1
|
Dutta SD, An JM, Hexiu J, Randhawa A, Ganguly K, Patil TV, Thambi T, Kim J, Lee YK, Lim KT. 3D bioprinting of engineered exosomes secreted from M2-polarized macrophages through immunomodulatory biomaterial promotes in vivo wound healing and angiogenesis. Bioact Mater 2025; 45:345-362. [PMID: 39669126 PMCID: PMC11636135 DOI: 10.1016/j.bioactmat.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/29/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
Biomaterial composition and surface charge play a critical role in macrophage polarization, providing a molecular cue for immunomodulation and tissue regeneration. In this study, we developed bifunctional hydrogel inks for accelerating M2 macrophage polarization and exosome (Exo) cultivation for wound healing applications. For this, we first fabricated polyamine-modified three-dimensional (3D) printable hydrogels consisting of alginate/gelatin/polydopamine nanospheres (AG/NSPs) to boost M2-exosome (M2-Exo) secretion. The cultivated M2-Exo were finally encapsulated into a biocompatible collagen/decellularized extracellular matrix (COL@d-ECM) bioink for studying angiogenesis and in vivo wound healing study. Our findings show that 3D-printed AGP hydrogel promoted M2 macrophage polarization by Janus kinase/signal transducer of activation (JAK/STAT), peroxisome proliferator-activated receptor (PPAR) signaling pathways and facilitated the M2-Exo secretion. Moreover, the COL@d-ECM/M2-Exo was found to be biocompatible with skin cells. Transcriptomic (RNA-Seq) and real-time PCR (qRT-PCR) study revealed that co-culture of fibroblast/keratinocyte/stem cells/endothelial cells in a 3D bioprinted COL@d-ECM/M2-Exo hydrogel upregulated the skin-associated signature biomarkers through various regulatory pathways during epidermis remodeling and downregulated the mitogen-activated protein kinase (MAPK) signaling pathway after 7 days. In a subcutaneous wound model, the 3D bioprinted COL@d-ECM/M2-Exo hydrogel displayed robust wound remodeling and hair follicle (HF) induction while reducing canonical pro-inflammatory activation after 14 days, presenting a viable therapeutic strategy for skin-related disorders.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Institute of Forest Science, Kangwon National University, 24341, Chuncheon, Republic of Korea
- School of Medicine, University of California Davis, 95817, Sacramento, United States
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, 04763, Seoul, Republic of Korea
| | - Jin Hexiu
- Department of Plastic and Traumatic Surgery, Capital Medical University, 100069, Beijing, China
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, 17104, Yongin, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, 27470, Chungju, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Institute of Forest Science, Kangwon National University, 24341, Chuncheon, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, 24341, Chuncheon, Republic of Korea
| |
Collapse
|
2
|
Abad-Contreras DE, Martínez-Ortiz AK, Martínez-López V, Laparra-Escareño H, Martínez-García FD, Pérez-Calixto D, Vazquez-Victorio G, Sepúlveda-Robles O, Rosas-Vargas H, Piña-Barba C, Rodríguez-López LA, Giraldo-Gomez DM, Hinojosa CA. Decellularization of human iliac artery: A vascular scaffold for peripheral repairs with human mesenchymal cells. Tissue Cell 2024; 93:102686. [PMID: 39724840 DOI: 10.1016/j.tice.2024.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
This work presents strong evidence supporting the use of decellularized human iliac arteries combined with adipose tissue-derived stem cells (hASCs) as a promising alternative for vascular tissue engineering, opening the path to future treatments for peripheral artery disease (PAD). PAD is a progressive condition with high rates of amputation and mortality due to ischemic damage and limited graft options. Traditional synthetic grafts often fail due to poor integration, while autologous grafts may be unsuitable for patients with compromised vascular health. This study explores the potential of decellularized human iliac arteries as scaffolds for vascular grafts, focusing on preserving extracellular matrix (ECM) ultrastructure while minimizing immunogenic response. A perfusion-based protocol with enzymatic and detergent agents effectively removed cellular material, resulting in scaffolds with preserved ECM architecture, including organized collagen and elastin fibers. To assess scaffold bioactivity, hASCs were seeded onto the decellularized ECM, demonstrating high viability. Structural assessments, including histological staining and mechanical testing, confirmed that decellularized arteries retained their hierarchical structure and exhibited increased stiffness, suggesting an adaptive realignment of ECM fibers. Thermal and ultrastructural analyses further showed that decellularized scaffolds maintained stability and integrity comparable to native tissue, underscoring their durability for clinical applications. The human iliac artery shows potential as a vascular scaffold due to its accessibility and the ability to support the viability of hASC. Future research will emphasize in vivo validation and strategies for functional recellularization to evaluate the clinical viability of these engineered vascular grafts.
Collapse
Affiliation(s)
- David E Abad-Contreras
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico.
| | - Ana K Martínez-Ortiz
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico; Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Valentín Martínez-López
- Unit of Tissue Engineering, Cell Therapy and Regenerative Medicine, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Coapa, Arenal Tepepan, Calzada México-Xochimilco 289, Tlalpan, Ciudad de México, Mexico
| | - Hugo Laparra-Escareño
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán (INCMNSZ), Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico
| | - Francisco Drusso Martínez-García
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Daniel Pérez-Calixto
- Department of Physics, Faculty of Sciences UNAM, Circuito Exterior s/n Ciudad Universitaria, Av. Universidad 3000, Alcaldía Coyoacán, CDMX CP 04510, Mexico; Subdirectorate of Population Genomics. National Institute of Genomic Medicine, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan, CDMX CP 1461, Mexico
| | - Genaro Vazquez-Victorio
- Department of Physics, Faculty of Sciences UNAM, Circuito Exterior s/n Ciudad Universitaria, Av. Universidad 3000, Alcaldía Coyoacán, CDMX CP 04510, Mexico
| | - Omar Sepúlveda-Robles
- Medical Research Unit in Human Genetics, UMAE Pediatric Hospital, "Siglo XXI" National Medical Center, Mexican Social Security Institute (IMSS), CDMX, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, UMAE Pediatric Hospital, "Siglo XXI" National Medical Center, Mexican Social Security Institute (IMSS), CDMX, Mexico
| | - Cristina Piña-Barba
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Leonardo A Rodríguez-López
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán (INCMNSZ), Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico
| | - David M Giraldo-Gomez
- Department of Cell and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Circuito Interior, Edificio "A" 3°piso, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico; Microscopy Core Facility, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Circuito Interior, Edificio "A" planta baja, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Carlos A Hinojosa
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán (INCMNSZ), Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico
| |
Collapse
|
3
|
Nguyen TC, Nguyen TL, Nguyen XH, Bui KC, Pham TA, Do LD, Tran NT, Nguyen TL, Hoang NTM, Do XH. Fresh Human Umbilical Cord Arteries as a Potential Source for Small-Diameter Vascular Grafts. ACS Biomater Sci Eng 2024; 10:7120-7131. [PMID: 39378361 DOI: 10.1021/acsbiomaterials.4c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The demand for small-diameter vascular grafts has been globally increased but still lacks optimal solutions in this category. This study evaluated the feasibility of utilizing human pretreated fresh and nondecellularized umbilical cord arteries (hUCAs) as vascular grafts without needing any immunosuppression process. A mixed lymphocyte reaction assay revealed that hUCAs did not induce lymphocyte proliferation or cytokine production. To assess the in vivo inflammatory response, hUCAs were buried in fatty tissue under the skin of the abdominal wall in the left and right iliac fossas of rats. The average sizes of the implanted hUCAs remained consistent at 30 days post implantation. To evaluate xenogeneic transplantation, hUCAs were grafted to the abdominal aorta below the kidney of Wister rats. Remarkably, all rats exhibited positive revascularization and perfusion, maintaining blood pressure values of around 110/70 mmHg. Doppler ultrasound consistently indicated good circulation, with the three separate echogenic layers corresponding to the three arterial wall layers throughout the assessment period. Grafted rats exhibited normal motor behavior, accompanied by positive responses to thermal and pain stimulation. Blood biochemical values and whole blood cell counts showed no significant differences between pre and post-transplantation. Histological analysis of the grafts revealed no calcification or thrombosis, and a mild chronic inflammatory response was presented. In conclusion, hUCAs maintained their structural and functional properties after transplantation in rats without immunosuppression. This highlights their potential as a source for allogeneic, readily accessible, small-diameter vascular grafts.
Collapse
Affiliation(s)
- Trung-Chuc Nguyen
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi 10000, Vietnam
| | - Toan Linh Nguyen
- Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi 10000, Vietnam
| | - Xuan-Hung Nguyen
- Vinmec Hi-Tech Center, Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
- College of Health Sciences, VinUniversity, Hanoi 10000, Vietnam
| | - Khac-Cuong Bui
- Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi 10000, Vietnam
| | - Tuan-Anh Pham
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi 10000, Vietnam
| | - Linh Dieu Do
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi 10000, Vietnam
| | - Nghia Trung Tran
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi 10000, Vietnam
| | - Thanh-Liem Nguyen
- Vinmec Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
| | - Nhung Thi My Hoang
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi 10000, Vietnam
| | - Xuan-Hai Do
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi 10000, Vietnam
| |
Collapse
|
4
|
Batasheva S, Kotova S, Frolova A, Fakhrullin R. Atomic force microscopy for characterization of decellularized extracellular matrix (dECM) based materials. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2421739. [PMID: 39559530 PMCID: PMC11573343 DOI: 10.1080/14686996.2024.2421739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
In live organisms, cells are embedded in tissue-specific extracellular matrix (ECM), which provides chemical and mechanical signals important for cell differentiation, migration, and overall functionality. Careful reproduction of ECM properties in artificial cell scaffolds is necessary to get physiologically relevant results of in vitro studies and produce robust materials for cell and tissue engineering. Nanoarchitectonics is a contemporary way to building complex materials from nano-scale objects of artificial and biological origin. Decellularized ECM (dECM), remaining after cell elimination from organs, tissues and cell cultures is arguably the closest equivalent of native ECM achievable today. dECM-based materials can be used as templates or components for producing cell scaffolds using nanoarchitectonic approach. Irrespective of the form, in which dECM is used (whole acellular organ/tissue, bioink or hydrogel), the local stiffness of the dECM scaffold must be evaluated, since the fate of seeded cells depends on the mechanical properties of their environment. Careful dECM characterization is also necessary to reproduce essential ECM traits in artificial cell scaffolds by nanoparticle assembly. Atomic force microscopy (AFM) is a valuable characterization tool, as it allows simultaneous assessment of mechanical and topographic features of the scaffold, and additionally evaluate the efficiency of decellularization process and preservation of the extracellular matrix. This review depicts the current application of AFM in the field of dECM-based materials, including the basics of AFM technique and the use of flicker-noise spectroscopy (FNS) method for the quantification of the dECM micro- and nanostructure.
