1
|
Yong MY, Tan KY, Tan CH. A genus-wide study on venom proteome variation and phospholipase A 2 inhibition in Asian lance-headed pit vipers (genus: Trimeresurus). Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110077. [PMID: 39579840 DOI: 10.1016/j.cbpc.2024.110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
High molecular weight proteins are present abundantly in viperid venoms. The amino acid sequence can be highly variable, contributing to the structure and function diversity of snake venom protein. However, this variability remains poorly understood in many species. The study investigated the venom protein variability in a distinct clade of Asian pit vipers (Trimeresurus species complex) through comparative proteomics, applying gel electrophoresis (SDS-PAGE), liquid chromatography-tandem mass spectrometry (LCMS/MS), and bioinformatic approaches. The proteomes revealed a number of conserved protein families, within each are variably expressed protein paralogs that are unrelated to the snake phylogeny and geographic origin. The expression levels of two major enzymes, i.e., snake venom serine proteinase and metalloproteinase, correlate weakly with procoagulant and hemorrhagic activities, implying co-expression of other functionally versatile toxins in the venom. The phospholipase A2 (PLA2) abundance correlates strongly with its enzymatic activity, and a unique phenotype was discovered in two species expressing extremely little PLA2. The commercial mono-specific antivenom effectively neutralized the venoms' procoagulant and hemorrhagic effects but failed to inhibit the PLA2 activities. Instead, the PLA2 activities of all venoms were effectively inhibited by the small molecule inhibitor varespladib, suggesting its potential to be repurposed as a highly potent adjuvant therapeutic in snakebite envenoming.
Collapse
Affiliation(s)
- Mun Yee Yong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan; Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Chan XY, Anthonysamy J, Sivaganabalan R, Tan CH, Safferi RSB, Abdul Rahim R, Choo KH, Amin AB. A retrospective observational study of mangrove pit viper envenomation presented to selangor middle zone cluster hospitals in Malaysia. Toxicon 2024; 249:108086. [PMID: 39233130 DOI: 10.1016/j.toxicon.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE There is very limited published experience on mangrove pit viper envenomation in the medical literature. This study aims to analyze the clinical characteristics, treatment modalities and outcomes of patients presenting to Selangor middle zone cluster Hospitals in Malaysia with confirmed mangrove pit viper bites. METHODS We conducted a retrospective observational study, reviewing medical records of patients treated for mangrove pit viper bites between July 1, 2020 to June 30, 2023. Data on patient demographics, clinical characteristic, laboratory findings, treatment modalities and clinical outcomes were collected and analyzed. RESULTS A total of 25 patients were included in this study. The majority of the patients were male (n = 23, 92%) with the mean age of 38.7 ± 17.6 years. Most frequent anatomical region involved is foot (n = 12, 48%). Common clinical presentation included localized pain (n = 24, 96%), swelling (n = 22, 88%) and fang mark (n = 22, 88%). Systemic symptoms were less common, with 1 patient exhibiting coagulopathy with clinical bleeding at 28 h post bite. Antivenom was administered to 68% (n = 17) of the patients. The majority of the patients (n = 23, 92%) recovered without significant morbidity while 8% (n = 2) of the patients developed skin infection that required antibiotic therapy. No fatalities were reported. CONCLUSION Mangrove pit viper envenomation encountered in these regions predominantly causes local symptoms while systemic symptoms were less common. This study provides a glimpse to the clinical characteristics and management of mangrove pit viper envenomation, coagulopathy may be delayed due to characteristic of the snake venom and patient's preexisting illness. Further research is needed to enhance our understanding of this snakebite envenomation.
Collapse
Affiliation(s)
- Xin Yi Chan
- Emergency and Trauma Department Hospital Tengku Ampuan Rahimah, Ministry of Health Malaysia, Selangor, Malaysia.
| | - Jasmine Anthonysamy
- Emergency and Trauma Department Hospital Banting, Ministry of Health Malaysia, Selangor, Malaysia
| | - Ranjini Sivaganabalan
- Emergency and Trauma Department Hospital Shah Alam, Ministry of Health Malaysia, Selangor, Malaysia
| | - Choo Hock Tan
- College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan; Department of Pharmacology, Faculty of Medicine, University of Malaya, Malaysia
| | - Ruth Sabrina Binti Safferi
- Emergency and Trauma Department Hospital Raja Permaisuri Bainun, Ministry of Health Malaysia, Perak, Malaysia
| | - Rafidah Abdul Rahim
- Emergency and Trauma Department Hospital Tengku Ampuan Rahimah, Ministry of Health Malaysia, Selangor, Malaysia
| | - Kim Hoon Choo
- Emergency and Trauma Department Hospital Tengku Ampuan Rahimah, Ministry of Health Malaysia, Selangor, Malaysia
| | - Ahmad Badrul Amin
- Emergency and Trauma Department Hospital Tengku Ampuan Rahimah, Ministry of Health Malaysia, Selangor, Malaysia
| |
Collapse
|
3
|
Thakur S, Giri S, Lalremsanga HT, Doley R. Indian green pit vipers: A lesser-known snake group of north-east India. Toxicon 2024; 242:107689. [PMID: 38531479 DOI: 10.1016/j.toxicon.2024.107689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Green pit vipers are one of the most widely distributed group of venomous snakes in south-east Asia. In Indian, green pit vipers are found in the Northern and North-eastern states spreading across eastern and central India and one of the lesser studied venoms. High morphological similarity among them has been a long-established challenge for species identification, however, a total of six species of Indian green pit viper belonging to genus Trimeresurus, Popeia and Viridovipera has been reported from North-east India. Biochemical and biological studies have revealed that venom exhibits substantial variation in protein expression level along with functional variability. The symptoms of envenomation are painful swelling at bite site, bleeding, necrosis along with systemic toxicity such as prolonged coagulopathy. Clinical data of green pit viper envenomated patients from Demow community health centre, Assam advocated against the use of Indian polyvalent antivenom pressing the need for a suitable antivenom for the treatment of green pit viper envenomation. To design effective and specific antivenom for green pit vipers, unveiling the proteome profile of these snakes is needed. In this study, a comparative venomic of green pit vipers of Northern and North-eastern India, their clinical manifestation as well as treatment protocol has been reviewed.
