1
|
Yao WD, Zhou JN, Tang C, Zhang JL, Chen ZY, Li Y, Gong XJ, Qu MY, Zeng Q, Jia YL, Wang HY, Fan T, Ren J, Guo LL, Xi JF, Pei XT, Han Y, Yue W. Hydrogel Microneedle Patches Loaded with Stem Cell Mitochondria-Enriched Microvesicles Boost the Chronic Wound Healing. ACS NANO 2024; 18:26733-26750. [PMID: 39238258 PMCID: PMC11447894 DOI: 10.1021/acsnano.4c06921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Rescuing or compensating mitochondrial function represents a promising therapeutic avenue for radiation-induced chronic wounds. Adult stem cell efficacies are primarily dependent on the paracrine secretion of mitochondria-containing extracellular vesicles (EVs). However, effective therapeutic strategies addressing the quantity of mitochondria and mitochondria-delivery system are lacking. Thus, in this study, we aimed to design an effective hydrogel microneedle patch (MNP) loaded with stem cell-derived mitochondria-rich EVs to gradually release and deliver mitochondria into the wound tissues and boost wound healing. We, first, used metformin to enhance mitochondrial biogenesis and thereby increasing the secretion of mitochondria-containing EVs (termed "Met-EVs") in adipose-derived stem cells. To verify the therapeutic effects of Met-EVs, we established an in vitro and an in vivo model of X-ray-induced mitochondrial dysfunction. The Met-EVs ameliorated the mitochondrial dysfunction by rescuing mitochondrial membrane potential, increasing adenosine 5'-triphosphate levels, and decreasing reactive oxygen species production by transferring active mitochondria. To sustain the release of EVs into damaged tissues, we constructed a Met-EVs@Decellularized Adipose Matrix (DAM)/Hyaluronic Acid Methacrylic Acid (HAMA)-MNP. Met-EVs@DAM/HAMA-MNP can load and gradually release Met-EVs and their contained mitochondria into wound tissues to alleviate mitochondrial dysfunction. Moreover, we found Met-EVs@DAM/HAMA-MNP can markedly promote macrophage polarization toward the M2 subtype with anti-inflammatory and regenerative functions, which can, in turn, enhance the healing process in mice with skin wounds combined radiation injuries. Collectively, we successfully fabricated a delivery system for EVs, Met-EVs@DAM/HAMA-MNP, to effectively deliver stem cell-derived mitochondria-rich EVs. The effectiveness of this system has been demonstrated, holding great potential for chronic wound treatments in clinic.
Collapse
Affiliation(s)
- Wen-De Yao
- School
of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Jun-Nian Zhou
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Chao Tang
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Ju-Lei Zhang
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Zhao-Yang Chen
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Yan Li
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Jing Gong
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Ming-Yi Qu
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Quan Zeng
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Ya-Li Jia
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Hai-Yang Wang
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Tao Fan
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Ren
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
| | - Ling-Li Guo
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
| | - Jia-Fei Xi
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Xue-Tao Pei
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Yan Han
- School
of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
| | - Wen Yue
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
2
|
Nacu I, Ghilan A, Rusu AG, Bercea M, Nita LE, Vereştiuc L, Chiriac AP. Hydrogels with Antioxidant Microparticles Systems Based on Hyaluronic Acid for Regenerative Wound Healing. Macromol Biosci 2024; 24:e2400153. [PMID: 39101693 DOI: 10.1002/mabi.202400153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Indexed: 08/06/2024]
Abstract
This research focuses on the synthesis of hydrogels exhibiting enhanced antioxidant properties derived from hyaluronic acid (HA) and poly(ethylene brassylate-co-squaric acid) (PEBSA), a copolymacrolactone that have the ability to be used in drug delivery applications. Quercetin (Q), a bioflavonoid with strong antioxidant properties, is employed as a bioactive compound. The biomolecule is encapsulated in the polymeric network using different entrapment techniques, including the initial formation of a complex between PEBSA and Q, which is demonstrated through the dynamic light scattering technique. Fourier transform infrared spectroscopy (FT-IR) and rheological studies confirm the formation of the hydrogels, revealing the occurrence of physical interactions between the synthetic polymer and the polysaccharide. Moreover, the hydrogels demonstrate biocompatible properties after direct contact with the HDFa cell line and antioxidant properties, as revealed by DPPH tests.
Collapse
Affiliation(s)
- Isabella Nacu
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Alina Ghilan
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Alina G Rusu
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Loredana E Nita
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Liliana Vereştiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Aurica P Chiriac
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| |
Collapse
|
3
|
Lee DH, Yea J, Ha J, Kim D, Kim S, Lee J, Park JU, Park T, Jang KI. Rugged Island-Bridge Inorganic Electronics Mounted on Locally Strain-Isolated Substrates. ACS NANO 2024; 18:13061-13072. [PMID: 38721824 DOI: 10.1021/acsnano.4c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Various strain isolation strategies that combine rigid and stretchable regions for stretchable electronics were recently proposed, but the vulnerability of inorganic materials to mechanical stress has emerged as a major impediment to their performance. We report a strain-isolation system that combines heteropolymers with different elastic moduli (i.e., hybrid stretchable polymers) and utilize it to construct a rugged island-bridge inorganic electronics system. Two types of prepolymers were simultaneously cross-linked to form an interpenetrating polymer network at the rigid-stretchable interface, resulting in a hybrid stretchable polymer that exhibited efficient strain isolation and mechanical stability. The system, including stretchable micro-LEDs and microheaters, demonstrated consistent operation under external strain, suggesting that the rugged island-bridge inorganic electronics mounted on a locally strain-isolated substrate offer a promising solution for replacing conventional stretchable electronics, enabling devices with a variety of form factors.
Collapse
Affiliation(s)
- Dae Hwan Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Junwoo Yea
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jeongdae Ha
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Dohyun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sungryong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Junwoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Kyung-In Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
- ENSIDE Corporation, Daegu 42988, Republic of Korea
| |
Collapse
|
4
|
Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Mater Today Bio 2024; 25:100998. [PMID: 38390342 PMCID: PMC10882133 DOI: 10.1016/j.mtbio.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
5
|
He X, Wang R, Zhou F, Liu H. Recent advances in photo-crosslinkable methacrylated silk (Sil-MA)-based scaffolds for regenerative medicine: A review. Int J Biol Macromol 2024; 256:128031. [PMID: 37972833 DOI: 10.1016/j.ijbiomac.2023.128031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Silks fibroin can be chemically modified through amino acid side chains to obtain methacrylated silk (Sil-MA). Sil-MA could be processed into a variety of scaffold forms and combine synergistically with other biomaterials to form composites vehicle. The advent of Sil-MA material has enabled impressive progress in the development of various scaffolds based on Sil-MA type to imitate the structural and functional characteristics of natural tissues. This review highlights the reasonable design and bio-fabrication strategies of diverse Sil-MA-based tissue constructs for regenerative medicine. First, we elucidate modification methodology and characteristics of Sil-MA. Next, we describe characteristics of Sil-MA hydrogels, and focus on the design approaches and formation of different types of Sil-MA-based hydrogels. Thereafter, we present an overview of the recent advances in the application of Sil-MA based scaffolds for regenerative medicine, including detailed strategies for the engineering methods and materials used. Finally, we summarize the current research progress and future directions of Sil-MA in regenerative medicine. This review not only delineates the representative design strategies and their application in regenerative medicine, but also provides new direction in the fabrication of biomaterial constructs for the clinical translation in order to stimulate the future development of implants.