Collapse
Affiliation(s)
- Svetlana Batasheva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan Kazan, Russian Federation
| | - Svetlana Kotova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Anastasia Frolova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Rawil Fakhrullin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan Kazan, Russian Federation
| |
Collapse
|
5
|
Riesterer J, Warchock A, Krawczyk E, Ni L, Kim W, Moroi SE, Xu G, Argento A. Effects of Genipin Crosslinking of Porcine Perilimbal Sclera on Mechanical Properties and Intraocular Pressure. Bioengineering (Basel) 2024; 11:996. [PMID: 39451372 PMCID: PMC11504492 DOI: 10.3390/bioengineering11100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
The mechanical properties of sclera play an important role in ocular functions, protection, and disease. Modulating the sclera's properties by exogenous crosslinking offers a way to expand the tissue's range of properties for study of the possible influences on the eye's behavior and diseases such as glaucoma and myopia. The focus of this work was to evaluate the effects of genipin crosslinking targeting the porcine perilimbal sclera (PLS) since the stiffness of this tissue was previously found in a number of studies to influence the eye's intraocular pressure (IOP). The work includes experiments on tensile test specimens and whole globes. The specimen tests showed decreased strain-rate dependence and increased relaxation stress due to the cross-linker. Whole globe perfusion experiments demonstrated that eyes treated with genipin in the perilimbal region had increased IOPs compared to the control globes. Migration of the cross-linker from the target tissue to other tissues is a confounding factor in whole globe, biomechanical measurements, with crosslinking. A novel quantitative genipin assay of the trabecular meshwork (TM) was developed to exclude globes where the TM was inadvertently crosslinked. The perfusion study, therefore, suggests that elevated stiffness of the PLS can significantly increase IOP apart from effects of the TM in the porcine eye. These results demonstrate the importance of PLS biomechanics in aqueous outflow regulation and support additional investigations into the distal outflow pathways as a key source of outflow resistance.
Collapse
Affiliation(s)
- John Riesterer
- Department of Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA; (J.R.); (A.W.); (E.K.); (W.K.)
| | - Alexus Warchock
- Department of Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA; (J.R.); (A.W.); (E.K.); (W.K.)
| | - Erik Krawczyk
- Department of Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA; (J.R.); (A.W.); (E.K.); (W.K.)
| | - Linyu Ni
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (L.N.); (G.X.)
| | - Wonsuk Kim
- Department of Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA; (J.R.); (A.W.); (E.K.); (W.K.)
| | - Sayoko E. Moroi
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Guan Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (L.N.); (G.X.)
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Abor, MI 48105, USA
| | - Alan Argento
- Department of Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA; (J.R.); (A.W.); (E.K.); (W.K.)
| |
Collapse
|
6
|
Han Y, Zhang L, Kong L, Wang G, Ye Z. Investigating the relationship between residual stress and micromechanical properties of blood vessels using atomic force microscopy. Microsc Res Tech 2024; 87:1678-1692. [PMID: 38500314 DOI: 10.1002/jemt.24552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
The magnitude of vascular residual stress, an inherent characteristic exclusive to the vasculature, exhibits a strong correlation with vascular compliance, tensile resistance, vascular rigidity, and vascular remodeling subsequent to vascular transplantation. Vascular residual stress can be quantified by evaluating the magnitude of the opening angle within the vascular ring. For decellularized vessels, the vascular ring's opening angle diminishes, consequently reducing residual stress. The decellularization process induces a laxity in the vascular fiber structure within decellularized vessels. To investigate the interrelation between the magnitude of residual stress and the microstructure as well as mechanical properties of elastin and collagen within blood vessels, this study employed fresh blood vessels, stress-relieved vessels, and sections of decellularized blood vessels. Structural scanning and force map experiments on the surface of the sections were conducted using atomic force microscopy (AFM). The findings revealed well-organized arrangements of elastin and collagen within fresh vessels, wherein the regularity of collagen and elastin exhibited variability as residual stress declined. Furthermore, both stress-relieved and decellularized vessel sections exhibited a reduction in the mean Young's modulus to varying extents in comparison to fresh vessels. The validity of our experimental results was further corroborated through finite element simulations. Hence, residual stress assumes a crucial role in upholding the structural stability of blood vessels, and the intricate association between residual stress and the microstructural and micromechanical properties of blood vessels holds significant implications for comprehending the impact of vascular diseases on vascular structure and advancing the development of biomimetic artificial blood vessels that replicate residual stress. RESEARCH HIGHLIGHTS: In this inquiry, we scrutinized the interconnection amid vascular residual stress and the microscale and nanoscale aspects of vascular structure and mechanical function, employing AFM. We ascertained that residual stress assumes a pivotal role in upholding vascular microstructure and mechanical attributes. The experimental outcomes were subsequently validated through finite element simulation.
Collapse
Affiliation(s)
- Yibo Han
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Liyuan Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, People's Republic of China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
- JinFeng Laboratory, Chongqing, People's Republic of China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
- JinFeng Laboratory, Chongqing, People's Republic of China
| |
Collapse
|
7
|
Fischer J, Heidrová A, Hermanová M, Bednařík Z, Joukal M, Burša J. Structural parameters defining distribution of collagen fiber directions in human carotid arteries. J Mech Behav Biomed Mater 2024; 153:106494. [PMID: 38507995 DOI: 10.1016/j.jmbbm.2024.106494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Collagen fiber arrangement is decisive for constitutive description of anisotropic mechanical response of arterial wall. In this study, their orientation in human common carotid artery was investigated using polarized light microscopy and an automated algorithm giving more than 4·106 fiber angles per slice. In total 113 slices acquired from 18 arteries taken from 14 cadavers were used for fiber orientation in the circumferential-axial plane. All histograms were approximated with unimodal von Mises distribution to evaluate dominant direction of fibers and their concentration parameter. 10 specimens were analyzed also in circumferential-radial and axial-radial planes (2-4 slices per specimen in each plane); the portion of radially oriented fibers was found insignificant. In the circumferential-axial plane, most specimens showed a pronounced unimodal distribution with angle to circumferential direction μ = 0.7° ± 9.4° and concentration parameter b = 3.4 ± 1.9. Suitability of the unimodal fit was confirmed by high values of coefficient of determination (mean R2 = 0.97, median R2 = 0.99). Differences between media and adventitia layers were not found statistically significant. The results are directly applicable as structural parameters in the GOH constitutive model of arterial wall if the postulated two fiber families are unified into one with circumferential orientation.
Collapse
Affiliation(s)
- Jiří Fischer
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno, 616 69, Czech Republic.
| | - Aneta Heidrová
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno, 616 69, Czech Republic
| | - Markéta Hermanová
- 1st Department of Pathology, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Pekařská 664/53, 656 91, Brno, Czech Republic
| | - Zdeněk Bednařík
- 1st Department of Pathology, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Pekařská 664/53, 656 91, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Kamenice 126/3, 625 00, Brno, Czech Republic
| | - Jiří Burša
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno, 616 69, Czech Republic
| |
Collapse
|
8
|
Pukaluk A, Sommer G, Holzapfel GA. Multimodal experimental studies of the passive mechanical behavior of human aortas: Current approaches and future directions. Acta Biomater 2024; 178:1-12. [PMID: 38401775 DOI: 10.1016/j.actbio.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Cardiovascular diseases are the leading cause of death worldwide and include, among others, critical conditions of the aortic wall. Importantly, such critical conditions require effective diagnosis and treatment, which are not yet accurate enough. However, they could be significantly strengthened with predictive material models of the aortic wall. In particular, such predictive models could support surgical decisions, preoperative planning, and estimation of postoperative tissue remodeling. However, developing a predictive model requires experimental data showing both structural parameters and mechanical behavior. Such experimental data can be obtained using multimodal experiments. This review therefore discusses the current approaches to multimodal experiments. Importantly, the strength of the aortic wall is determined primarily by its passive components, i.e., mainly collagen, elastin, and proteoglycans. Therefore, this review focuses on multimodal experiments that relate the passive mechanical behavior of the human aortic wall to the structure and organization of its passive components. In particular, the multimodal experiments are classified according to the expected results. Multiple examples are provided for each experimental class and summarized with highlighted advantages and disadvantages of the method. Finally, future directions of multimodal experiments are envisioned and evaluated. STATEMENT OF SIGNIFICANCE: Multimodal experiments are innovative approaches that have gained interest very quickly, but also recently. This review presents therefore a first clear summary of groundbreaking research in the field of multimodal experiments. The benefits and limitations of various types of multimodal experiments are thoroughly discussed, and a comprehensive overview of possible results is provided. Although this review focuses on multimodal experiments performed on human aortic tissues, the methods used and described are not limited to human aortic tissues but can be extended to other soft materials.
Collapse
Affiliation(s)
- Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering (NTNU), Trondheim, Norway.
| |
Collapse
|
9
|
Beachley V, Kuo J, Kasyanov V, Mironov V, Wen X. Biomimetic crimped/aligned microstructure to optimize the mechanics of fibrous hybrid materials for compliant vascular grafts. J Mech Behav Biomed Mater 2024; 150:106301. [PMID: 38141364 DOI: 10.1016/j.jmbbm.2023.106301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/28/2023] [Accepted: 12/02/2023] [Indexed: 12/25/2023]
Abstract
The precise mechanical properties of many tissues are highly dependent on both the composition and arrangement of the nanofibrous extracellular matrix. It is well established that collagen nanofibers exhibit a crimped microstructure in several tissues such as blood vessel, tendon, and heart valve. This collagen fiber arrangement results in the classic non-linear 'J-shaped' stress strain curve characteristic of these tissues. Synthetic biomimetic fibrous materials with a crimped microstructure similar to natural collagen demonstrate similar mechanical properties to natural tissues. The following work describes a nanofabrication method based on electrospinning used to fabricate two component hybrid electrospun fibrous materials that mimic the microstructure and mechanical properties of vascular tissue. The properties of these samples can be precisely and predictably optimized by modifying fabrication parameters. Tubular grafts with biomimetic microstructure were constructed to demonstrate the potential of this fabrication method in vascular graft replacement applications. It was possible to closely match both the overall geometry and the compliance of specific blood vessels by optimizing graft microstructure.
Collapse
Affiliation(s)
- Vince Beachley
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA.
| | - Jonathan Kuo
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | | | - Vladimir Mironov
- Center for Biomedical Engineering, National University of Science and Technology (MISIS), Moscow, Russia
| | - Xuejun Wen
- Institute for Engineering and Medicine, Virgina Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Zheng Y, Shariati K, Ghovvati M, Vo S, Origer N, Imahori T, Kaneko N, Annabi N. Hemostatic patch with ultra-strengthened mechanical properties for efficient adhesion to wet surfaces. Biomaterials 2023; 301:122240. [PMID: 37480758 DOI: 10.1016/j.biomaterials.2023.122240] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Controlling traumatic bleeding from damaged internal organs while effectively sealing the wound is critical for saving the lives of patients. Existing bioadhesives suffer from blood incompatibility, insufficient adhesion to wet surfaces, weak mechanical properties, and complex application procedures. Here, we engineered a ready-to-use hemostatic bioadhesive with ultra-strengthened mechanical properties and fatigue resistance, robust adhesion to wet tissues within a few seconds of gentle pressing, deformability to accommodate physiological function and action, and the ability to stop bleeding efficiently. The engineered hydrogel, which demonstrated high elasticity (>900%) and toughness (>4600 kJ/m3), was formed by fine-tuning a series of molecular interactions and crosslinking mechanisms involving N-hydroxysuccinimide (NHS) conjugated alginate (Alg-NHS), poly (ethylene glycol) diacrylate (PEGDA), tannic acid (TA), and Fe3+ ions. Dual adhesive moieties including mussel-inspired pyrogallol/catechol and NHS synergistically enhanced wet tissue adhesion (>400 kPa in a wound closure test). In conjunction with physical sealing, the high affinity of TA/Fe3+ for blood could further augment hemostasis. The engineered bioadhesive demonstrated excellent in vitro and in vivo biocompatibility as well as improved hemostatic efficacy as compared to commercial Surgicel®. Overall, the hydrogel design strategy described herein holds great promise for overcoming existing obstacles impeding clinical translation of engineered hemostatic bioadhesives.
