1
|
Suwanngam A, Schiffer PH, Sasnarukkit A, Siripattanapipong S, Jindapunnapat K, Chinnasri B, Ruang-Areerate T. Development of colorimetric and fluorescent closed tube LAMP assay using simplified extraction for diagnosis of Meloidogyne enterolobii in root tissues. Sci Rep 2025; 15:160. [PMID: 39747178 PMCID: PMC11696552 DOI: 10.1038/s41598-024-83214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Meloidogyne enterolobii, a guava root-knot nematode, is a highly virulent pest in tropical and subtropical regions causing galls or knots in roots of diverse plant species posing a serious threat to agriculture. Managing this nematode is challenging due to limitations in conventional identification based on isolation and microscopic classification requiring expertise and time. A colorimetric and fluorescent LAMP assay using simplified extraction method targeting rDNA-ITS region was developed to detect M. enterolobii DNA. The Men-LAMP assay exhibits simple procedure and achievable outcomes directly from root gall samples within 75 to 80 min, using a simplified Worm Lysis Buffer Plus (WLB +) extraction and the LAMP assay. The results could be interpreted using color and fluorescence without requiring post-amplification to minimize any possibility of contamination. The specificity showed no cross amplification with other plant-parasitic nematodes, a sensitivity was limited to 2.89 ng/μL. Our study proposes a sensitive, specific and time-efficient diagnostic tool for M. enterolobii infection as an alternative promising method for rapid and effective diagnosis at point-of-service to manage and control of M. enterolobii in export plants that can contribute to the degradation of trade restrictions and streamline of the international quarantine inspection process.
Collapse
Affiliation(s)
- Arunee Suwanngam
- Tropical Agriculture International Program, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | | - Anongnuch Sasnarukkit
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Kansiree Jindapunnapat
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Buncha Chinnasri
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| | - Toon Ruang-Areerate
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Nawattanapaibool N, Ruang-areerate T, Piyaraj P, Leelayoova S, Mungthin M, Siripattanapipong S. Development of nucleic acid lateral flow immunoassay for duplex detection of Leishmania martiniquensis and Leishmania orientalis in asymptomatic patients with HIV. PLoS One 2024; 19:e0307601. [PMID: 39186742 PMCID: PMC11346928 DOI: 10.1371/journal.pone.0307601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Leishmaniasis, a neglected tropical disease caused by parasitic protozoa of the Leishmania genus, remains a global health concern with significant morbidity and mortality. In Thailand, the rising incidence of autochthonous leishmaniasis cases involving Leishmania (Mundinia) martiniquensis and novel Leishmania (Mundinia) orientalis underscores the critical need for accurate diagnosis and effective control strategies. This study presents a sensitive and specific nucleic acid lateral flow immunoassay (NALFIA) that integrates a duplex PCR assay with a lateral flow device (LFD) strip format. Targeting the internal transcribed spacer 1 (ITS1) region, known for its unique combination of conserved and variable sequences, this assay employs primers labeled with biotin, digoxigenin, and fluorescein isothiocyanate (FITC) markers, enabling precise species identification and differentiation of these two Leishmania species. Remarkably, the assay achieves a sensitivity that surpasses agarose gel electrophoresis, detecting as few as 10-2 parasite/μL for L. martiniquensis and 10-4 parasite/μL for L. orientalis. Notably, the assay exhibited reliable specificity, revealing no cross-amplification with other major viscerotropic Leishmania species or reference organisms. Evaluation using 62 clinical samples further confirms the effectiveness of the PCR-LFD assay, with a sensitivity of 100% for L. martiniquensis and 83.3% for L. orientalis, and an excellent agreement (κ value = 0.948) with nested PCR. This integrated assay represents a promising advancement in diagnostic tools, offering rapid and accurate results that can significantly contribute to effective disease management and control. Given the increasing relevance of these Leishmania species in current public health scenarios, this assay serves as a valuable tool for both diagnostic and research applications.
Collapse
Affiliation(s)
| | - Toon Ruang-areerate
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Phunlerd Piyaraj
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | | |
Collapse
|
3
|
Rahmatian N, Abbasi S, Abbasi N, Tavakkoli Yaraki M. Green-synthesized chitosan‑carbon dot nanocomposite as turn-on aptasensor for detection and quantification of Leishmania infantum parasite. Int J Biol Macromol 2024; 270:132483. [PMID: 38763252 DOI: 10.1016/j.ijbiomac.2024.132483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Leishmania is one of the most common diseases between human and animals, caused by Leishmania infantum parasite. Here, we have developed an ultra-selective turn-on fluorescent probe based on an aptamer and Chitosan-CD nanocomposite. The CD used in this study were synthesized using Quercus cap extract and a microwave-assisted approach. The Chitosan-CD nanocomposite was optimized using several microscopic and spectroscopic techniques to possess a bright fluorescence emission before adding aptamer and totally quenched fluorescence after addition of aptamer. The designed probe was proficient in the detection and quantification Leishmania infantum parasite by selective targeting of poly(A) binding protein (PABP) on the surface of the parasite. The designed fluorescent biosensor with high sensitivity, excellent selectivity, and a limit of detection (LOD) of 94 cells/mL of the Leishmania infantum parasite as well as a linear response in the ranges of 188-750 cells/mL and 3000-6000 cells/mL (R2 ≥ 0.98 for both linear ranges). Additionally, the selectivity of the designed probe was evaluated in the presence of different pathogenic species such as Trypanosoma brucei parasite and Staphylococcus aureus bacteria, as well as LiIF2α and LiP2a and BSA proteins as interference substances. The results of this study shows that using Chitosan-CD nanocomposite is a great strategy for developing selective turn-on probes with extraordinary accuracy and sensitivity in identifying Leishmania infantum parasite, especially in the early stages of the disease, and it is promising for the future clinical applications.
