1
|
Liu HJ, Li LY, Wang ZL, Fan YL, Shen YX, Song F, Zhu LL. Dynamic polysaccharide/platelet-rich plasma hydrogels with synergistic antibacterial activities for accelerating infected wound healing. Int J Biol Macromol 2024; 281:136209. [PMID: 39383899 DOI: 10.1016/j.ijbiomac.2024.136209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Platelet-rich plasma (PRP) has been recognized as an effective therapy in regenerative medicine and surgery, which can reduce the risk of antibiotic abuse and promote the healing of infected wounds. Recent advances in PRP-based treatments have focused on the controlled release of growth factors in PRP with biocompatible hydrogels and antimicrobial promotion by introducing hydrogel components or antibiotics, while the inherent antimicrobial activity of PRP is mostly neglected or sacrificed. Here, we demonstrate the combination of an antimicrobial polysaccharide, carboxymethyl chitosan, and PRP to construct an antimicrobial hydrogel via dynamic bonding with oxidized chondroitin sulfate. Significant inhibitory effects against Staphylococcus aureus and Escherichia coli (95 % of inhibition rate) are achieved through the synergistic contributions of the polysaccharide and PRP. Additionally, the resulting hydrogel promotes the migration of NIH-3T3 fibroblasts and collagen deposition by approximately 1.7 and 1.8 times, respectively, thereby accelerating the healing process of infected wounds. This work may bring new perspectives for potent applications of PRP-based hydrogel dressings for antibiotic-free management of infected wounds.
Collapse
Affiliation(s)
- Hong-Jie Liu
- Department of Blood Transfusion, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China; Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550001, China
| | - Lin-Yue Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials, (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zi-Lin Wang
- Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550001, China; Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, Sichuan 643000, China
| | - Ya-Ling Fan
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials, (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Xue Shen
- Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550001, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials, (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Li-Li Zhu
- Department of Blood Transfusion, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China; Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550001, China.
| |
Collapse
|
2
|
Picciotti SL, El-Ahmad H, Bucci MP, Grayton QE, Wallet SM, Schoenfisch MH. Delivery of Nitric Oxide by Chondroitin Sulfate C Increases the Rate of Wound Healing through Immune Modulation. ACS APPLIED BIO MATERIALS 2024; 7:6152-6161. [PMID: 39159191 DOI: 10.1021/acsabm.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Chronic wounds impact 2.5% of the United States population and will continue to be a major clinical challenge due to increases in population age, chronic disease diagnoses, and antibiotic-resistant infection. Nitric oxide (NO) is an endogenous signaling molecule that represents an attractive, simple therapeutic for chronic wound treatment due to its innate antibacterial and immunomodulatory function. Unfortunately, modulating inflammation for extended periods by low levels of NO is not possible with NO gas. Herein, we report the utility of a NO-releasing glycosaminoglycan biopolymer (GAG) for promoting wound healing. GAGs are naturally occurring biopolymers that are immunomodulatory and known to be involved in the native wound healing process. Thus, the combination of NO and GAG biopolymers represents an attractive wound therapeutic due to these known independent roles. The influence and contribution of chondroitin sulfate C (CSC) modified to facilitate controlled and targeted delivery of NO (CSC-HEDA/NO) was evaluated using in vitro cell proliferation and migration assays and an in vivo wound model.
Collapse
Affiliation(s)
- Samantha L Picciotti
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Heba El-Ahmad
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Madelyn P Bucci
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Quincy E Grayton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shannon M Wallet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Chiu A, Sharma D, Zhao F. Tissue Engineering-Based Strategies for Diabetic Foot Ulcer Management. Adv Wound Care (New Rochelle) 2023; 12:145-167. [PMID: 34939837 PMCID: PMC9810358 DOI: 10.1089/wound.2021.0081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Significance: Diabetic foot ulcers (DFU) are a mounting problem with the increasingly frail population. Injuries that would otherwise heal are kept open by risk factors such as diabetes, obesity, and age-related conditions, which interferes with the natural wound healing processes. Recent Advances: This review summarizes recent advancements in the field of tissue engineering for the treatment of DFUs. FDA-approved approaches, including signaling-based therapies, stem cell therapies, and skin substitutes are summarized and cutting-edge experimental technologies that have the potential to manage chronic wounds, such as skin printing, skin organogenesis, skin self-assembly, and prevascularization, are discussed. Critical Issues: The standard of care for chronic wounds involves wound debridement, wound dressings, and resolving the underlying cause such as lowering the glycemic index and reducing wound pressure. Current DFU treatments are limited by low wound closure rates and poor regrown skin quality. New adjuvant therapies that facilitate wound closure in place of or in conjunction with standard care are critically needed. Future Directions: Tissue engineering strategies are limited by the plasticity of adult human cells. In addition to traditional techniques, genetic modification, although currently an emerging technology, has the potential to unlock human regeneration and can be incorporated in future therapeutics.
Collapse
Affiliation(s)
- Alvis Chiu
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Dhavan Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Masood F, Makhdoom MA, Channa IA, Gilani SJ, Khan A, Hussain R, Batool SA, Konain K, Rahman SU, Wadood A, bin Jumah MN, Rehman MAU. Development and Characterization of Chitosan and Chondroitin Sulfate Based Hydrogels Enriched with Garlic Extract for Potential Wound Healing/Skin Regeneration Applications. Gels 2022; 8:gels8100676. [PMID: 36286177 PMCID: PMC9601755 DOI: 10.3390/gels8100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/01/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrogels can provide instant relief to pain and facilitate the fast recovery of wounds. Currently, the incorporation of medicinal herbs/plants in polymer matrix is being investigated due to their anti-bacterial and wound healing properties. Herein, we investigated the novel combination of chitosan (CS) and chondroitin sulfate (CHI) to synthesize hydrogels through freeze gelation process and enriched it with garlic (Gar) by soaking the hydrogels in garlic juice for faster wound healing and resistance to microbial growth at the wound surface. The synthesized hydrogels were characterized via Fourier-transform infrared spectroscopy (FTIR), which confirmed the presence of relevant functional groups. The scanning electron microscopy (SEM) images exhibited the porous structure of the hydrogels, which is useful for the sustained release of Gar from the hydrogels. The synthesized hydrogels showed significant inhibition zones against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Furthermore, cell culture studies confirmed the cyto-compatibility of the synthesized hydrogels. Thus, the novel hydrogels presented in this study can offer an antibacterial effect during wound healing and promote tissue regeneration.
Collapse
Affiliation(s)
- Fatima Masood
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Muhammad Atif Makhdoom
- Institute of Metallurgy and Materials Engineering, University of the Punjab, Lahore 54590, Pakistan
- Correspondence: (M.A.M.); (M.A.U.R.)
| | - Iftikhar Ahmed Channa
- Thin Film Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, Off University Road, Karachi 75270, Pakistan
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ahmad Khan
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Rabia Hussain
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Syeda Ammara Batool
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Kiran Konain
- Molecular Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25120, Pakistan
| | - Saeed Ur Rahman
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25120, Pakistan
| | - Abdul Wadood
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - May Nasser bin Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
- Correspondence: (M.A.M.); (M.A.U.R.)
| |
Collapse
|
5
|
Tan SH, Chua DAC, Tang JRJ, Bonnard C, Leavesley D, Liang K. Design of Hydrogel-based Scaffolds for in vitro Three-dimensional Human Skin Model Reconstruction. Acta Biomater 2022; 153:13-37. [DOI: 10.1016/j.actbio.2022.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
6
|
Maloney SE, Broberg CA, Grayton QE, Picciotti SL, Hall HR, Wallet SM, Maile R, Schoenfisch MH. Role of Nitric Oxide-Releasing Glycosaminoglycans in Wound Healing. ACS Biomater Sci Eng 2022; 8:2537-2552. [PMID: 35580341 DOI: 10.1021/acsbiomaterials.2c00392] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two glycosaminoglycan (GAG) biopolymers, hyaluronic acid (HA) and chondroitin sulfate (CS), were chemically modified via carbodiimide chemistry to facilitate the loading and release of nitric oxide (NO) to develop a multi-action wound healing agent. The resulting NO-releasing GAGs released 0.2-0.9 μmol NO mg-1 GAG into simulated wound fluid with NO-release half-lives ranging from 20 to 110 min. GAGs containing alkylamines with terminal primary amines and displaying intermediate NO-release kinetics exhibited potent, broad spectrum bactericidal action against three strains each of Pseudomonas aeruginosa and Staphylococcus aureus ranging in antibiotic resistance profile. NO loading of the GAGs was also found to decrease murine TLR4 activation, suggesting that the therapeutic exhibits anti-inflammatory mechanisms. In vitro adhesion and proliferation assays utilizing human dermal fibroblasts and human epidermal keratinocytes displayed differences as a function of the GAG backbone, alkylamine identity, and NO-release properties. In combination with antibacterial properties, the adhesion and proliferation profiles of the GAG derivatives enabled the selection of the most promising wound healing candidates for subsequent in vivo studies. A P. aeruginosa-infected murine wound model revealed the benefits of CS over HA as a pro-wound healing NO donor scaffold, with benefits of accelerated wound closure and decreased bacterial burden attributable to both active NO release and the biopolymer backbone.