Collapse
Affiliation(s)
- Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kaavian Shariati
- David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Interventional Neuroradiology, Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Vo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nolan Origer
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Taichiro Imahori
- Division of Interventional Neuroradiology, Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Naoki Kaneko
- Division of Interventional Neuroradiology, Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
11
|
Xu R, Li T, Li Z, Kong W, Wang T, Zhang X, Luo J, Li W, Jiao L. Knowledge fields and emerging trends about extracellular matrix in carotid artery disease from 1990 to 2021: analysis of the scientific literature. Eur J Med Res 2023; 28:284. [PMID: 37587506 PMCID: PMC10428572 DOI: 10.1186/s40001-023-01259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Stroke is a heavy burden in modern society, and carotid artery disease is a major cause. The role of the extracellular matrix (ECM) in the development and progression of carotid artery disease has become a popular research focus. However, there is no published bibliometric analysis to derive the main publication features and trends in this scientific area. We aim to conduct a bibliometric analysis to reveal current status of ECM in carotid artery disease and to predict future hot spots. METHODS We searched and downloaded articles from the Web of Science Core Collection with "Carotid" and "Extracellular Matrix" as subject words from 1990 to 2021. The complete bibliographic data were analyzed by Bibliometrics, BICOMB, gCLUTO and CiteSpace softwares. RESULTS Since 1990, the United States has been the leader in the number of publications in the field of ECM in carotid artery disease, followed by China, Japan and Germany. Among institutions, Institut National De La Sante Et De La Recherche Medicale Inserm, University of Washington Seattle and Harvard University are in the top 3. "Arteriosclerosis Thrombosis and Vascular Biology" is the most popular journal and "Circulation" is the most cited journal. "Clowes AW", "Hedin Ulf" and "Nilsson Jan" are the top three authors of published articles. Finally, we investigated the frontiers through the strongest citation bursts, conducted keyword biclustering analysis, and discovered five clusters of research hotspots. Our research provided a comprehensive analysis of the fundamental data, knowledge organization, and dynamic evolution of research about ECM in carotid artery disease. CONCLUSIONS The field of ECM in carotid artery disease has received increasing attention. We summarized the history of the field and predicted five future hotspots through bibliometric analysis. This study provided a reference for researchers in this fields, and the methodology can be extended to other fields.
Collapse
Affiliation(s)
- Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Tianhua Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Guimaraes AB, Correia AT, da Silva RS, Dos Santos ES, de Souza Xavier Costa N, Dolhnikoff M, Maizato M, Cestari IA, Pego-Fernandes PM, Guerreiro Cardoso PF. Evaluation of Structural Viability of Porcine Tracheal Scaffolds after 3 and 6 Months of Storage under Three Different Protocols. Bioengineering (Basel) 2023; 10:bioengineering10050584. [PMID: 37237655 DOI: 10.3390/bioengineering10050584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Tracheal replacement with a bioengineered tracheal substitute has been developed for long-segment tracheal diseases. The decellularized tracheal scaffold is an alternative for cell seeding. It is not defined if the storage scaffold produces changes in the scaffold's biomechanical properties. We tested three protocols for porcine tracheal scaffold preservation immersed in PBS and alcohol 70%, in the fridge and under cryopreservation. Ninety-six porcine tracheas (12 in natura, 84 decellularized) were divided into three groups (PBS, alcohol, and cryopreservation). Twelve tracheas were analyzed after three and six months. The assessment included residual DNA, cytotoxicity, collagen contents, and mechanical properties. Decellularization increased the maximum load and stress in the longitudinal axis and decreased the maximum load in the transverse axis. The decellularization of the porcine trachea produced structurally viable scaffolds, with a preserved collagen matrix suitable for further bioengineering. Despite the cyclic washings, the scaffolds remained cytotoxic. The comparison of the storage protocols (PBS at 4 °C, alcohol at 4 °C, and slow cooling cryopreservation with cryoprotectants) showed no significant differences in the amount of collagen and in the biomechanical properties of the scaffolds. Storage in PBS solution at 4 °C for six months did not change the scaffold mechanics.
Collapse
Affiliation(s)
- Alberto Bruning Guimaraes
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Aristides Tadeu Correia
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Ronaldo Soares da Silva
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Elizabete Silva Dos Santos
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Natalia de Souza Xavier Costa
- Laboratorio de Poluicao Atmosferica Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246-000, Brazil
| | - Marisa Dolhnikoff
- Laboratorio de Poluicao Atmosferica Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246-000, Brazil
| | - Marina Maizato
- Bioengenharia, Instituto do Coração do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Idagene Aparecida Cestari
- Bioengenharia, Instituto do Coração do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Paulo Manuel Pego-Fernandes
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Paulo Francisco Guerreiro Cardoso
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| |
Collapse
|
13
|
Giovanniello F, Asgari M, Breslavsky ID, Franchini G, Holzapfel GA, Tabrizian M, Amabili M. Development and mechanical characterization of decellularized scaffolds for an active aortic graft. Acta Biomater 2023; 160:59-72. [PMID: 36792047 DOI: 10.1016/j.actbio.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
Decellularized porcine aortas are proposed as scaffolds for revolutionary active aortic grafts. A change in the static and dynamic mechanical properties, associated with the microstructure of elastin and collagen fibers, corresponds to alteration in the cyclic expansion and perfusion, in addition to possible graft damage. Therefore, the present study thoroughly investigates the mechanical response of the decellularized scaffolds of human and porcine origin to static and dynamic mechanical loads. The responses of the native human and porcine aortas are also compared; this is unavailable in the literature. Because the aorta is subjected to pulsatile blood pressure, dynamical responses to cyclic loads and their associated viscoelastic properties are particularly relevant for advanced graft design. In parallel, this study examines the microstructure of the decellularized aorta. The resulting data are compared to the analogous data obtained for the native human and porcine tissues. The results indicate that by using an optimized decellularization protocol - based on sodium dodecyl sulfate (SDS) and DNase - that minimizes mechanical and structural changes of the tissue, layered scaffolds with static and dynamic properties very similar to natural human aortas are obtained. In particular, a decellularized porcine aorta is non-inferior to a decellularized human aorta. STATEMENT OF SIGNIFICANCE: About 55,000 patients undergo abdominal aortic aneurysm repair annually in the USA. The currently implanted grafts present a large mechanical mismatch with the native tissue. This increases the pulsatile nature of the blood flow with negative consequences to the organ perfusion. For this reason, biomimetic and mechanically compatible grafts for aortic repair are urgently needed and they can be obtained through tissue engineering. In this study, scaffolds from porcine and human aortas are obtained from an optimized decellularization protocol. They are accurately compared to the native tissue and present the ideal static and dynamic mechanical properties for developing innovative aortic grafts.
Collapse
Affiliation(s)
| | - Meisam Asgari
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Ivan D Breslavsky
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Giulio Franchini
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Marco Amabili
- Department of Mechanical Engineering, McGill University, Montreal, Canada; Advanced Materials Research Center, Technology Innovation Institute (TII), Abu Dhabi, UAE.
| |
Collapse
|
14
|
Fok PW. Shear stress regulation in cylindrical arteries through medial growth and nitric oxide release. J Math Biol 2023; 86:55. [PMID: 36928428 DOI: 10.1007/s00285-023-01894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
The mechanisms employed by blood vessels in order to adapt to their hemodynamic environment are important for our general understanding of disease and development. Changes in arterial geometry are generally induced by two effects: vasodilation and/or constriction; and growth and remodeling ("G &R"). The first can occur over short periods of a few minutes, while the second usually occurs over timescales of weeks or months. The free radical Nitric oxide (NO) is one of the few biological signaling molecules that is gaseous. When smooth muscle cells internalize NO, they lengthen and ultimately induce a relaxation of the artery. Platelet-Derived Growth Factor (PDGF) is a growth factor released by smooth muscle cells and platelets that regulates cell growth and division. In this paper we present a single-layered, axisymmetric hyperelastic model for a deforming, growing artery in which the opening angle is regulated by NO and growth is induced by PDGF. Our model describes vasodilation and G &R in a long cylindrical artery regulated by a steady-state Poiseuille flow. The transport of NO released by the endothelium is governed by a diffusion equation with a shear-stress dependent flux boundary condition. Arterial opening angle is assumed to be a Hill function of the wall-averaged NO concentration. We find that both growth and NO help to regulate shear stress with respect to the flow rate, but regulation through growth occurs only at large times. In contrast, regulation through NO is immediate but can only occur as long as the opening angle is able to continually decrease as a function of flow rate. Our model is calibrated using experimental data from ligated, control, and anastomosed carotid arteries of adult and weanling rabbits. Our results generate shear stress/flow rate and lumen radius/flow rate curves that agree with experimental data from control and NO-inhibited rabbit carotid arteries.
Collapse
Affiliation(s)
- Pak-Wing Fok
- Department of Mathematical Sciences, University of Delaware, Newark, USA.
| |
Collapse
|
15
|
Yu T, Ao Q, Ao T, Ahmad MA, Wang A, Xu Y, Zhang Z, Zhou Q. Preparation and assessment of an optimized multichannel acellular nerve allograft for peripheral nerve regeneration. Bioeng Transl Med 2022. [DOI: 10.1002/btm2.10435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Tianhao Yu
- The VIP Department, School and Hospital of Stomatology China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases Shenyang China
| | - Qiang Ao
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education China Medical University Shenyang China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan China
| | - Tianrang Ao
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | | | - Aijun Wang
- Department of Neurological Surgery University of California Davis Sacramento California USA
| | - Yingxi Xu
- Department of Clinical Nutrition Shengjing Hospital of China Medical University Shenyang China
| | - Zhongti Zhang
- The VIP Department, School and Hospital of Stomatology China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases Shenyang China
| | - Qing Zhou
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases Shenyang China
| |
Collapse
|
16
|
Baidya A, Ghovvati M, Lu C, Naghsh-Nilchi H, Annabi N. Designing a Nitro-Induced Sutured Biomacromolecule to Engineer Electroconductive Adhesive Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49483-49494. [PMID: 36286540 DOI: 10.1021/acsami.2c11348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nitro-functionality, with a large deficit of negative charge, embraces biological importance and has proven its therapeutic essence even in chemotherapy. Functionally, with its strong electron-withdrawing capability, nitro can manipulate the electron density of organic moieties and regulates cellular-biochemical reactions. However, the chemistry of nitro-functionality to introduce physiologically relevant macroscopic properties from the molecular skeleton is unknown. Therefore, herein, a neurotransmitter moiety, dopamine, was chemically modified with a nitro-group to explore its influence on synthesizing a multifunctional biomaterial for therapeutic applications. Chemically, while the nitro-group perturbed the aromatic electron density of nitrocatecholic domain, it facilitated the suturing of nitrocatechol moieties to regain its aromaticity through a radical transfer mechanism, forming a novel macromolecular structure. Incorporation of the sutured-nitrocatecholic strand (S-nCAT) in a gelatin-based hydrogel introduced an electroconductive microenvironment through the delocalization of π-electrons in S-nCAT, while maintaining its catechol-mediated adhesive property for tissue repairing/sealing. Meanwhile, the engineered hydrogel enriched with noncovalent interactions, demonstrated excellent mechano-physical properties to support tissue functions. Cytocompatibility of the bioadhesive was assessed with in vitro and in vivo studies, confirming its potential usage for biomedical applications. In conclusion, this novel chemical approach enabled designing a multifunctional biomaterial by manipulating the electronic properties of small bioactive molecules for various biomedical applications.