Collapse
Affiliation(s)
- Susmita Thakur
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, India
| | - Surajit Giri
- Demow Government Community Health Centre, Raichai, Konwar Dihingia Gaon, Sivasagar, Assam, India
| | - H T Lalremsanga
- Department of Zoology, Mizoram University, Aizawl 796004, Mizoram, India
| | - Robin Doley
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, India.
| |
Collapse
|
4
|
Niu X, Lv Y, Chen J, Feng Y, Cui Y, Lu H, Liu H. The genome assembly and annotation of the white-lipped tree pit viper Trimeresurus albolabris. GIGABYTE 2024; 2024:gigabyte106. [PMID: 38313188 PMCID: PMC10836062 DOI: 10.46471/gigabyte.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Trimeresurus albolabris, also known as the white-lipped pit viper or white-lipped tree viper, is a highly venomous snake distributed across Southeast Asia and the cause of many snakebite cases. In this study, we report the first whole genome assembly of T. albolabris obtained with next-generation sequencing from a specimen collected in Mengzi, Yunnan, China. After genome sequencing and assembly, the genome of this male T. albolabris individual was 1.51 Gb in length and included 38.42% repeat-element content. Using this genome, 21,695 genes were identified, and 99.17% of genes could be annotated using gene functional databases. Our genome assembly and annotation process was validated using a phylogenetic tree, which included six species and focused on single-copy genes of nuclear genomes. This research will contribute to future studies on Trimeresurus biology and the genetic basis of snake venom.
Collapse
Affiliation(s)
- Xiaotong Niu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- School of Ecology, Sun Yat-sen University, Shenzhen, 510275, China
| | - Yakui Lv
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Jin Chen
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Yueheng Feng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, China
| | - Yilin Cui
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, China
| | - Haorong Lu
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Hui Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, China
| |
Collapse
|
5
|
Adisakwattana P, Chanhome L, Chaiyabutr N, Phuphisut O, Onrapak R, Thawornkuno C. Venom-gland transcriptomics of the Malayan pit viper ( Calloselasma rhodostoma) for identification, classification, and characterization of venom proteins. Heliyon 2023; 9:e15476. [PMID: 37153433 PMCID: PMC10160700 DOI: 10.1016/j.heliyon.2023.e15476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
The Malayan pit viper (Calloselasma rhodostoma) is a hemotoxic snake widely found in Southeast Asia and is responsible for the majority of poisoning cases in this region, including Thailand. However, a comprehensive knowledge of the venom protein profile and classification, as well as novel venom proteins, of this viper is still limited. Recently, the detailed composition of several snake venoms has been discovered through the use of transcriptome analysis. Therefore, the aim of this study was to employ a next-generation sequencing platform and bioinformatics analysis to undertake venom-gland de novo transcriptomics of Malayan pit vipers. Furthermore, 21,272 functional coding genes were identified from 36,577 transcripts, of which 314 transcripts were identified as toxin proteins, accounting for 61.41% of total FPKM, which can be categorized into 22 toxin gene families. The most abundant are snake venom metalloproteinase kistomin (P0CB14) and zinc metalloproteinase/disintegrin (P30403), which account for 60.47% of total toxin FPKM and belong to the SVMP toxin family, followed by snake venom serine protease 1 (O13059) and Snaclec rhodocetin subunit beta (P81398), which account for 6.84% and 5.50% of total toxin FPKM and belong to the snake venom serine protease (SVSP) and Snaclec toxin family, respectively. Amino acid sequences of the aforementioned toxins were compared with those identified in other important medical hemotoxic snakes from Southeast Asia, including the Siamese Russell's viper (Daboia siamensis) and green pit viper (Trimeresurus albolabris), in order to analyze their protein homology. The results demonstrated that ranges of 58%-62%, 31%-60%, and 48%-59% identity was observed among the SVMP, Snaclec, and SVSP toxin families, respectively. Understanding the venom protein profile and classification is essential in interpreting clinical symptoms during human envenomation and developing potential therapeutic applications. Moreover, the variability of toxin families and amino acid sequences among related hemotoxic snakes found in this study suggests the use and development of universal antivenom for the treatment of envenomating patients is still challenging.
Collapse
Affiliation(s)
- Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Lawan Chanhome
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Narongsak Chaiyabutr
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Reamtong Onrapak
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Charin Thawornkuno
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
6
|
Tan CH, Tan KY, Ng TS, Tan NH, Chong HP. De Novo Venom Gland Transcriptome Assembly and Characterization for Calloselasma rhodostoma (Kuhl, 1824), the Malayan Pit Viper from Malaysia: Unravelling Toxin Gene Diversity in a Medically Important Basal Crotaline. Toxins (Basel) 2023; 15:toxins15050315. [PMID: 37235350 DOI: 10.3390/toxins15050315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
In Southeast Asia, the Malayan Pit Viper (Calloselasma rhodostoma) is a venomous snake species of medical importance and bioprospecting potential. To unveil the diversity of its toxin genes, this study de novo assembled and analyzed the venom gland transcriptome of C. rhodostoma from Malaysia. The expression of toxin genes dominates the gland transcriptome by 53.78% of total transcript abundance (based on overall FPKM, Fragments Per Kilobase Million), in which 92 non-redundant transcripts belonging to 16 toxin families were identified. Snake venom metalloproteinase (SVMP, PI > PII > PIII) is the most dominant family (37.84% of all toxin FPKM), followed by phospholipase A2 (29.02%), bradykinin/angiotensin-converting enzyme inhibitor-C-type natriuretic peptide (16.30%), C-type lectin (CTL, 10.01%), snake venom serine protease (SVSP, 2.81%), L-amino acid oxidase (2.25%), and others (1.78%). The expressions of SVMP, CTL, and SVSP correlate with hemorrhagic, anti-platelet, and coagulopathic effects in envenoming. The SVMP metalloproteinase domains encode hemorrhagins (kistomin and rhodostoxin), while disintegrin (rhodostomin from P-II) acts by inhibiting platelet aggregation. CTL gene homologues uncovered include rhodocytin (platelet aggregators) and rhodocetin (platelet inhibitors), which contribute to thrombocytopenia and platelet dysfunction. The major SVSP is a thrombin-like enzyme (an ancrod homolog) responsible for defibrination in consumptive coagulopathy. The findings provide insight into the venom complexity of C. rhodostoma and the pathophysiology of envenoming.