Collapse
Affiliation(s)
- Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China
| | - RuiDeng Wang
- Peking University Third Hospital, Department of Orthopaedics, PR China; Peking University Third Hospital, Engineering Research Center of Bone and Joint Precision Medicine, PR China
| | - Fang Zhou
- Peking University Third Hospital, Department of Orthopaedics, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China.
| |
Collapse
|
6
|
Yang Y, Zhang C, Bian X, Ren LK, Ma CM, Xu Y, Su D, Ai LZ, Song MF, Zhang N. Characterization of structural and functional properties of soy protein isolate and sodium alginate interpenetrating polymer network hydrogels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6566-6573. [PMID: 37229570 DOI: 10.1002/jsfa.12736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/09/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND This study used enzymatic and Ca2+ cross-linking methods to prepare edible soy protein isolate (SPI) and sodium alginate (SA) interpenetrating polymer network hydrogels to overcome the disadvantages of traditional interpenetrating polymer network (IPN) hydrogels, such as poor performance, high toxicity, and inedibility. The influence of changes in SPI and SA mass ratio on the performance of SPI-SA IPN hydrogels was investigated. RESULTS Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to characterize the structure of the hydrogels. Texture profile analysis (TPA), rheological properties, swelling rate, and Cell Counting Kit-8 (CCK-8) were used to evaluate physical and chemical properties and safety. The results showed that, compared with SPI hydrogel, IPN hydrogels had better gel properties and structural stability. As the mass ratio of SPI-SA IPN changed from 1:0.2 to 1:1, the gel network structure of hydrogels also tended to be dense and uniform. The water retention and mechanical properties of these hydrogels, such as storage modulus (G'), loss modulus (G"), and gel hardness increased significantly and were greater than those of the SPI hydrogel. Cytotoxicity tests were also performed. The biocompatibility of these hydrogels was good. CONCLUSIONS This study proposes a new method to prepare food-grade IPN hydrogels with mechanical properties of SPI and SA, which may have strong potential for the development of new foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Can Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Li-Kun Ren
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yue Xu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Dan Su
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Lian-Zhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ming-Feng Song
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
7
|
Abi Zeid Daou C, Korban Z. Hyaluronic Acid in Rhinology: Its Uses, Advantages and Drawbacks-A Review. Indian J Otolaryngol Head Neck Surg 2023; 75:696-704. [PMID: 37206830 PMCID: PMC10188805 DOI: 10.1007/s12070-022-03255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
Hyaluronic acid has been increasingly involved in recent research due to its many chemical and physical properties. This is a review of the literature for studies involving the use of hyaluronic acid in rhinology. Hyaluronic acid washes and irrigation have been increasingly used in chronic sinusitis medical therapy and post-operatively with mixed results. It has also been shown to play a role in the treatment of nasal polyposis, allergic rhinitis, acute rhinosinusitis and empty nose syndrome. Its effect on biofilm in many disease entities has also been studied. HA is being recently used as ancillary treatment for several rhinologic conditions such as post-operative endoscopy care and chronic sinonasal infections. The properties of HA have intrigued researchers over the past years particularly in biofilm management, healing and inflammation.
Collapse
Affiliation(s)
- Christophe Abi Zeid Daou
- Department of Otolaryngology, Head and Neck Surgery, American University of Beirut Medical Center, P.O. Box 11-0236, Beirut, Lebanon
| | - Zeina Korban
- Department of Otolaryngology, Head and Neck Surgery, American University of Beirut Medical Center, P.O. Box 11-0236, Beirut, Lebanon
| |
Collapse
|
8
|
Hu X, Yan L, Xu M, Tang L. Photo-degradable salecan/xanthan gum ionic gel induced by iron (III) coordination for organic dye decontamination. Int J Biol Macromol 2023; 238:124132. [PMID: 36958439 DOI: 10.1016/j.ijbiomac.2023.124132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
As dye adsorbents with great potential, polysaccharide-based hydrogels are significantly hampered in practical application owing to intricate preparation methods, low absorption, and bad degradability. Salecan is a water-soluble extracellular polysaccharide with excellent physicochemical and biological properties. Here, salecan and xanthan gum were first used as a dual-precursors system, their mixed solution was crosslinked by Fe3+ to assemble a photo-degradable ionic gel for malachite green (MG) adsorption. Photo-degradation was done using visible light under very mild conditions, which gave rise to gel network dissolution and homogeneous solution formation. Extensive dynamic coordinate interactions between Fe3+ and polysaccharides maintained gel matrix stability and were systematically investigated. The control of water uptake, micro-structure, and rheology can be facilely implemented by tuning salecan/xanthan gum ratios. Furthermore, various parameters such as polysaccharide ratios, pHs, MG concentrations, and contact time affecting adsorption were optimized using batch experiments. Adsorption process accurately adhered to pseudo-second-order kinetic and Langmuir isotherm model, with the maximum adsorption capacity of 463.0 mg/g. Such mechanism implied monolayer chemisorptive characteristics. The gel exhibited satisfactory reusability and was recycled five times without apparent decrease in adsorption capacity. From these results, the photo-degradable Fe3+-induced salecan/xanthan gum ionic gel is an alternative and sustainable absorbent for MG removal.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China; Research Institute of Forestry New Technology, CAF, Beijing 100091, China.
| | - Linlin Yan
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China; Research Institute of Forestry New Technology, CAF, Beijing 100091, China
| | - Man Xu
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Lihua Tang
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| |
Collapse
|
9
|
Talaei A, O'Connell CD, Sayyar S, Maher M, Yue Z, Choong PF, Wallace GG. Optimizing the composition of gelatin methacryloyl and hyaluronic acid methacryloyl hydrogels to maximize mechanical and transport properties using response surface methodology. J Biomed Mater Res B Appl Biomater 2023; 111:526-537. [PMID: 36269163 PMCID: PMC10092314 DOI: 10.1002/jbm.b.35169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 01/21/2023]
Abstract
Hydrogel materials are promising candidates in cartilage tissue engineering as they provide a 3D porous environment for cell proliferation and the development of new cartilage tissue. Both the mechanical and transport properties of hydrogel scaffolds influence the ability of encapsulated cells to produce neocartilage. In photocrosslinkable hydrogels, both of these material properties can be tuned by changing the crosslinking density. However, the interdependent nature of the structural, physical and biological properties of photocrosslinkable hydrogels means that optimizing composition is typically a complicated process, involving sequential and/or iterative steps of physiochemical and biological characterization. The combinational nature of the variables indicates that an exhaustive analysis of all reasonable concentration ranges would be impractical. Herein, response surface methodology (RSM) was used to efficiently optimize the composition of a hybrid of gelatin-methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) with respect to both mechanical and transport properties. RSM was employed to investigate the effect of GelMA, HAMA, and photoinitiator concentration on the shear modulus and diffusion coefficient of the hydrogel membrane. Two mathematical models were fitted to the experimental data and used to predict the optimum hydrogel composition. Finally, the optimal composition was tested and compared with the predicted values.