Collapse
Affiliation(s)
- Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, California90095, United States
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, California90095, United States
| | - Cathy Lu
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, California90095, United States
| | - Hamed Naghsh-Nilchi
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California90095, United States
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, California90095, United States
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California90095, United States
| |
Collapse
|
17
|
Wang X, Chan V, Corridon PR. Decellularized blood vessel development: Current state-of-the-art and future directions. Front Bioeng Biotechnol 2022; 10:951644. [PMID: 36003539 PMCID: PMC9394443 DOI: 10.3389/fbioe.2022.951644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular diseases contribute to intensive and irreversible damage, and current treatments include medications, rehabilitation, and surgical interventions. Often, these diseases require some form of vascular replacement therapy (VRT) to help patients overcome life-threatening conditions and traumatic injuries annually. Current VRTs rely on harvesting blood vessels from various regions of the body like the arms, legs, chest, and abdomen. However, these procedures also produce further complications like donor site morbidity. Such common comorbidities may lead to substantial pain, infections, decreased function, and additional reconstructive or cosmetic surgeries. Vascular tissue engineering technology promises to reduce or eliminate these issues, and the existing state-of-the-art approach is based on synthetic or natural polymer tubes aiming to mimic various types of blood vessel. Burgeoning decellularization techniques are considered as the most viable tissue engineering strategy to fill these gaps. This review discusses various approaches and the mechanisms behind decellularization techniques and outlines a simplified model for a replacement vascular unit. The current state-of-the-art method used to create decellularized vessel segments is identified. Also, perspectives on future directions to engineer small- (inner diameter >1 mm and <6 mm) to large-caliber (inner diameter >6 mm) vessel substitutes are presented.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Kostelnik CJ, Hohn J, Escoto-Diaz CE, Kooistra JB, Stern MM, Swinton DE, Richardson WJ, Carver W, Eberth JF. Small-diameter artery decellularization: Effects of anionic detergent concentration and treatment duration on porcine internal thoracic arteries. J Biomed Mater Res B Appl Biomater 2022; 110:885-897. [PMID: 34855280 PMCID: PMC8854343 DOI: 10.1002/jbm.b.34969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/27/2021] [Accepted: 11/13/2021] [Indexed: 11/06/2022]
Abstract
Engineered replacement materials have tremendous potential for vascular applications where over 400,000 damaged and diseased blood vessels are replaced annually in the United States alone. Unlike large diameter blood vessels, which are effectively replaced by synthetic materials, prosthetic small-diameter vessels are prone to early failure, restenosis, and reintervention surgery. We investigated the differential response of varying 0%-6% sodium dodecyl sulfate and sodium deoxycholate anionic detergent concentrations after 24 and 72 h in the presence of DNase using biochemical, histological, and biaxial mechanical analyses to optimize the decellularization process for xenogeneic vascular tissue sources, specifically the porcine internal thoracic artery (ITA). Detergent concentrations greater than 1% were successful at removing cytoplasmic and cell surface proteins but not DNA content after 24 h. A progressive increase in porosity and decrease in glycosaminoglycan (GAG) content was observed with detergent concentration. Augmented porosity was likely due to the removal of both cells and GAGs and could influence recellularization strategies. The treatment duration on the other hand, significantly improved decellularization by reducing DNA content to trace amounts after 72 h. Prolonged treatment times reduced laminin content and influenced the vessel's mechanical behavior in terms of altered circumferential stress and stretch while further increasing porosity. Collectively, DNase with 1% detergent for 72 h provided an effective and efficient decellularization strategy to be employed in the preparation of porcine ITAs as bypass graft scaffolding materials with minor biomechanical and histological penalties.
Collapse
Affiliation(s)
- CJ Kostelnik
- Biomedical Engineering Program, University of South Carolina College of Eng., Columbia, SC
| | - J Hohn
- Department of Cell Biology & Anatomy, University of South Carolina School of Med., Columbia, SC
| | - CE Escoto-Diaz
- Department of Biology, Winthrop University, Rock Hill, SC
| | - JB Kooistra
- Department of Biology, Winthrop University, Rock Hill, SC
| | - MM Stern
- Department of Biology, Winthrop University, Rock Hill, SC
| | - DE Swinton
- Department of Chemistry, Claflin University, Orangeburg, SC
| | - WJ Richardson
- Department of Bioengineering, Clemson University, Clemson, SC
| | - W Carver
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC
| | - JF Eberth
- Department of Cell Biology & Anatomy, University of South Carolina School of Med., Columbia, SC
| |
Collapse
|
19
|
An ultrastructural 3D reconstruction method for observing the arrangement of collagen fibrils and proteoglycans in the human aortic wall under mechanical load. Acta Biomater 2022; 141:300-314. [PMID: 35065266 DOI: 10.1016/j.actbio.2022.01.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022]
Abstract
An insight into changes of soft biological tissue ultrastructures under loading conditions is essential to understand their response to mechanical stimuli. Therefore, this study offers an approach to investigate the arrangement of collagen fibrils and proteoglycans (PGs), which are located within the mechanically loaded aortic wall. The human aortic samples were either fixed directly with glutaraldehyde in the load-free state or subjected to a planar biaxial extension test prior to fixation. The aortic ultrastructure was recorded using electron tomography. Collagen fibrils and PGs were segmented using convolutional neural networks, particularly the ESPNet model. The 3D ultrastructural reconstructions revealed a complex organization of collagen fibrils and PGs. In particular, we observed that not all PGs are attached to the collagen fibrils, but some fill the spaces between the fibrils with a clear distance to the collagen. The complex organization cannot be fully captured or can be severely misinterpreted in 2D. The approach developed opens up practical possibilities, including the quantification of the spatial relationship between collagen fibrils and PGs as a function of the mechanical load. Such quantification can also be used to compare tissues under different conditions, e.g., healthy and diseased, to improve or develop new material models. STATEMENT OF SIGNIFICANCE: The developed approach enables the 3D reconstruction of collagen fibrils and proteoglycans as they are embedded in the loaded human aortic wall. This methodological pipeline comprises the knowledge of arterial mechanics, imaging with transmission electron microscopy and electron tomography, segmentation of 3D image data sets with convolutional neural networks and finally offers a unique insight into the ultrastructural changes in the aortic tissue caused by mechanical stimuli.
Collapse
|
20
|
Kang HV, Im JH, Chung YG, Shin EY, Lee MK, Lee JY. Comparison of two different decellularization methods for processed nerve allograft. Cell Tissue Bank 2021; 22:575-585. [PMID: 34581914 DOI: 10.1007/s10561-021-09965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
The use of processed nerve allografts as an alternative to autologous nerve grafts, the gold standard treatment for peripheral nerve defects, is increasing. However, it is not widely used in Korea due to cost and insurance issues. Moreover, the main detergent used in the conventional Hudson method is unavailable. Therefore, a new nerve allograft decellularization process is needed. We aimed to compare the traditional Hudson method with a novel decellularization process that may remove cellular content more efficiently while preserving the extracellular matrix (ECM) structure using low concentration sodium dodecyl sulfate (SDS) and nuclease. After each decellularization process, DNA content was measured in nerve tissue. Masson's trichrome staining and scanning electron microscopy were performed to determine the state of preservation of the ECM. A significantly greater amount of DNA content was removed in the novel method, and the ECM structure was preserved in both methods. For the in vivo study, a 15-mm long sciatic nerve defect was created in two groups of Sprague-Dawley rats, and processed nerve allografts decellularized using the Hudson or novel method were transplanted. Functional and histological recovery results were measured 12 weeks post-transplantation. Ankle contracture angle, maximal isometric tetanic force of the tibialis anterior (TA), and the TA mass were compared between the groups, as well as the percent neural tissue (100 × neural area/intrafascicular area). There was no significant difference in functional and histological nerve recovery between the methods. The novel method is appropriate for developing a processed nerve allograft.
Collapse
Affiliation(s)
- Han-Vit Kang
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Hyung Im
- Department of Orthopedic Surgery, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Yang-Guk Chung
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Young Shin
- College of Medicine, Research Institute of Medical Science, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Joo-Yup Lee
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Heng JW, Yazid MD, Abdul Rahman MR, Sulaiman N. Coatings in Decellularized Vascular Scaffolds for the Establishment of a Functional Endothelium: A Scoping Review of Vascular Graft Refinement. Front Cardiovasc Med 2021; 8:677588. [PMID: 34395554 PMCID: PMC8358320 DOI: 10.3389/fcvm.2021.677588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Developments in tissue engineering techniques have allowed for the creation of biocompatible, non-immunogenic alternative vascular grafts through the decellularization of existing tissues. With an ever-growing number of patients requiring life-saving vascular bypass grafting surgeries, the production of functional small diameter decellularized vascular scaffolds has never been more important. However, current implementations of small diameter decellularized vascular grafts face numerous clinical challenges attributed to premature graft failure as a consequence of common failure mechanisms such as acute thrombogenesis and intimal hyperplasia resulting from insufficient endothelial coverage on the graft lumen. This review summarizes some of the surface modifying coating agents currently used to improve the re-endothelialization efficiency and endothelial cell persistence in decellularized vascular scaffolds that could be applied in producing a better patency small diameter vascular graft. A comprehensive search yielding 192 publications was conducted in the PubMed, Scopus, Web of Science, and Ovid electronic databases. Careful screening and removal of unrelated publications and duplicate entries resulted in a total of 16 publications, which were discussed in this review. Selected publications demonstrate that the utilization of surface coating agents can induce endothelial cell adhesion, migration, and proliferation therefore leads to increased re-endothelialization efficiency. Unfortunately, the large variance in methodologies complicates comparison of coating effects between studies. Thus far, coating decellularized tissue gave encouraging results. These developments in re-endothelialization could be incorporated in the fabrication of functional, off-the-shelf alternative small diameter vascular scaffolds.
Collapse
Affiliation(s)
- Jun Wei Heng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Ramzisham Abdul Rahman
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Wang J, Kong L, Gafur A, Peng X, Kristi N, Xu J, Ma X, Wang N, Humphry R, Durkan C, Zhang H, Ye Z, Wang G. Photooxidation crosslinking to recover residual stress in decellularized blood vessel. Regen Biomater 2021; 8:rbaa058. [PMID: 33738112 PMCID: PMC7955719 DOI: 10.1093/rb/rbaa058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 12/01/2022] Open
Abstract
Decellularization method based on trypsin-digestion is widely used to construct small diameter vascular grafts. However, this method will reduce the opening angle of the blood vessel and result in the reduction of residual stress. Residual stress reduced has an adverse effect on the compliance and permeability of small diameter vascular grafts. To improve the situation, acellular blood vessels were treated with glutaraldehyde and photooxidation crosslinking respectively, and the changes of opening angle, circumferential residual strain of native blood vessels, decellularized arteries and crosslinked blood vessels were measured by means of histological examination, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in this study. The opening angle of decellularized arteries significantly restored after photooxidation crosslinking (P = 0.0216), while that of glutaraldehyde crosslinking blood vessels reduced. The elastic fibers inside the blood vessels became densely rearranged after photooxidation crosslinking. The results of finite element simulation showed that the residual stress increased with the increase of opening angle. In this study, we found at the first time that photooxidation crosslinking method could significantly increase the residual stress of decellularized vessels, which provides biomechanical support for the development of new biomaterials of vascular grafts.