Collapse
Affiliation(s)
- Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Tzu Shan Ng
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ho Phin Chong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
7
|
Thakur S, Blotra A, Vasudevan K, Malhotra A, Lalremsanga HT, Santra V, Doley R. Proteome Decomplexation of Trimeresurus erythrurus Venom from Mizoram, India. J Proteome Res 2023; 22:215-225. [PMID: 36516484 DOI: 10.1021/acs.jproteome.2c00642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Green pit vipers are the largest group of venomous vipers in tropical and subtropical Asia, which are responsible for most of the bite cases across this region. Among the green pit vipers of the Indian subcontinent, Trimeresurus erythrurus is the most prevalent; however, limited knowledge is available about its venomics. Proteome decomplexation of T. erythrurus venom using mass spectrometry revealed a blend of 53 different proteins/peptides belonging to 10 snake venom protein families. Phospholipase A2 and snake venom serine proteases were found to be the major enzymatic families, and Snaclec was the major nonenzymatic family in this venom. These protein families might be responsible for consumptive coagulopathy in victims. Along with these, snake venom metalloproteases, l-amino acid oxidases, disintegrins, and cysteine-rich secretory proteins were also found, which might be responsible for inducing painful edema, tissue necrosis, blistering, and defibrination in patients. Protein belonging to C-type lectins, C-type natriuretic peptides, and glutaminyl-peptide cyclotransfreases were also observed as trace proteins. The crude venom shows platelet aggregation in the absence of any agonist, suggesting their role in alterations in platelet functions. This study is the first proteomic analysis of T. erythrurus venom, contributing an overview of different snake venom proteins/peptides responsible for various pathophysiological disorders obtained in patients. Data are available via ProteomeXchange with the identifier PXD038311.
Collapse
Affiliation(s)
- Susmita Thakur
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, Napaam784028, India
| | - Avni Blotra
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad500048, India
| | - Karthikeyan Vasudevan
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad500048, India
| | - Anita Malhotra
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, BangorLL57 2UW, Gwynedd, U.K
| | - Hmar Tlawmte Lalremsanga
- Developmental Biology and Herpetology Laboratory, Department of Zoology, Mizoram University, Aizawl796004, Mizoram, India
| | - Vishal Santra
- Society for Nature Conservation, Research and Community Engagement (CONCERN), Nalikul, Hooghly, West Bengal712407, India.,Captive and Field Herpetology, 13 Hirfron, AngleseyLL65 1YU, Wales, U.K.,Gujarat Forest Department, Consultant - Snake Research Institute, Dharampur, Valsad, Gujarat396050, India
| | - Robin Doley
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, Napaam784028, India
| |
Collapse
|
8
|
Blessmann J, Hanlodsomphou S, Santisouk B, Krumkamp R, Kreuels B, Ismail AK, Yong MY, Tan KY, Tan CH. Experience of using expired lyophilized snake antivenom during a medical emergency situation in Lao People's Democratic Republic--A possible untapped resource to tackle antivenom shortage in Southeast Asia. Trop Med Int Health 2023; 28:64-70. [PMID: 36416013 DOI: 10.1111/tmi.13833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To evaluate the safety and efficacy of expired lyophilized snake antivenom of Thai origin during a medical emergency in 2020/2021 in Lao People's Democratic Republic. METHODS Observational case series of patients with potentially life-threatening envenoming who consented to the administration of expired antivenom between August 2020 and May 2022. RESULTS A total of 31 patients received the expired antivenom. Malayan pit vipers (Calloselasma rhodostoma) were responsible for 26 (84%) cases and green pit vipers (Trimeresurus species) for two cases (6%). In three patients (10%) the responsible snake could not be identified. Of these, two presented with signs of neurotoxicity and one with coagulopathy. A total of 124 vials of expired antivenom were administered. Fifty-nine vials had expired 2-18 months earlier, 56 vials 19-36 months and nine vials 37-60 months before. Adverse effects of variable severity were observed in seven (23%) patients. All 31 patients fully recovered from systemic envenoming. CONCLUSIONS Under closely controlled conditions and monitoring the use of expired snake antivenom proved to be effective and safe. Discarding this precious medication is an unnecessary waste, and it could be a valuable resource in ameliorating the current shortage of antivenom. Emergency use authorization granted by health authorities and preclinical testing of expired antivenoms could provide the support and legal basis for such an approach.
Collapse
Affiliation(s)
- Jörg Blessmann
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Bounlom Santisouk
- Department of Emergency Medicine, Setthatirath Hospital, Vientiane, Laos
| | - Ralf Krumkamp
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| | - Benno Kreuels
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ahmad Khaldun Ismail
- Department of Emergency Medicine, Universiti Kebangsaan Malaysia, Faculty of Medicine, Kuala Lumpur, Malaysia
| | - Mun Yee Yong
- Department of Pharmacology, Faculty of Medicine, Venom Research and Toxicology Lab, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Protein and Interactomics Lab, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, Venom Research and Toxicology Lab, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Othong R, Eurcherdkul T, Chantawatsharakorn P. Green Pit Viper Envenomations in Bangkok: A Comparison of Follow-Up Compliance and Clinical Outcomes in Older and Younger Adults. Toxins (Basel) 2022; 14:toxins14120869. [PMID: 36548767 PMCID: PMC9784995 DOI: 10.3390/toxins14120869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
We compared older and younger adults envenomated by the green pit viper (GPV) with regard to the following: follow-up compliance, elapsed time between envenomation and emergency department (ED) visit, and clinical/treatment outcomes. This was a two-site retrospective cohort study. We searched hospital electronic medical databases between January 2011 and December 2021. Patients aged 15 and above were eligible if they had a history of snakebite and had at least two VCT and/or platelet count results in their medical records. After the search, 1550 medical records were reviewed and 760 cases were found to be eligible for analysis. In total, 205 cases (27.0%) were ≥60 years old. The median ages in the younger and older groups were 40 (26-51) and 68 (64-75) years, respectively. The median elapsed times from bite to the ED were 47 (30-118) vs. 69 (35-150) min (p-value = 0.001). Overall, 91.3% of all cases were managed as out-patient cases and were eligible for follow-up appointments. The rate of out-patient follow-up at 72 ± 12 h in the older patients was significantly higher (43.2%) than in the younger adult patients (32.4%) (p-value = 0.01). Regarding the clinical/treatment outcomes, the rates of coagulopathy, antivenom administration, and hospital admission were not statistically different between both groups.