Collapse
Affiliation(s)
- Alireza Talaei
- ARC ITTC in Additive Biomanufacturing, Queensland University of Technology, Brisbane, QLD, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales, Australia
| | - Cathal D O'Connell
- Discipline of Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, Victoria, Australia.,BioFab3D, Aikenhead Center for Medical Discovery, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Sepidar Sayyar
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales, Australia.,Australian National Fabrication Facility-Materials Node, Innovation Campus, University of Wollongong, Wollongong, New South Wales, Australia
| | - Malachy Maher
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales, Australia.,Commonwealth Scientific Industrial Research Organization, Manufacturing Clayton, Victoria, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales, Australia
| | - Peter F Choong
- Orthopaedic Department, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon G Wallace
- ARC ITTC in Additive Biomanufacturing, Queensland University of Technology, Brisbane, QLD, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales, Australia.,Australian National Fabrication Facility-Materials Node, Innovation Campus, University of Wollongong, Wollongong, New South Wales, Australia.,Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Yasar M, Oktay B, Dal Yontem F, Haciosmanoglu Aldogan E, Kayaman Apohan N. Development of Self-Healing Vanillin/PEI Hydrogels for Tissue Engineering. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
11
|
Hydrogels to Support Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Brain Sci 2022; 12:brainsci12121620. [PMID: 36552081 PMCID: PMC9775591 DOI: 10.3390/brainsci12121620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Retinal pigment epithelial (RPE) cells are highly specialized neural cells with several functions essential for vision. Progressive deterioration of RPE cells in elderly individuals can result in visual impairment and, ultimately, blinding disease. While human embryonic stem cell-derived RPE cell (hESC-RPE) growth conditions are generally harsher than those of cell lines, the subretinal transplantation of hESC-RPE is being clinically explored as a strategy to recover the damaged retina and improve vision. The cell-adhesion ability of the support is required for RPE transplantation, where pre-polarized cells can maintain specific functions on the scaffold. This work examined four typical biodegradable hydrogels as supports for hESC-RPE growth. METHODS Four biodegradable hydrogels were examined: gelatin methacryloyl (GelMA), hyaluronic acid methacryloyl (HAMA), alginate, and fibrin hydrogels. ARPE-19 and hESC-RPE cells were seeded onto the hydrogels separately, and the ability of these supports to facilitate adherence, proliferation, and homogeneous distribution of differentiated hESC-RPE cells was investigated. Furthermore, the hydrogel's subretinal bio-compatibility was assessed in vivo. RESULTS We showed that ARPE-19 and hESC-RPE cells adhered and proliferated only on the fibrin support. The monolayer formed when cells reached confluency, demonstrating the polygonal semblance, and revealing actin filaments that moved along the cytoplasm. The expression of tight junction proteins at cell interfaces on the 14th day of seeding demonstrated the barrier function of epithelial cells on polymeric surfaces and the interaction between cells. Moreover, the expression of proteins crucial for retinal functions and matrix production was positively affected by fibrin, with an increment of PEDF. Our in vivo investigation with fibrin hydrogels revealed high short-term subretinal biocompatibility. CONCLUSIONS The research of stem cell-based cell therapy for retinal degenerative diseases is more complicated than that of cell lines. Our results showed that fibrin is a suitable scaffold for hESC-RPE transplantation, which could be a new grafting material for tissue engineering RPE cells.
Collapse
|
12
|
Chen F, Mundy DC, Le P, Seo YA, Logan CM, Fernandes-Cunha GM, Basco CA, Myung D. In Situ-Forming Collagen-Hyaluronate Semi-Interpenetrating Network Hydrogel Enhances Corneal Defect Repair. Transl Vis Sci Technol 2022; 11:22. [PMID: 36239965 PMCID: PMC9586141 DOI: 10.1167/tvst.11.10.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose Millions worldwide suffer vision impairment or blindness from corneal injury, and there remains an urgent need for a more effective and accessible way to treat corneal defects. We have designed and characterized an in situ-forming semi-interpenetrating polymer network (SIPN) hydrogel using biomaterials widely used in ophthalmology and medicine. Methods The SIPN was formed by cross-linking collagen type I with bifunctional polyethylene glycol using N-hydroxysuccinimide ester chemistry in the presence of linear hyaluronic acid (HA). Gelation time and the mechanical, optical, swelling, and degradation properties of the SIPN were assessed. Cytocompatibility with human corneal epithelial cells and corneal stromal stem cells (CSSCs) was determined in vitro, as was the spatial distribution of encapsulated CSSCs within the SIPN. In vivo wound healing was evaluated by multimodal imaging in an anterior lamellar keratectomy injury model in rabbits, followed by immunohistochemical analysis of treated and untreated tissues. Results The collagen-hyaluronate SIPN formed in situ without an external energy source and demonstrated mechanical and optical properties similar to the cornea. It was biocompatible with human corneal cells, enhancing CSSC viability when compared with collagen gel controls and preventing encapsulated CSSC sedimentation. In vivo application of the SIPN significantly reduced stromal defect size compared with controls after 7 days and promoted multilayered epithelial regeneration. Conclusions This in situ-forming SIPN hydrogel may be a promising alternative to keratoplasty and represents a step toward expanding treatment options for patients suffering from corneal injury. Translational Relevance We detail the synthesis and initial characterization of an SIPN hydrogel as a potential alternative to lamellar keratoplasty and a tunable platform for further development in corneal tissue engineering and therapeutic cell delivery.
Collapse
Affiliation(s)
- Fang Chen
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto HealthCare System, Palo Alto, CA, USA
| | - David C Mundy
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Peter Le
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto HealthCare System, Palo Alto, CA, USA
| | - Youngyoon Amy Seo
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Caitlin M Logan
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Chris A Basco
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - David Myung
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto HealthCare System, Palo Alto, CA, USA.,Department of Chemical Engineering, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
13
|
Horst EN, Novak CM, Burkhard K, Snyder CS, Verma R, Crochran DE, Geza IA, Fermanich W, Mehta P, Schlautman DC, Tran LA, Brezenger ME, Mehta G. Injectable three-dimensional tumor microenvironments to study mechanobiology in ovarian cancer. Acta Biomater 2022; 146:222-234. [PMID: 35487424 PMCID: PMC10538942 DOI: 10.1016/j.actbio.2022.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian cancers are among the most aggressive forms of gynecological malignancies. Despite the advent of poly adenosine diphosphate-ribose polymerase (PARP) and checkpoint inhibitors, improvement to patient survival has been modest. Limited in part by clinical translation, beneficial therapeutic strategies remain elusive in ovarian cancers. Although elevated levels of extracellular proteins, including collagens, proteoglycans, and glycoproteins, have been linked to chemoresistance, they are often missing from the processes of drug- development and screening. Biophysical and biochemical signaling from the extracellular matrix (ECM) determine cellular phenotype and affect both tumor progression and therapeutic response. However, many state-of-the-art tumor models fail to mimic the complexities of the tumor microenvironment (TME) and omit key signaling components. In this article, two interpenetrating network (IPN) hydrogel scaffold platforms, comprising of alginate-collagen or agarose-collagen, have been characterized for use as 3D in vitro models of epithelial ovarian cancer ECM. These highly tunable, injection mold compatible, and inexpensive IPNs replicate the critical governing physical and chemical signaling present within the ovarian TME. Additionally, an effective and cell-friendly live-cell retrieval method has been established to recover cells post-encapsulation. Lastly, functional mechanotransduction in ovarian cancers was demonstrated by increasing scaffold stiffness within the 3D in vitro ECM models. With these features, the agarose-collagen and alginate-collagen hydrogels provide a robust TME for the study of mechanobiology in epithelial cancers. STATEMENT OF SIGNIFICANCE: Ovarian cancer is the most lethal gynecologic cancer afflicting women today. Here we present the development, characterization, and validation of 3D interpenetrating platforms to shift the paradigm in standard in vitro modeling. These models help elucidate the roles of biophysical and biochemical cues in ovarian cancer progression. The agarose-collagen and alginate-collagen interpenetrating network (IPN) hydrogels are simple to fabricate, inexpensive, and can be modified to create custom mechanical stiffnesses and concentrations of bio-adhesive motifs. Given that investigations into the roles of biophysical characteristics in ovarian cancers have provided incongruent results, we believe that the IPN platforms will be critically important to uncovering molecular drivers. We also expect these platforms to be broadly applicable to studies involving mechanobiology in solid tumors.
Collapse
Affiliation(s)
- Eric N Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Caymen M Novak
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner College of Medicine, Columbus, OH 43210, United States
| | - Kathleen Burkhard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Catherine S Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Rhea Verma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Darel E Crochran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Izabella A Geza
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Wesley Fermanich
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Denise C Schlautman
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Linh A Tran
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Michael E Brezenger
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States; Precision Health, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
14
|
Long S, Huang D, Ma Z, Shi S, Xiao Y, Zhang X. A sonication-induced silk-collagen hydrogel for functional cartilage regeneration. J Mater Chem B 2022; 10:5045-5057. [PMID: 35726720 DOI: 10.1039/d2tb00564f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cartilage tissue has limited self-regeneration capacity and current treatment methods often result in fibrocartilage formation. Although collagen has shown the ability to induce chondrogenesis of mesenchymal stem cells (MSCs) and regenerate hyaline cartilage, the application of a pure collagen hydrogel is inherently limited by its fast degradation, poor mechanical properties and excessive cell-mediated shrinkage. To overcome this challenge, we developed a sonication-induced silk-collagen composite hydrogel (COL + SF(S)) and investigated its physicochemical and biological properties compared with a collagen hydrogel (COL) and a non-sonicated silk-collagen composite hydrogel (COL + SF(NS)). The results showed that the sonication treatment of silk fibroin induced antiparallel β-sheet formation and a stronger negative charge on the silk fibroin molecule, which resulted in improved mechanical properties of the COL + SF(S) hydrogel. The COL + SF(S) hydrogel exhibited superior stability during cell culture and promoted the gene expression of SOX9 at the early stage and sulfated glycosaminoglycan (sGAG) deposition without any exogenous growth factor. Moreover, the cartilage regeneration capacity of the COL + SF(S) group was evaluated in rabbit knee defects. The COL + SF(S) group exhibited well-integrated articular hyaline cartilage closely resembling native articular cartilage after 6 months. Overall, the COL + SF(S) hydrogel holds great potential as a scaffold material to regenerate functional hyaline cartilage.