Collapse
Affiliation(s)
- Jintao Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing 400014, China
| | - Alidha Gafur
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaobo Peng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Natalia Kristi
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jing Xu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xingshuang Ma
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Rose Humphry
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Haijun Zhang
- National Local Joint Engineering Laboratory for Biomedical Material Modification, Dezhou, Shandong 251100, China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
23
|
Lv Y, Wang H, Li G, Zhao B. Three-dimensional decellularized tumor extracellular matrices with different stiffness as bioengineered tumor scaffolds. Bioact Mater 2021; 6:2767-2782. [PMID: 33665508 PMCID: PMC7897907 DOI: 10.1016/j.bioactmat.2021.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
In the three-dimensional (3D) tumor microenvironment, matrix stiffness is associated with the regulation of tumor cells behaviors. In vitro tumor models with appropriate matrix stiffness are urgently desired. Herein, we prepare 3D decellularized extracellular matrix (DECM) scaffolds with different stiffness to mimic the microenvironment of human breast tumor tissue, especially the matrix stiffness, components and structure of ECM. Furthermore, the effects of matrix stiffness on the drug resistance of human breast cancer cells are explored with these developed scaffolds as case studies. Our results confirm that DECM scaffolds with diverse stiffness can be generated by tumor cells with different lysyl oxidase (LOX) expression levels, while the barely intact structure and major components of the ECM are maintained without cells. This versatile 3D tumor model with suitable stiffness can be used as a bioengineered tumor scaffold to investigate the role of the microenvironment in tumor progression and to screen drugs prior to clinical use to a certain extent. Novel 3D bioengineered tumor scaffolds with different stiffness were developed. Cells with different LOX expression levels were used to generate tumor tissue. DECM scaffold has good cytocompatibility. DECM with high stiffness promotes the resistance of MDA-MB-231 cells to cisplatin. DECM with high stiffness increases the expression of Bcl-2 and ABCB1.
Collapse
Affiliation(s)
- Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.,Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Hongjun Wang
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.,Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Gui Li
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.,Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Boyuan Zhao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.,Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| |
Collapse
|
24
|
Teng Z, Wang S, Tokgoz A, Taviani V, Bird J, Sadat U, Huang Y, Patterson AJ, Figg N, Graves MJ, Gillard JH. Study on the association of wall shear stress and vessel structural stress with atherosclerosis: An experimental animal study. Atherosclerosis 2021; 320:38-46. [PMID: 33524908 DOI: 10.1016/j.atherosclerosis.2021.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Artery is subject to wall shear stress (WSS) and vessel structural stress (VSS) simultaneously. This study is designed to explore the role of VSS in development of atherosclerosis. METHODS Silastic collars were deployed on the carotid to create two constrictions on 13 rabbits for a distinct mechanical environment at the constriction. MRI was performed to visualize arteries' configuration. Animals with high fat (n = 9; Model-group) and normal diet (n = 4; Control-group) were sacrificed after 16 weeks. 3D fluid-structure interaction analysis was performed to quantify WSS and VSS simultaneously. RESULTS Twenty plaques were found in Model-group and 3 in Control-group. In Model-group, 8 plaques located proximally to the first constriction (Region-1, close to the heart) and 7 distally to the second (Region-2, close to the head) and 5 plaques were found on the contralateral side of 3 rabbits. Plaques at Region-1 tended to be bigger than those at Region-2 and the macrophage density at these locations was comparable. Minimum time-averaged WSS (TAWSS) in Region-1 was significantly higher than that in Region-2, and both maximum oscillatory shear index (OSI) and particle relative residence time (RRT) were significantly lower. Peak and mean VSS in Region-1 were significantly higher than those in Region-2. Correlation analyses indicated that low TAWSS, high OSI and RRT were only associated with plaque in Region-2, while lesions in Region-1 were only associated with high VSS. Moreover, only VSS was associated with wall thickness of plaque-free regions in both regions. CONCLUSIONS VSS might contribute to the initialization and development of atherosclerosis solely or in combination with WSS.
Collapse
Affiliation(s)
- Zhongzhao Teng
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| | - Shuo Wang
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Aziz Tokgoz
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Valentina Taviani
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Joseph Bird
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Umar Sadat
- Cambridge Vascular Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Yuan Huang
- EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J Patterson
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Nichola Figg
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan H Gillard
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Chun SY, Lee JN, Ha YS, Yoon BH, Lee EH, Kim BM, Gil H, Han MH, Oh WS, Kwon TG, Kim TH, Kim BS. Optimization of extracellular matrix extraction from human perirenal adipose tissue. J Biomater Appl 2021; 35:1180-1191. [PMID: 33435802 DOI: 10.1177/0885328220984594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Human adipose tissue includes useful substrates for regenerative medicine such as the extracellular matrix (ECM), but most perirenal fat tissue is wasted after kidney surgery. Since a lot of adipose tissue can be procured after a kidney, we extracted ECM from human perirenal adipose tissue and optimized the extraction process. To verify the efficacy for ECM extraction, we compared the products in several steps. Perirenal adipose tissue was either finely homogenized or underwent crude manual dissection. The amount of extracted ECM was quantified with ELISA for verification of the initial tissue downsizing effect. To validate the drying effect for fast and complete delipidation, tissues were prepared in a dry or wet phase, and residual lipids were visualized with Oil-Red-O staining. The extracted lipid was assayed at each time point to quantify the appropriate delipidation time. To select the optimal decellularization method, tissues were treated with physical, chemical, or enzymatic method, and the residual cell debris were identified with histological staining. The biochemical properties of the ECM extracted by the above methods were analyzed. The ECM extracted by fine homogenization showed a significantly enhanced amount of collagen, laminin and fibronectin compared to the crude dissection method. The dried tissue showed fast and complete lipid elimination compared to the wet tissue. Complete delipidation was achieved at 45 min after acetone treatment. Additionally, 1% triton X-100 chemical treatment showed complete decellularization with well-preserved collagen fibers. Biochemical analysis revealed preserved ECM proteins, a high cell proliferation rate and normal cell morphology without cell debris or lipids. The established process of homogenization, drying, delipidation with acetone, and decellularization with Triton X-100 treatment can be an optimal method for ECM extraction from human perirenal adipose tissue. Using this technique, human perirenal adipose tissue may be a valuable source for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Bo Hyun Yoon
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Eun Hye Lee
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Bo Mi Kim
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Haejung Gil
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Woo Seok Oh
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Tae-Hwan Kim
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Bum Soo Kim
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
26
|
Goyal RP, Khangembam SD, Gangwar AK, Verma MK, Kumar N, Ahmed P, Yadav VK, Singh Y, Verma RK. Development of decellularized aortic scaffold for regenerative medicine using Sapindus mukorossi fruit pericarp extract. Micron 2020; 142:102997. [PMID: 33388519 DOI: 10.1016/j.micron.2020.102997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022]
Abstract
The aim of this study is to develop a novel decellularization method using aqueous extract of soap nut pericarp (SPE) and its evaluation using hematoxylin-eosin staining, scanning electron microscopy, diamidino-2-phenylindol (DAPI) staining, mechanical testing, sodium dodecyl sulfate polyacrylamide gel electrophoresis and DNA quantification. The presently available decellularization agent raises some concerns due to the potential for presence of residual cytotoxic agents in the extracellular matrix. Histological analysis of hematoxylin and eosin and masson's trichrome stained processed aortic samples shows complete decellularization with preservation of extracellular matrix microarchitecture at 120 h. Further, staining of tissue samples with DAPI demonstrates complete removal of DNA fragments. Quantitative evaluation of DNA in the decellularized aorta tissues demonstrated a significant (P < 0.01) decrease in DNA content as compared to native tissues. Collagen quantification assay indicate no significant (P> 0.05) difference in its content between native and decellularized caprine aorta. Tensile strength of the decellularized scaffolds decreased non-significantly (P > 0.05) when compared to native tissues. There was no significant (P > 0.05) difference in young's modulus of elasticity, stiffness and stretch ratio between native aortic tissues and decellularized aortic scaffolds. Histological and scanning electron microscopic examination of in vitro cultured scaffold demonstrated the cell viability and proliferation of primary chicken embryo fibroblasts. SPE treatment is thus capable of producing cytocompatible decellularized caprine aorta scaffold with preservation of extracellular matrix architecture for vascular tissue engineering and could be applied widely as one of the decellularization agent.
Collapse
Affiliation(s)
- Ravi Prakash Goyal
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India
| | - Sangeeta Devi Khangembam
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India
| | - Anil Kumar Gangwar
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India.
| | - Mahesh Kumar Verma
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India
| | - Naveen Kumar
- Principal Scientist, Division of Surgery, I.V.R.I., Izatnagar UP, India
| | - Parvez Ahmed
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India
| | - Vipin Kumar Yadav
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India
| | - Yogendra Singh
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India
| | - Rajesh Kumar Verma
- Department of Veterinary Clinical Complex (Veterinary Microbiology), College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India
| |
Collapse
|
27
|
Mallis P, Kostakis A, Stavropoulos-Giokas C, Michalopoulos E. Future Perspectives in Small-Diameter Vascular Graft Engineering. Bioengineering (Basel) 2020; 7:E160. [PMID: 33321830 PMCID: PMC7763104 DOI: 10.3390/bioengineering7040160] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The increased demands of small-diameter vascular grafts (SDVGs) globally has forced the scientific society to explore alternative strategies utilizing the tissue engineering approaches. Cardiovascular disease (CVD) comprises one of the most lethal groups of non-communicable disorders worldwide. It has been estimated that in Europe, the healthcare cost for the administration of CVD is more than 169 billion €. Common manifestations involve the narrowing or occlusion of blood vessels. The replacement of damaged vessels with autologous grafts represents one of the applied therapeutic approaches in CVD. However, significant drawbacks are accompanying the above procedure; therefore, the exploration of alternative vessel sources must be performed. Engineered SDVGs can be produced through the utilization of non-degradable/degradable and naturally derived materials. Decellularized vessels represent also an alternative valuable source for the development of SDVGs. In this review, a great number of SDVG engineering approaches will be highlighted. Importantly, the state-of-the-art methodologies, which are currently employed, will be comprehensively presented. A discussion summarizing the key marks and the future perspectives of SDVG engineering will be included in this review. Taking into consideration the increased number of patients with CVD, SDVG engineering may assist significantly in cardiovascular reconstructive surgery and, therefore, the overall improvement of patients' life.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Alkiviadis Kostakis
- Center of Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| |
Collapse
|
28
|
Cheng J, Li J, Cai Z, Xing Y, Wang C, Guo L, Gu Y. Decellularization of porcine carotid arteries using low-concentration sodium dodecyl sulfate. Int J Artif Organs 2020; 44:497-508. [PMID: 33222583 DOI: 10.1177/0391398820975420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The decellularized scaffold is a promising material for producing tissue-engineered vascular grafts (TEVGs) because of its complex, native-like three-dimensional structure and mechanical properties. Sodium dodecyl sulfate (SDS), one of the most commonly used decellularization reagents, appears to be more effective than other detergents for removing cells from dense tissues. The concentrations of SDS used in previous studies and their effects on decellularization are not consistent. METHODS In this study, porcine carotid arteries were decellularized using detergent-based protocols using Triton X-100 followed by SDS at different concentrations and exposing time. Cell removal efficiency and composition were evaluated by histological analysis, and DNA and collagen quantification. Ultrastructure, mechanical properties, pore size distribution, and in vivo biocompatibility of decellularized arteries were also evaluated. RESULTS The DNA content of decellularized scaffolds treated with 0.3% SDS for 72 h or 0.5% SDS for 48 h was significantly less than that treated with 1% SDS for 30 h. There was a significant loss of soluble collagen after treatment with 1% SDS relative to native arteries. The extensive loss of elastin and glycosaminoglycans was observed in decellularized arteries treated with 0.5% SDS or 1% SDS. The basement membrane and biomechanics were also damaged by these two protocols. Moreover, decellularized scaffolds became more porous with many large pores after treatment with 0.3% SDS. CONCLUSION Low-concentration SDS could be a suitable choice for artery decellularization. Decellularized porcine carotid arteries, prepared using Triton X-100 followed by 0.3% SDS, may be a promising biological scaffold for TEVGs.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Ji Li
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Zhiwen Cai
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Yuehao Xing
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
29
|
Schneider KH, Rohringer S, Kapeller B, Grasl C, Kiss H, Heber S, Walter I, Teuschl AH, Podesser BK, Bergmeister H. Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial small diameter vascular grafts. Acta Biomater 2020; 116:246-258. [PMID: 32871281 DOI: 10.1016/j.actbio.2020.08.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/27/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Vascular grafts with a diameter of less than 6 mm are made from a variety of materials and techniques to provide alternatives to autologous vascular grafts. Decellularized materials have been proposed as a possible approach to create extracellular matrix (ECM) vascular prostheses as they are naturally derived and inherently support various cell functions. However, these desirable graft characteristics may be limited by alterations of the ECM during the decellularization process leading to decreased biomechanical properties and hemocompatibility. In this study, arteries from the human placenta chorion were decellularized using two distinct detergents (Triton X-100 or SDS), which differently affect ECM ultrastructure. To overcome biomechanical strength loss and collagen fiber exposure after decellularization, riboflavin-mediated UV (RUV) crosslinking was used to uniformly crosslink the collagenous ECM of the grafts. Graft characteristics and biocompatibility with and without RUV crosslinking were studied in vitro and in vivo. RUV-crosslinked ECM grafts showed significantly improved mechanical strength and smoothening of the luminal graft surfaces. Cell seeding using human endothelial cells revealed no cytotoxic effects of the RUV treatment. Short-term aortic implants in rats showed cell migration and differentiation of host cells. Functional graft remodeling was evident in all grafts. Thus, RUV crosslinking is a preferable tool to improve graft characteristics of decellularized matrix conduits.