Collapse
Affiliation(s)
- Rittirak Othong
- Department of Emergency Medicine, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
- Correspondence:
| | - Thanaphat Eurcherdkul
- Department of Emergency Medicine, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | | |
Collapse
|
10
|
Tiyawat G, Lohajaroensub S, Othong R. Diagnostic Tests for Hypofibrinogenemia Resulting from Green Pit Viper (Trimeresurus albolabris) Envenomation: A Simulated In Vitro Study. Wilderness Environ Med 2022; 33:371-378. [PMID: 36216671 DOI: 10.1016/j.wem.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION The green pit viper (GPV) Trimeresurus albolabris is found in Southeast Asia. Its venom has a thrombin-like activity that can cause hypofibrinogenemia. Fibrinogen measurement is not always available. We aimed to establish a more available diagnostic tool indicating hypofibrinogenemia caused by GPV envenomation. METHODS This was an in vitro study, in which healthy subjects aged 20 to 45 y were enrolled. There were 2 experiments. In Experiment 1, blood samples from 1 subject had varying amounts of T albolabris venom added to determine its effect on the fibrinogen level (FL). In Experiment 2, 3 sets of blood samples were obtained from another 25 subjects. The 2 venom doses established in Experiment 1 were used on 2 sets of the samples to simulate severe (FL <1.0 g·L-1) and mild hypofibrinogenemia (FL 1.0-1.7 g·L-1). The third set of samples was venom-free. All samples were used for platelet counts, prothrombin time (PT)/international normalized ratio (INR)/activated partial thromboplastin time (aPTT), and 2 bedside clotting tests. Diagnostic parameters were calculated against the target FL of <1.0 g·L-1 and <1.7 g·L-1. RESULTS Twenty-five subjects were enrolled in Experiment 2. On referencing normal cutoff values (platelet count >150,000 cells/mm3, venous clotting time <15 min, normal 20-min whole blood clotting time, INR <1.2, aPTT <30), we found abnormalities of 5, 0, 0, 3, and 22%, respectively. The highest correlation with hypofibrinogenemia was provided by PT/INR. For an FL of <1.0 g·L-1, PT and INR revealed the highest areas under the receiver operating characteristic curve, 0.76 (95% CI, 0.55-0.97) and 0.76 (95% CI, 0.57-0.97), respectively. The highest accuracy and the highest sensitivity were provided by PT/INR. CONCLUSIONS PT/INR could be used as a diagnostic test for severe hypofibrinogenemia in GPV envenomation because of its high accuracy and area under the receiver operating characteristic curve.
Collapse
Affiliation(s)
- Gawin Tiyawat
- Department of Disaster and Emergency Medical Operation, Faculty of Sciences and Health Technology, Navamindradhiraj University, Bangkok, Thailand
| | | | - Rittirak Othong
- Department of Emergency Medicine, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand.
| |
Collapse
|
11
|
Tan KY, Shamsuddin NN, Tan CH. Sharp-nosed Pit Viper (Deinagkistrodon acutus) from Taiwan and China: A comparative study on venom toxicity and neutralization by two specific antivenoms across the Strait. Acta Trop 2022; 232:106495. [PMID: 35504314 DOI: 10.1016/j.actatropica.2022.106495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/01/2022]
Abstract
In East Asia, the Sharp-nosed Pit Viper (Deinagkistrodon acutus) is a medically important venomous snake in Taiwan and China, two geographical areas long separated by the Taiwan Strait. Yet, snake venom variation is little known between specimens found across the Strait. This study thus investigated the intra-species variation of D. acutus venoms from Taiwan (Da-Taiwan) and China (Da-China) in their profiles of gel electrophoresis, toxicity, immunoreactivity and neutralization effect by antivenom. Da-China venom exhibited higher procoagulant, hemorrhagic and lethal activities than Da-Taiwan venom, presumably attributed to the higher abundance of moderate-to-high molecular weight toxins (procoagulants and hemorrhagins) in the venom. The mono-specific antivenoms produced in Taiwan (DaMAV-Taiwan) and China (DaMAV-China) were immunoreactive toward both venoms, and were able to neutralize the venom toxicity to different extents. DaMAV-Taiwan was more efficacious in neutralizing the venom procoagulant and lethal effects, while DaMAV-China was more potent against hemorrhagic effect. The discrepancy in efficacy between the two antivenoms could be due to varying proportions of neutralizing antibodies in the respective products, influenced by techniques of antibody raising and purification. Further study is warranted to elucidate variation in the proteome and antigenicity of D. acutus venom between snakes from Taiwan and China.
Collapse
|
12
|
Anita S, Sadjuri AR, Rahmah L, Nugroho HA, Mulyadi, Trilaksono W, Ridhani W, Safira N, Bahtiar H, Maharani, Hamidy A, Azhari A. Venom composition of Trimeresurus albolabris, T. insularis, T. puniceus and T. purpureomaculatus from Indonesia. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210103. [PMID: 35875602 PMCID: PMC9261747 DOI: 10.1590/1678-9199-jvatitd-2021-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Several studies have been published on the characterization of Trimeresurus venoms. However, there is still limited information concerning the venom composition of Trimeresurus species distributed throughout Indonesia, which contributes to significant snakebite envenomation cases. The present study describes a comparative on the composition of T. albolabris, T. insularis, T. puniceus, and T. purpureomaculatus venoms originated from Indonesia. Methods: Protein content in the venom of four Trimeresurus species was determined using Bradford assay, and the venom proteome was elucidated using one-dimension SDS PAGE nano-ESI- LCMS/MS shotgun proteomics. Results: The venom of T. albolabris contained the highest protein content of 11.1 mg/mL, followed by T. puniceus, T. insularis and T. purpureomaculatus venom with 10.7 mg/mL, 8.9 mg/mL and 5.54 mg/mL protein, respectively. In total, our venomic analysis identified 65 proteins belonging to 16 protein families in T. purpureomaculatus; 64 proteins belonging to 18 protein families in T. albolabris; 58 different proteins belonging to 14 protein families in T. puniceus; and 48 different proteins belonging to 14 protein familiesin T. insularis. Four major proteins identified in all venoms belonged to snake venom metalloproteinase, C-type lectin, snake venom serine protease, and phospholipase A2. There were 11 common proteins in all venoms, and T. puniceus venom has the highest number of unique proteins compared to the other three venoms. Cluster analysis of the proteins and venoms showed that T. puniceus venom has the most distinct venom composition. Conclusions: Overall, the results highlighted venom compositional variation of four Trimeresurus spp. from Indonesia. The venoms appear to be highly similar, comprising at least four protein families that correlate with venom’s toxin properties and function. This study adds more information on venom variability among Trimeresurus species within the close geographic origin and may contribute to the development of optimum heterologous antivenom.