Collapse
Affiliation(s)
- Shihe Long
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Danyang Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Zihan Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Shuaiguang Shi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
15
|
Doğan M, Şahbaz S, Uğurlu T, Sezer AD. Synthesis and characterization of chitosan-PVA hydrogel containing PEGylated recombinant epidermal growth factor on cell culture for wound healing substitute. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191120s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Dromel PC, Singh D, Andres E, Likes M, Kurisawa M, Alexander-Katz A, Spector M, Young M. A bioinspired gelatin-hyaluronic acid-based hybrid interpenetrating network for the enhancement of retinal ganglion cells replacement therapy. NPJ Regen Med 2021; 6:85. [PMID: 34930951 PMCID: PMC8688498 DOI: 10.1038/s41536-021-00195-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Biomaterial-based cell replacement approaches to regenerative medicine are emerging as promising treatments for a wide array of profound clinical problems. Here we report an interpenetrating polymer network (IPN) composed of gelatin-hydroxyphenyl propionic acid and hyaluronic acid tyramine that is able to enhance intravitreal retinal cell therapy. By tuning our bioinspired hydrogel to mimic the vitreous chemical composition and mechanical characteristics we were able to improve in vitro and in vivo viability of human retinal ganglion cells (hRGC) incorporated into the IPN. In vivo vitreal injections of cell-bearing IPN in rats showed extensive attachment to the inner limiting membrane of the retina, improving with hydrogels stiffness. Engrafted hRGC displayed signs of regenerating processes along the optic nerve. Of note was the decrease in the immune cell response to hRGC delivered in the gel. The findings compel further translation of the gelatin-hyaluronic acid IPN for intravitreal cell therapy.
Collapse
Affiliation(s)
- Pierre C Dromel
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Deepti Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Eliot Andres
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Motoichi Kurisawa
- A*STAR Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | | | - Myron Spector
- VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Young
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Khanna A, Zamani M, Huang NF. Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering. J Cardiovasc Dev Dis 2021; 8:137. [PMID: 34821690 PMCID: PMC8622600 DOI: 10.3390/jcdd8110137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.
Collapse
Affiliation(s)
| | - Maedeh Zamani
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
18
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
19
|
Cardiac Extracellular Matrix Hydrogel Enriched with Polyethylene Glycol Presents Improved Gelation Time and Increased On-Target Site Retention of Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22179226. [PMID: 34502146 PMCID: PMC8431142 DOI: 10.3390/ijms22179226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022] Open
Abstract
Stem-cell-derived extracellular vesicles (EVs) have demonstrated multiple beneficial effects in preclinical models of cardiac diseases. However, poor retention at the target site may limit their therapeutic efficacy. Cardiac extracellular matrix hydrogels (cECMH) seem promising as drug-delivery materials and could improve the retention of EVs, but may be limited by their long gelation time and soft mechanical properties. Our objective was to develop and characterize an optimized product combining cECMH, polyethylene glycol (PEG), and EVs (EVs–PEG–cECMH) in an attempt to overcome their individual limitations: long gelation time of the cECMH and poor retention of the EVs. The new combined product presented improved physicochemical properties (60% reduction in half gelation time, p < 0.001, and threefold increase in storage modulus, p < 0.01, vs. cECMH alone), while preserving injectability and biodegradability. It also maintained in vitro bioactivity of its individual components (55% reduction in cellular senescence vs. serum-free medium, p < 0.001, similar to EVs and cECMH alone) and increased on-site retention in vivo (fourfold increase vs. EVs alone, p < 0.05). In conclusion, the combination of EVs–PEG–cECMH is a potential multipronged product with improved gelation time and mechanical properties, increased on-site retention, and maintained bioactivity that, all together, may translate into boosted therapeutic efficacy.
Collapse
|
20
|
Hu X, Yan L, Wang Y, Xu M. Ion-imprinted sponge produced by ice template-assisted freeze drying of salecan and graphene oxide nanosheets for highly selective adsorption of mercury (II) ion. Carbohydr Polym 2021; 258:117622. [PMID: 33593534 DOI: 10.1016/j.carbpol.2021.117622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 01/12/2023]
Abstract
As a kind of potential heavy metal absorbent, polysaccharide-based materials are limited by the complicated preparation method and bad selectivity toward targeted ion. Here, a fantastic sponge was produced by combining salecan and graphene oxide (GO) nanosheets via ice template-assisted freeze drying and ion-imprinting technologies. The intense intermolecular interactions between salecan and GO gave the sponge high stability. The swelling, morphology, and mechanical stiffness of the material showed highly dependent on the salecan content. Additionally, the influence of salecan content, pH, initial ion concentration, and contact time on Hg2+ adsorption was extensively investigated. Adsorption kinetics and equilibrium isotherms perfectly fitted in the pseudo-second-order and Freundlich models, reflecting the multilayer chemical-adsorption mediated mechanism. Most strikingly, the ion-imprinted sponge exhibited strong selectivity toward Hg2+ and outstanding stability with recyclability over usage of five times. These investigations provide the guidance for the construction of promising polysaccharide-based adsorbents for the remediation of Hg2+-polluted water.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province, Nanjing 210042, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Beijing 100714, China; National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China.
| | - Linlin Yan
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
| | - Yongmei Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Man Xu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| |
Collapse
|
21
|
Abstract
Hydrogels are polymeric networks highly swollen with water. Because of their versatility and properties mimicking biological tissues, they are very interesting for biomedical applications. In this aim, the control of porosity is of crucial importance since it governs the transport properties and influences the fate of cells cultured onto or into the hydrogels. Among the techniques allowing for the elaboration of hydrogels, photopolymerization or photo-cross-linking are probably the most powerful and versatile synthetic routes. This Review aims at giving an overview of the literature dealing with photopolymerized hydrogels for which the generation or characterization of porosity is studied. First, the materials (polymers and photoinitiating systems) used for synthesizing hydrogels are presented. The different ways for generating porosity in the photopolymerized hydrogels are explained, and the characterization techniques allowing adequate study of the porosity are presented. Finally, some applications in the field of controlled release and tissue engineering are reviewed.