Collapse
|
30
|
Yu T, Wen L, He J, Xu Y, Li T, Wang W, Ma Y, Ahmad MA, Tian X, Fan J, Wang X, Hagiwara H, Ao Q. Fabrication and evaluation of an optimized acellular nerve allograft with multiple axial channels. Acta Biomater 2020; 115:235-249. [PMID: 32771587 DOI: 10.1016/j.actbio.2020.07.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Acellular nerve allografts are promising alternatives to autologous nerve grafts, but still have many drawbacks which greatly limit their curative effects. Here, we developed an optimized acellular nerve allograft with multiple axial channels by a modified decellularization method. These allografts were confirmed to preserve more extracellular matrix components and factors, and remove cellular components effectively. Meanwhile, macrochannels and microchannels were introduced to optimize internal microstructure of allografts, which increases porosity and water absorption, without significant loss of mechanical strength. The in vitro experiments demonstrated that the multichannel allografts showed superior ability of facilitating proliferation and penetration of Schwann cells. Additionally, in the in vivo experiments, the multichannel allografts were used to bridge 10 mm rat sciatic nerve defects. They exhibited better capacity to guide regenerative nerve fibers through the defective segment and restore innervation of target organs, thus achieving better recovery of muscle and motor function, in comparison with conventional acellular allografts. These findings indicate that this multichannel acellular nerve allograft has great potential for clinical application and provides a new prospective for future investigations of nerve regeneration. STATEMENT OF SIGNIFICANCE: Acellular nerve allografts, with preservation of natural extracellular matrix, are officially approved to repair peripheral nerve injury in some countries. However, bioactive component loss and compact internal structure result in variable clinical effects of conventional acellular allografts. In the present study, we fabricated an optimized acellular nerve allograft with multiple axial channels, which could both enable decellularization to be easily accomplished and reduce the amount of detergents in the preparation process. Characterization of the multichannel acellular allografts was confirmed to have better preservation of ECM bioactive molecules and regenerative factors. Efficiency evaluation showed the multichannel allografts could facilitate Schwann cells to migrate inside them in vitro, and enhance regrowth and myelination of axons as well as recovery of muscle and motor function in vivo.
Collapse
|
31
|
Xu Z, Feng Z, Guo L, Ye L, Tong Z, Geng X, Wang C, Jin X, Hui X, Gu Y. Biocompatibility evaluation of heparin-conjugated poly(ε-caprolactone) scaffolds in a rat subcutaneous implantation model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:76. [PMID: 32761269 DOI: 10.1007/s10856-020-06419-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Vascular grafts prepared from synthetic polymers have serious shortcomings that can be resolved by surface modification, such as by immobilizing heparin. In this study, the mechanical properties, biocompatibility, anticoagulation property, and water contact angle of two heparin-conjugated poly(ε-caprolactone) scaffolds (PCL-hexamethylendiamine-heparin, PCL-HMD-H. PCL-lysine-heparin, PCL-LYS-H) were compared to identify a preferred heparin conjugation method. An evaluation of the subcutaneous tissue biocompatibility of the scaffolds demonstrated that PCL-HMD-H had better endothelial cell proliferation than the PCL-LYS-H and was therefore a promising scaffold candidate for use in vascular tissue-engineering.
Collapse
Affiliation(s)
- Zeqin Xu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, 100053, Beijing, China
| | - Zengguo Feng
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, 100053, Beijing, China
| | - Lin Ye
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Zhu Tong
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, 100053, Beijing, China
| | - Xue Geng
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, 100053, Beijing, China
| | - Xin Jin
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Xin Hui
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, 100053, Beijing, China.
| |
Collapse
|
32
|
Fusaro L, Calvo Catoira M, Ramella M, Sacco Botto F, Talmon M, Fresu LG, Hidalgo-Bastida A, Boccafoschi F. Polylysine Enriched Matrices: A Promising Approach for Vascular Grafts. Front Bioeng Biotechnol 2020; 8:281. [PMID: 32318560 PMCID: PMC7147808 DOI: 10.3389/fbioe.2020.00281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases represent the leading cause of death in developed countries. Modern surgical methods show poor efficiency in the substitution of small-diameter arteries (<6 mm). Due to the difference in mechanical properties between the native artery and the substitute, the behavior of the vessel wall is a major cause of inefficient substitutions. The use of decellularized scaffolds has shown optimal prospects in different applications for regenerative medicine. The purpose of this work was to obtain polylysine-enriched vascular substitutes, derived from decellularized porcine femoral and carotid arteries. Polylysine acts as a matrix cross-linker, increasing the mechanical resistance of the scaffold with respect to decellularized vessels, without altering the native biocompatibility and hemocompatibility properties. The biological characterization showed an excellent biocompatibility, while mechanical tests displayed that the Young's modulus of the polylysine-enriched matrix was comparable to native vessel. Burst pressure test demonstrated strengthening of the polylysine-enriched matrix, which can resist to higher pressures with respect to native vessel. Mechanical analyses also show that polylysine-enriched vessels presented minimal degradation compared to native. Concerning hemocompatibility, the performed analyses show that polylysine-enriched matrices increase coagulation time, with respect to commercial Dacron vascular substitutes. Based on these findings, polylysine-enriched decellularized vessels resulted in a promising approach for vascular substitution.
Collapse
Affiliation(s)
- Luca Fusaro
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy.,Tissuegraft srl, Novara, Italy
| | - Marta Calvo Catoira
- Tissuegraft srl, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases - CAAD, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | - Martina Ramella
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy.,Tissuegraft srl, Novara, Italy
| | - Federico Sacco Botto
- Physiology and Experimental Surgery, Department of Translational Medicine, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | - Maria Talmon
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | - Luigia Grazia Fresu
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | - Araida Hidalgo-Bastida
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom.,Centre for Advanced Materials and Surface Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Centre for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy.,Tissuegraft srl, Novara, Italy
| |
Collapse
|
33
|
Li J, Cai Z, Cheng J, Wang C, Fang Z, Xiao Y, Feng ZG, Gu Y. Characterization of a heparinized decellularized scaffold and its effects on mechanical and structural properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:999-1023. [PMID: 32138617 DOI: 10.1080/09205063.2020.1736741] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Decellularization is a promising approach in tissue engineering to generate small-diameter blood vessels. However, some challenges still exist. We performed two decellularization phases to develop an optimal decellularized scaffold and analyze the relationship between the extracellular matrix (ECM) composition and mechanical properties. In decellularization phase I, we tested sodium dodecylsulfate (SDS), Triton X-100 (TX100) and trypsin at different concentrations and exposure times. In decellularization phase II, we systematically compared five combined decellularization protocols based on the results of phase I to identify the optimal method. These protocols tested cell removal, ECM preservation, mechanical properties, and residual cytotoxicity. We further immobilized heparin to optimal decellularized scaffolds and determined its anticoagulant activity and mechanical properties. The combined decellularization protocol comprising treatment with 0.5% SDS followed by 1% TX100 could completely remove the cellular contents and preserve the mechanical properties and ECM architecture better. In addition, the heparinized decellularized scaffolds not only had sustained anticoagulant activity, but also similar mechanical properties to native vessels. In conclusion, heparinized decellularized scaffolds represent a promising direction for small-diameter vascular grafts, although further in vivo studies are needed.
Collapse
Affiliation(s)
- Ji Li
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwen Cai
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jin Cheng
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiping Fang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Sengupta P, Ghosh A, Bose N, Mukherjee S, Roy Chowdhury A, Datta P. A comparative assessment of poly(vinylidene fluoride)/conducting polymer electrospun nanofiber membranes for biomedical applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pavel Sengupta
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology Howrah West Bengal India
| | - Aritri Ghosh
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology Howrah West Bengal India
| | - Navonil Bose
- Department of PhysicsSupreme Knowledge Foundation Group of Institutions Mankundu Hooghly India
| | - Sampad Mukherjee
- Department of PhysicsIndian Institute of Engineering Science and Technology Shibpur Howrah India
| | - Amit Roy Chowdhury
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology Howrah West Bengal India
- Department of Aerospace Engineering and Applied MechanicsIndian Institute of Engineering Science and Technology Howrah West Bengal India
| | - Pallab Datta
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology Howrah West Bengal India
| |
Collapse
|
35
|
Patel KH, Talovic M, Dunn AJ, Patel A, Vendrell S, Schwartz M, Garg K. Aligned nanofibers of decellularized muscle extracellular matrix for volumetric muscle loss. J Biomed Mater Res B Appl Biomater 2020; 108:2528-2537. [DOI: 10.1002/jbm.b.34584] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/07/2020] [Accepted: 02/02/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Krishna H. Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Andrew J. Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Sara Vendrell
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Mark Schwartz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| |
Collapse
|
36
|
Fast cyclical-decellularized trachea as a natural 3D scaffold for organ engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110142. [DOI: 10.1016/j.msec.2019.110142] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 08/15/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
|
37
|
Lopera Higuita M, Griffiths LG. Small Diameter Xenogeneic Extracellular Matrix Scaffolds for Vascular Applications. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:26-45. [PMID: 31663438 DOI: 10.1089/ten.teb.2019.0229] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, despite the success of percutaneous coronary intervention (PCI), coronary artery bypass graft (CABG) remains among the most commonly performed cardiac surgical procedures in the United States. Unfortunately, the use of autologous grafts in CABG presents a major clinical challenge as complications due to autologous vessel harvest and limited vessel availability pose a significant setback in the success rate of CABG surgeries. Acellular extracellular matrix (ECM) scaffolds derived from xenogeneic vascular tissues have the potential to overcome these challenges, as they offer unlimited availability and sufficient length to serve as "off-the-shelf" CABGs. Unfortunately, regardless of numerous efforts to produce a fully functional small diameter xenogeneic ECM scaffold, the combination of factors required to overcome all failure mechanisms in a single graft remains elusive. This article covers the major failure mechanisms of current xenogeneic small diameter vessel ECM scaffolds, and reviews the recent advances in the field to overcome these failure mechanisms and ultimately develop a small diameter ECM xenogeneic scaffold for CABG. Impact Statement Currently, the use of autologous vessel in coronary artery bypass graft (CABG) is common practice. However, the use of autologous tissue poses significant complications due to tissue harvest and limited availability. Developing an alternative vessel for use in CABG can potentially increase the success rate of CABG surgery by eliminating complications related to the use of autologous vessel. However, this development has been hindered by an array of failure mechanisms that currently have not been overcome. This article describes the currently identified failure mechanisms of small diameter vascular xenogeneic extracellular matrix scaffolds and reviews current research targeted to overcoming these failure mechanisms toward ensuring long-term graft patency.