Collapse
Affiliation(s)
- Syahfitri Anita
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, Indonesia.,Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | | | | | - Herjuno Ari Nugroho
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN) , Cibinong, Indonesia
| | - Mulyadi
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Wahyu Trilaksono
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Wiwit Ridhani
- PT Dermama Bioteknologi Laboratorium, Betshaida Hospital, Tangerang, Indonesia
| | | | | | - Maharani
- PT Bio Farma (Persero), Bandung, Indonesia
| | - Amir Hamidy
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | | |
Collapse
|
13
|
Ong HL, Tan CH, Lee LP, Khor SM, Tan KY. An immunodetection assay developed using cobra cytotoxin-specific antibodies: Potential diagnostics for cobra envenoming. Toxicon 2022; 216:157-168. [PMID: 35868411 DOI: 10.1016/j.toxicon.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
Cobra (Naja spp.) envenoming is a life-threatening medical emergency, and a correct diagnosis is crucial to initiating timely and appropriate antivenom treatment. However, snakebite diagnostics remain unavailable in Southeast Asia. This study, therefore, developed an immunodetection assay with a potential diagnostic application for cobra envenoming. The cytotoxin of Naja kaouthia (Thai Monocled Cobra) (Nk-CTX) was purified from its venom to produce CTX-specific antibodies in rabbits and chickens. A double-antibody sandwich enzyme-linked immunosorbent assay was developed using the purified anti-Nk-CTX antibodies (immunoglobulin G and immunoglobulin Y), and its selectivity, specificity, and sensitivity for the venoms of five major cobra species in Southeast Asia (N. kaouthia, Naja sumatrana, Naja sputatrix, and Naja siamensis, Naja philippinensis) were studied. The results showed the immunoassay discriminates cobra venoms from other species commonly implicated in snakebites in Southeast Asia, i.e., the Malayan Krait, Many-banded Krait, King Cobra, Eastern Russell's Viper, Malayan Pit Viper and White-lipped Pit Viper. The immunoassay has a high sensitivity for the five cobra venoms, with detection limits (LoD) ranging from 0.6 to 2.6 ng/ml. Together, the findings suggest the potential diagnostic application of the cytotoxin immunoassay for cobra envenoming. The immunoassay was found to exhibit high immunoreactivity toward ten Asiatic cobra venoms (absorbance>1.5), in contrast to African cobra venoms with low immunoreactivity (absorbance<0.9). Considering the varying CTX antigenicity between Asiatic and African cobras, the immunoassay for African cobras should utilize antibodies produced specifically from the cytotoxins of African cobra venoms.
Collapse
Affiliation(s)
- Hui Ling Ong
- Protein and Interactomics Lab, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Louisa Pernee Lee
- Venom Research and Toxicology Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Lab, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Snake Venomics: Fundamentals, Recent Updates, and a Look to the Next Decade. Toxins (Basel) 2022; 14:toxins14040247. [PMID: 35448856 PMCID: PMC9028316 DOI: 10.3390/toxins14040247] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/11/2023] Open
Abstract
Venomic research, powered by techniques adapted from proteomics, transcriptomics, and genomics, seeks to unravel the diversity and complexity of venom through which knowledge can be applied in the treatment of envenoming, biodiscovery, and conservation. Snake venom proteomics is most extensively studied, but the methods varied widely, creating a massive amount of information which complicates data comparison and interpretation. Advancement in mass spectrometry technology, accompanied by growing databases and sophisticated bioinformatic tools, has overcome earlier limitations of protein identification. The progress, however, remains challenged by limited accessibility to samples, non-standardized quantitative methods, and biased interpretation of -omic data. Next-generation sequencing (NGS) technologies enable high-throughput venom-gland transcriptomics and genomics, complementing venom proteomics by providing deeper insights into the structural diversity, differential expression, regulation and functional interaction of the toxin genes. Venomic tissue sampling is, however, difficult due to strict regulations on wildlife use and transfer of biological materials in some countries. Limited resources for techniques and funding are among other pertinent issues that impede the progress of venomics, particularly in less developed regions and for neglected species. Genuine collaboration between international researchers, due recognition of regional experts by global organizations (e.g., WHO), and improved distribution of research support, should be embraced.
Collapse
|
15
|
Thakur S, Malhotra A, Giri S, Lalremsenga HT, Bharti OK, Santra V, Martin G, Doley R. Venom of several Indian green pit vipers: Comparison of biochemical activities and cross-reactivity with antivenoms. Toxicon 2022; 210:66-77. [PMID: 35217025 DOI: 10.1016/j.toxicon.2022.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
Green pit vipers, a name that can refer to several unrelated species, comprise a large group of venomous snakes found across the humid areas of tropical and sub-tropical Asia, and are responsible for most of the bite cases across this region. In India, green pit vipers belonging to several genera are prevalent in the northern and north-eastern hilly region, unrelated to species present in the peninsular region. In the present study, crude venom of representative species of green pit vipers present in the north and north-eastern hilly region of India (Trimeresurus erythrurus, T. septentrionalis, Viridovipera medoensis, and Popiea popieorum) were characterized to elucidate venom composition and venom variation. Profiling of crude venoms using SDS-PAGE and RP-HPLC methods revealed quantitative differences among the species. Further, in vitro biochemical assays reveal variable levels of phospholipase activity, coagulation activity, thrombin-like activity, fibrinogenolytic and haemolytic activity. This correlates with the pseudo-procoagulant effects on the haemostatic system of victims, which causes consumptive coagulopathy, frequently observed in patients bitten by green pit vipers. The immunoreactivity of Indian polyvalent antivenom and Thai green pit viper antivenom towards crude venoms were also evaluated by western blotting and inhibition of biochemical activities. The results exhibited poor efficacy of Indian polyvalent antivenom in neutralizing the venom toxins of crude venoms; however, Thai green pit viper antivenin (raised against the venom of Trimeresurus allbolabris, not present in India) showed higher immunoreactivity towards congeneric venoms tested. Analysis of green pit viper bite patients records from a community health centre in Assam, India, further revealed the inability of Indian polyvalent antivenom to reverse the extended coagulopathy featured.
Collapse
Affiliation(s)
- Susmita Thakur
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| | - Anita Malhotra
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Surajit Giri
- Demow Government Community Health Centre, Raichai, KonwarDihingia Gaon, Sivasagar, Assam, India
| | - H T Lalremsenga
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Omesh K Bharti
- State Institute of Health & Family Welfare Parimahal, Shimla, HP, India
| | - Vishal Santra
- Society for Nature Conservation, Research and Community Engagement (CONCERN), Nalikul, Hooghly, West Bengal, 712407, India; Captive and Field Herpetology, 13 Hirfron, Anglesey, LL65 1YU, Wales, UK
| | - Gerard Martin
- The Liana Trust, Survey #1418/1419, Rathnapuri, Hunsur, Karnataka, India
| | - Robin Doley
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
| |
Collapse
|
16
|
Yong MY, Tan KY, Tan CH. Potential para-specific and geographical utility of Thai Green Pit Viper (Trimeresurus albolabris) Monovalent Antivenom: Neutralization of procoagulant and hemorrhagic activities of diverse Trimeresurus pit viper venoms. Toxicon 2021; 203:85-92. [PMID: 34600909 DOI: 10.1016/j.toxicon.2021.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
The Trimeresurus complex consists of diverse medically important venomous pit vipers that cause snakebite envenomation. Antivenoms, however, are in limited supply, and are specific to only two out of the many species across Asia. This study thus investigated the immunoreactivities of regional pit viper antivenoms toward selected Trimeresurus pit viper venoms, and examined the neutralization of their hemotoxic activities. Trimeresurus albolabris Monovalent Antivenom (TaMAV, Thailand) exhibited a higher immunoreactivity than Hemato Bivalent Antivenom (HBAV, raised against Trimeresurus stejnegeri and Protobothrops mucrosquamatus, Taiwan) and Gloydius brevicaudus Monovalent Antivenom (GbMAV, China), attributed to its monovalent nature and conserved antigens in the Trimeresurus pit viper venoms. The venoms showed moderate-to-strong in vitro procoagulant and in vivo hemorrhagic effects consistent with hemotoxic envenomation, except for the Sri Lankan Trimeresurus trigonocephalus venom which lacked hemorrhagic activity. TaMAV was able to differentially neutralize both in vitro and in vivo hemotoxic effects of the venoms, with the lowest efficacy shown against the procoagulant effect of T. trigonocephalus venom. The findings suggest that TaMAV is a potentially useful treatment for envenomation caused by hetero-specific Trimeresurus pit vipers, in particular those in Southeast Asia and East Asia. Clinical study is warranted to establish its spectrum of para-specific effectiveness, and dosages need be tailored to the different species in respective regions.