Collapse
Affiliation(s)
- Erwan Nicol
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| |
Collapse
|
22
|
Jonidi Shariatzadeh F, Solouk A, Bagheri Khoulenjani S, Bonakdar S, Mirzadeh H. Injectable and reversible preformed cryogels based on chemically crosslinked gelatin methacrylate (GelMA) and physically crosslinked hyaluronic acid (HA) for soft tissue engineering. Colloids Surf B Biointerfaces 2021; 203:111725. [PMID: 33838583 DOI: 10.1016/j.colsurfb.2021.111725] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Hydrogels are a promising choice for soft tissue (cartilage, skin and adipose) engineering and repair. However, lack of interconnected porosity and poor mechanical performance have hindered their application, especially in natural polymer-based hydrogels. Cryogels with the potential to overcome the shortcomings of hydrogels have drawn attention in the last few years. Thus, in this study, highly porous and mechanically robust cryogels based on interpenetrating polymer network (IPN) of gelatin methacrylate (GelMA) and hyaluronic acid (HA) were fabricated for soft tissue engineering application. Cryogels have a constant amount of GelMA (3% wt) with different concentrations of HA (from 5% to 20 % w/w). In fact, crosslinking through cryogelation in subzero temperature facilitates the formation of interconnected pores with 90 % porosity percentage without external progen. On the other hand, high mechanical stability (no failure up to 90 % compression) was achieved due to the cryogelation and chemical crosslinking of GelMA as well as physical crosslinking of HA. Furthermore, the porous and hydrophile nature of the cryogels resulted in shape memory properties under compression, which can reverse to initial shape after retaining the water. Although increasing the HA concentration followed by the density of physical crosslinking boosted the mechanical performance of cryogels under compression, it limited the reversibility properties. Nevertheless, all cryogels with different HA concentrations showed acceptable gel strength and Young's modulus (G-H-20, E = 6kPa) and had appropriate pore size for cell infiltration and nutrient transportation with good cell adhesion and high cell viability (more than 90 %). The unique property of fabricated cryogels that facilitate less invasive delivery makes them a promising alternative for the soft tissue application.
Collapse
Affiliation(s)
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Shadab Bagheri Khoulenjani
- Polymer and Color Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Mirzadeh
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
23
|
Crosby CO, Hillsley A, Kumar S, Stern B, Parekh SH, Rosales A, Zoldan J. Phototunable interpenetrating polymer network hydrogels to stimulate the vasculogenesis of stem cell-derived endothelial progenitors. Acta Biomater 2021; 122:133-144. [PMID: 33359297 PMCID: PMC7983093 DOI: 10.1016/j.actbio.2020.12.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Vascularization of engineered scaffolds remains a critical obstacle hindering the translation of tissue engineering from the bench to the clinic. We previously demonstrated the robust micro-vascularization of collagen hydrogels with induced pluripotent stem cell (iPSC)-derived endothelial progenitors; however, physically cross-linked collagen hydrogels compact rapidly and exhibit limited strength. We have synthesized an interpenetrating polymer network (IPN) hydrogel comprised of collagen and norbornene-modified hyaluronic acid (NorHA) to address these challenges. This dual-network hydrogel combines the natural cues presented by collagen's binding sites and extracellular matrix (ECM)-mimicking fibrous architecture with the in situ modularity and chemical cross-linking of NorHA. We modulated the IPN hydrogel's stiffness and degradability by varying the concentration and sequence, respectively, of the NorHA peptide cross-linker. Rheological characterization of the photo-mediated gelation process revealed that the IPN hydrogel's stiffness increased with cross-linker concentration and was decoupled from the bulk NorHA content. Conversely, the swelling of the IPN hydrogel decreased linearly with increasing cross-linker concentration. Collagen microarchitecture remained relatively unchanged across cross-linking conditions, although the addition of NorHA delayed collagen fibrillogenesis. Upon iPSC-derived endothelial progenitor encapsulation, robust, lumenized microvascular networks developed in IPN hydrogels over two weeks. Subsequent computational analysis showed that an initial rise in stiffness increased the number of branch points and vessels, but vascular growth was suppressed in high stiffness IPN hydrogels. These results suggest that an IPN hydrogel consisting of collagen and NorHA is highly tunable, compaction resistant, and capable of supporting vasculogenesis.
Collapse
Affiliation(s)
- Cody O Crosby
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, United States; Department of Physics, Southwestern University, Georgetown, TX, 78626, United States
| | - Alex Hillsley
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Sachin Kumar
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, United States
| | - Brett Stern
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, United States
| | - Sapun H Parekh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, United States
| | - Adrianne Rosales
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, United States.
| |
Collapse
|
24
|
Entekhabi E, Haghbin Nazarpak M, Shafieian M, Mohammadi H, Firouzi M, Hassannejad Z. Fabrication and in vitro evaluation of 3D composite scaffold based on collagen/hyaluronic acid sponge and electrospun polycaprolactone nanofibers for peripheral nerve regeneration. J Biomed Mater Res A 2021; 109:300-312. [PMID: 32490587 DOI: 10.1002/jbm.a.37023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/02/2020] [Accepted: 04/19/2020] [Indexed: 11/11/2022]
Abstract
Replacement of peripheral nerve autografts with tissue engineered nerve grafts will potentially resolve the lack of nerve tissue especially in patients with severe concomitant soft tissue injuries. This study attempted to fabricate a tissue engineered nerve graft composed of electrospun PCL conduit filled with collagen-hyaluronic acid (COL-HA) sponge with different COL-HA weight ratios including 100:0, 98:2, 95:5 and 90:10. The effect of HA addition on the sponge porosity, mechanical properties, water absorption and degradation rate was assessed. A good cohesion between the electrospun PCL nanofibers and COL-HA sponges were seen in all sponges with different HA contents. Mechanical properties of PCL nanofibrous layer were similar to the rat sciatic nerve; the ultimate tensile strength was 2.23 ± 0.35 MPa at the elongation of 35%. Additionally, Schwann cell proliferation and morphology on three dimensional (3D) composite scaffold were evaluated by using MTT and SEM assays, respectively. Rising the HA content resulted in higher water absorption as well as greater pore size and porosity, while a decrease in Schwann cell proliferation compared to pure collagen sponge, although reduction in cell proliferation was not statistically significant. The lower Schwann cell proliferation on the COL-HA was attributed to the greater degradation rate and pore size of the COL-HA sponges. Also, dorsal root ganglion assay showed that the engineered 3D construct significantly increases axon growth. Taken together, these results suggest that the fabricated 3D composite scaffold provide a permissive environment for Schwann cells proliferation and maturation and can encourage axon growth.
Collapse
Affiliation(s)
- Elahe Entekhabi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Masoumeh Haghbin Nazarpak
- New Technologies Research Center (NTRC), Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Haniye Mohammadi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Masoumeh Firouzi
- Tissue Repair Laboratory, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Dobos A, Gantner F, Markovic M, Van Hoorick J, Tytgat L, Van Vlierberghe S, Ovsianikov A. On-chip high-definition bioprinting of microvascular structures. Biofabrication 2021; 13:015016. [PMID: 33586666 DOI: 10.1088/1758-5090/abb063] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
'Organ-on-chip' devices which integrate three-dimensional (3D) cell culture techniques with microfluidic approaches have the capacity to overcome the limitations of classical 2D platforms. Although several different strategies have been developed to improve the angiogenesis within hydrogels, one of the main challenges in tissue engineering remains the lack of vascularization in the fabricated 3D models. The present work focuses on the high-definition (HD) bioprinting of microvascular structures directly on-chip using two-photon polymerization (2PP). 2PP is a nonlinear process, where the near-infrared laser irradiation will only lead to the polymerization of a very small volume pixel (voxel), allowing the fabrication of channels in the microvascular range (10-30 µm in diameter). Additionally, 2PP not only enables the fabrication of sub-micrometer resolution scaffolds but also allows the direct embedding of cells within the produced structure. The accuracy of the 2PP printing parameters were optimized in order to achieve high-throughput and HD production of microfluidic vessel-on-chip platforms. The spherical aberrations stemming from the refractive index mismatch and the focusing depth inside the sample were simulated and the effect of the voxel compensation as well as different printing modes were demonstrated. Different layer spacings and their dependency on the applied laser power were compared both in terms of accuracy and required printing time resulting in a 10-fold decrease in structuring time while yielding well-defined channels of small diameters. Finally, the capacity of 2PP to create vascular structures within a microfluidic chip was tested with two different settings, by direct embedding of a co-culture of endothelial- and supporting cells during the printing process and by creating a supporting, cell-containing vascular scaffold barrier where the endothelial cell spheroids can be seeded afterwards. The functionality of the formed vessels was demonstrated with immunostaining of vascular endothelial cadherin (VE-Cadherin) endothelial adhesion molecules in both static and perfused culture.