Collapse
Affiliation(s)
- Sara E Maloney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher A Broberg
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Quincy E Grayton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha L Picciotti
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hannah R Hall
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shannon M Wallet
- Division of Oral, Craniofacial, and Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Robert Maile
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,North Carolina Jaycee Burn Center Research Laboratory, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Wang K, Liu K, Zha F, Wang H, Gao R, Wang J, Li K, Xu X, Zhao Y. Preparation and characterization of chondroitin sulfate from large hybrid sturgeon cartilage by hot-pressure and its effects on acceleration of wound healing. Int J Biol Macromol 2022; 209:1685-1694. [PMID: 35461870 DOI: 10.1016/j.ijbiomac.2022.04.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 01/02/2023]
Abstract
In this paper, a combination of hot-pressure, enzymatic hydrolysis and membrane separation process is used for efficiently and environmentally friendly extraction of chondroitin sulfate (CS) from large hybrid sturgeon cartilage, namely, HPCS. The recovery and yield of CS were 93.68% and 36.47% under the optimized conditions. Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography (HPLC) indicated that the HPCS was composed of monosulfated disaccharides in position 6 and 4 of the N-acetyl-D-galactosamine (58.38% and 27.34%, respectively) and nonsulfated disaccharide (14.29%), which was similar to the composition of CS extracted by dilute alkali-enzymatic hydrolysis-chemical precipitation from large hybrid sturgeon cartilage (SCS). The wound healing results indicated that HPCS could promote cell migration and proliferation, alleviate inflammation and facilitate angiogenesis, which results in its excellent wound treatment activity. These results provide theoretical and practical significance for the production and application of chondroitin sulfate.
Collapse
Affiliation(s)
- Kangyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Kang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Fengchao Zha
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Haiyan Wang
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China; Hisense (Shandong) Refrigerator Co., Ltd., 266100 Qingdao, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinlin Wang
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Keyi Li
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China.
| |
Collapse
|
8
|
Li W, Ura K, Takagi Y. Industrial application of fish cartilaginous tissues. Curr Res Food Sci 2022; 5:698-709. [PMID: 35479656 PMCID: PMC9035649 DOI: 10.1016/j.crfs.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 11/26/2022] Open
Abstract
Cartilage is primarily composed of proteoglycans and collagen. Bioactive compounds derived from animal cartilage, such as chondroitin sulfate and type II collagen, have multiple bioactivities and are incorporated in popular health products. The aging population and increases in degenerative and chronic diseases will stimulate the rapid growth of market demand for cartilage products. Commercial production of bioactive compounds primarily involves the cartilages of mammals and poultry. However, these traditional sources are associated zoonosis concerns; thus, cartilage products from the by-products of fish processing has gained increasing attention because of their high level of safety and other activities. In this review, we summarize the current state of research into fish-derived cartilage products and their application, and discuss future trends and tasks to encourage further expansion and exploitation. At present, shark cartilage is the primary source of marine cartilage. However, the number of shark catches is decreasing worldwide, owing to overfishing. This review considers the potential alternative fish cartilage sources for industrialization. Three keys, the sustainable production of fish, new fish-processing model, and market demand, have been discussed for the future realization of efficient fish cartilage use. The industrialization of fish-derived cartilage products is beneficial for achieving sustainable development of local economies and society. Bioactive compounds derived from fish cartilage are popular as health products. Type II collagen and chondroitin sulfate are the major cartilage bioactive compounds. Cartilaginous fishes, sturgeons, and salmonids are potential fish cartilage sources. Keys for industrialization are fish production, processing model, and market demands. Industrialization of fish cartilage products accords with sustainable development.
Collapse
|
9
|
Silk fibroin nanofibers containing chondroitin sulfate and silver sulfadiazine for wound healing treatment. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Chondroitin sulfate zinc with antibacterial properties and anti-inflammatory effects for skin wound healing. Carbohydr Polym 2022; 278:118996. [PMID: 34973799 DOI: 10.1016/j.carbpol.2021.118996] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
Abstract
A chondroitin sulfate zinc (CSZn) complex was prepared by an ion-exchange method. The purified product was characterized by energy-dispersive X-ray spectroscopy, high-performance chromatography, elemental analysis, Fourier transform infrared spectroscopy, inductively coupled mass spectrometry, and nuclear magnetic resonance spectroscopy. The CSZn demonstrated antibacterial activity against Escherichia coli and Staphylococcus aureus and satisfied MTT cell viability (NIH3T3 fibroblasts) at ≤50 μg/mL. RT-PCR demonstrated significant promotion by CSZn of fibroblast growth factor beta (β-FGF), collagen III (COLIIIα1), vascular endothelial growth factor (VEGF) and reduction of cytokines IL-6, IL-1β & TNF-alpha. An in vivo rat full-thickness wound healing model demonstrated significant wound healing of CSZn relative to controls of saline treatment, zinc chloride treatment and chondroitin treatment. CSZn has demonstrated promising antibacterial and wound healing properties making it deserving of consideration for more advanced wound healing applications.
Collapse
|
11
|
Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int J Biol Macromol 2021; 192:298-322. [PMID: 34634326 DOI: 10.1016/j.ijbiomac.2021.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022]
Abstract
Today, chronic wound care and management can be regarded as a clinically critical issue. However, the limitations of current approaches for wound healing have encouraged researchers and physicians to develop more efficient alternative approaches. Advances in tissue engineering and regenerative medicine have resulted in the development of promising approaches that can accelerate wound healing and improve the skin regeneration rate and quality. The design and fabrication of scaffolds that can address the multifactorial nature of chronic wound occurrence and provide support for the healing process can be considered an important area requiring improvement. In this regard, polysaccharide-based scaffolds have distinctive properties such as biocompatibility, biodegradability, high water retention capacity and nontoxicity, making them ideal for wound healing applications. Their tunable structure and networked morphology could facilitate a number of functions, such as controlling their diffusion, maintaining wound moisture, absorbing a large amount of exudates and facilitating gas exchange. In this review, the wound healing process and the influential factors, structure and properties of carbohydrate polymers, physical and chemical crosslinking of polysaccharides, scaffold fabrication techniques, and the use of polysaccharide-based scaffolds in skin tissue engineering and wound healing applications are discussed.
Collapse
|
12
|
Júnior AF, Ribeiro CA, Leyva ME, Marques PS, Soares CRJ, Alencar de Queiroz AA. Biophysical properties of electrospun chitosan-grafted poly(lactic acid) nanofibrous scaffolds loaded with chondroitin sulfate and silver nanoparticles. J Biomater Appl 2021; 36:1098-1110. [PMID: 34601887 DOI: 10.1177/08853282211046418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this work was to study the biophysical properties of the chitosan-grafted poly(lactic acid) (CH-g-PLA) nanofibers loaded with silver nanoparticles (AgNPs) and chondroitin-4-sulfate (C4S). The electrospun CH-g-PLA:AgNP:C4S nanofibers were manufactured using the electrospinning technique. The microstructure of the CH-g-PLA:AgNP:C4S nanofibers was investigated by proton nuclear magnetic resonance (1H-NMR), scanning electron microscopy (SEM), UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and Fourier transform infrared (ATR-FTIR) spectroscopy. ATR-FTIR and 1H-NMR confirm the CH grafting successfully by PLA with a substitution degree of 33.4%. The SEM measurement results indicated apparently smooth nanofibers having a diameter range of 340 ± 18 nm with porosity of 89 ± 3.08% and an average pore area of 0.27 μm2. UV-Vis and XRD suggest that silver nanoparticles with the size distribution of 30 nm were successfully incorporated into the electrospun nanofibers. The water contact angle of 12.8 ± 2.7° reveals the hydrophilic nature of the CH-g-PLA:AgNP:C4S nanofibers has been improved by C4S. The electrospun CH-g-PLA:AgNP:C4S nanofibers are found to release ions Ag+ at a concentration level capable of rendering an antimicrobial efficacy. Gram-positive bacteria (S.aureus) were more sensitive to CH-g-PLA:AgNP:C4S than Gram-negative bacteria (E. coli). The electrospun CH-g-PLA:AgNP:C4S nanofibers exhibited no cytotoxicity to the L-929 fibroblast cells, suggesting cytocompatibility. Fluorescence microscopy demonstrated that C4S promotes the adhesion and proliferation of fibroblast cells onto electrospun CH-g-PLA:AgNP:C4S nanofibers.