Collapse
Affiliation(s)
- Mun Yee Yong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Thein MM, Rogers CA, White J, Mahmood MA, Weinstein SA, Nwe MT, Thwin KT, Zaw A, Thant M, Oo SSL, Gyi KM, Warrell DA, Alfred S, Peh CA. Characteristics and significance of "green snake" bites in Myanmar, especially by the pit vipers Trimeresurus albolabris and Trimeresurus erythrurus. Toxicon 2021; 203:66-73. [PMID: 34562496 DOI: 10.1016/j.toxicon.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Snakebite is an important problem in Myanmar. Regionally, bites by Eastern Russell's vipers, Daboia siamensis (Viperidae, Viperinae), and monocled cobras, Naja kaouthia are considered medically important, but those categorised as "green snake" bites are not. However, these may include bites by green pit vipers, Trimeresurus spp. (Viperidae, Crotalinae) for which no antivenom is available in Myanmar. Elsewhere in Southeast Asia, these snakes are reported to cause local and systemic envenoming. As part of the Myanmar Snakebite Project, prospective case data were collected over 3 years from five hospitals in the Mandalay region. These included 3803 snakebite cases reported from Mandalay region. Of these, 355 were listed as bites by a witnessed green-coloured snake. In 22 cases, the snakes responsible were retained and preserved, then expertly identified; 21 were medically important white-lipped pit vipers (Trimeresurus albolabris), and one as an Asian vine snake, Ahaetulla prasina (Colubridae, Ahaetuliinae) which is not of medical importance. Among confirmed Trimeresurus albolabris bites, 15/21 developed swelling of the bitten limb, and 3/21 coagulopathy, defined as a positive 20-min whole blood clotting test (20WBCT). None developed necrosis, blistering, thrombocytopenia or acute kidney injury (AKI). Of the remaining 333 patients bitten by green snakes that were not specifically identified, 241 (72%) developed swelling of the bitten limb, and 62 (19%) coagulopathy. AKI occurred in 21/333 patients, but only one required dialysis. At least 10/21 of the cases with AKI in this study were more likely to represent bites from Trimeresurus spp. than D. siamensis because the snake responsible was brought into the hospital, examined and described by the treating physician as "green-coloured". This study describes a previously unpublished case of AKI from envenoming by T. erythrurus in Yangon, and reviews cases of AKI following bites by this species and T. albolabris in Myanmar. This confirms that, at least on rare occasions, Trimeresurus spp. envenoming can cause AKI. This has important implications for snakebite management in Myanmar as the finding of local swelling, coagulopathy and AKI is generally considered pathognomonic of D. siamensis envenoming. Further collection of confirmed Trimeresurus spp. bites is required in Myanmar in order better to define the syndrome of envenoming and to assess the possible need for antivenom against Trimeresurus spp. in this country.
Collapse
Affiliation(s)
- Myat Myat Thein
- Myanmar Snakebite Project, Mandalay Office, Mandalay, Myanmar
| | - Caitlyn A Rogers
- Toxinology Department, Women's and Children's Hospital, North Adelaide, SA, 5006, Australia; University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Julian White
- Toxinology Department, Women's and Children's Hospital, North Adelaide, SA, 5006, Australia; University of Adelaide, Adelaide, SA, 5000, Australia
| | | | - Scott A Weinstein
- Toxinology Department, Women's and Children's Hospital, North Adelaide, SA, 5006, Australia; University of Adelaide, Adelaide, SA, 5000, Australia
| | - Myat Thet Nwe
- Myanmar Snakebite Project, Mandalay Office, Mandalay, Myanmar
| | | | - Aung Zaw
- General Manager, Myanmar Pharmaceutical Industrial Enterprise, Yangon, Myanmar
| | - Myo Thant
- Myanmar Snakebite Project, Mandalay Office, Mandalay, Myanmar
| | - Sai Sein Lin Oo
- Department of Zoology, University of Mandalay, Mandalay, Myanmar
| | - Khin Maung Gyi
- Department of Zoology, University of Mandalay, Mandalay, Myanmar
| | - David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - Sam Alfred
- University of Adelaide, Adelaide, SA, 5000, Australia; Emergency Department, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Chen Au Peh
- University of Adelaide, Adelaide, SA, 5000, Australia; Department of Renal Medicine, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| |
Collapse
|
18
|
Wong KY, Tan KY, Tan NH, Gnanathasan CA, Tan CH. Elucidating the Venom Diversity in Sri Lankan Spectacled Cobra ( Naja naja) through De Novo Venom Gland Transcriptomics, Venom Proteomics and Toxicity Neutralization. Toxins (Basel) 2021; 13:558. [PMID: 34437429 PMCID: PMC8402536 DOI: 10.3390/toxins13080558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/18/2023] Open
Abstract
Inadequate effectiveness of Indian antivenoms in treating envenomation caused by the Spectacled Cobra/Indian Cobra (Naja naja) in Sri Lanka has been attributed to geographical variations in the venom composition. This study investigated the de novo venom-gland transcriptomics and venom proteomics of the Sri Lankan N. naja (NN-SL) to elucidate its toxin gene diversity and venom variability. The neutralization efficacy of a commonly used Indian antivenom product in Sri Lanka was examined against the lethality induced by NN-SL venom in mice. The transcriptomic study revealed high expression of 22 toxin genes families in NN-SL, constituting 46.55% of total transcript abundance. Three-finger toxins (3FTX) were the most diversely and abundantly expressed (87.54% of toxin gene expression), consistent with the dominance of 3FTX in the venom proteome (72.19% of total venom proteins). The 3FTX were predominantly S-type cytotoxins/cardiotoxins (CTX) and α-neurotoxins of long-chain or short-chain subtypes (α-NTX). CTX and α-NTX are implicated in local tissue necrosis and fatal neuromuscular paralysis, respectively, in envenomation caused by NN-SL. Intra-species variations in the toxin gene sequences and expression levels were apparent between NN-SL and other geographical specimens of N. naja, suggesting potential antigenic diversity that impacts antivenom effectiveness. This was demonstrated by limited potency (0.74 mg venom/ml antivenom) of the Indian polyvalent antivenom (VPAV) in neutralizing the NN-SL venom. A pan-regional antivenom with improved efficacy to treat N. naja envenomation is needed.