Collapse
Affiliation(s)
- Agnes Dobos
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria. Austrian Cluster for Tissue Regeneration (http://tissue-regeneration.at), Austria
| | | | | | | | | | | | | |
Collapse
|
26
|
Hyaluronic acid and chondroitin sulfate (meth)acrylate-based hydrogels for tissue engineering: Synthesis, characteristics and pre-clinical evaluation. Biomaterials 2020; 268:120602. [PMID: 33360302 DOI: 10.1016/j.biomaterials.2020.120602] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
Hydrogels based on photocrosslinkable Hyaluronic Acid Methacrylate (HAMA) and Chondroitin Sulfate Methacrylate (CSMA) are presently under investigation for tissue engineering applications. HAMA and CSMA gels offer tunable characteristics such as tailorable mechanical properties, swelling characteristics, and enzymatic degradability. This review gives an overview of the scientific literature published regarding the pre-clinical development of covalently crosslinked hydrogels that (partially) are based on HAMA and/or CSMA. Throughout the review, recommendations for the next steps in clinical translation of hydrogels based on HAMA or CSMA are made and potential pitfalls are defined. Specifically, a myriad of different synthetic routes to obtain polymerizable hyaluronic acid and chondroitin sulfate derivatives are described. The effects of important parameters such as degree of (meth)acrylation and molecular weight of the synthesized polymers on the formed hydrogels are discussed and useful analytical techniques for their characterization are summarized. Furthermore, the characteristics of the formed hydrogels including their enzymatic degradability are discussed. Finally, a summary of several recent applications of these hydrogels in applied fields such as cartilage and cardiac regeneration and advanced tissue modelling is presented.
Collapse
|
27
|
Dos Santos CCM, Uggioni MLR, Colonetti T, Colonetti L, Grande AJ, Da Rosa MI. Hyaluronic Acid in Postmenopause Vaginal Atrophy: A Systematic Review. J Sex Med 2020; 18:156-166. [PMID: 33293236 DOI: 10.1016/j.jsxm.2020.10.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND The decline in postmenopausal serum estrogen concentration results in several changes in the vulvovaginal and vesicourethral areas, resulting in the genitourinary syndrome of menopause, including symptoms such as vaginal atrophy. AIM To evaluate the effects of hyaluronic acid in vaginal atrophy. METHODS A search strategy was developed using the following terms: "Hyaluronic Acid vaginal gel," "vaginal estrogens," "Vaginitis, Atrophic," and "Postmenopause." This strategy was used in major databases such as MEDLINE, EMBASE, Scopus, Cochrane library, Web of Science, Virtual Health Library (BVS), Congress Abstracts, and Gray Literature (Google Scholar and British Library) for studies published until June 2020. OUTCOMES A systematic review was carried out to assess the results of atrophic vaginitis/vaginal dryness, dyspareunia, vaginal pH, and cell maturation of the studies found by the search strategy. RESULTS A total of 833 studies were identified, 528 studies were directed for reading titles and abstracts, and 515 were excluded for not meeting the selection criteria. A total of 13 studies were selected for reading the full text. 5 primary studies involving 335 women met the criteria and were included. The studies were published between the years 2011 and 2017. It was not possible to perform meta-analysis owing to the substantial heterogeneity present in the studies. The results presented suggest that treatment with hyaluronic acid, when compared with the use of estrogens, does not present a significant difference in the results obtained for the outcomes: epithelial atrophy, vaginal pH, dyspareunia, and cell maturation. CLINICAL TRANSLATION Hyaluronic acid appears to be an alternative to non-hormonal treatments for the signs of vaginal atrophy and dyspareunia. STRENGTHS & LIMITATIONS The analysis of the studies in this systemic review suggests that hyaluronic acid has efficacy similar to vaginal estrogens for the treatment of the signs of vaginal atrophy and dyspareunia. However, the included studies measured the data in different ways, causing the performance of meta-analysis to be impaired. CONCLUSION The comparisons presented suggest that hyaluronic acid has a profile of efficacy, safety, and tolerability comparable with vaginal estrogens for the treatment of symptoms of vaginal atrophy. It is a possible alternative for women who cannot use hormonal treatment. dos Santos CCM, Uggioni MLR, Colonetti T, et al. Hyaluronic Acid in Postmenopause Vaginal Atrophy: A Systematic Review. J Sex Med 2021;18:156-166.
Collapse
Affiliation(s)
- Carlos Campagnaro M Dos Santos
- Laboratory of Biomedicine Translational, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Maria Laura R Uggioni
- Laboratory of Biomedicine Translational, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Tamy Colonetti
- Laboratory of Biomedicine Translational, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Laura Colonetti
- Laboratory of Biomedicine Translational, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Antonio José Grande
- Laboratory of Evidence-Based Practice, Universidade Estadual de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Maria Inês Da Rosa
- Laboratory of Biomedicine Translational, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciuma, SC, Brazil.
| |
Collapse
|
28
|
Walimbe T, Panitch A. Best of Both Hydrogel Worlds: Harnessing Bioactivity and Tunability by Incorporating Glycosaminoglycans in Collagen Hydrogels. Bioengineering (Basel) 2020; 7:E156. [PMID: 33276506 PMCID: PMC7711789 DOI: 10.3390/bioengineering7040156] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023] Open
Abstract
Collagen, the most abundant protein in mammals, has garnered the interest of scientists for over 50 years. Its ubiquitous presence in all body tissues combined with its excellent biocompatibility has led scientists to study its potential as a biomaterial for a wide variety of biomedical applications with a high degree of success and widespread clinical approval. More recently, in order to increase their tunability and applicability, collagen hydrogels have frequently been co-polymerized with other natural and synthetic polymers. Of special significance is the use of bioactive glycosaminoglycans-the carbohydrate-rich polymers of the ECM responsible for regulating tissue homeostasis and cell signaling. This review covers the recent advances in the development of collagen-based hydrogels and collagen-glycosaminoglycan blend hydrogels for biomedical research. We discuss the formulations and shortcomings of using collagen in isolation, and the advantages of incorporating glycosaminoglycans (GAGs) in the hydrogels. We further elaborate on modifications used on these biopolymers for tunability and discuss tissue specific applications. The information presented herein will demonstrate the versatility and highly translational value of using collagen blended with GAGs as hydrogels for biomedical engineering applications.
Collapse
Affiliation(s)
- Tanaya Walimbe
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA;
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA;
- Department of Surgery, University of California Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
29
|
Ngo TB, Spearman BS, Hlavac N, Schmidt CE. Three-Dimensional Bioprinted Hyaluronic Acid Hydrogel Test Beds for Assessing Neural Cell Responses to Competitive Growth Stimuli. ACS Biomater Sci Eng 2020; 6:6819-6830. [DOI: 10.1021/acsbiomaterials.0c00940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tran B. Ngo
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Benjamin S. Spearman
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Nora Hlavac
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Christine E. Schmidt
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
30
|
Zhou Y, Yue Z, Chen Z, Wallace G. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System. Adv Healthc Mater 2020; 9:e2001342. [PMID: 33103357 DOI: 10.1002/adhm.202001342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/05/2020] [Indexed: 12/31/2022]
Abstract
3D printing is now popular in tissue engineering as it provides a facile route to the fabrication of scaffolds with/without living cells with a predesigned geometry. The properties of the ink constituents are critical for printing structures to meet both mechanical and biological requirements. Despite recent advances in ink development, it remains a challenge to print biopolymer based tough and elastic hydrogels. These hydrogels are in great demand as they can mimic the biomechanics of soft tissues such as skin, muscle, and cartilage. In this study, a catechol functionalized ink system is developed for 3D coaxial printing tough and elastic hydrogels. The ink is based on biopolymers including catechol modified hyaluronic acid (HACA) and alginate. A novel crosslinking strategy is proposed, involving simple ionic crosslinking, catechol mediated crosslinking, and Michael addition that are all induced under mild conditions. The HACA and alginate form a double network with high fracture toughness and elasticity, while proteins such as gelatin can be integrated with the HACA/alginate hydrogel during printing to improve cell interactions. The printed constructs demonstrate high cytocompatibility and support the differentiation of myoblasts into aligned myotubes. The catechol functionalized ink can be further modified to target various applications in soft tissue engineering.