Collapse
Affiliation(s)
- Alexandre F Júnior
- Doctorate Post-graduate scholarship in Materials for Engineering/Biomaterials (CAPES), 28094Federal University of Itajubá (UNIFEI), Itajubá, Brazil
| | - Charlene A Ribeiro
- Doctorate Post-graduate scholarship in Materials for Engineering/Biomaterials (CAPES), 28094Federal University of Itajubá (UNIFEI), Itajubá, Brazil
| | - Maria E Leyva
- 28094Institute of Physics and Chemistry/Federal University of Itajubá (UNIFEI), Itajubá, Brazil
| | - Paulo S Marques
- 28094Institute of Natural Resources (IRN)/Federal University of Itajubá (UNIFEI), Itajubá, Brazil
| | - Carlos R J Soares
- Biotechnology Center (CEBIO), 119500Nuclear and Energy Research Institute, Sao Paulo, Brazil
| | | |
Collapse
|
13
|
An international multidisciplinary peer-driven consensus on the optimal use of hemostatic powders in surgical practice. Updates Surg 2021; 73:1267-1273. [PMID: 34322783 PMCID: PMC8317684 DOI: 10.1007/s13304-021-01136-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/02/2022]
Abstract
Bleeding is a consequence of insufficient hemostasis and excessive bleeding at a surgical site is associated with an increased risk of post-operative infection, transfusion and re-operation, in addition to increased hospital length of stay and costs. Surgeons employ a range of methods to achieve hemostasis, including topical hemostatic agents of differing composition and properties. Hemostatic powders are a sub-group of topical hemostats, which can be used in helping as adjuncts to manage troublesome bleeding in a variety of situations. As this technology is relatively new and potentially not well known by the broad surgical community, no specific guidelines or recommendations for the optimal use of hemostatic powders in surgery currently exist. A steering group throughout Europe of multidisciplinary surgeons, expert in hemostasis and hemostatics, identified from literature and from personal experience, five key topics. When to use hemostatic powder, the evidence for use, benefits of use, safety remarks and considerations in various surgical specialties. Thirty-seven statements were subsequently drawn from these five key topics. An online survey was sent to 128 high-volume surgeons working in breast surgery, gynaecological and obstetric surgery, general and emergency surgery, thoracic surgery and urological surgery in Europe to assess agreement (consensus) with these statements. Consensus was defined as high if ≥ 75% and very high if ≥ 90% of respondents agreed with a statement. A total of 79 responses were received and consensus among the surgical experts was very high in 27 (73%) statements, high in 8 (22%) statements and was not achieved in 2 (5%) statements. Based on the consensus scores, the steering group produced 16 key recommendations which they considered could improve patient outcomes by reducing post-operative bleeding and its associated complications using hemostatic powder.
Collapse
|
14
|
Bonkovoski LC, Vilsinski BH, Panice MR, Nunes CS, Braga G, Lazarin-Bidóia D, Nakamura CV, Martins AF, Muniz EC. Cytocompatible drug delivery devices based on poly[(2-dimethylamino) ethyl methacrylate]/chondroitin sulfate polyelectrolyte complexes prepared in ionic liquids. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Shah SA, Sohail M, Khan SA, Kousar M. Improved drug delivery and accelerated diabetic wound healing by chondroitin sulfate grafted alginate-based thermoreversible hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112169. [PMID: 34082970 DOI: 10.1016/j.msec.2021.112169] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022]
Abstract
Injectable hydrogels with multifunctional tunable properties comprising biocompatibility, anti-oxidative, anti-bacterial, and/or anti-infection are highly preferred to efficiently promote diabetic wound repair and its development remains a challenge. In this study, we report chondroitin sulphate (CS) and sodium alginate (SA)-based injectable hydrogel using solvent casting method loaded with curcumin that could potentiate reepithelization, increase angiogenesis, and collagen deposition at wound microenvironment to endorse healing cascade. The physical interaction and self-assembly of chondroitin sulfate grafted alginate (CS-Alg-g-PF127) hydrogel were confirmed using nuclear magnetic resonance (1H NMR) and Fourier transformed infrared spectroscopy (FT-IR), and cytocompatibility was confirmed by fibroblast viability assay. The Masson's trichrome (MT) and hematoxylin and eosin (H&E) results revealed that blank chondroitin sulfate grafted alginate (CS-Alg-g-PF127) and CUR loaded CS-Alg-g-PF127 hydrogel had promising tissue regenerative ability, and showing enhanced wound healing compared to other treatment groups. The controlled release of CUR from injectable hydrogel was evaluated by drug release studies and pharmacokinetic profile (PK) using high-performance liquid chromatography (HPLC) that exhibited the mean residence time (MRT) and area under the curve (AUC) was increased up to 16.18 h and 203.64 ± 30.1 μg/mL*h, respectively. Cytotoxicity analysis of the injectable hydrogels using 3 T3-L1 fibroblasts cells and in vivo toxicity evaluated by subcutaneous injection for 24 h followed by histological examination, confirmed good biocompatibility of CUR loaded CS-Alg-g-PF127 hydrogel. Interestingly, the results of in vivo wound healing by injectable hydrogel showed the upregulation of fibroblasts-like cells, collagen deposition, and differentiated keratinocytes stimulating dermo-epidermal junction, which might endorse that they are potential candidates for excisional wound healing models.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan.
| | - Shujaat Ali Khan
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| |
Collapse
|
16
|
Keshvardoostchokami M, Majidi SS, Huo P, Ramachandran R, Chen M, Liu B. Electrospun Nanofibers of Natural and Synthetic Polymers as Artificial Extracellular Matrix for Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E21. [PMID: 33374248 PMCID: PMC7823539 DOI: 10.3390/nano11010021] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Many types of polymer nanofibers have been introduced as artificial extracellular matrices. Their controllable properties, such as wettability, surface charge, transparency, elasticity, porosity and surface to volume proportion, have attracted much attention. Moreover, functionalizing polymers with other bioactive components could enable the engineering of microenvironments to host cells for regenerative medical applications. In the current brief review, we focus on the most recently cited electrospun nanofibrous polymeric scaffolds and divide them into five main categories: natural polymer-natural polymer composite, natural polymer-synthetic polymer composite, synthetic polymer-synthetic polymer composite, crosslinked polymers and reinforced polymers with inorganic materials. Then, we focus on their physiochemical, biological and mechanical features and discussed the capability and efficiency of the nanofibrous scaffolds to function as the extracellular matrix to support cellular function.
Collapse
Affiliation(s)
- Mina Keshvardoostchokami
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Sara Seidelin Majidi
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; (S.S.M.); (M.C.)
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Rajan Ramachandran
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Menglin Chen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; (S.S.M.); (M.C.)
- Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| |
Collapse
|
17
|
Debele TA, Su WP. Polysaccharide and protein-based functional wound dressing materials and applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1809403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tilahun Ayane Debele
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 138, Sheng Li Road, Tainan 704, Taiwan
- Department of Medical Biochemistry, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 138, Sheng Li Road, Tainan 704, Taiwan
- Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
18
|
Min D, Park S, Kim H, Lee SH, Ahn Y, Jung W, Kim HJ, Cho YW. Potential anti-ageing effect of chondroitin sulphate through skin regeneration. Int J Cosmet Sci 2020; 42:520-527. [PMID: 32583476 DOI: 10.1111/ics.12645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/03/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Skin ageing is inevitably exposed through its typical features such as wrinkles and sagging. Therefore, skin anti-ageing is a major issue in cosmetic research to prevent and improve ageing symptoms using effective ingredients. Chondroitin sulphate (CS), a type of glycosaminoglycan, is an important structural component of the extracellular matrix (ECM) and is involved in various biological processes, such as cell proliferation, differentiation and migration. Here, we aimed to investigate the effects of CS on skin regeneration and examine its efficacy as a potential safe and effective skin anti-ageing ingredient. METHODS We investigated the effects of CS on cell proliferation in normal human keratinocytes and fibroblasts. Then, cell migration, ECM synthesis and related signalling pathways were examined in fibroblasts through gene and protein expression analysis. Finally, the effect on skin wound healing and regeneration was validated using a full-thickness skin wound model and an aged skin model. RESULTS Chondroitin sulphate treatment increased the proliferation of keratinocytes and fibroblasts. It also stimulated the migration and synthesis of ECM components of fibroblasts. Further analysis revealed that CS induced the expression of type I procollagen by activating the extracellular signal-regulated kinase pathway. Using a full-thickness skin wound model and an aged skin model, we confirmed that CS treatment promoted skin wound healing and regeneration. CONCLUSION Together, our results indicated that CS has the potential to facilitate skin regeneration, implying that CS could be clinically applied to improve skin ageing.
