sample. 875 domestic animals, including 307 pigs, 264 goats, 267 sheep and 37 dogs were sampled in the sleeping sickness foci of Bipindi, Campo, Doumé and Fontem in Cameroon. The polymerase chain reaction (PCR) based method was used to identify these trypanosome species. A total of 237 (27.08%) domestic animals were infected by at least one trypanosome species. The prevalence of T. vivax, T. congolense "forest type" and T. simiae were 20.91%, 11.42% and 0.34% respectively. The prevalences of 7 vivax and T. congolense "forest type" differed significantly between the animal species and between the foci (p < 0.0001); however, these two trypanosomes were found in all animal species as well as in all the foci subjected to the study. The high prevalences of 7 vivax and T congolense "forest type" in Bipindi and Fontem-Center indicate their intense transmission in these foci.
Collapse
Affiliation(s)
- H. Nimpaye
-
Laboratoire de Biologie Générale, Département de Biologie et Physiologie Animales, Faculté des Sciences, Université de Yaoundé I BP 812 Yaoundé Cameroun
| | - F. Njiokou
-
Laboratoire de Biologie Générale, Département de Biologie et Physiologie Animales, Faculté des Sciences, Université de Yaoundé I BP 812 Yaoundé Cameroun
| | - T. Njine
-
Laboratoire de Biologie Générale, Département de Biologie et Physiologie Animales, Faculté des Sciences, Université de Yaoundé I BP 812 Yaoundé Cameroun
| | - G.R. Njitchouang
-
Laboratoire de Biologie Générale, Département de Biologie et Physiologie Animales, Faculté des Sciences, Université de Yaoundé I BP 812 Yaoundé Cameroun
| | - G. Cuny
-
Laboratoire de Recherche et de Coordination sur les Trypanosomoses IRD, UMR 177, CIRAD, TA 207/G, Campus International de Baillarguet 34398 Montpellier Cedex 5 France
| | - S. Herder
-
Laboratoire de Recherche et de Coordination sur les Trypanosomoses IRD, UMR 177, CIRAD, TA 207/G, Campus International de Baillarguet 34398 Montpellier Cedex 5 France
| | - T. Asonganyi
-
Faculty of Medicine and Biomedical Sciences, University of Yaoundé I Yaoundé Cameroun
| | - G. Simo
-
Department of Biochemistry, Faculty of Science, University of Dschang PO Box 67 Dschang Cameroun
| |
Collapse
|
31
|
Farikou O, Njiokou F, Simo G, Asonganyi T, Cuny G, Geiger A. Tsetse fly blood meal modification and trypanosome identification in two sleeping sickness foci in the forest of southern Cameroon. Acta Trop 2010; 116:81-8. [PMID: 20541513 DOI: 10.1016/j.actatropica.2010.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/14/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
Abstract
The blood meal origins of 222 tsetse flies (213 Glossina palpalis palpalis, 7 Glossina pallicera pallicera, one Glossina nigrofusca and one Glossina caliginea) caught in 2008 in two Human African trypanosomiasis foci (Bipindi and Campo) of south Cameroon were investigated. 88.7% of tsetse flies blood meals were identified using the heteroduplex method and the origin of the remaining blood meals (11.3%) was identified by sequencing the cytochrome B gene. Most of the meals were from humans (45.9%) and pigs (37.4%), 16.7% from wild animals. Interestingly, new tsetse fly hosts including turtle (Trionyx and Kinixys) and snake (Python sebae) were identified. Significant differences were recorded between Bipindi where the blood meals from pigs were predominant (66.7% vs 23.5% from humans) and Campo where blood meals from humans were predominant (62.9% vs 22.7% from pigs). Comparison with the data recorded in 2004 in the same foci (and with the same molecular approach) demonstrated significant modifications of the feeding patterns: increase in blood meals from pigs in Bipindi (66.7% in 2008 vs 44.8% in 2004) and in Campo (20.5% in 2008 vs 6.8% in 2004), decrease in that from human (significant in Bipindi only). 12.6%, 8.1% and 2.7% of the flies were, respectively, Trypanosoma congolense forest type, Trypanosoma congolense savannah type and Trypanosoma brucei gambiense infected. These results demonstrate that tsetse fly feeding patterns can be specific of a given area and can evolve rapidly with time. They show an active circulation of a variety of trypanosomes in sleeping sickness foci of southern Cameroon.