Collapse
Affiliation(s)
- Ying Zhou
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Innovation Campus University of Wollongong Wollongong NSW 2522 Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Innovation Campus University of Wollongong Wollongong NSW 2522 Australia
| | - Zhi Chen
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Innovation Campus University of Wollongong Wollongong NSW 2522 Australia
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Innovation Campus University of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|
31
|
Mora-Boza A, López-Ruiz E, López-Donaire ML, Jiménez G, Aguilar MR, Marchal JA, Pedraz JL, Vázquez-Lasa B, Román JS, Gálvez-Martín P. Evaluation of Glycerylphytate Crosslinked Semi- and Interpenetrated Polymer Membranes of Hyaluronic Acid and Chitosan for Tissue Engineering. Polymers (Basel) 2020; 12:E2661. [PMID: 33187239 PMCID: PMC7697555 DOI: 10.3390/polym12112661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022] Open
Abstract
In the present study, semi- and interpenetrated polymer network (IPN) systems based on hyaluronic acid (HA) and chitosan using ionic crosslinking of chitosan with a bioactive crosslinker, glycerylphytate (G1Phy), and UV irradiation of methacrylate were developed, characterized and evaluated as potential supports for tissue engineering. Semi- and IPN systems showed significant differences between them regarding composition, morphology, and mechanical properties after physicochemical characterization. Dual crosslinking process of IPN systems enhanced HA retention and mechanical properties, providing also flatter and denser surfaces in comparison to semi-IPN membranes. The biological performance was evaluated on primary human mesenchymal stem cells (hMSCs) and the systems revealed no cytotoxic effect. The excellent biocompatibility of the systems was demonstrated by large spreading areas of hMSCs on hydrogel membrane surfaces. Cell proliferation increased over time for all the systems, being significantly enhanced in the semi-IPN, which suggested that these polymeric membranes could be proposed as an effective promoter system of tissue repair. In this sense, the developed crosslinked biomimetic and biodegradable membranes can provide a stable and amenable environment for hMSCs support and growth with potential applications in the biomedical field.
Collapse
Affiliation(s)
- Ana Mora-Boza
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (E.L.-R.); (G.J.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada University of Granada, E-18071 Granada, Spain
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - María Luisa López-Donaire
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (E.L.-R.); (G.J.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada University of Granada, E-18071 Granada, Spain
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - María Rosa Aguilar
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (E.L.-R.); (G.J.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada University of Granada, E-18071 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
| | - José Luis Pedraz
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | | |
Collapse
|
32
|
Chen F, Le P, Fernandes-Cunha GM, Heilshorn SC, Myung D. Bio-orthogonally crosslinked hyaluronate-collagen hydrogel for suture-free corneal defect repair. Biomaterials 2020; 255:120176. [PMID: 32559566 PMCID: PMC7396293 DOI: 10.1016/j.biomaterials.2020.120176] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 01/13/2023]
Abstract
Biomaterials that mimic corneal stroma could decrease the need for donor corneal tissue and could decrease the prevalence of complications associated with corneal transplantation, including infection and rejection. We developed a bio-orthogonally crosslinked hyaluronate-collagen hydrogel which can fill corneal defects in situ without the need for any sutures, initiators, or catalysts. We studied the effects of biorthogonal crosslinking on the light transmittance of the hydrogel, which was greater than 97% water. The transmittance of the optimized hydrogel in the visible light range was over 94%. We also investigated the mechanical properties, refractive index, morphology, biocompatibility, and corneal re-epithelialization capacity of the hyaluronate-collagen hydrogel. Our in vitro, in vivo, and ex vivo results demonstrated that this bio-orthogonally crosslinked hyaluronate-collagen hydrogel has excellent potential as a biomaterial for cornea repair and regeneration.
Collapse
Affiliation(s)
- Fang Chen
- Ophthalmology, Stanford University School of Medicine, CA, United States; VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Peter Le
- Ophthalmology, Stanford University School of Medicine, CA, United States; VA Palo Alto Health Care System, Palo Alto, CA, United States
| | | | - Sarah C Heilshorn
- Materials Science & Engineering, Stanford University, CA, United States
| | - David Myung
- Ophthalmology, Stanford University School of Medicine, CA, United States; VA Palo Alto Health Care System, Palo Alto, CA, United States; Chemical Engineering, Stanford University, CA, United States.
| |
Collapse
|
33
|
Hu X, Yan L, Wang Y, Xu M. Microwave-assisted synthesis of nutgall tannic acid–based salecan polysaccharide hydrogel for tunable release of β-lactoglobulin. Int J Biol Macromol 2020; 161:1431-1439. [DOI: 10.1016/j.ijbiomac.2020.07.250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/27/2022]
|
34
|
O'Brien S, Brannigan RP, Ibanez R, Wu B, O'Dwyer J, O'Brien FJ, Cryan SA, Heise A. Biocompatible polypeptide-based interpenetrating network (IPN) hydrogels with enhanced mechanical properties. J Mater Chem B 2020; 8:7785-7791. [PMID: 32744280 DOI: 10.1039/d0tb01422b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogels are widely used for biomedical applications such as drug delivery, tissue engineering, or wound healing owing to their mimetic properties in relation to biological tissues. The generation of peptide-based hydrogels is a topic of interest due to their potential to increase biocompatibility. However, their usages can be limited when compared to other synthetic hydrogels because of their inferior mechanical properties. Herein, we present the synthesis of novel synthetic polypeptide-based interpenetrating network (IPN) hydrogels with enhanced mechanical properties. The polypeptide single network is obtained from alkyne functional polypeptides crosslinked with di, tri and tetra azide functional PEG by copper-catalysed alkyne-azide cycloaddition (CuAAC). Interpenetrating networks were subsequently obtained by loading of the polypeptide single network with PEG-dithiol and orthogonally UV-crosslinking with varying molar ratios of pentaerythritol tetraacrylate. The characteristics, including the mechanical strength (i.e. compressive strength (UCS), fracture strain (εbreak), and Young's modulus (E)) and cell compatibility (i.e. metabolic activity and Live/Dead of human Mesenchymal Stem Cells), of each synthetic polypeptide-based IPN hydrogel were studied and evaluated in order to demonstrate their potential as mechanically robust hydrogels for use as artificial tissues. Moreover, 1H NMR diffusometry was carried out to examine the water mobility (DH2O) within the polypeptide-based hydrogels and IPNs. It was found that both the mechanical and morphological properties could be tailored concurrently with the hydrophilicity, rate of water diffusion and 'swellability'. Finally it was shown that the polypeptide-based IPN hydrogels exhibited good biocompatibility, highlighting their potential as soft tissue scaffolds.
Collapse
Affiliation(s)
- Shona O'Brien
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Xiao S, Zhao T, Wang J, Wang C, Du J, Ying L, Lin J, Zhang C, Hu W, Wang L, Xu K. Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: an Effective Strategy for Tissue Engineering. Stem Cell Rev Rep 2020; 15:664-679. [PMID: 31154619 DOI: 10.1007/s12015-019-09893-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gelatin methacrylate (GelMA)-based hydrogels are gaining a great deal of attention as potentially implantable materials in tissue engineering applications because of their biofunctionality and mechanical tenability. Since different natural tissues respond differently to mechanical stresses, an ideal implanted material would closely match the mechanical properties of the target tissue. In this regard, applications employing GelMA hydrogels are currently limited by the low mechanical strength and biocompatibility of GelMA. Therefore, this review focuses on modifications made to GelMA hydrogels to make them more suitable for tissue engineering applications. A large number of reports detail rational synthetic processes for GelMA or describe the incorporation of various biomaterials into GelMA hydrogels to tune their various properties, e.g., physical strength, chemical properties, conductivity, and porosity, and to promote cell loading and accelerate tissue repair. A novel strategy for repairing tissue injuries, based on the transplantation of cell-loaded GelMA scaffolds, is examined and its advantages and challenges are summarized. GelMA-cell combinations play a critical and pioneering role in this process and could potentially accelerate the development of clinically relevant applications.