Collapse
Affiliation(s)
- D Min
- Basic Research & Innovation Division, AMOREPACIFIC R&D Unit, Yongin, Republic of Korea.,Department of Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - S Park
- Basic Research & Innovation Division, AMOREPACIFIC R&D Unit, Yongin, Republic of Korea
| | - H Kim
- AMOREPACIFIC R&D Unit, Yongin, Republic of Korea
| | - S H Lee
- Basic Research & Innovation Division, AMOREPACIFIC R&D Unit, Yongin, Republic of Korea
| | - Y Ahn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - W Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - H-J Kim
- Basic Research & Innovation Division, AMOREPACIFIC R&D Unit, Yongin, Republic of Korea
| | - Y W Cho
- Department of Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
19
|
Chondroitin Sulfate Promotes the Proliferation of Keloid Fibroblasts Through Activation of the Integrin and Protein Kinase B Pathways. Int J Mol Sci 2020; 21:ijms21061955. [PMID: 32182995 PMCID: PMC7139995 DOI: 10.3390/ijms21061955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 01/05/2023] Open
Abstract
Keloids are dermal fibroproliferative tumors that arise beyond the boundary of the original wound edges and invades adjacent tissue. Keloids are characterized by the extensive production of extracellular matrix (ECM) and abnormal fibroblast proliferation. Chondroitin sulfate (CS) is one of the major structural components of cartilage and ECM. Recently, we reported the over-accumulation of CS in keloid lesions. Keloid-derived fibroblasts (KFs) and normal dermal fibroblasts (NFs) were incubated with CS. The fibroblast proliferation rate was analyzed using a tetrazolium salt colorimetric assay. The activation of the intracellular signaling pathway was analyzed by Western blotting. Wortmannin, a PI3K inhibitor, and anti-integrin antibodies were tested to investigate the mechanism of the CS-induced cell proliferation. CS strongly stimulated the proliferation of KFs, but not NFs. The analysis of the intracellular signal transduction pathway revealed that the stimulation effect of CS on KF proliferation was due to the activation of the protein kinase B (AKT) pathway and that integrin α1 was responsible for this phenomenon. We revealed that CS probably activates the AKT pathway through integrin to induce KF proliferation. CS may be a novel clinical therapeutic target in keloids.
Collapse
|
20
|
Shah SA, Sohail M, Khan S, Minhas MU, de Matas M, Sikstone V, Hussain Z, Abbasi M, Kousar M. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. Int J Biol Macromol 2019; 139:975-993. [PMID: 31386871 DOI: 10.1016/j.ijbiomac.2019.08.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Non-healing, chronic wounds place a huge burden on healthcare systems as well as individual patients. These chronic wounds especially diabetic wounds will ultimately lead to compromised mobility, amputation of limbs and even death. Currently, wounds and limb ulcers associated with diabetes remain significant health issues; the associated healthcare cost ultimately leads to the increased clinical burden. The presence of diabetes interrupts a highly coordinated cascade of events in the wound closure process. Advances in the understanding of pathophysiological conditions associated with diabetic wounds lead to the development of drug delivery systems which can enhance wound healing by targeting various phases of the impaired processes. Wound environments typically contain degradative enzymes, along with an elevated pH and demonstrate a physiological cascade involved in the regeneration of tissue, which requires the application of an effective delivery system. This article aims to review the pathophysiological conditions associated with chronic and diabetic wounds. The delivery systems, involved in their treatment are described, highlighting potential biomaterials and polymers for establishing drug delivery systems, specifically for the treatment of diabetic wounds and the promotion of the associated mechanisms involved in advanced wound healing. Emerging approaches and engineered devices for effective wound care are reported. The discussion will give insight into the mechanisms relevant to all stages of wound healing.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan.
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409, USA.; Discipline of Pharmaceutical Sciences, School of Health Sciences, UKZN, Durban, South Africa
| | | | - Marcel de Matas
- SEDA Pharmaceutical Development Services, The BioHub at Alderley Park, Cheshire, UK
| | - Victoria Sikstone
- Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, UK
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| |
Collapse
|
21
|
Chondroitin Sulfate-Degrading Enzymes as Tools for the Development of New Pharmaceuticals. Catalysts 2019. [DOI: 10.3390/catal9040322] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chondroitin sulfates are linear anionic sulfated polysaccharides found in biological tissues, mainly within the extracellular matrix, which are degraded and altered by specific lyases depending on specific time points. These polysaccharides have recently acquired relevance in the pharmaceutical industry due to their interesting therapeutic applications. As a consequence, chondroitin sulfate (CS) lyases have been widely investigated as tools for the development of new pharmaceuticals based on these polysaccharides. This review focuses on the major breakthrough represented by chondroitin sulfate-degrading enzymes and their structures and mechanisms of function in addition to their major applications.
Collapse
|
22
|
Wu F, Zhou C, Zhou D, Ou S, Liu Z, Huang H. Immune-enhancing activities of chondroitin sulfate in murine macrophage RAW 264.7 cells. Carbohydr Polym 2018; 198:611-619. [DOI: 10.1016/j.carbpol.2018.06.071] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/09/2018] [Accepted: 06/14/2018] [Indexed: 01/10/2023]
|
23
|
An Inhalable Powder Formulation Based on Micro- and Nanoparticles Containing 5-Fluorouracil for the Treatment of Metastatic Melanoma. NANOMATERIALS 2018; 8:nano8020075. [PMID: 29385692 PMCID: PMC5853707 DOI: 10.3390/nano8020075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 01/21/2023]
Abstract
Melanoma is the most aggressive and lethal type of skin cancer, with a poor prognosis because of the potential for metastatic spread. The aim was to develop innovative powder formulations for the treatment of metastatic melanoma based on micro- and nanocarriers containing 5-fluorouracil (5FU) for pulmonary administration, aiming at local and systemic action. Therefore, two innovative inhalable powder formulations were produced by spray-drying using chondroitin sulfate as a structuring polymer: (a) 5FU nanoparticles obtained by piezoelectric atomization (5FU-NS) and (b) 5FU microparticles of the mucoadhesive agent Methocel™ F4M for sustained release produced by conventional spray drying (5FU-MS). The physicochemical and aerodynamic were evaluated in vitro for both systems, proving to be attractive for pulmonary delivery. The theoretical aerodynamic diameters obtained were 0.322 ± 0.07 µm (5FU-NS) and 1.138 ± 0.54 µm (5FU-MS). The fraction of respirable particles (FR%) were 76.84 ± 0.07% (5FU-NS) and 55.01 ± 2.91% (5FU-MS). The in vitro mucoadhesive properties exhibited significant adhesion efficiency in the presence of Methocel™ F4M. 5FU-MS and 5FU-NS were tested for their cytotoxic action on melanoma cancer cells (A2058 and A375) and both showed a cytotoxic effect similar to 5FU pure at concentrations of 4.3 and 1.7-fold lower, respectively.