Collapse
|
32
|
Chamond N, Cosson A, Blom-Potar MC, Jouvion G, D'Archivio S, Medina M, Droin-Bergère S, Huerre M, Goyard S, Minoprio P. Trypanosoma vivax infections: pushing ahead with mouse models for the study of Nagana. I. Parasitological, hematological and pathological parameters. PLoS Negl Trop Dis 2010; 4:e792. [PMID: 20706595 PMCID: PMC2919405 DOI: 10.1371/journal.pntd.0000792] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 07/14/2010] [Indexed: 11/18/2022] Open
Abstract
African trypanosomiasis is a severe parasitic disease that affects both humans and livestock. Several different species may cause animal trypanosomosis and although Trypanosoma vivax (sub-genus Duttonella) is currently responsible for the vast majority of debilitating cases causing great economic hardship in West Africa and South America, little is known about its biology and interaction with its hosts. Relatively speaking, T. vivax has been more than neglected despite an urgent need to develop efficient control strategies. Some pioneering rodent models were developed to circumvent the difficulties of working with livestock, but disappointedly were for the most part discontinued decades ago. To gain more insight into the biology of T. vivax, its interactions with the host and consequently its pathogenesis, we have developed a number of reproducible murine models using a parasite isolate that is infectious for rodents. Firstly, we analyzed the parasitical characteristics of the infection using inbred and outbred mouse strains to compare the impact of host genetic background on the infection and on survival rates. Hematological studies showed that the infection gave rise to severe anemia, and histopathological investigations in various organs showed multifocal inflammatory infiltrates associated with extramedullary hematopoiesis in the liver, and cerebral edema. The models developed are consistent with field observations and pave the way for subsequent in-depth studies into the pathogenesis of T. vivax - trypanosomosis. While most research efforts have focused on T. b. brucei trypanosomosis, infections caused by T. vivax and T. congolense which predominate in livestock and small ruminants have been subject to little study. In order to circumvent the major constraints inherent to studying T. vivax/host interactions in the field, we developed in vivo murine models of T. vivax trypanosomosis. We show here that the mouse experimental model reproduce most features of the infection in cattle. More than reflecting only the main parasitological parameters of the animal infection, the mouse model can be used to elucidate the immunopathological mechanisms involved in parasite evasion and persistence, and the tissue damage seen during infection and disease. Studies planned for the future will allow us to further investigate T. vivax–induced immunopathology in an experimental context for which all the necessary tools are now available.
Collapse
Affiliation(s)
- Nathalie Chamond
- Laboratoire d'Immunobiologie des Infections à Trypanosoma, Département d'Immunologie, Institut Pasteur, Paris, France
| | - Alain Cosson
- Laboratoire d'Immunobiologie des Infections à Trypanosoma, Département d'Immunologie, Institut Pasteur, Paris, France
| | - Marie Christine Blom-Potar
- Laboratoire d'Immunobiologie des Infections à Trypanosoma, Département d'Immunologie, Institut Pasteur, Paris, France
| | - Grégory Jouvion
- Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Institut Pasteur, Paris, France
| | - Simon D'Archivio
- Laboratoire d'Immunobiologie des Infections à Trypanosoma, Département d'Immunologie, Institut Pasteur, Paris, France
| | - Mathieu Medina
- Laboratoire d'Immunobiologie des Infections à Trypanosoma, Département d'Immunologie, Institut Pasteur, Paris, France
| | - Sabrina Droin-Bergère
- Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Institut Pasteur, Paris, France
| | - Michel Huerre
- Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Institut Pasteur, Paris, France
| | - Sophie Goyard
- Laboratoire d'Immunobiologie des Infections à Trypanosoma, Département d'Immunologie, Institut Pasteur, Paris, France
| | - Paola Minoprio
- Laboratoire d'Immunobiologie des Infections à Trypanosoma, Département d'Immunologie, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
33
|