Collapse
Affiliation(s)
| | | | - Naser Abbasi
- Department of Pharmacology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
4
|
Costa-Ribeiro A, Lamas A, Mora A, Prado M, Garrido-Maestu A. Moving towards on-site detection of Shiga toxin-producing Escherichia coli in ready-to-eat leafy greens. Curr Res Food Sci 2024; 8:100716. [PMID: 38511154 PMCID: PMC10950744 DOI: 10.1016/j.crfs.2024.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Rapid identification of Shiga toxin-producing Escherichia coli, or STEC, is of utmost importance to assure the innocuousness of the foodstuffs. STEC have been implicated in outbreaks associated with different types of foods however, among them, ready-to-eat (RTE) vegetables are particularly problematic as they are consumed raw, and are rich in compounds that inhibit DNA-based detection methods such as qPCR. In the present study a novel method based on Loop-mediated isothermal amplification (LAMP) to overcome the limitations associated with current molecular methods for the detection of STEC in RTE vegetables targeting stx1 and stx2 genes. In this sense, LAMP demonstrated to be more robust against inhibitory substances in food. In this study, a comprehensive enrichment protocol was combined with four inexpensive DNA extraction protocols. The one based on silica purification enhanced the performance of the method, therefore it was selected for its implementation in the final method. Additionally, three different detection chemistries were compared, namely real-time fluorescence detection, and two end-point colorimetric strategies, one based on the addition of SYBR Green, and the other based on a commercial colorimetric master mix. After optimization, all three chemistries demonstrated suitable for the detection of STEC in spiked RTE salad samples, as it was possible to reach a LOD50 of 0.9, 1.4, and 7.0 CFU/25 g for the real-time, SYBR and CC LAMP assays respectively. All the performance parameters reached values higher than 90 %, when compared to a reference method based on multiplex qPCR. More specifically, the analytical sensitivity was 100, 90.0 and 100 % for real-time, SYBR and CC LAMP respectively, the specificity 100 % for all three assays, and accuracy 100, 96 and 100 %. Finally, a high degree of concordance was also obtained (1, 0.92 and 1 respectively). Considering the current technological advances, the method reported, using any of the three detection strategies, demonstrated suitable for their implementation in decentralized settings, with low equipment resources.
Collapse
Affiliation(s)
- Ana Costa-Ribeiro
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
| | - Alexandre Lamas
- Food Hygiene, Inspection and Control Laboratory (Lhica), Department of Analytical Chemistry, Nutrition, and Bromatology, Veterinary School, Campus Terra, Universidade de Santiago de Compostela (USC), 27002, Lugo, Spain
| | - Azucena Mora
- Laboratorio de Referencia de E. coli (LREC), Dpto. de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Marta Prado
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
- Food Hygiene, Inspection and Control Laboratory (Lhica), Department of Analytical Chemistry, Nutrition, and Bromatology, Veterinary School, Campus Terra, Universidade de Santiago de Compostela (USC), 27002, Lugo, Spain
| | - Alejandro Garrido-Maestu
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
- Laboratory of Microbiology and Technology of Marine Products (MicroTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello, 6, 36208, Vigo, Spain
| |
Collapse
|
5
|
Hagos DG, Kiros YK, Abdulkader M, Schallig HDFH, Wolday D. Comparison of the Diagnostic Performances of Five Different Tests in Diagnosing Visceral Leishmaniasis in an Endemic Region of Ethiopia. Diagnostics (Basel) 2024; 14:163. [PMID: 38248040 PMCID: PMC10813839 DOI: 10.3390/diagnostics14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
The lack of accurate and feasible diagnostic tests poses a significant challenge to visceral leishmaniasis (VL) healthcare services in endemic areas. To date, various VL diagnostic tests have been or are being developed, and their diagnostic performances need to be assessed. In the present study, the diagnostic performances of rk39 RDT, the direct agglutination test (DAT), microscopy, loop-mediated isothermal amplification (LAMP), and miniature direct-on-blood polymerase chain reaction-nucleic acid lateral flow immunoassay (mini-dbPCR-NALFIA) were assessed using quantitative polymerase chain reaction (qPCR) as the reference test in an endemic region of Ethiopia. In this study, 235 suspected VL cases and 104 non-endemic healthy controls (NEHCs) were recruited. Among the suspected VL cases, 144 (61.28%) tested positive with qPCR. The sensitivities for rk39 RDT, DAT, microscopy, LAMP assay, and mini-dbPCR-NALFIA were 88.11%, 96.50%, 76.58%, 94.33%, and 95.80%, respectively. The specificities were 83.33%, 97.96%, 100%, 97.38%, and 98.92% for rk39 RDT, DAT, microscopy, LAMP assay, and mini-dbPCR-NALFIA, respectively. In conclusion, rk39 RDT and microscopy exhibited lower sensitivities, while DAT demonstrated excellent performance. LAMP and mini-dbPCR-NALFIA showed excellent performances with feasibility for implementation in remote endemic areas, although the latter requires further evaluation in such regions.