Collapse
Affiliation(s)
- Kin Ying Wong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nget Hong Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | | | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
19
|
Tan CH, Palasuberniam P, Tan KY. Snake Venom Proteomics, Immunoreactivity and Toxicity Neutralization Studies for the Asiatic Mountain Pit Vipers, Ovophis convictus, Ovophis tonkinensis, and Hime Habu, Ovophis okinavensis. Toxins (Basel) 2021; 13:toxins13080514. [PMID: 34437385 PMCID: PMC8402492 DOI: 10.3390/toxins13080514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023] Open
Abstract
Snakebite envenomation is a serious neglected tropical disease, and its management is often complicated by the diversity of snake venoms. In Asia, pit vipers of the Ovophis species complex are medically important venomous snakes whose venom properties have not been investigated in depth. This study characterized the venom proteomes of Ovophis convictus (West Malaysia), Ovophis tonkinensis (northern Vietnam, southern China), and Ovophis okinavensis (Okinawa, Japan) by applying liquid chromatography-tandem mass spectrometry, which detected a high abundance of snake venom serine proteases (SVSP, constituting 40–60% of total venom proteins), followed by phospholipases A2, snake venom metalloproteinases of mainly P-III class, L-amino acid oxidases, and toxins from other protein families which were less abundant. The venoms exhibited different procoagulant activities in human plasma, with potency decreasing from O. tonkinensis > O. okinavensis > O. convictus. The procoagulant nature of venom confirms that consumptive coagulopathy underlies the pathophysiology of Ovophis pit viper envenomation. The hetero-specific antivenoms Gloydius brevicaudus monovalent antivenom (GbMAV) and Trimeresurus albolabris monovalent antivenom (TaMAV) were immunoreactive toward the venoms, and cross-neutralized their procoagulant activities, albeit at variably limited efficacy. In the absence of species-specific antivenom, these hetero-specific antivenoms may be useful in treating coagulotoxic envenomation caused by the different snakes in their respective regions.
Collapse
Affiliation(s)
- Choo Hock Tan
- Venom Research, Toxicology Research Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: (C.H.T.); (K.Y.T.)
| | - Praneetha Palasuberniam
- Venom Research, Toxicology Research Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Lab, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (C.H.T.); (K.Y.T.)
| |
Collapse
|
20
|
Lee LP, Tan KY, Tan CH. Snake venom proteomics and antivenomics of two Sundaic lance-headed pit vipers: Trimeresurus wiroti (Malaysia) and Trimeresurus puniceus (Indonesia). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100875. [PMID: 34311411 DOI: 10.1016/j.cbd.2021.100875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022]
Abstract
Envenomation by two medically important Sundaic pit vipers, Trimeresurus wiroti (Malaysia) and Trimeresurus puniceus (Indonesia), causes hemotoxic syndrome with a potentially fatal outcome. Research on the compositions and antigenicity of these pit viper venoms is however lacking, limiting our understanding of the pathophysiology and treatment of envenomation. This study investigated the venom proteomes of both species through a protein decomplexation strategy, applying C18 reverse-phase high-performance liquid chromatography followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and protein identification through nano-electrospray ionization liquid chromatography-tandem mass spectrometry (nano-ESI-LCMS/MS) of trypsin-digested peptides. The venom antigenicity was profiled against the Thai Green Pit Viper Antivenom (GPVAV, a hetero-specific antivenom), using indirect enzyme-linked immunosorbent assay (ELISA). The venom proteomes of T. wiroti and T. puniceus consisted of 10 and 12 toxin families, respectively. The major proteins were of diverse snake venom serine proteases (19-30% of total venom proteins), snake venom metalloproteinases (17-26%), disintegrins (9-16%), phospholipases A2 (8-28%) and C-type lectins (~8%). These were putative snake toxins implicated in hemorrhage and coagulopathy, consistent with clinical hemotoxicity. GPVAV showed strong immunorecognition toward high and medium molecular weight proteins (e.g., SVMP and PLA2) in both venoms, while a lower binding activity was observed toward small proteins such as disintegrins. Conserved antigenicity in the major hemotoxins supported toxicity cross-neutralization by GPVAV and indicated that the immunorecognition of low molecular weight toxins may be optimized for improved binding efficacy. Taken together, the study provides insights into the pathophysiology and antivenom treatment of envenomation caused by T. wiroti and T. puniceus in the region.
Collapse
Affiliation(s)
- Louisa Pernee Lee
- Venom Research & Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Choo Hock Tan
- Venom Research & Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Faisal T, Tan KY, Tan NH, Sim SM, Gnanathasan CA, Tan CH. Proteomics, toxicity and antivenom neutralization of Sri Lankan and Indian Russell's viper ( Daboia russelii) venoms. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200177. [PMID: 33995514 PMCID: PMC8092856 DOI: 10.1590/1678-9199-jvatitd-2020-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The western Russell's viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell's viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. METHODS The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. RESULTS DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. CONCLUSION Considering that a large amount of venom can be injected by Russell's viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.
Collapse
Affiliation(s)
- Tasnim Faisal
- Department of Pharmacology, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| | - Si Mui Sim
- Department of Pharmacology, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| | | | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of
Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Patra A, Mukherjee AK. Assessment of snakebite burdens, clinical features of envenomation, and strategies to improve snakebite management in Vietnam. Acta Trop 2021; 216:105833. [PMID: 33485869 DOI: 10.1016/j.actatropica.2021.105833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022]
Abstract
The sheer paucity of scientific documentation of herpetofauna in Vietnam and the rudimentary healthcare response to snakebite have stimulated this review. Over six decades of data culled from public data bases and search engines, have been used to assess snakebite burdens, clinical features of envenomation, and strategies for snakebite management in Vietnam. In addition, biochemical and proteomic analyses to decipher venom composition, rapid analytical techniques to be used for clinical diagnosis of snakebite in Vietnam have been discussed in detail. The assessment of efficacy, safety, and quality of commercial antivenom produced in Vietnam and improvement of antivenom production to meet the national requirement has been critically examined. It is apparent that snake bite incidence in Vietnam is exacerbated by mismatch in demand and supply of antivenom therapy, insufficient medical facilities, preference for traditional healers and poor management of clinical records. The impediments arising from geographical and species-specific variation in venom composition can be overcome by the 'Omics approach', and scientific documentation of pathophysiological manifestations post envenomation. The development of next generation of therapeutics, encouraging clinical research, novel approaches and social awareness against snakebite and its treatments have been suggested to significantly reduce the snakebite mortality and morbidity in this region.