Cordon-Obras C, García-Estébanez C, Ndong-Mabale N, Abaga S, Ndongo-Asumu P, Benito A, Cano J. Screening of Trypanosoma brucei gambiense in domestic livestock and tsetse flies from an insular endemic focus (Luba, Equatorial Guinea). PLoS Negl Trop Dis 2010; 4:e704. [PMID: 20544031 PMCID: PMC2882337 DOI: 10.1371/journal.pntd.0000704] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 04/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sleeping sickness is spread over 36 Sub-Saharan African countries. In West and Central Africa, the disease is caused by Trypanosoma brucei gambiense, which produces a chronic clinical manifestation. The Luba focus (Bioko Island, Equatorial Guinea) has not reported autochthonous sleeping sickness cases since 1995, but given the complexity of the epidemiological cycle, the elimination of the parasite in the environment is difficult to categorically ensure. METHODOLOGY/PRINCIPAL FINDINGS The aim of this work is to assess, by a molecular approach (Polymerase Chain Reaction, PCR), the possible permanence of T. b. gambiense in the vector (Glossina spp.) and domestic fauna in order to improve our understanding of the epidemiological situation of the disease in an isolated focus considered to be under control. The results obtained show the absence of the parasite in peridomestic livestock but its presence, although at very low rate, in the vector. On the other hand, interesting entomological data highlight that an elevated concentration of tsetse flies was observed in two out of the ten villages considered to be in the focus. CONCLUSIONS These findings demonstrate that even in conditions of apparent control, a complete parasite clearance is difficult to achieve. Further investigations must be focused on animal reservoirs which could allow the parasites to persist without leading to human cases. In Luba, where domestic livestock are scarcer than other foci in mainland Equatorial Guinea, the epidemiological significance of wild fauna should be assessed to establish their role in the maintenance of the infection.
Collapse
Affiliation(s)
- Carlos Cordon-Obras
- National Centre of Tropical Medicine (Institute of Health Carlos III), Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
34
|
Talmi-Frank D, Jaffe CL, Nasereddin A, Warburg A, King R, Svobodova M, Peleg O, Baneth G. Leishmania tropica in rock hyraxes (Procavia capensis) in a focus of human cutaneous leishmaniasis. Am J Trop Med Hyg 2010; 82:814-8. [PMID: 20439960 DOI: 10.4269/ajtmh.2010.09-0513] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cutaneous leishmaniasis, caused by Leishmania tropica, has recently emerged in urban and rural foci of central and northern Israel, and constitutes a major public health concern. Rock hyraxes (Procavia capensis), the suspected natural reservoir, were trapped in the cutaneous leishmaniasis urban focus of Maale Adumim in central Israel and evaluated for L. tropica infection by real-time kinetoplast DNA (kDNA) polymerase chain reaction (PCR) and serology. Real-time PCR on blood and computerized western blot serology analysis was positive for L. tropica in 58% and 80%, respectively, of the hyraxes tested. Phylogenetic analysis of the ribosomal internal transcribed spacer 1 region indicated that similar genotypes were present in humans and hyraxes from the same habitat. The high rates of infection and exposure to L. tropica among hyraxes supports their involvement in the transmission cycle of this parasite, and their potential role as a reservoir for human disease.
Collapse
|
35
|
Massussi JA, Massussi JA, Mbida Mbida JA, Djieto-Lordon C, Njiokou F, Laveissière C, van der Ploeg JD. Diversity and spatial distribution of vectors and hosts of T. brucei gambiense in forest zones of, Southern Cameroon: epidemiological implications. Acta Trop 2010; 114:44-8. [PMID: 20067756 DOI: 10.1016/j.actatropica.2010.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/23/2009] [Accepted: 01/05/2010] [Indexed: 11/30/2022]
Abstract
Host and vector distribution of Trypanosoma brucei gambiense was studied in relation to habitat types and seasons. Six (19.35%) of the 31 mammal species recorded in Bipindi were reservoir hosts. Cercopithecus nictitans was confined to the undisturbed forest and the low intensive shifting cultivation zones, while Cephalophus monticola, Cephalophus dorsalis, Cricetomys gambianus, Atherurus africanus and Nandinia binotata occurred in all the habitat types. As for vectors of human African trypanosomiasis (HAT), Glossina palpalis palpalis, was the most abundant (99.13%) among tsetse fly species. It occurs in all biotopes with its highest density recorded in the village-adjacent forest. The village-adjacent forest is therefore the most risky transmission zone for HAT mainly during the short rainy season when G. palpalis palpalis' density is highest (2.91); while, the high and low intensive shifting cultivation zones are the most important contact zones between humans, G. palpalis palpalis and wild mammals in all seasons.