Collapse
Affiliation(s)
- Dawit Gebreegziabiher Hagos
- Department of Medical Microbiology and Immunology, College of Health Sciences, School of Medicine, Mekelle University, Mekelle 1871, Ethiopia; (D.G.H.); (D.W.)
- Laboratory for Experimental Parasitology, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Infectious Diseases Programme, Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
| | - Yazezew Kebede Kiros
- Department of Internal Medicine, College of Health Sciences, School of Medicine, Mekelle University, Mekelle 1871, Ethiopia;
| | - Mahmud Abdulkader
- Department of Medical Microbiology and Immunology, College of Health Sciences, School of Medicine, Mekelle University, Mekelle 1871, Ethiopia; (D.G.H.); (D.W.)
| | - Henk D. F. H. Schallig
- Laboratory for Experimental Parasitology, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Infectious Diseases Programme, Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
| | - Dawit Wolday
- Department of Medical Microbiology and Immunology, College of Health Sciences, School of Medicine, Mekelle University, Mekelle 1871, Ethiopia; (D.G.H.); (D.W.)
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
6
|
Ruang-Areerate T, Ruang-Areerate P, Manomat J, Naaglor T, Piyaraj P, Mungthin M, Leelayoova S, Siripattanapipong S. Genetic variation and geographic distribution of Leishmania orientalis and Leishmania martiniquensis among Leishmania/HIV co-infection in Thailand. Sci Rep 2023; 13:23094. [PMID: 38155252 PMCID: PMC10754904 DOI: 10.1038/s41598-023-50604-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Since 1999, the number of asymptomatic leishmaniasis cases has increased continuously in Thailand, particularly among patients with HIV who are prone to develop symptoms of cutaneous and visceral leishmaniasis further. The asymptomatic infection could play a key role in Leishmania transmission and distribution. Understanding population structure and phylogeographic patterns could be crucially needed to develop effective diagnoses and appropriate guidelines for therapy. In this study, genetic variation and geographic distribution of the Leishmania/HIV co-infected population were investigated in endemic northern and southern Thailand. Interestingly, Leishmania orientalis was common and predominant in these two regions with common regional haplotype distribution but not for the others. Recent population expansion was estimated, probably due to the movement and migration of asymptomatic individuals; therefore, the transmission and prevalence of Leishmania infection could be underestimated. These findings of imbalanced population structure and phylogeographic distribution patterns provide valuable, insightful population structure and geographic distribution of Leishmania/HIV co-infection to empower prevention and control of transmission and expansion of asymptomatic leishmaniasis.
Collapse
Affiliation(s)
- Toon Ruang-Areerate
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand.
| | - Panthita Ruang-Areerate
- BIOTEC, National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Jipada Manomat
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Tawee Naaglor
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Phunlerd Piyaraj
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | | |
Collapse
|
7
|
Taslimi Y, Habibzadeh S, Goyonlo VM, Akbarzadeh A, Azarpour Z, Gharibzadeh S, Shokouhy M, Persson J, Harandi AM, Mizbani A, Rafati S. Tape-disc-loop-mediated isothermal amplification (TD-LAMP) method as noninvasive approach for diagnosis of cutaneous leishmaniasis caused by L. tropica. Heliyon 2023; 9:e21397. [PMID: 38027876 PMCID: PMC10643283 DOI: 10.1016/j.heliyon.2023.e21397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is a parasitic disease caused by the bite of infectious female sand flies with high socioeconomic burdens. There is currently no non-invasive, point-of-care, diagnostic method with high sensitivity and specificity available for CL. We herein report the development of a non-invasive tape disc (TD) sampling method combined with a loop-mediated isothermal amplification (LAMP) assay using primer sets targeting kinetoplast DNA (kDNA) of Leishmania tropica (L. tropica) with a colorimetric readout for species-specific diagnosis of CL. We tested our Tape-Disc (TD)-LAMP method on a panel of skin samples collected by TD from 35 confirmed L. tropica patients, 35 healthy individuals and 35 patients with non-L. tropica infections. The detection limit of the TD-LAMP assay was determined as 1 fg (fg), and the assay sensitivity and specificity of 97 % and 100 % for L. tropica infection, respectively. This non-invasive, sensitive and rapid diagnostic method warrants further exploration of its use for differential diagnosis of CL in disease endemic settings.