Collapse
Affiliation(s)
| | - Leigh G Griffiths
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
38
|
Philips C, Cornelissen M, Carriel V. Evaluation methods as quality control in the generation of decellularized peripheral nerve allografts. J Neural Eng 2019; 15:021003. [PMID: 29244032 DOI: 10.1088/1741-2552/aaa21a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, the high incidence of peripheral nerve injuries and the low success ratio of surgical treatments are driving research to the generation of novel alternatives to repair critical nerve defects. In this sense, tissue engineering has emerged as a possible alternative with special attention to decellularization techniques. Tissue decellularization offers the possibility to obtain a cell-free, natural extracellular matrix (ECM), characterized by an adequate 3D organization and proper molecular composition to repair different tissues or organs, including peripheral nerves. One major problem, however, is that there are no standard quality control methods to evaluate decellularized tissues. Therefore, in this review, a brief description of current strategies for peripheral nerve repair is given, followed by an overview of different decellularization methods used for peripheral nerves. Furthermore, we extensively discuss the available and currently used methods to demonstrate the success of tissue decellularization in terms of the cell removal, preservation of essential ECM molecules and maintenance or modification of biomechanical properties. Finally, orientative guidelines for the evaluation of decellularized peripheral nerve allografts are proposed.
Collapse
Affiliation(s)
- Charlot Philips
- Tissue Engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
39
|
Hazwani A, Sha'Ban M, Azhim A. Characterization and in vivo study of decellularized aortic scaffolds using closed sonication system. Organogenesis 2019; 15:120-136. [PMID: 31495272 DOI: 10.1080/15476278.2019.1656997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix (ECM) based bioscaffolds prepared by decellularization has increasingly emerged in tissue engineering application because it has structural, biochemical, and biomechanical cues that have dramatic effects upon cell behaviors. Therefore, we developed a closed sonication decellularization system to prepare ideal bioscaffolds with minimal adverse effects on the ECM. The decellularization was achieved at 170 kHz of ultrasound frequency in 0.1% and 2% Sodium Dodecyl Sulphate (SDS) solution for 10 hours. The immersion treatment as control was performed to compare the decellularization efficiency with our system. Cell removal and ECM structure were determined by histological staining and biochemical assay. Biomechanical properties were investigated by the indentation testing to test the stiffness, a residual force and compression of bioscaffolds. Additionally, in vivo implantation was performed in rat to investigate host tissue response. Compared to native tissues, histological staining and biochemical assay confirm the absence of cellularity with preservation of ECM structure. Moreover, sonication treatment has not affected the stiffness [N/mm] and a residual force [N] of the aortic scaffolds except for compression [%] which 2% SDS significantly decreased compared to native tissues showing higher SDS has a detrimental effect on ECM structure. Finally, minimal inflammatory response was observed after 1 and 5 weeks of implantation. This study reported that the novelty of our developed closed sonication system to prepare ideal bioscaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Aqilah Hazwani
- Department of Biomedical Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia , Kuantan , Pahang , Malaysia
| | - Munirah Sha'Ban
- Department of Physical Rehabilitation Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia , Kuantan , Pahang , Malaysia
| | - Azran Azhim
- Department of Biomedical Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia , Kuantan , Pahang , Malaysia
| |
Collapse
|
40
|
Daryabari SS, Kajbafzadeh AM, Fendereski K, Ghorbani F, Dehnavi M, Rostami M, Garajegayeh BA, Tavangar SM. Development of an efficient perfusion-based protocol for whole-organ decellularization of the ovine uterus as a human-sized model and in vivo application of the bioscaffolds. J Assist Reprod Genet 2019; 36:1211-1223. [PMID: 31093867 PMCID: PMC6603122 DOI: 10.1007/s10815-019-01463-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The main purpose of this investigation was to determine an efficient whole-organ decellularization protocol of a human-sized uterus and evaluate the in vivo properties of the bioscaffold. METHODS Twenty-four ovine uteri were included in this investigation and were decellularized by three different protocols (n 6). We performed histopathological and immunohistochemical evaluations, 4,6-diamidino-2-phenylindole (DAPI) staining, DNA quantification, MTT assay, scanning electron microscopy, biomechanical studies, and CT angiography to characterize the scaffolds. The optimized protocol was determined, and patches were grafted into the uterine horns of eight female Wistar rats. The grafts were extracted after 10 days; the opposite horns were harvested to be evaluated as controls. RESULTS Protocol III (perfusion with 0.25% and 0.5% SDS solution and preservation in 10% formalin) was determined as the optimized method with efficient removal of the cellular components while preserving the extracellular matrix. Also, the bioscaffolds demonstrated native-like biomechanical, structural, and vascular properties. Histological and immunohistochemical evaluations of the harvested grafts confirmed the biocompatibility and recellularization potential of bioscaffolds. Also, the grafts demonstrated higher positive reaction for CD31 and Ki67 markers compared with the control samples which indicated eminent angiogenesis properties and proliferative capacity of the implanted tissues. CONCLUSIONS This investigation introduces an optimized protocol for whole-organ decellularization of the human-sized uterus with native-like characteristics and a prominent potential for regeneration and angiogenesis which could be employed in in vitro and in vivo studies. To the best of our knowledge, this is the first study to report biomechanical properties and angiographic evaluations of a large animal uterine scaffold.
Collapse
Affiliation(s)
- Seyedeh Sima Daryabari
- Section of Tissue Engineering and Stem Cell Therapy, Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, No. 62, Dr. Gharibs Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Section of Tissue Engineering and Stem Cell Therapy, Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, No. 62, Dr. Gharibs Street, Keshavarz Boulevard, Tehran, 1419733151, Iran.
| | - Kiarad Fendereski
- Section of Tissue Engineering and Stem Cell Therapy, Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, No. 62, Dr. Gharibs Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Fariba Ghorbani
- Section of Tissue Engineering and Stem Cell Therapy, Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, No. 62, Dr. Gharibs Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Mehrshad Dehnavi
- Section of Tissue Engineering and Stem Cell Therapy, Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, No. 62, Dr. Gharibs Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Minoo Rostami
- Section of Tissue Engineering and Stem Cell Therapy, Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, No. 62, Dr. Gharibs Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | | | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Patel KH, Dunn AJ, Talovic M, Haas GJ, Marcinczyk M, Elmashhady H, Kalaf EG, Sell SA, Garg K. Aligned nanofibers of decellularized muscle ECM support myogenic activity in primary satellite cells in vitro. ACTA ACUST UNITED AC 2019; 14:035010. [PMID: 30812025 DOI: 10.1088/1748-605x/ab0b06] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Volumetric muscle loss (VML) is a loss of over ∼10% of muscle mass that results in functional impairment. Although skeletal muscle possesses the ability to repair and regenerate itself following minor injuries, VML injuries are irrecoverable. Currently, there are no successful clinical therapies for the treatment of VML. Previous studies have treated VML defects with decellularized extracellular matrix (D-ECM) scaffolds derived from either pig urinary bladder or small intestinal submucosa. These therapies were unsuccessful due to the poor mechanical stability of D-ECM leading to quick degradation in vivo. To circumvent these issues, in this manuscript aligned nanofibers of D-ECM were created using electrospinning that mimicked native muscle architecture and provided topographical cues to primary satellite cells. Additionally, combining D-ECM with polycaprolactone (PCL) improved the tensile mechanical properties of the electrospun scaffold. In vitro testing shows that the electrospun scaffold with aligned nanofibers of PCL and D-ECM supports satellite cell growth, myogenic protein expression, and myokine production.
Collapse
|
42
|
Cheng J, Wang C, Gu Y. Combination of freeze-thaw with detergents: A promising approach to the decellularization of porcine carotid arteries. Biomed Mater Eng 2019; 30:191-205. [PMID: 30741667 DOI: 10.3233/bme-191044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jin Cheng
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, , P.R. China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, , P.R. China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, , P.R. China
| |
Collapse
|
43
|
Preservation strategies for decellularized pericardial scaffolds for off-the-shelf availability. Acta Biomater 2019; 84:208-221. [PMID: 30342283 DOI: 10.1016/j.actbio.2018.10.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/26/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
Decellularized biological scaffolds hold great promise in cardiovascular surgery. In order to ensure off-the-shelf availability, routine use of decellularized scaffolds requires tissue banking. In this study, the suitability of cryopreservation, vitrification and freeze-drying for the preservation of decellularized bovine pericardial (DBP) scaffolds was evaluated. Cryopreservation was conducted using 10% DMSO and slow-rate freezing. Vitrification was performed using vitrification solution (VS83) and rapid cooling. Freeze-drying was done using a programmable freeze-dryer and sucrose as lyoprotectant. The impact of the preservation methods on the DBP extracellular matrix structure, integrity and composition was assessed using histology, biomechanical testing, spectroscopic and thermal analysis, and biochemistry. In addition, the cytocompatibility of the preserved scaffolds was also assessed. All preservation methods were found to be suitable to preserve the extracellular matrix structure and its components, with no apparent signs of collagen deterioration or denaturation, or loss of elastin and glycosaminoglycans. Biomechanical testing, however, showed that the cryopreserved DBP displayed a loss of extensibility compared to vitrified or freeze-dried scaffolds, which both displayed similar biomechanical behavior compared to non-preserved control scaffolds. In conclusion, cryopreservation altered the biomechanical behavior of the DBP scaffolds, which might lead to graft dysfunction in vivo. In contrast to cryopreservation and vitrification, freeze-drying is performed with non-toxic protective agents and does not require storage at ultra-low temperatures, thus allowing for a cost-effective and easy storage and transport. Due to these advantages, freeze-drying is a preferable method for the preservation of decellularized pericardium. STATEMENT OF SIGNIFICANCE: Clinical use of DBP scaffolds for surgical reconstructions or substitutions requires development of a preservation technology that does not alter scaffold properties during long-term storage. Conclusive investigation on adverse impacts of the preservation methods on DBP matrix integrity is still missing. This work is aiming to close this gap by studying three potential preservation technologies, cryopreservation, vitrification and freeze-drying, in order to achieve the off-the-shelf availability of DBP patches for clinical application. Furthermore, it provides novel insights for dry-preservation of decellularized xenogeneic scaffolds that can be used in the routine clinical cardiovascular practice, allowing the surgeon the opportunity to choose an ideal implant matching with the needs of each patient.