Collapse
Affiliation(s)
- Jacques A Massussi
- Institute of Agricultural Research for Development, P.O. Box 167, Meyomessala, Cameroon.
| | | | | | | | | | | | | |
Collapse
|
36
|
Farikou O, Njiokou F, Mbida Mbida JA, Njitchouang GR, Djeunga HN, Asonganyi T, Simarro PP, Cuny G, Geiger A. Tripartite interactions between tsetse flies, Sodalis glossinidius and trypanosomes--an epidemiological approach in two historical human African trypanosomiasis foci in Cameroon. INFECTION GENETICS AND EVOLUTION 2009; 10:115-21. [PMID: 19879380 DOI: 10.1016/j.meegid.2009.10.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/14/2009] [Accepted: 10/20/2009] [Indexed: 11/17/2022]
Abstract
Epidemiological surveys were conducted in two historical human African trypanosomiasis foci in South Cameroon, Bipindi and Campo. In each focus, three sampling areas were defined. In Bipindi, only Glossina palpalis was identified, whereas four species were identified in Campo, G. palpalis being highly predominant (93%). For further analyses, 75 flies were randomly chosen among the flies trapped in each of the six villages. Large and statistically significant differences were recorded between both (1) the prevalence of Sodalis glossinidius (tsetse symbiont) and the prevalence of trypanosome infection of the major fly species G. p. palpalis and (2) the respective prevalence of symbiont and infection between the two foci. Despite these differences, the rate of infected flies harbouring the symbiont was very similar (75%) in both foci, suggesting that symbionts favour fly infection by trypanosomes. This hypothesis was statistically tested and assessed, showing that S. glossinidius is potentially an efficient target for controlling tsetse fly vectorial competence and consequently sleeping sickness.
Collapse
Affiliation(s)
- Oumarou Farikou
- University of Yaoundé I, Faculty of Science, BP 812, Yaoundé, Cameroon
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Duffy CW, Morrison LJ, Black A, Pinchbeck GL, Christley RM, Schoenefeld A, Tait A, Turner CMR, MacLeod A. Trypanosoma vivax displays a clonal population structure. Int J Parasitol 2009; 39:1475-83. [PMID: 19520081 DOI: 10.1016/j.ijpara.2009.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 10/20/2022]
Abstract
African animal trypanosomiasis, or Nagana, is a debilitating and economically costly disease with a major impact on animal health in sub-Saharan Africa. Trypanosoma vivax, one of the principal trypanosome species responsible for the disease, infects a wide host range including cattle, goats, horses and donkeys and is transmitted both cyclically by tsetse flies and mechanically by other biting flies, resulting in a distribution covering large swathes of South America and much of sub-Saharan Africa. While there is evidence for mating in some of the related trypanosome species, Trypanosoma brucei, Trypanosoma congolense and Trypanosoma cruzi, very little work has been carried out to examine this question in T. vivax. Understanding whether mating occurs in T. vivax will provide insight into the dynamics of trait inheritance, for example the spread of drug resistance, as well as examining the origins of meiosis in the order Kinetoplastida. With this in mind we have identified orthologues of eight core meiotic genes within the genome, the presence of which imply that the potential for mating exists in this species. In order to address whether mating occurs, we have investigated a sympatric field population of T. vivax collected from livestock in The Gambia, using microsatellite markers developed for this species. Our analysis has identified a clonal population structure showing significant linkage disequilibrium, homozygote deficits and disagreement with Hardy-Weinberg predictions at six microsatellite loci, indicative of a lack of mating in this population of T. vivax.