Collapse
Affiliation(s)
- Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Amin Akbarzadeh
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Azarpour
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Shokouhy
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ali M. Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, Canada
| | | | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Saengsawang N, Ruang-Areerate P, Kaeothaisong N, Leelayoova S, Mungthin M, Juntanawiwat P, Hanyanunt P, Potisuwan P, Kesakomol P, Butsararattanagomen P, Wichaiwong P, Dungchai W, Ruang-Areerate T. Validation of quantitative loop-mediated isothermal amplification assay using a fluorescent distance-based paper device for detection of Escherichia coli in urine. Sci Rep 2023; 13:18781. [PMID: 37907677 PMCID: PMC10618465 DOI: 10.1038/s41598-023-46001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) causes up to 90% of urinary tract infections (UTI) which is more prevalent among females than males. In urine, patients with symptomatic UTI usually have a high concentration of bacterial infection, ≥ 105 colony-forming units (CFU) per mL, in which the culture method is regularly the gold standard diagnosis. In this study, a simple and inexpensive distance-based paper device (dPAD) combined with the fluorescent closed tube LAMP assay was validated for simultaneously screening and semi-quantifying the infection level of E. coli in 440 urine samples of patients with UTI. The dPAD could measure the LAMP amplicons and semi-quantify the levels of E. coli infection in heavy (≥ 104 CFU/mL), light (≤ 103 CFU/mL) and no infection. The sensitivity and specificity had reliable performances, achieving as high as 100 and 92.7%, respectively. The one step LAMP assay could be performed within 3 h, which was 7.5 times faster than the culture method. To empower early UTI diagnosis and fast treatment, this inexpensive dPAD tool combined with the fluorescent closed tube LAMP assay is simple, reliably fast and practically portable for point-of-care settings, particularly in resource-limited areas, which can be set up in all levels of healthcare facilities.
Collapse
Affiliation(s)
- Natkrittaya Saengsawang
- Analytical Chemistry, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Panthita Ruang-Areerate
- BIOTEC, National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Nuanlaong Kaeothaisong
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Piraporn Juntanawiwat
- Division of Microbiology, Department of Clinical Pathology, Phramongkutklao Hospital, Bangkok, 10400, Thailand
| | - Patomroek Hanyanunt
- Division of Microbiology, Department of Clinical Pathology, Phramongkutklao Hospital, Bangkok, 10400, Thailand
| | - Patsanun Potisuwan
- Division of Microbiology, Department of Clinical Pathology, Phramongkutklao Hospital, Bangkok, 10400, Thailand
| | - Piyanate Kesakomol
- Department of Microbiology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Pornphan Butsararattanagomen
- Analytical Chemistry, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Pattarawadee Wichaiwong
- Analytical Chemistry, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Wijitar Dungchai
- Analytical Chemistry, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| | - Toon Ruang-Areerate
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand.
| |
Collapse
|
9
|
Lamas A, Santos SB, Prado M, Garrido-Maestu A. Phage amplification coupled with loop-mediated isothermal amplification (PA-LAMP) for same-day detection of viable Salmonella Enteritidis in raw poultry meat. Food Microbiol 2023; 115:104341. [PMID: 37567642 DOI: 10.1016/j.fm.2023.104341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Salmonella Enteritidis is the main serotype responsible for human salmonellosis in the European Union. One of the main sources of Salmonella spp. in the food chain are poultry products, such as eggs or chicken meat. In recent years, molecular methods have become an alternative to culture dependent methods for the rapid screening of Salmonella spp. In this work, the strain S. Enteritidis S1400, and previously isolated and characterized bacteriophage PVP-SE2, were used to develop and evaluate a same-day detection method combining Phage Amplification and Loop-mediated isothermal amplification (PA-LAMP) to specifically detect viable S. Enteritidis in chicken breast. This method is based on the detection of the phage DNA rather than bacterial DNA. The virus is added to the sample during pre-enrichment in buffered peptone water, where it replicates in the presence of viable S. Enteritidis. The detection of phage DNA allows, on the one hand to detect viable bacteria, since viruses only replicate in them, and on the other hand to increase the sensitivity of the method since for each infected S. Enteritidis cell, hundreds of new viruses are produced. Two different PA-LAMP detection strategies were evaluated, a real time fluorescence and a naked-eye detection. The present method could down to 0.2 fg/μL of pure phage DNA and a concentration of viral particles of 2.2 log PFU/mL. After a short Salmonella recovery step of 3 h and a co-culture of 4 h of the samples with phage particles, both real-time fluorescence and naked-eye method showed a LoD95 of 6.6 CFU/25 g and a LoD50 of 1.5/25 g in spiked chicken breast samples. The entire detection process, including DNA extraction and LAMP analysis, can be completed in around 8 h. In the current proof-of-concept, the novel PA-LAMP obtained comparable results to those of the reference method ISO 6579, to detect Salmonella Enteritidis in poultry meat.
Collapse
Affiliation(s)
- Alexandre Lamas
- Food Hygiene, Inspection and Control Laboratory, Department of Analytical Chemistry, Nutrition and Bromatology, University of Santiago de Compostela, Spain
| | - Sílvio B Santos
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, 4800-122, Braga, Guimarães, Portugal
| | - Marta Prado
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Alejandro Garrido-Maestu
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.