Collapse
|
44
|
Simsa R, Vila XM, Salzer E, Teuschl A, Jenndahl L, Bergh N, Fogelstrand P. Effect of fluid dynamics on decellularization efficacy and mechanical properties of blood vessels. PLoS One 2019; 14:e0220743. [PMID: 31381614 PMCID: PMC6682308 DOI: 10.1371/journal.pone.0220743] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022] Open
Abstract
Decellularization of blood vessels is a promising approach to generate native biomaterials for replacement of diseased vessels. The decellularization process affects the mechanical properties of the vascular graft and thus can have a negative impact for in vivo functionality. The aim of this study was to determine how detergents under different fluid dynamics affects decellularization efficacy and mechanical properties of the vascular graft. We applied a protocol utilizing 1% TritonX, 1% Tributyl phosphate (TnBP) and DNase on porcine vena cava. The detergents were applied to the vessels under different conditions; static, agitation and perfusion with 3 different perfusion rates (25, 100 and 400 mL/min). The decellularized grafts were analyzed with histological, immunohistochemical and mechanical tests. We found that decellularization efficacy was equal in all groups, however the luminal ultrastructure of the static group showed remnant cell debris and the 400 mL/min perfusion group showed local damage and tearing of the luminal surface. The mechanical stiffness and maximum tensile strength were not influenced by the detergent application method. In conclusion, our results indicate that agitation or low-velocity perfusion with detergents are preferable methods for blood vessel decellularization.
Collapse
Affiliation(s)
- Robin Simsa
- VERIGRAFT AB, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Xavier Monforte Vila
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Elias Salzer
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Andreas Teuschl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | | | - Niklas Bergh
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
45
|
Cocciolone AJ, Johnson E, Shao JY, Wagenseil JE. Elastic fiber fragmentation increases transmural hydraulic conductance and solute transport in mouse arteries. J Biomech Eng 2018; 141:2718211. [PMID: 30516242 DOI: 10.1115/1.4042173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 01/15/2023]
Abstract
Transmural advective transport of solute and fluid was investigated in mouse carotid arteries with either a genetic knockout of Fibulin-5 (Fbln5-/-) or treatment with elastase to determine the influence of a disrupted elastic fiber matrix on wall transport properties. Fibulin-5 is an important director of elastic fiber assembly. Arteries from Fbln5-/- mice have a loose, non-continuous elastic fiber network and were hypothesized to have reduced resistance to advective transport. Experiments were carried out ex vivo at physiological pressure and axial stretch. Hydraulic conductance (Lp ) was measured to be 4.99·10-6 ± 8.94·10-7, 3.18·-5 ± 1.13·10-5 (P < 0.01), and 3.57·10-5 ± 1.77·10-5 (P < 0.01) mm·s-1·mmHg-1 for wild-type, Fbln5-/-, and elastase-treated carotids, respectively. Solute fluxes of 4, 70, and 150 kDa FITC-dextran were statistically increased in Fbln5-/- compared to wild-type by a factor of 4, 22, and 3 respectively. 70 kDa FITC-dextran solute flux was similarly increased in elastase-treated carotids by a factor of 27. Solute uptake by Fbln5-/- carotids was decreased compared to wild-type for all investigated dextran sizes after 60 minutes of transmural transport. These changes in transport properties of elastic fiber compromised arteries have important implications for the kinetics of biomolecules and pharmaceuticals in arterial tissue following elastic fiber degradation due to aging or vascular disease.
Collapse
Affiliation(s)
| | - Elizabeth Johnson
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Jin-Yu Shao
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., CB 1185, St. Louis, MO 63130
| |
Collapse
|
46
|
Gaul R, Nolan D, Ristori T, Bouten C, Loerakker S, Lally C. Strain mediated enzymatic degradation of arterial tissue: Insights into the role of the non-collagenous tissue matrix and collagen crimp. Acta Biomater 2018; 77:301-310. [PMID: 30126592 DOI: 10.1016/j.actbio.2018.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/04/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023]
Abstract
Collagen fibre remodelling is a strain dependent process which is stimulated by the degradation of existing collagen. To date, literature has focussed on strain dependent degradation of pure collagen or structurally simple collagenous tissues, often overlooking degradation within more complex, heterogenous soft tissues. The aim of this study is to identify, for the first time, the strain dependent degradation behaviour and mechanical factors influencing collagen degradation in arterial tissue using a combined experimental and numerical approach. To achieve this, structural analysis was carried out using small angle light scattering to determine the fibre level response due to strain induced degradation. Next, strain dependent degradation rates were determined from stress relaxation experiments in the presence of crude and purified collagenase to determine the tissue level degradation response. Finally, a 1D theoretical model was developed, incorporating matrix stiffness and a gradient of collagen fibre crimp to decouple the mechanism behind strain dependent arterial degradation. SALS structural analysis identified a strain mediated degradation response in arterial tissue at the fibre level not dissimilar to that found in literature for pure collagen. Interestingly, two distinctly different strain mediated degradation responses were identified experimentally at the tissue level, not seen in other collagenous tissues. Our model was able to accurately predict these experimental findings, but only once the load bearing matrix, its degradation response and the gradient of collagen fibre crimp across the arterial wall were incorporated. These findings highlight the critical role that the various tissue constituents play in the degradation response of arterial tissue. STATEMENT OF SIGNIFICANCE Collagen fibre architecture is the dominant load bearing component of arterial tissue. Remodelling of this architecture is a strain dependent process stimulated by the degradation of existing collagen. Despite this, degradation of arterial tissue and in particular, arterial collagen, is not fully understood or studied. In the current study, we identified for the first time, the strain dependent degradation response of arterial tissue, which has not been observed in other collagenous tissues in literature. We hypothesised that this unique degradation response was due to the complex structure observed in arterial tissue. Based on this hypothesis, we developed a novel numerical model capable of explaining this unique degradation response which may provide critical insights into disease development and aid in the design of interventional medical devices.
Collapse
|
47
|
In Vivo Performance of Decellularized Vascular Grafts: A Review Article. Int J Mol Sci 2018; 19:ijms19072101. [PMID: 30029536 PMCID: PMC6073319 DOI: 10.3390/ijms19072101] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
Due to poor vessel quality in patients with cardiovascular diseases, there has been an increased demand for small-diameter tissue-engineered blood vessels that can be used as replacement grafts in bypass surgery. Decellularization techniques to minimize cellular inflammation have been applied in tissue engineering research for the development of small-diameter vascular grafts. The biocompatibility of allogenic or xenogenic decellularized matrices has been evaluated in vitro and in vivo. Both short-term and long-term preclinical studies are crucial for evaluation of the in vivo performance of decellularized vascular grafts. This review offers insight into the various preclinical studies that have been performed using decellularized vascular grafts. Different strategies, such as surface-modified, recellularized, or hybrid vascular grafts, used to improve neoendothelialization and vascular wall remodeling, are also highlighted. This review provides information on the current status and the future development of decellularized vascular grafts.
Collapse
|
48
|
Lin CH, Kao YC, Ma H, Tsay RY. An investigation on the correlation between the mechanical property change and the alterations in composition and microstructure of a porcine vascular tissue underwent trypsin-based decellularization treatment. J Mech Behav Biomed Mater 2018; 86:199-207. [PMID: 29986294 DOI: 10.1016/j.jmbbm.2018.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE The nonlinear pseudoelastic behavior of a native/decellularized vascular tissue is closely related to the detailed composition and microstructure of the extracellular matrix and is important in maintaining the patency of a small-caliber vascular graft. A commonly used enzyme-detergent based decellularization protocol is effective in cell component removal but it also changes the microstructure and composition of the decellularized tissues. Previous studies provide limited information to correlate the mechanical property change with the alterations in composition and microstructure in a decellularization process. In this study, the correlations were studied by implementing a previously established fiber-progressive-engagement model to describe the nonlinear pseudoelastic behavior of a vascular tissue and to evaluate the effects of trypsin concentration and exposure duration on porcine coronary artery decellularization RESULTS: Results showed that tissue length and width increased and thickness and wet weight decreased with the exposure of trypsin. The effects of trypsin exposure times on the four mechanical parameters, i.e. initial strain, turning strain, initial modulus and stiffness modulus, in the longitudinal and circumferential directions were similar, but stronger in the circumferential direction. Major components of the extracellular matrix were vulnerable to the trypsin-based decellularization process. The decreases in initial and turning strain and the increase in initial modulus in circumferential direction were correlated with the significant decrease of collagen and glycosaminoglycans in the media layer. CONCLUSIONS Although trypsin-based decellularization achieved cell component removal and preservation of ultimate tensile stress, the microstructure and composition changed with alterations in the pseudoelastic behavior of the porcine coronary artery. Taken together, the current observations suggested less waviness, early engagement, or re-alignment of insoluble collagen fibers in the media layer, which resulted in turning from anisotropic into isotropic uniaxial mechanical property of porcine vascular tissue. Selecting the proper trypsin concentration (< 0.03-0.5%) and duration (< 12 h) of trypsin exposure in combination with other methods will achieve optimal porcine coronary artery decellularization.
Collapse
Affiliation(s)
- Chih-Hsun Lin
- Division of Plastic Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Rd., Beitou Dist., Taipei City 112, Taiwan, ROC; Department of Surgery, School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong St., Beitou Dist., Taipei City 112, Taiwan, ROC
| | - Yun-Chu Kao
- Institute of Biomedical Engineering, National Yang-Ming University, No. 155, Section 2, Linong St., Beitou Dist., Taipei City 112, Taiwan, ROC
| | - Hsu Ma
- Division of Plastic Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Rd., Beitou Dist., Taipei City 112, Taiwan, ROC; Department of Surgery, School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong St., Beitou Dist., Taipei City 112, Taiwan, ROC
| | - Ruey-Yug Tsay
- Institute of Biomedical Engineering, National Yang-Ming University, No. 155, Section 2, Linong St., Beitou Dist., Taipei City 112, Taiwan, ROC; Center for Advanced Pharmaceutics and Drug Delivery Research, National Yang-Ming University, No. 155, Section 2, Linong St., Beitou Dist., Taipei City 112, Taiwan, ROC.
| |
Collapse
|
49
|
Zhang Y, Iwata T, Nam K, Kimura T, Wu P, Nakamura N, Hashimoto Y, Kishida A. Water absorption by decellularized dermis. Heliyon 2018; 4:e00600. [PMID: 29862362 PMCID: PMC5968173 DOI: 10.1016/j.heliyon.2018.e00600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 11/20/2022] Open
Abstract
Water absorption by decellularized dermis was investigated and compared with biopolymer and synthetic polymer hydrogels (glutaraldehyde-crosslinked gelatin and crosslinked poly(acrylamide) hydrogel, respectively). Porcine dermis was decellularized in an aqueous sodium dodecyl sulfate (SDS) solution. Histological evaluation revealed that the SDS-treated dermis has much larger gaps between collagen fibrils than non-treated dermis, and that water absorption depends on these gaps. Decellularized dermis has low water absorptivity and the absorption obeys Fick's second law. During absorption, the water diffusion rate decreases with time and occurs in two steps. The first is rapid absorption into the large gaps, followed by slow absorption by the collagen fiber layer. Because of the gaps, decellularized dermis can absorb more water than native dermis and shows different water absorption behavior to glutaraldehyde-crosslinked gelatin and crosslinked poly(acrylamide) hydrogels.
Collapse
|
50
|
Desai A, Vafaee T, Rooney P, Kearney JN, Berry HE, Ingham E, Fisher J, Jennings LM. In vitro biomechanical and hydrodynamic characterisation of decellularised human pulmonary and aortic roots. J Mech Behav Biomed Mater 2018; 79:53-63. [DOI: 10.1016/j.jmbbm.2017.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022]
|