Collapse
Affiliation(s)
- Craig W Duffy
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, Faculty of Veterinary Medicine, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yurchenko VY, Lukes J, Jirku M, Maslov DA. Selective recovery of the cultivation-prone components from mixed trypanosomatid infections: a case of several novel species isolated from Neotropical Heteroptera. Int J Syst Evol Microbiol 2009; 59:893-909. [DOI: 10.1099/ijs.0.001149-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Phylogenetic analysis of Trypanosoma vivax supports the separation of South American/West African from East African isolates and a new T. vivax-like genotype infecting a nyala antelope from Mozambique. Parasitology 2008; 135:1317-28. [DOI: 10.1017/s0031182008004848] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYIn this study, we addressed the phylogenetic and taxonomic relationships of Trypanosoma vivax and related trypanosomes nested in the subgenus Duttonella through combined morphological and phylogeographical analyses. We previously demonstrated that the clade T. vivax harbours a homogeneous clade comprising West African/South American isolates and the heterogeneous East African isolates. Herein we characterized a trypanosome isolated from a nyala antelope (Tragelaphus angasi) wild-caught in Mozambique (East Africa) and diagnosed as T. vivax-like based on biological, morphological and molecular data. Phylogenetic relationships, phylogeographical patterns and estimates of genetic divergence were based on SSU and ITS rDNA sequences of T. vivax from Brazil and Venezuela (South America), Nigeria (West Africa), and from T. vivax-like trypanosomes from Mozambique, Kenya and Tanzania (East Africa). Despite being well-supported within the T. vivax clade, the nyala trypanosome was highly divergent from all other T. vivax and T. vivax-like trypanosomes, even those from East Africa. Considering its host origin, morphological features, behaviour in experimentally infected goats, phylogenetic placement, and genetic divergence this isolate represents a new genotype of trypanosome closely phylogenetically related to T. vivax. This study corroborated the high complexity and the existence of distinct genotypes yet undescribed within the subgenus Duttonella.
Collapse
|
40
|
Tsetse fly host preference from sleeping sickness foci in Cameroon: Epidemiological implications. INFECTION GENETICS AND EVOLUTION 2008; 8:34-9. [DOI: 10.1016/j.meegid.2007.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/14/2007] [Accepted: 09/19/2007] [Indexed: 11/18/2022]
|
41
|
Lahm SA, Kombila M, Swanepoel R, Barnes RFW. Morbidity and mortality of wild animals in relation to outbreaks of Ebola haemorrhagic fever in Gabon, 1994–2003. Trans R Soc Trop Med Hyg 2007; 101:64-78. [PMID: 17010400 DOI: 10.1016/j.trstmh.2006.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 07/01/2006] [Accepted: 07/04/2006] [Indexed: 11/20/2022] Open
Abstract
Antibody to Ebola virus was found in 14 (1.2%) of 1147 human sera collected in Gabon in 1981-1997. Six seropositive subjects were bled in the northeast in 1991, more than 3 years prior to recognition of the first known outbreak of Ebola haemorrhagic fever (EHF), whilst eight came from the southwest where the disease has not been recognised. It has been reported elsewhere that 98 carcasses of wild animals were found in systematic studies in northeastern Gabon and adjoining northwestern Republic of the Congo (RoC) during five EHF epidemics in August 2001 to June 2003, with Ebola virus infection being confirmed in 14 carcasses. During the present opportunistic observations, reports were investigated of a further 397 carcasses, mainly gorillas, chimpanzees, mandrills and bush pigs, found by rural residents in 35 incidents in Gabon and RoC during 1994-2003. Sixteen incidents had temporal and/or spatial coincidence with confirmed EHF outbreaks, and the remaining 19 appeared to represent extension of disease from such sites. There appeared to be sustained Ebola virus activity in the northeast in 1994-1999, with sequential spread from 1996 onwards, first westwards, then southerly, and then northeastwards, reaching the Gabon-RoC border in 2001. This implies that there was transmission of infection between wild mammals, but the species involved are highly susceptible and unlikely to be natural hosts of the virus.
Collapse
Affiliation(s)
- Sally A Lahm
- Institute for Research in Tropical Ecology, Makokou, Gabon.
| | | | | | | |
Collapse
|