| |
Collapse
|
10
|
Wang Y, Abd El-Aty AM, Wang S, Cui X, Zhao J, Lei X, Xu L, She Y, Jin F, Eun JB, Shim JH, Wang J, Jin M, Hammock BD. Competitive fluorescent immunosensor based on catalytic hairpin self-assembly for multiresidue detection of organophosphate pesticides in agricultural products. Food Chem 2023; 413:135607. [PMID: 36773354 PMCID: PMC10013200 DOI: 10.1016/j.foodchem.2023.135607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Simple and rapid multiresidue trace detection of organophosphate pesticides (OPs) is extremely important for various reasons, including food safety, environmental monitoring, and national health. Here, a catalytic hairpin self-assembly (CHA)-based competitive fluorescent immunosensor was developed to detect OPs in agricultural products, involving enabled dual signal amplification followed by a CHA reaction. The developed method could detect 0.01-50 ng/mL triazophos, parathion, and chlorpyrifos, with limits of detection (LODs) of 0.012, 0.0057, and 0.0074 ng/mL, respectively. The spiked recoveries of samples measured using this assay ranged from 82.8 % to 110.6 %, with CV values ranging between 5.5 % and 18.5 %. This finding suggests that the CHA-based competitive fluorescent immunosensor is a reliable and accurate method for detecting OPs in agricultural products. The results correlated well with those obtained from the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, indicating that the CHA-based biosensor is able to accurately detect OPs and can be used as a reliable alternative to the LC-MS/MS method. Additionally, the CHA-based biosensor is simpler and faster than LC-MS/MS, which makes it a more practical and cost-effective option for the detection of OPs. In summary, the CHA-based competitive fluorescent immunosensor can be considered a promising approach for trace analysis and multiresidue determination of pesticides, which can open up new horizons in the fields of food safety, environmental monitoring, and national health.
Collapse
Affiliation(s)
- Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Shanshan Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Jing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Xingmei Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| | - Bruce D Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Gow I, Smith NC, Stark D, Ellis J. Laboratory diagnostics for human Leishmania infections: a polymerase chain reaction-focussed review of detection and identification methods. Parasit Vectors 2022; 15:412. [PMID: 36335408 PMCID: PMC9636697 DOI: 10.1186/s13071-022-05524-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/02/2022] [Indexed: 11/08/2022] Open
Abstract
Leishmania infections span a range of clinical syndromes and impact humans from many geographic foci, but primarily the world's poorest regions. Transmitted by the bite of a female sand fly, Leishmania infections are increasing with human movement (due to international travel and war) as well as with shifts in vector habitat (due to climate change). Accurate diagnosis of the 20 or so species of Leishmania that infect humans can lead to the successful treatment of infections and, importantly, their prevention through modelling and intervention programs. A multitude of laboratory techniques for the detection of Leishmania have been developed over the past few decades, and although many have drawbacks, several of them show promise, particularly molecular methods like polymerase chain reaction. This review provides an overview of the methods available to diagnostic laboratories, from traditional techniques to the now-preferred molecular techniques, with an emphasis on polymerase chain reaction-based detection and typing methods.
Collapse
Affiliation(s)
- Ineka Gow
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Nicholas C. Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Damien Stark
- Department of Microbiology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010 Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| |
Collapse
|
12
|
Distance-based paper device using combined SYBR safe and gold nanoparticle probe LAMP assay to detect Leishmania among patients with HIV. Sci Rep 2022; 12:14558. [PMID: 36028548 PMCID: PMC9418321 DOI: 10.1038/s41598-022-18765-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Asymptomatic visceral leishmaniasis cases increase continuously, particularly among patients with HIV who are at risk to develop further symptoms of leishmaniasis. A simple, sensitive and reliable diagnosis is crucially needed due to risk populations mostly residing in rural communities with limited resources of laboratory equipment. In this study, a highly sensitive and selective determination of Leishmania among asymptomatic patients with Leishmania/HIV co-infection was achieved to simultaneously interpret and semi-quantify using colorimetric precipitates (gold-nanoparticle probe; AuNP-probe) and fluorescence (SYBR safe dye and distance-based paper device; dPAD) in one-step loop-mediated isothermal amplification (LAMP) assay. The sensitivities and specificities of 3 detection methods were equivalent and had reliable performances achieving as high as 95.5%. Detection limits were 102 parasites/mL (0.0147 ng/µL) which were 10 times more sensitive than other related studies. To empower leishmaniasis surveillance as well as prevention and control, this dPAD combined with SYBR safe and gold nanoparticle probe LAMP assay is reliably fast, simple, inexpensive and practical for field diagnostics to point-of-care settings in resource-limited areas which can be set up in all levels of healthcare facilities, especially in low to middle income countries.
Collapse
|
13
|
Sereno D, Oury B, Geiger A, Vela A, Karmaoui A, Desquesnes M. Isothermal Nucleic Acid Amplification to Detect Infection Caused by Parasites of the Trypanosomatidae Family: A Literature Review and Opinion on the Laboratory to Field Applicability. Int J Mol Sci 2022; 23:7543. [PMID: 35886895 PMCID: PMC9322063 DOI: 10.3390/ijms23147543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Isothermal amplification of nucleic acids has the potential to be applied in resource-limited areas for the detection of infectious agents, as it does not require complex nucleic purification steps or specific and expensive equipment and reagents to perform the reaction and read the result. Since human and animal infections by pathogens of the Tryponasomatidae family occur mainly in resource-limited areas with scant health infrastructures and personnel, detecting infections by these methodologies would hold great promise. Here, we conduct a narrative review of the literature on the application of isothermal nucleic acid amplification for Trypanosoma and Leishmania infections, which are a scourge for human health and food security. We highlight gaps and propose ways to improve them to translate these powerful technologies into real-world field applications for neglected human and animal diseases caused by Trypanosomatidae.