Collapse
|
24
|
Pezeshki-Modaress M, Mirzadeh H, Zandi M, Rajabi-Zeleti S, Sodeifi N, Aghdami N, Mofrad MRK. Gelatin/chondroitin sulfate nanofibrous scaffolds for stimulation of wound healing: In-vitro
and in-vivo
study. J Biomed Mater Res A 2017; 105:2020-2034. [DOI: 10.1002/jbm.a.35890] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/09/2016] [Accepted: 08/30/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Mohamad Pezeshki-Modaress
- Tissue Engineering and Regenerative Medicine Institute; Tehran Central Branch, Islamic Azad University; Tehran Iran
- Department of Biomaterials; Iran Polymer and Petrochemical Institute; P.O. Box: 14965/159 Tehran Iran
| | - Hamid Mirzadeh
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology; P.O. Box: 15875/4413 Tehran Iran
| | - Mojgan Zandi
- Department of Biomaterials; Iran Polymer and Petrochemical Institute; P.O. Box: 14965/159 Tehran Iran
| | - Sareh Rajabi-Zeleti
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; , P.O. Box 19395/4644 Tehran Iran
| | - Niloofar Sodeifi
- Department of Andrology at Reproductive Biomedicine Research Center; Royan Institute for Reproductive Biomedicine, ACECR; Tehran Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; , P.O. Box 19395/4644 Tehran Iran
- Department of Regenerative Medicine at Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; P.O. Box 19395/4644 Tehran Iran
| | - Mohammad R. K. Mofrad
- Department of Bioengineering, Molecular Cell Biomechanics Laboratory; University of California Berkeley; 208A Stanley Hall Berkeley California
- Department of Mechanical Engineering, Molecular Cell Biomechanics Laboratory; University of California Berkeley; 208A Stanley Hall Berkeley California
| |
Collapse
|
25
|
Pinese C, Gagnieu C, Nottelet B, Rondot-Couzin C, Hunger S, Coudane J, Garric X. In vivo evaluation of hybrid patches composed of PLA based copolymers and collagen/chondroitin sulfate for ligament tissue regeneration. J Biomed Mater Res B Appl Biomater 2016; 105:1778-1788. [PMID: 27184583 DOI: 10.1002/jbm.b.33712] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/25/2016] [Accepted: 05/01/2016] [Indexed: 11/07/2022]
Abstract
Biomaterials for soft tissues regeneration should exhibit sufficient mechanical strength, demonstrating a mechanical behavior similar to natural tissues and should also promote tissues ingrowth. This study was aimed at developing new hybrid patches for ligament tissue regeneration by synergistic incorporation of a knitted structure of degradable polymer fibers to provide mechanical strength and of a biomimetic matrix to help injured tissues regeneration. PLA- Pluronic® (PLA-P) and PLA-Tetronic® (PLA-T) new copolymers were shaped as knitted patches and were associated with collagen I (Coll) and collagen I/chondroitine-sulfate (Coll CS) 3-dimensional matrices. In vitro study using ligamentocytes showed the beneficial effects of CS on ligamentocytes proliferation. Hybrid patches were then subcutaneously implanted in rats for 4 and 12 weeks. Despite degradation, patches retained strength to answer the mechanical physiological needs. Tissue integration capacity was assessed with histological studies. We showed that copolymers, associated with collagen and chondroitin sulfate sponge, exhibited very good tissue integration and allowed neotissue synthesis after 12 weeks in vivo. To conclude, PLA-P/CollCS and PLA-T/CollCS hybrid patches in terms of structure and composition give good hopes for tendon and ligament regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1778-1788, 2017.
Collapse
Affiliation(s)
- Coline Pinese
- Arficial Biopolymers Department, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, Faculty of Pharmacy, Montpellier, 34093, France
| | - Christian Gagnieu
- National Institute of Applied Science, MATEIS, UMR 5510, INSA de Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - Benjamin Nottelet
- Arficial Biopolymers Department, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, Faculty of Pharmacy, Montpellier, 34093, France
| | | | - Sylvie Hunger
- Arficial Biopolymers Department, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, Faculty of Pharmacy, Montpellier, 34093, France
| | - Jean Coudane
- Arficial Biopolymers Department, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, Faculty of Pharmacy, Montpellier, 34093, France
| | - Xavier Garric
- Arficial Biopolymers Department, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, Faculty of Pharmacy, Montpellier, 34093, France
| |
Collapse
|
26
|
Suleria HAR, Masci P, Gobe G, Osborne S. Current and potential uses of bioactive molecules from marine processing waste. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1064-1067. [PMID: 26332893 DOI: 10.1002/jsfa.7444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/15/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
Food industries produce huge amounts of processing waste that are often disposed of incurring expenses and impacting upon the environment. For these and other reasons, food processing waste streams, in particular marine processing waste streams, are gaining popularity amongst pharmaceutical, cosmetic and nutraceutical industries as sources of bioactive molecules. In the last 30 years, there has been a gradual increase in processed marine products with a concomitant increase in waste streams that include viscera, heads, skins, fins, bones, trimmings and shellfish waste. In 2010, these waste streams equated to approximately 24 million tonnes of mostly unused resources. Marine processing waste streams not only represent an abundant resource, they are also enriched with structurally diverse molecules that possess a broad panel of bioactivities including anti-oxidant, anti-coagulant, anti-thrombotic, anti-cancer and immune-stimulatory activities. Retrieval and characterisation of bioactive molecules from marine processing waste also contributes valuable information to the vast field of marine natural product discovery. This review summarises the current use of bioactive molecules from marine processing waste in different products and industries. Moreover, this review summarises new research into processing waste streams and the potential for adoption by industries in the creation of new products containing marine processing waste bioactives.
Collapse
Affiliation(s)
- Hafiz Ansar Rasul Suleria
- School of Medicine, The University of Queensland, Australia, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, 4102, Australia
- CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Paul Masci
- School of Medicine, The University of Queensland, Australia, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Glenda Gobe
- School of Medicine, The University of Queensland, Australia, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Simone Osborne
- CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| |
Collapse
|
27
|
Bobula T, Buffa R, Procházková P, Vágnerová H, Moravcová V, Šuláková R, Židek O, Velebný V. One-pot synthesis of α,β-unsaturated polyaldehyde of chondroitin sulfate. Carbohydr Polym 2016; 136:1002-9. [DOI: 10.1016/j.carbpol.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 11/30/2022]
|
28
|
Young JJ, Chen CC, Chen YC, Cheng KM, Yen HJ, Huang YC, Tsai TN. Positively and negatively surface-charged chondroitin sulfate-trimethylchitosan nanoparticles as protein carriers. Carbohydr Polym 2015; 137:532-540. [PMID: 26686160 DOI: 10.1016/j.carbpol.2015.10.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/23/2015] [Accepted: 10/30/2015] [Indexed: 11/26/2022]
Abstract
Positively and negatively surface-charged nanoparticles (NPs) were prepared with chondroitin sulfate (ChS) and trimethylchitosan (TMC). NP size, surface charge, formation yield, and water content were investigated as a function of weight ratio and concentration. Size and zeta potential were controlled by varying the ChS/TMC mass ratio. FTIR spectra revealed interactions among composite NP constituents. TEM images showed that the NPs were nearly spherical, with an average size of ∼ 300 nm. Encapsulation efficiency increased in positively charged NPs with increases in fluorescein isothiocyanate-bovine serum albumin concentration. Negatively charged NPs had only 10-20% encapsulation efficiency. The release profile, release kinetics and mechanism of positively charged ChS-TMC NPs were studied in vitro. NP cytocompatibility and uptake were verified ex vivo. Both types of NPs were taken up and retained in cells. A549 cells took up more positively charged (49.4%) than negatively charged (35.5%) NPs.
Collapse
Affiliation(s)
- Jenn-Jong Young
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Ying-Chuan Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Department of Physiology & Biophysics, National Defense Medical Center, Taipei City 11490, Taiwan, ROC
| | - Kuang-Ming Cheng
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Hui-Ju Yen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan, ROC
| | - Yu-Chuan Huang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Tsung-Neng Tsai
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan, ROC.
| |
Collapse
|
29
|
Jardim KV, Joanitti GA, Azevedo RB, Parize AL. Physico-chemical characterization and cytotoxicity evaluation of curcumin loaded in chitosan/chondroitin sulfate nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:294-304. [PMID: 26249593 DOI: 10.1016/j.msec.2015.06.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/16/2015] [Accepted: 06/16/2015] [Indexed: 11/18/2022]
Abstract
In this study, chitosan (CTS)/chondroitin sulfate (CS) nanoparticles, both pure and curcumin-loaded, were synthesized by ionic gelation. This method is simple and efficient for obtaining nanoparticles with a low polydispersity index (0.151±0.03 to 0.563±0.07) and hydrodynamic diameter in the range of 175.7±2.5 to 710.2±8.9nm, for this study. Samples have a relatively high zeta potential value, a fact that indicates that the colloidal system has good physical and chemical stabilities. The efficiency of the curcumin encapsulation in nanoparticles, which ranged from 62.4±0.61% to 68.3±0.88%, depends on the pH of the chitosan solution. The release of curcumin from the nanoparticles was enabled by a diffusion mechanism, with fast release in a phosphate buffer solution at pH6.8. The assaying of cell viability by the MTT test showed that the presence of both free curcumin and curcumin in the nanoencapsulated form leads to a statistically significant reduction in the viability of A549 cells, by comparison with the control group. The most significant reductions in cell viability of 41.1% and 60.4% (p<0.0001) were observed after 72h, by using 40μmol∙L(-1) free curcumin and curcumin encapsulated in CTS/CS nanoparticles with the chitosan solution at pH6.0, respectively.