Collapse
Affiliation(s)
- Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India.
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India.
| |
Collapse
|
23
|
Tan CH, Liew JL, Chong HP, Tan NH. Protein decomplexation and proteomics: A complementary assessment method of the physicochemical purity of antivenom. Biologicals 2021; 69:22-29. [PMID: 33431232 DOI: 10.1016/j.biologicals.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 01/21/2023] Open
Abstract
The quality of antivenom is governed by its safety and efficacy profiles. These quality characteristics are much influenced by the purity of antivenom content. Rigorous assessment and meticulous monitoring of antivenom purity at the preclinical setting is hence crucial. This study aimed to explore an integrative proteomic method to assess the physicochemical purity of four commercially available antivenoms in the region. The antivenoms were subjected to Superdex 200 HR 10/30 size-exclusion fast-protein liquid chromatography (SE-FPLC). The proteins in each fraction were trypsin-digested and analyzed by nano-ESI-liquid chromatography-tandem mass spectrometry (LC-MS/MS). SE-FPLC resolved the antivenom proteins into three major protein components of very high (>200 kDa), high (100-120 kDa) and medium (<60 kDa) molecular weights. The major components (80-95% of total proteins) in the antivenoms were proteins of 100-120 kDa consisting of mainly the light and partially digested heavy immunoglobulin chains, consistent with F(ab')2 as the active principle of the antivenoms. However, LC-MS/MS also detected substantial quantity of large proteins (e.g. alpha-2-macroglobulins), immunoglobulin aggregates and impurities e.g. albumins in some products. The method is practical and able to unveil the quantitative and qualitative aspects of antivenom protein compositions. It is therefore a potentially useful preclinical assessment tool of antivenom purity.
Collapse
Affiliation(s)
- Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Jia Lee Liew
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ho Phin Chong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
In Vitro Immunological Cross-Reactivity of Thai Polyvalent and Monovalent Antivenoms with Asian Viper Venoms. Toxins (Basel) 2020; 12:toxins12120766. [PMID: 33287378 PMCID: PMC7761867 DOI: 10.3390/toxins12120766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 11/20/2022] Open
Abstract
The intravenous administration of polyclonal antibodies known as antivenom is the only effective treatment for snakebite envenomed victims, but because of inter-specific variation in the toxic components of snake venoms, these therapies have variable efficacies against different snake species and/or different populations of the same species. In this study, we sought to characterize the in vitro venom binding capability and in vitro cross-neutralizing activity of antivenom, specifically the Hemato Polyvalent antivenom (HPAV; The Queen Saovabha Memorial Institute (QSMI) of the Thai Red Cross Society, Thailand) and three monovalent antivenoms (QSMI) specific to Daboia siamensis, Calloselasma rhodostoma, and Trimeresurus albolabris venoms, against a variety of South Asian and Southeast Asian viper venoms (Calloselasma rhodostoma, Daboia russelii, Hypnale hypnale, Trimeresurus albolabris, Trimeresurus purpureomaculatus, Trimeresurus hageni, and Trimeresurus fucatus). Using ELISA and immunoblotting approaches, we find that the majority of protein components in the viper venoms were recognized and bound by the HPAV polyvalent antivenom, while the monospecific antivenom made against T.albolabris extensively recognized toxins present in the venom of related species, T. purpureomaculatus, T. hageni, and T. fucatus. In vitro coagulation assays using bovine plasma revealed similar findings, with HPAV antivenom significantly inhibiting the coagulopathic activities of all tested viper venoms and T. albolabris antivenom inhibiting the venoms from Malaysian arboreal pit vipers. We also show that the monovalent C. rhodostoma antivenom exhibits highly comparable levels of immunological binding and in vitro venom neutralization to venom from both Thailand and Malaysia, despite previous reports of considerable intraspecific venom variation. Our findings suggest that Thai antivenoms from QSMI may by useful therapeutics for managing snake envenomings caused by a number of Southeast Asian viper species and populations for which no specific antivenom currently exists and thus should be explored further to assess their clinical utility in treating snakebite victims.
Collapse
|
25
|
Toxicity and cross-neutralization of snake venoms from two lesser-known arboreal pit vipers in Southeast Asia: Trimeresurus wiroti and Trimeresurus puniceus. Toxicon 2020; 185:91-96. [DOI: 10.1016/j.toxicon.2020.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
|
26
|
Tan CH, Liew JL, Navanesan S, Sim KS, Tan NH, Tan KY. Cytotoxic and anticancer properties of the Malaysian mangrove pit viper ( Trimeresurus purpureomaculatus) venom and its disintegrin (purpureomaculin). J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200013. [PMID: 32742279 PMCID: PMC7375409 DOI: 10.1590/1678-9199-jvatitd-2020-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022] Open
Abstract
Background The Asiatic pit vipers from the Trimeresurus complex are medically important venomous snakes. These pit vipers are often associated with snakebite that leads to fatal coagulopathy and tissue necrosis. The cytotoxic venoms of Trimeresurus spp.; however, hold great potential for the development of peptide-based anticancer drugs. Methods This study investigated the cytotoxic effect of the venom from Trimeresurus purpureomaculatus, the mangrove pit viper (also known as shore pit viper) which is native in Malaysia, across a panel of human cancer cell lines from breast, lung, colon and prostate as well as the corresponding normal cell lines of each tissue. Results The venom exhibited dose-dependent cytotoxic activities on all cell lines tested, with median inhibition concentrations (IC50) ranging from 0.42 to 6.98 µg/mL. The venom has a high selectivity index (SI = 14.54) on breast cancer cell line (MCF7), indicating that it is significantly more cytotoxic toward the cancer than to normal cell lines. Furthermore, the venom was fractionated using C18 reversed-phase high-performance liquid chromatography and the anticancer effect of each protein fraction was examined. Fraction 1 that contains a hydrophilic low molecular weight (approximately 7.5 kDa) protein was found to be the most cytotoxic and selective toward the breast cancer cell line (MCF7). The protein was identified using liquid chromatography-tandem mass spectrometry as a venom disintegrin, termed purpureomaculin in this study. Conclusion Taken together, the findings revealed the potent and selective cytotoxicity of a disintegrin protein isolated from the Malaysian T. purpureomaculatus venom and suggested its anticancer potential in drug discovery.
Collapse
Affiliation(s)
- Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Lee Liew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suerialoasan Navanesan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Shin Sim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|