Collapse
Affiliation(s)
- Denis Sereno
- Institut de Recherche pour le Développement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, Parasite Infectiology and Public Health Group, 34032 Montpellier, France
| | - Bruno Oury
- Institut de Recherche pour le Développement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, Parasite Infectiology and Public Health Group, 34032 Montpellier, France
| | - Anne Geiger
- Centre International de Recherche en Agronomie pour le Développement, Institut de Recherche pour le Développement, Université de Montpellier, UMR INTERTRYP IRD, 34032 Montpellier, France
| | - Andrea Vela
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de las Américas-Quito, Calle de los Colimes y Avenida De los Granados, Quito 170513, Ecuador
| | - Ahmed Karmaoui
- Bioactives (Health and Environmental, Epigenetics Team), Faculty of Sciences and Techniques, Errachidia (UMI), Moroccan Center for Culture and Sciences, University Moulay Ismail, Meknes 50000, Morocco
| | - Marc Desquesnes
- CIRAD, UMR INTERTRYP, 31076 Toulouse, France
- INTERTRYP, Université de Montpellier, CIRAD, IRD, 34032 Montpellier, France
| |
Collapse
|
14
|
Real-time Fluorescence and Visual Colorimetric Loop–Mediated Isothermal Amplification Assays for the Rapid and Visual Identification of the Genus Diodon. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02307-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Wang Y, El-Aty AMA, Chen G, Jia H, Cui X, Xu L, Cao Z, She Y, Jin F, Zhang Y, Hacimuftuoglu A, Lamu S, Wang J, Zheng L, Jin M, Hammock BD. A competitive immunoassay for detecting triazophos based on fluorescent catalytic hairpin self-assembly. Mikrochim Acta 2022; 189:114. [PMID: 35190860 PMCID: PMC10111248 DOI: 10.1007/s00604-022-05217-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
A rapid detection method is introduced for residual trace levels of triazophos in water and agricultural products using an immunoassay based on catalytic hairpin self-assembly (CHA). The gold nanoparticle (AuNPs) surface was modified with triazophos antibody and sulfhydryl bio-barcode, and an immune competition reaction system was established between triazophos and its ovalbumin-hapten (OVA-hapten). The bio-barcode served as a catalyst to continuously induce the CHA reaction to achieve the dual signal amplification. The method does not rely on the participation of enzymes, and the addition of fluorescent materials in the last step avoids interfering factors, such as a fluorescence burst. The emitted fluorescence was detected at 489/521 nm excitation/emission wavelengths. The detection range of the developed method was 0.01-50 ng/mL for triazophos, and the limit of detection (LOD) was 0.0048 ng/mL. The developed method correlates well with the results obtained by LC-MS/MS, with satisfactory recovery and sensitivity. In sum, the designed method is reliable and provides a new approach to detect pesticide residues rapidly and quantitatively.
Collapse
Affiliation(s)
- Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Huiyan Jia
- Ningbo Academy of Agricultural Sciences, Ningbo, 315040, China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Zhen Cao
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Sangqiong Lamu
- Inspection and Testing Center of Agricultural and Livestock Products of Tibet, Lhasa, 850000, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - LuFei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China. .,Department of Entomology & Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA.
| | - Bruce D Hammock
- Department of Entomology & Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| |
Collapse
|
16
|
Shen JN, Ye JY, Lao MX, Wang CQ, Wu DH, Chen XY, Lin LH, Geng WY, Guo XG. Evaluation of the real-time fluorescence loop-mediated isothermal amplification assay for the detection of Ureaplasma urealyticum. AMB Express 2022; 12:16. [PMID: 35147799 PMCID: PMC8837760 DOI: 10.1186/s13568-022-01357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/29/2022] [Indexed: 11/21/2022] Open
Abstract
Ureaplasma urealyticum (UU) is commonly present in human reproductive tract, which frequently leads to genital tract infection. Hence, there is an urgent need to develop a rapid detection method for UU. In our study, a real-time fluorescence loop-mediated isothermal amplification (LAMP) assay was developed and evaluated for the detection of UU. Two primers were specifically designed based on the highly conserved regions of ureaseB genes. The reaction was carried out for 60 min in a constant temperature system using Bst DNA polymerase, and the process was monitored by real-time fluorescence signal, while polymerase chain reaction (PCR) was performed simultaneously. In real-time fluorescence LAMP reaction system, positive result was only obtained for UU among 9 bacterial strains, with detection sensitivity of 42 pg/μL (4.2 × 105 CFU/mL), and all 16 clinical samples of UU could be detected. In conclusion, real-time fluorescence LAMP is a simple, sensitive, specific and effective method compared with conventional PCR, which shows great promise in the rapid detection of UU.