Collapse
Affiliation(s)
- Katiúscia Vieira Jardim
- Universidade de Brasília (UnB) - Campus Planaltina (FUP) - Área Universitária n°01, Vila N. Sa. De Fátima, CEP: 73345-010 - Planaltina, Brasília, DF, Brazil
| | - Graziella Anselmo Joanitti
- Universidade de Brasília (UnB) - Campus Ceilândia (FCE) - Centro Metropolitano - Conjunto A - Lote 01, CEP: 72220-900 - Ceilândia, Brasília, DF, Brazil
| | - Ricardo Bentes Azevedo
- Laboratório de Nanobiotecnologia - Instituto de Ciências Biológicas - Universidade de Brasília - UnB - Campus Universitário Darcy Ribeiro - CEP 70910-900 - Asa Norte, Brasília, DF, Brazil
| | - Alexandre Luis Parize
- Universidade de Brasília (UnB) - Campus Planaltina (FUP) - Área Universitária n°01, Vila N. Sa. De Fátima, CEP: 73345-010 - Planaltina, Brasília, DF, Brazil; Departamento de Química - Universidade Federal de Santa Catarina - CEP: 88040-900 - Trindade, Florianópolis, SC, Brazil.
| |
Collapse
|
30
|
Pezeshki-Modaress M, Mirzadeh H, Zandi M. Gelatin–GAG electrospun nanofibrous scaffold for skin tissue engineering: Fabrication and modeling of process parameters. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:704-12. [DOI: 10.1016/j.msec.2014.12.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/18/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
31
|
Ito G, Kobayashi T, Takeda Y, Sokabe M. Proteoglycan from salmon nasal cartridge [corrected] promotes in vitro wound healing of fibroblast monolayers via the CD44 receptor. Biochem Biophys Res Commun 2014; 456:792-8. [PMID: 25514035 DOI: 10.1016/j.bbrc.2014.12.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 01/02/2023]
Abstract
Proteoglycans (PGs) are involved in various cellular functions including cell growth, adhesion, and differentiation; however, their physiological roles are not fully understood. In this study, we examined the effect of PG purified from salmon nasal cartilage (SNC-PG) on wound closure using tissue-cultured cell monolayers, an in vitro wound-healing assay. The results indicated that SNC-PG significantly promoted wound closure in NIH/3T3 cell monolayers by stimulating both cell proliferation and cell migration. SNC-PG was effective in concentrations from 0.1 to 10μg/ml, but showed much less effect at higher concentrations (100-1000μg/ml). The effect of SNC-PG was abolished by chondroitinase ABC, indicating that chondroitin sulfates (CSs), a major component of glycosaminoglycans (GAGs) in SNC-PG, are crucial for the SNC-PG effect. Furthermore, chondroitin 6-sulfate (C-6-S), a major CS of SNC-PG GAGs, could partially reproduce the SNC-PG effect and partially inhibit the binding of SNC-PG to cells, suggesting that SNC-PG exerts its effect through an interaction between the GAGs in SNC-PG and the cell surface. Neutralization by anti-CD44 antibodies or CD44 knockdown abolished SNC-PG binding to the cells and the SNC-PG effect on wound closure. These results suggest that interactions between CS-rich GAG-chains of SNC-PG and CD44 on the cell surface are responsible for the SNC-PG effect on wound closure.
Collapse
Affiliation(s)
- Gen Ito
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takeshi Kobayashi
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yoshie Takeda
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Mechanobiology Institute Singapore, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
32
|
Chen D, Wu M, Chen J, Zhang C, Pan T, Zhang B, Tian H, Chen X, Sun J. Robust, flexible, and bioadhesive free-standing films for the co-delivery of antibiotics and growth factors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13898-13906. [PMID: 25353985 DOI: 10.1021/la503684k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Free-standing polymer films that adhere strongly to tissue and can codeliver multiple therapeutic agents in a controlled manner are useful as medical plasters. In this study, a bilayer polymer film comprising a drug reservoir layer and a supporting layer is fabricated by spin-coating poly(lactic-co-glycolic acid) (PLGA) on top of a layer-by-layer assembled film of poly(β-amino esters) (PAE), alginate sodium (ALG), and recombinant human basic fibroblast growth factor (bFGF). Apart from bFGF, the bilayer film can also load antibiotic drug ceftriaxone sodium (CTX) by a postdiffusion process. The PLGA supporting layer facilitates the direct peeling of the bilayer film from substrate to produce a robust and flexible free-standing film with excellent adhesion onto the human skin and porcine liver. The excellent adhesion of the bilayer film originates from the ALG component in the drug reservoir layer. CTX is quickly released by easily breaking its electrostatic interaction with the drug reservoir layer, whereas the sustained release of bFGF is due to the slow degradation of PAE component in the drug reservoir layer. Wounds can be synergetically treated by fast release of CTX to effectively eradicate invasive bacteria and by sustained release of bFGF to accelerate wound healing. Our results serve as a basis for designing multifunctional free-standing films with combination therapy for biomedical applications.
Collapse
Affiliation(s)
- Dongdong Chen
- State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University , Changchun, P. R. China 130012
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sandri G, Bonferoni MC, Rossi S, Ferrari F, Mori M, Cervio M, Riva F, Liakos I, Athanassiou A, Saporito F, Marini L, Caramella C. Platelet lysate embedded scaffolds for skin regeneration. Expert Opin Drug Deliv 2014; 12:525-45. [PMID: 25297510 DOI: 10.1517/17425247.2015.961421] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The work presents the development of acellular scaffolds extemporaneously embedded with platelet lysate (PL), as an innovative approach in the field of tissue regeneration/reparation. PL embedded scaffolds should have a tridimensional architecture to support cell migration and growth, in order to restore skin integrity. For this reason, chondroitin sulfate (CS) was associated with sodium alginate (SA) to prepare highly porous systems. METHODS The developed scaffolds were characterized for chemical stability to γ-radiation, morphology, hydration and mechanical properties. Moreover, the capability of fibroblasts and endothelial cells to populate the scaffold was evaluated by means of proliferation test 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and confocal laser scanning microscopy study. The scaffolds, not altered by sterilization, were characterized by limited swelling and high flexibility, by foam-like structure with bubbles that formed a high surface area and irregular texture suitable for cell adhesion. RESULTS Cell growth and scaffold population were evident on the bubble surface, where the cells appeared anchored to the scaffold structure. CONCLUSION Scaffold network based on CS and SA demonstrated to be an effective support to enhance and to allow fibroblasts and endothelial cells (human umbilical vein endothelial cells, HUVEC) adhesion and proliferation. In particular, it could be hypothesized that cell adhesion was facilitated by the synergic effect of PL and CS. Although further in vivo evaluation is needed, on the basis of in vitro results, PL embedded scaffolds seem promising systems for skin wound healing.
Collapse
Affiliation(s)
- Giuseppina Sandri
- University of Pavia, Department of Drug Sciences , Viale Taramelli 12, 27100 Pavia , Italy +39 0382 987357 ; +39 0382 422975 ;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ponrasu T, Suguna L. Efficacy of Annona squamosa L in the synthesis of glycosaminoglycans and collagen during wound repair in streptozotocin induced diabetic rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:124352. [PMID: 25003104 PMCID: PMC4070582 DOI: 10.1155/2014/124352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 12/26/2022]
Abstract
The aim of this work was to find out the effects of Annona squamosa on the formation of glycosaminoglycans and collagen during wound healing in normal and diabetic rats. Diabetes induced rats were segregated into 4 groups, each containing six animals. Groups I and III served as the normal and diabetic control while groups II and IV served as normal and diabetic treated. The animals were treated with 200 μL of Annona squamosa extract topically. The granulation tissues formed were removed on the 8th day and the amount of glycosaminoglycans (GAGs) and collagen formed was evaluated by sequential extraction and SDSPAGE, respectively. Histological evaluation was also carried out using Masson's trichrome stain. In vitro wound healing efficacy of A. squamosa in human dermal fibroblast culture (HDF) was also carried out. The fibroblasts treated with varying concentrations of A. squamosa were examined for proliferation and closure of the wound area and photographed. A. squamosa increased cellular proliferation in HDF culture. The granulation tissues of treated wounds showed increased levels of glycosaminoglycans (P < 0.05) and collagen which were also confirmed by histopathology. The results strongly substantiate the beneficial effects of A. squamosa on the formation of glycosaminoglycans and collagen during wound healing.
Collapse
Affiliation(s)
- Thangavel Ponrasu
- Department of Biochemistry, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai 600 020, India
| | - Lonchin Suguna
- Department of Biochemistry, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai 600 020, India
| |
Collapse
|
35
|
Lequoy P, Liberelle B, De Crescenzo G, Lerouge S. Additive Benefits of Chondroitin Sulfate and Oriented Tethered Epidermal Growth Factor for Vascular Smooth Muscle Cell Survival. Macromol Biosci 2014; 14:720-30. [DOI: 10.1002/mabi.201300443] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/09/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Pauline Lequoy
- Research Centre; Centre Hospitalier de l'Université de Montréal (CRCHUM); 900 rue Saint Denis Montreal QC, Canada H2X 0A9
- Department of Mechanical Engineering; École de technologie supérieure (ÉTS); 1100 boul. Notre-Dame Ouest Montréal, QC Canada H3C 1K3
| | - Benoît Liberelle
- Department of Chemical Engineering; École Polytechnique de Montréal; P.O. Box 6079, succ. Centre-Ville Montréal, QC Canada H3C 3A7
| | - Gregory De Crescenzo
- Department of Chemical Engineering; École Polytechnique de Montréal; P.O. Box 6079, succ. Centre-Ville Montréal, QC Canada H3C 3A7
| | - Sophie Lerouge
- Research Centre; Centre Hospitalier de l'Université de Montréal (CRCHUM); 900 rue Saint Denis Montreal QC, Canada H2X 0A9
- Department of Mechanical Engineering; École de technologie supérieure (ÉTS); 1100 boul. Notre-Dame Ouest Montréal, QC Canada H3C 1K3
| |
Collapse
|
36
|
Affiliation(s)
- Vitor H. Pomin
- Program of
Glycobiology, Institute of Medical Biochemistry,
and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913,
Brazil
| |
Collapse
|
37
|
Yan S, Zhang Q, Wang J, Liu Y, Lu S, Li M, Kaplan DL. Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomater 2013; 9:6771-82. [PMID: 23419553 DOI: 10.1016/j.actbio.2013.02.016] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 01/13/2023]
Abstract
The fabrication of new dermal substitutes providing mechanical support and cellular cues is urgently needed in dermal reconstruction. Silk fibroin (SF)/chondroitin sulfate (CS)/hyaluronic acid (HA) ternary scaffolds (95-248μm in pore diameter, 88-93% in porosity) were prepared by freeze-drying. By the incorporation of CS and HA with the SF solution, the chemical potential and quantity of free water around ice crystals could be controlled to form smaller pores in the SF/CS/HA ternary scaffold main pores and improve scaffold equilibrium swelling. This feature offers benefits for cell adhesion, survival and proliferation. In vivo SF, SF/HA and SF/CS/HA (80/5/15) scaffolds as dermal equivalents were implanted onto dorsal full-thickness wounds of Sprague-Dawley rats to evaluate wound healing. Compared to SF and SF/HA scaffolds, the SF/CS/HA (80/5/15) scaffolds promoted dermis regeneration, related to improved angiogenesis and collagen deposition. Further, vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) expression in the SF/CS/HA (80/5/15) groups were investigated by immunohistochemistry to assess the mechanisms involved in the stimulation of secretion of VEGF, PDGF and bFGF and accumulation of these growth factors related to accelerated wound process. These new three-dimensional ternary scaffolds offer potential for dermal tissue regeneration.
Collapse
|
38
|
Rioux LE, Moulin V, Beaulieu M, Turgeon SL. Human skin fibroblast response is differentially regulated by galactofucan and low molecular weight galactofucan. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bcdf.2013.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Vázquez JA, Rodríguez-Amado I, Montemayor MI, Fraguas J, del Pilar González M, Murado MA. Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: characteristics, applications and eco-friendly processes: a review. Mar Drugs 2013; 11:747-74. [PMID: 23478485 PMCID: PMC3705368 DOI: 10.3390/md11030747] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/28/2013] [Accepted: 02/06/2013] [Indexed: 12/15/2022] Open
Abstract
In the last decade, an increasing number of glycosaminoglycans (GAGs), chitin and chitosan applications have been reported. Their commercial demands have been extended to different markets, such as cosmetics, medicine, biotechnology, food and textiles. Marine wastes from fisheries and aquaculture are susceptible sources for polymers but optimized processes for their recovery and production must be developed to satisfy such necessities. In the present work, we have reviewed different alternatives reported in the literature to produce and purify chondroitin sulfate (CS), hyaluronic acid (HA) and chitin/chitosan (CH/CHs) with the aim of proposing environmentally friendly processes by combination of various microbial, chemical, enzymatic and membranes strategies and technologies.
Collapse
Affiliation(s)
- José Antonio Vázquez
- Group of Recycling and Valorisation of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), r/Eduardo Cabello, 6. Vigo, Galicia 36208, Spain; E-Mails: (I.R.-A.); (J.F.); (M.P.G.); (M.A.M.)
| | - Isabel Rodríguez-Amado
- Group of Recycling and Valorisation of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), r/Eduardo Cabello, 6. Vigo, Galicia 36208, Spain; E-Mails: (I.R.-A.); (J.F.); (M.P.G.); (M.A.M.)
| | - María Ignacia Montemayor
- Research Centre of Vine and Wine Related Science (ICVV-CSIC), Scientific and Technical Complex of the University of La Rioja, Logroño 26006, Spain; E-Mail:
| | - Javier Fraguas
- Group of Recycling and Valorisation of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), r/Eduardo Cabello, 6. Vigo, Galicia 36208, Spain; E-Mails: (I.R.-A.); (J.F.); (M.P.G.); (M.A.M.)
| | - María del Pilar González
- Group of Recycling and Valorisation of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), r/Eduardo Cabello, 6. Vigo, Galicia 36208, Spain; E-Mails: (I.R.-A.); (J.F.); (M.P.G.); (M.A.M.)
| | - Miguel Anxo Murado
- Group of Recycling and Valorisation of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), r/Eduardo Cabello, 6. Vigo, Galicia 36208, Spain; E-Mails: (I.R.-A.); (J.F.); (M.P.G.); (M.A.M.)
| |
Collapse
|
40
|
Lai JY. Corneal stromal cell growth on gelatin/chondroitin sulfate scaffolds modified at different NHS/EDC molar ratios. Int J Mol Sci 2013; 14:2036-55. [PMID: 23337203 PMCID: PMC3565364 DOI: 10.3390/ijms14012036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/13/2012] [Accepted: 01/05/2013] [Indexed: 11/16/2022] Open
Abstract
A nanoscale modification strategy that can incorporate chondroitin sulfate (CS) into the cross-linked porous gelatin materials has previously been proposed to give superior performance for designed corneal keratocyte scaffolds. The purpose of this work was to further investigate the influence of carbodiimide chemistry on the characteristics and biofunctionalities of gelatin/CS scaffolds treated with varying N-hydroxysuccinimide (NHS)/1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) molar ratios (0-1) at a constant EDC concentration of 10 mM. Results of Fourier transform infrared spectroscopy and dimethylmethylene blue assays consistently indicated that when the NHS to EDC molar ratio exceeds a critical level (i.e., 0.5), the efficiency of carbodiimide-mediated biomaterial modification is significantly reduced. With the optimum NHS/EDC molar ratio of 0.5, chemical treatment could achieve relatively high CS content in the gelatin scaffolds, thereby enhancing the water content, glucose permeation, and fibronectin adsorption. Live/Dead assays and interleukin-6 mRNA expression analyses demonstrated that all the test samples have good cytocompatibility without causing toxicity and inflammation. In the molar ratio range of NHS to EDC from 0 to 0.5, the cell adhesion ratio and proliferation activity on the chemically modified samples significantly increased, which is attributed to the increasing CS content. Additionally, the materials with highest CS content (0.143 ± 0.007 nmol/10 mg scaffold) showed the greatest stimulatory effect on the biosynthetic activity of cultivated keratocytes. These findings suggest that a positive correlation is noticed between the NHS to EDC molar ratio and the CS content in the biopolymer matrices, thereby greatly affecting the corneal stromal cell growth.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
41
|
Thermosensitive eyedrops containing platelet lysate for the treatment of corneal ulcers. Int J Pharm 2012; 426:1-6. [DOI: 10.1016/j.ijpharm.2011.12.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 11/23/2022]
|
42
|
Kim JS, Werth VP. Identification of specific chondroitin sulfate species in cutaneous autoimmune disease. J Histochem Cytochem 2011; 59:780-90. [PMID: 21804080 DOI: 10.1369/0022155411411304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cutaneous lupus erythematosus and dermatomyositis (DM) are chronic inflammatory diseases of the skin with accumulated dermal mucin. Earlier work has shown chondroitin sulfate (CS) accumulation within the dermis of discoid lupus erythematosus (DLE), subacute cutaneous lupus erythematosus (SCLE), and DM lesions compared with control skin. Immunohistochemistry for C4S revealed a greater density in DLE and DM lesions, whereas SCLE lesions did not differ from controls. Scleredema and scleromyxedema are attributed to increased hyaluronic acid, and lesional samples from these diseases also demonstrated accumulated dermal C4S. Interferon-γ and interleukin-1α, but not interferon-α, treatment of cultured dermal fibroblasts induced mRNA expression of CHST-11, which attaches sulfates to the 4-position of unsulfated chondroitin. These studies on possible CS core proteins revealed that serglycin, known to have C6S side chains in endothelial cells, had greater density within DM dermal endothelia but not in DLE or SCLE, following the pattern of C6S overexpression reported previously. CD44 variants expand the CS binding repertoire of the glycoprotein; CD44v7 co-localized to the distribution of C4S in DLE lesions, a finding not observed in DM, SCLE lesions, or controls. Because C4S and C6S have immunologic effects, their dysregulation in cutaneous mucinoses may contribute to the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Jessica S Kim
- New York University School of Medicine, New York, New York, USA
| | | |
Collapse
|
43
|
Characterization of chondroitin sulfate from deer tip antler and osteogenic properties. Glycoconj J 2011; 28:473-80. [PMID: 21894464 DOI: 10.1007/s10719-011-9346-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 08/12/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Deer antler is a highly regenerative tissue that involves cellular differentiation, osteogenesis and ossification processes. Chondroitin sulfate is the major glycosaminoglycan contained in antler connective tissue and has been isolated from cartilaginous antler by 4 M GuHCl extraction, gradient ultracentrifugation and chromatography techniques. We examined the disaccharide composition by 2-AB labeling and anion exchange HPLC analysis of the three resultant fractions (high, medium and low density fractions). The high density fraction consists of A-unit and D-unit disaccharide in the ratio of 1:1, whereas, the CS disaccharide composition ratio of A- unit:C-unit:D-Unit:E-unit contained in medium and low density fractions are 3:4:3:1 and 2:2:2:1, respectively. The only intact CS oligosaccharides of the medium density fraction upregulated gene expression of bone-specific proteins of a human osteoblastic cell line (hFOB1.19). Thus, CS oligosaccharides from cartilaginous deer antler, with their oversulfated chondroitin sulfate composition, demonstrated the physiological properties and may be good candidates for osteogenetic agents in humans.