Collapse
|
17
|
Garrido-Maestu A, Prado M. Naked-eye detection strategies coupled with isothermal nucleic acid amplification techniques for the detection of human pathogens. Compr Rev Food Sci Food Saf 2022; 21:1913-1939. [PMID: 35122372 DOI: 10.1111/1541-4337.12902] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Nucleic acid amplification-based techniques have gained acceptance by the scientific, and general, community as reference methodologies for many different applications. Since the development of the gold standard of these techniques, polymerase chain reaction (PCR), back in the 1980s many improvements have been made, and alternative techniques emerged reporting improvements over PCR. Among these, isothermal amplification approaches resulted of particular interest as could overcome the need of specialized equipment to accurately control temperature changes, but it was after year 2000 that these techniques have flourished in a huge number of novel alternatives with many different degrees of complexities and requirements. An added value is their possibility to be combined with many different naked-eye detection strategies, simplifying the resources needed, allowing to reduce cost, and serving as the basis for novel developments of lab-on-chip systems, and miniaturized devices, for point-of-care testing. In this review, we will go over different types of naked-eye detection strategies, combined with isothermal amplification. This will provide the readers up-to-date information for them to select the most appropriate strategies depending on the particular needs and resources for their experimental setup.
Collapse
Affiliation(s)
- Alejandro Garrido-Maestu
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Marta Prado
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
18
|
Garg N, Ahmad FJ, Kar S. Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100120. [PMID: 35909594 PMCID: PMC9325740 DOI: 10.1016/j.crmicr.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/01/2022] Open
Abstract
Significance of LAMP method in rapid disease diagnosis is highlighted. Different detection methods for amplicon visualization are explained. Advancements in LAMP technique for disease identification are summarized. Trends in development of LAMP disease diagnosis are discussed.
Loop-mediated isothermal amplification (LAMP) method has been demonstrated to bea reliable and robust method for detection and identification of viral and microbial pathogens. LAMP method of amplification, coupled with techniques for easy detection of amplicons, makes a simple-to-operate and easy-to-read molecular diagnostic tool for both laboratory and on-field settings. Several LAMP-based diagnostic kits and assays have been developed that are specifically targeted against a variety of pathogens. With the growing needs of the demanding molecular diagnostic industry, many technical advances have been made over the years by combining the basic LAMP principle with several other molecular approaches like real-time detection, multiplex methods, chip-based assays.This has resulted in enhancing thethe sensitivity and accuracy of LAMP for more rigorous and wide-ranging pathogen detection applications. This review summarizes the current developments in LAMP technique and their applicability in present and future disease diagnosis.
Collapse
|
19
|
Ruang-Areerate T, Sukphattanaudomchoke C, Thita T, Leelayoova S, Piyaraj P, Mungthin M, Suwannin P, Polpanich D, Tangchaikeeree T, Jangpatarapongsa K, Choowongkomon K, Siripattanapipong S. Development of loop-mediated isothermal amplification (LAMP) assay using SYBR safe and gold-nanoparticle probe for detection of Leishmania in HIV patients. Sci Rep 2021; 11:12152. [PMID: 34108543 PMCID: PMC8190085 DOI: 10.1038/s41598-021-91540-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/26/2021] [Indexed: 12/04/2022] Open
Abstract
Asymptomatic leishmaniasis cases have continuously increased, especially among patients with HIV who are at risk to develop further symptoms of cutaneous and visceral leishmaniasis. Thus, early diagnosis using a simple, sensitive and reliable diagnostic assay is important because populations at risk mostly reside in rural communities where laboratory equipment is limited. In this study, the highly sensitive and selective determination of Leishmania infection in asymptomatic HIV patients was achieved using dual indicators (SYBR safe and gold-nanoparticle probe; AuNP-probe) in one-step LAMP method based on basic instruments. The assay can be simply evaluated under the naked eye due to clear interpretation of fluorescent emission of LAMP-SYBR safe dye-complex and colorimetric precipitate of specific AuNP-probes. The sensitivities and specificities of fluorescent SYBR safe dye and AuNP-probe indicators were equal, which were as high as 94.1 and 97.1%, respectively. Additionally, detection limits were 102 parasites/mL (0.0147 ng/µL), ten times more sensitivity than other related studies. To empower leishmaniasis surveillance, this inexpensive one-step SYBR safe and AuNP-LAMP assay is reliably fast and simple for field diagnostics to point-of-care settings, which can be set up in all levels of health care facilities including resource limited areas, especially in low to middle income countries.
Collapse
Affiliation(s)
- Toon Ruang-Areerate
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand.
| | | | - Thanyapit Thita
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Phunlerd Piyaraj
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Patcharapan Suwannin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Duangporn Polpanich
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Tienrat Tangchaikeeree
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Kulachart Jangpatarapongsa
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | |
Collapse
|
20
|
de Oliveira Coelho B, Sanchuki HBS, Zanette DL, Nardin JM, Morales HMP, Fornazari B, Aoki MN, Blanes L. Essential properties and pitfalls of colorimetric Reverse Transcription Loop-mediated Isothermal Amplification as a point-of-care test for SARS-CoV-2 diagnosis. Mol Med 2021; 27:30. [PMID: 33771097 PMCID: PMC7996115 DOI: 10.1186/s10020-021-00289-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND SARS-CoV-2 Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP) colorimetric detection is a sensitive and specific point-of-care molecular biology technique used to detect the virus in only 30 min. In this manuscript we have described a few nuances of the technique still not properly described in the literature: the presence of three colors clusters; the correlation of the viral load with the color change; and the importance of using an internal control to avoid false-negative results. METHODS To achieve these findings, we performed colorimetric RT-LAMP assays of 466 SARS-CoV-2 RT-qPCR validated clinical samples, with color quantification measured at 434 nm and 560 nm. RESULTS First we determinate a sensitivity of 93.8% and specificity of 90.4%. In addition to the pink (negative) and yellow (positive) produced colors, we report for the first time the presence of an orange color cluster that may lead to wrong diagnosis. We also demonstrated using RT-qPCR and RT-LAMP that low viral loads are related to Ct values > 30, resulting in orange colors. We also demonstrated that the diagnosis of COVID-19 by colorimetric RT-LAMP is efficient until the fifth symptoms day when the viral load is still relatively high. CONCLUSION This study reports properties and indications for colorimetric RT-LAMP as point-of-care for SARS-CoV-2 diagnostic, reducing false results, interpretations and optimizing molecular diagnostics tests application.