Collapse
|
44
|
Decorin and chondroitin-6 sulfate inhibit B16V melanoma cell migration and invasion by cellular acidification. J Cell Physiol 2011; 226:2641-50. [DOI: 10.1002/jcp.22612] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Dietary fish oil and curcumin combine to modulate colonic cytokinetics and gene expression in dextran sodium sulphate-treated mice. Br J Nutr 2011; 106:519-29. [PMID: 21401974 DOI: 10.1017/s0007114511000390] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Both fish oil (FO) and curcumin have potential as anti-tumour and anti-inflammatory agents. To further explore their combined effects on dextran sodium sulphate (DSS)-induced colitis, C57BL/6 mice were randomised to four diets (2 × 2 design) differing in fatty acid content with or without curcumin supplementation (FO, FO+2 % curcumin, maize oil (control, MO) or MO+2 % curcumin). Mice were exposed to one or two cycles of DSS in the drinking-water to induce either acute or chronic intestinal inflammation, respectively. FO-fed mice exposed to the single-cycle DSS treatment exhibited the highest mortality (40 %, seventeen of forty-three) compared with MO with the lowest mortality (3 %, one of twenty-nine) (P = 0·0008). Addition of curcumin to MO increased (P = 0·003) mortality to 37 % compared with the control. Consistent with animal survival data, following the one- or two-cycle DSS treatment, both dietary FO and curcumin promoted mucosal injury/ulceration compared with MO. In contrast, compared with other diets, combined FO and curcumin feeding enhanced the resolution of chronic inflammation and suppressed (P < 0·05) a key inflammatory mediator, NF-κB, in the colon mucosa. Mucosal microarray analysis revealed that dietary FO, curcumin and FO plus curcumin combination differentially modulated the expression of genes induced by DSS treatment. These results suggest that dietary lipids and curcumin interact to regulate mucosal homeostasis and the resolution of chronic inflammation in the colon.
Collapse
|
46
|
Venkatesan N, Ouzzine M, Kolb M, Netter P, Ludwig MS. Increased deposition of chondroitin/dermatan sulfate glycosaminoglycan and upregulation of β1,3-glucuronosyltransferase I in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2010; 300:L191-203. [PMID: 21056957 DOI: 10.1152/ajplung.00214.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary fibrosis (PF) is characterized by increased deposition of proteoglycans (PGs), in particular core proteins. Glycosaminoglycans (GAGs) are key players in tissue repair and fibrosis, and we investigated whether PF is associated with changes in the expression and structure of GAGs as well as in the expression of β1,3-glucuronosyltransferase I (GlcAT-I), a rate-limiting enzyme in GAG synthesis. Lung biopsies from idiopathic pulmonary fibrosis (IPF) patients and lung tissue from a rat model of bleomycin (BLM)-induced PF were immunostained for chondroitin sulfated-GAGs and GlcAT-I expression. Alterations in disaccharide composition and sulfation of chondroitin/dermatan sulfate (CS/DS) were evaluated by fluorophore-assisted carbohydrate electrophoresis (FACE) in BLM rats. Lung fibroblasts isolated from control (saline-instilled) or BLM rat lungs were assessed for GAG structure and GlcAT-I expression. Disaccharide analysis showed that 4- and 6-sulfated disaccharides were increased in the lungs and lung fibroblasts obtained from fibrotic rats compared with controls. Fibrotic lung fibroblasts and transforming growth factor-β(1) (TGF-β(1))-treated normal lung fibroblasts expressed increased amounts of hyaluronan and 4- and 6-sulfated chondroitin, and neutralizing anti-TGF-β(1) antibody diminished the same. TGF-β(1) upregulated GlcAT-I and versican expression in lung fibroblasts, and signaling through TGF-β type I receptor/p38 MAPK was required for TGF-β(1)-mediated GlcAT-I and CS-GAG expression in fibroblasts. Our data show for the first time increased expression of CS-GAGs and GlcAT-I in IPF, fibrotic rat lungs, and fibrotic lung fibroblasts. These data suggest that alterations of sulfation isomers of CS/DS and upregulation of GlcAT-I contribute to the pathological PG-GAG accumulation in PF.
Collapse
|
47
|
Schiraldi C, Cimini D, De Rosa M. Production of chondroitin sulfate and chondroitin. Appl Microbiol Biotechnol 2010; 87:1209-20. [DOI: 10.1007/s00253-010-2677-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/07/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
|
48
|
Hashiguchi T, Mizumoto S, Yamada S, Sugahara K. Analysis of the structure and neuritogenic activity of chondroitin sulfate/dermatan sulfate hybrid chains from porcine fetal membranes. Glycoconj J 2009; 27:49-60. [PMID: 19806451 DOI: 10.1007/s10719-009-9253-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 02/04/2023]
Abstract
The amniotic membrane (AM) is the innermost layer of fetal membranes and possesses various biological activities. Although the mechanism underlying these biological activities remains unclear, unique components seem to be involved. AM contains various extracellular matrix components such as type I collagen, laminin, fibronectin, hyaluronan, and proteoglycans bearing chondroitin sulfate/dermatan sulfate (CS/DS) glycosaminoglycan side chains. Since CS/DS have been implicated in various biological processes, we hypothesized that CS/DS in AM may play a major role in the biological activities of AM. Therefore, the structure and bioactivity of the CS/DS chains from porcine fetal membranes (FM-CS/DS) were investigated. A compositional analysis using various chondroitinases revealed that the characteristic DS domain comprised of iduronic acid-containing disaccharide units is embedded in FM-CS/DS, along with predominant disaccharide units, GlcA-GalNAc, GlcA-GalNAc(4-O-sulfate), and GlcA-GalNAc(6-O-sulfate), where GlcA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. The average molecular mass of FM-CS/DS chains was unusually large and estimated to be 250 - 300 kDa. The FM-CS/DS chains showed neurite outgrowth-promoting activity, which was eliminated by digestion with chondroitinase ABC of the CS/DS chains. This activity was suppressed by antibodies against growth factors including pleiotrophin, midkine, and fibroblast growth factor-2, suggesting the involvement of these growth factors in the neurite outgrowth-promoting activity. The binding of these growth factors to FM-CS/DS was also demonstrated by surface plasmon resonance spectroscopy.
Collapse
Affiliation(s)
- Taishi Hashiguchi
- Laboratory of Proteoglycan Signaling and Therapeutics, Graduate School of Life Science, Hokkaido University, Frontier Research Center for Post-Genomic Science and Technology, Nishi 11-choume, Kita 21-jo, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | | | | | | |
Collapse
|