Collapse
Affiliation(s)
- Bruna de Oliveira Coelho
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba, Paraná 81350-010 Brazil
| | - Heloisa Bruna Soligo Sanchuki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba, Paraná 81350-010 Brazil
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba, Paraná 81350-010 Brazil
| | - Jeanine Marie Nardin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba, Paraná 81350-010 Brazil
| | - Hugo Manuel Paz Morales
- Erasto Gaertner Hospital, Dr. Ovande do Amaral 201 Street, Curitiba, Paraná 81520-060 Brazil
| | - Bruna Fornazari
- Erasto Gaertner Hospital, Dr. Ovande do Amaral 201 Street, Curitiba, Paraná 81520-060 Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba, Paraná 81350-010 Brazil
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba, Paraná 81350-010 Brazil
| |
Collapse
|
21
|
Sivakumar R, Dinh VP, Lee NY. Ultraviolet-induced in situ gold nanoparticles for point-of-care testing of infectious diseases in loop-mediated isothermal amplification. LAB ON A CHIP 2021; 21:700-709. [PMID: 33554994 DOI: 10.1039/d1lc00019e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The present study investigated ultraviolet-induced in situ gold nanoparticles (AuNPs) coupled with loop-mediated isothermal amplification (LAMP) for the point-of-care testing (POCT) of two major infectious pathogens, namely, Coronavirus (COVID-19) and Enterococcus faecium (E. faecium spp.). In the process, gold ions in a gold chloride (HAuCl4) solution were reduced using trisodium citrate (Na3Ct), a reducing agent, and upon UV illumination, red-colored AuNPs were produced in the presence of LAMP amplicons. The nitrogenous bases of the target deoxyribonucleic acid (DNA) acted as a physical support for capturing gold ions dissolved in the sample. The high affinity of gold with the nitrogenous bases enabled facile detection within 10 min, and the detection limit of COVID-19 plasmid DNA was as low as 42 fg μL-1. To ensure POCT, we designed a portable device that contained arrays of reagent chambers and detection chambers. In the portable device, colorimetric reagents such as HAuCl4 and Na3Ct were contained in the reagent chambers; these reagents were subsequently transferred to the detection chambers where LAMP amplicons were present and thus allowed convenient sample delivery and multiplex detection. Owing to the high sensitivity of the in situ AuNPs, simplicity of portable device fabrication, and rapid colorimetric detection, we strongly believe that the fabricated portable device could serve as a kit for rapid POCT for instantaneous detection of infectious diseases, and could be readily usable at the bedside.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of Industrial Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Vu Phong Dinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
| |
Collapse
|
22
|
Avendaño C, Patarroyo MA. Loop-Mediated Isothermal Amplification as Point-of-Care Diagnosis for Neglected Parasitic Infections. Int J Mol Sci 2020; 21:ijms21217981. [PMID: 33126446 PMCID: PMC7662217 DOI: 10.3390/ijms21217981] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
The World Health Organisation (WHO) has placed twenty diseases into a group known as neglected tropical diseases (NTDs), twelve of them being parasitic diseases: Chagas’ disease, cysticercosis/taeniasis, echinococcosis, food-borne trematodiasis, human African trypanosomiasis (sleeping sickness), leishmaniasis, lymphatic filariasis, onchocerciasis (river blindness), schistosomiasis, soil-transmitted helminthiasis (ascariasis, hookworm, trichuriasis), guinea-worm and scabies. Such diseases affect millions of people in developing countries where one of the main problems concerning the control of these diseases is diagnosis-based due to the most affected areas usually being far from laboratories having suitable infrastructure and/or being equipped with sophisticated equipment. Advances have been made during the last two decades regarding standardising and introducing techniques enabling diagnoses to be made in remote places, i.e., the loop-mediated isothermal amplification (LAMP) technique. This technique’s advantages include being able to perform it using simple equipment, diagnosis made directly in the field, low cost of each test and the technique’s high specificity. Using this technique could thus contribute toward neglected parasite infection (NPI) control and eradication programmes. This review describes the advances made to date regarding LAMP tests, as it has been found that even though several studies have been conducted concerning most NPI, information is scarce for others.
Collapse
Affiliation(s)
- Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Bogotá 111166, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia
- Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 112111, Colombia
- Correspondence: ; Tel.: +57-1-3244672
| |
Collapse
|