Collapse
Affiliation(s)
- Shining Xiao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Tengfei Zhao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jingkai Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Chenggui Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiangnan Du
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Liwei Ying
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiangtao Lin
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Caihua Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wanglu Hu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Kan Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
36
|
Li F, Ducker M, Sun B, Szele FG, Czernuszka JT. Interpenetrating polymer networks of collagen, hyaluronic acid, and chondroitin sulfate as scaffolds for brain tissue engineering. Acta Biomater 2020; 112:122-135. [PMID: 32512215 DOI: 10.1016/j.actbio.2020.05.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/19/2023]
Abstract
Stem cells can provide neuro-protection and potentially neuro-replacement to patients suffering from traumatic brain injuries (TBI), with a practical option being delivery via engineered scaffolds. Collagen (Coll) and glycosaminoglycan (GAG) have been used as scaffolds for brain tissue engineering yet they often do not support cell differentiation and survival. In this study, we developed interpenetrating polymer network scaffolds comprising Coll, and incorporating two commonly found GAGs in the brain, chondroitin sulfate (CS) and/or hyaluronic acid (HA). We seeded these scaffolds with mouse neural stem cells from the subventricular zone (SVZ) niche. Compared to Coll-alone, all other substrates decreased the percent of nestin+ stem cells. Coll-CS-HA was more efficient at suppressing nestin expression than the other scaffolds; all SVZ cells lost nestin expression within 7 days of culture. In contrast to nestin, the percentage of microtubule associated protein 2 (MAP2+) neurons was greater in scaffolds containing, CS, HA or CS-HA, compared to Coll alone. Finally, Coll-CS increased the percentage of glial fibrillary acidic protein (GFAP+) astrocytes compared to Coll scaffolds. Overall, this work shows that Coll-HA and Coll-CS-HA scaffolds selectively enhance neurogenesis and may be advantageous in tissue engineering therapy for TBI. STATEMENT OF SIGNIFICANCE: Brain injury is devastating yet with few options for repair. Stem cells that reside in the subventricular zone (SVZ) only repair damage inefficiently due to poor control of their cellular progeny and unsuitable extracellular matrix substrates. To solve these problems, we have systematically generated collagen (Coll) scaffolds with interpenetrating polymer networks (IPN) of hyaluronic acid (HA) or chondroitin sulfate proteoglycans (CS) or both. The scaffolds had defined pore sizes, similar mechanical properties and all three stimulated neurogenesis, whereas only CS stimulated astrocyte genesis. Overall, this work suggests that Coll-HA and Coll-CS-HA scaffolds selectively enhance neurogenesis and may be advantageous in tissue engineering therapy for brain repair.
Collapse
Affiliation(s)
- Fangxin Li
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
| | - Martin Ducker
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Bin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | - Jan T Czernuszka
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
| |
Collapse
|
37
|
Chen F, Le P, Lai K, Fernandes-Cunha GM, Myung D. Simultaneous Interpenetrating Polymer Network of Collagen and Hyaluronic Acid as an In Situ-Forming Corneal Defect Filler. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:5208-5216. [PMID: 33603277 PMCID: PMC7888987 DOI: 10.1021/acs.chemmater.0c01307] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Timely treatment of corneal injuries injury can help to prevent corneal scarring, blindness, and the need for corneal transplantation. This work describes a novel hydrogel that can fill corneal defects and assist in corneal regeneration. This hydrogel is a simultaneous interpenetrating polymer network (IPN) composed of collagen cross-linked via strain-promoted azide-alkyne cycloaddition reaction and hyaluronic acid cross-linked via thiol-ene Michael click reaction. The formation of the IPN gel was confirmed via FTIR spectra, UV-vis spectra, and morphological changes. We compared the gelation time, mechanical properties, transmittance, and refractive index of the IPN gel to the collagen gel, hyaluronic acid gel, and semi-IPN gel. The IPN combined the advantages of collagen and hyaluronic acid gels and supported corneal epithelial cell growth on its surface. When applied to corneal stromal defects in vivo, the IPN avoided epithelial hyperplasia, decreased stromal myofibroblast formation, and increased tight junction formation in the regenerated epithelium.
Collapse
Affiliation(s)
- Fang Chen
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States; VA Palo Alto, Palo Alto, California 94304, United States
| | - Peter Le
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States; VA Palo Alto, Palo Alto, California 94304, United States
| | - Krystal Lai
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Gabriella M Fernandes-Cunha
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - David Myung
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States; Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States; VA Palo Alto, Palo Alto, California 94304, United States
| |
Collapse
|
38
|
Ma X, Liu X, Wang P, Wang X, Yang R, Liu S, Ye Z, Chi B. Covalently Adaptable Hydrogel Based on Hyaluronic Acid and Poly(γ-glutamic acid) for Potential Load-Bearing Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:4036-4043. [DOI: 10.1021/acsabm.0c00112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xuebin Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhiwen Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
39
|
Abi Zeid Daou C, Bassim M. Hyaluronic acid in otology: Its uses, advantages and drawbacks - A review. Am J Otolaryngol 2020; 41:102375. [PMID: 31862122 DOI: 10.1016/j.amjoto.2019.102375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Review of the literature for studies involving the use of hyaluronic acid (HA) in otology. METHODS Pubmed and OvidMedline were searched using a combination of the following words in different variations: hyaluronic acid, hyaluronate, otolaryngology, otology, ear, tympanic membrane, perforation, tympanostomy, tympanoplasty, myringoplasty, packing, middle ear, cochlea, gene delivery, gene therapy, cochlear implant, hearing loss, meniere, vertigo, otitis and cholesteatoma. RESULTS The papers relevant for this review were triaged based on abstracts and titles and were then categorized based on topic/disease entity/procedure. The papers were read and summarized in order to use their findings in this review. CONCLUSIONS HA is being recently used as adjuvant therapy for multiple inflammatory conditions and in tissue repair. These immunomodulatory properties and biocompatibility have interested researchers specially in the field of otology for repair, gene delivery, immunomodulation etc. Recent data in the field show optimistic results for the use of HA in several conditions especially tympanic membrane perforations and gene delivery. It also establishes the role of HA as ancillary treatment in many other otologic pathologies. This review presents the most recent findings on the use of HA in otology. The results could be used to guide clinical practice and incite further research based on the presented results of the literature.
Collapse
|
40
|
Lacko CS, Singh I, Wall MA, Garcia AR, Porvasnik SL, Rinaldi C, Schmidt CE. Magnetic particle templating of hydrogels: engineering naturally derived hydrogel scaffolds with 3D aligned microarchitecture for nerve repair. J Neural Eng 2020; 17:016057. [PMID: 31577998 DOI: 10.1088/1741-2552/ab4a22] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Hydrogel scaffolds hold promise for a myriad of tissue engineering applications, but often lack tissue-mimetic architecture. Therefore, in this work, we sought to develop a new technology for the incorporation of aligned tubular architecture within hydrogel scaffolds engineered from the bottom-up. APPROACH We report a platform fabrication technology-magnetic templating-distinct from other approaches in that it uses dissolvable magnetic alginate microparticles (MAMs) to form aligned columnar structures under an applied magnetic field. Removal of the MAMs yields scaffolds with aligned tubular microarchitecture that can promote cell remodeling for a variety of applications. This approach affords control of microstructure diameter and biological modification for advanced applications. Here, we sought to replicate the microarchitecture of the native nerve basal lamina using magnetic templating of hydrogels composed of glycidyl methacrylate hyaluronic acid and collagen I. MAIN RESULTS Magnetically templated hydrogels were characterized for particle alignment and micro-porosity. Overall MAM removal efficacy was verified by 96.8% removal of iron oxide nanoparticles. Compressive mechanical properties were well-matched to peripheral nerve tissue at 0.93 kPa and 1.29 kPa, respectively. In vitro, templated hydrogels exhibited approximately 36% faster degradation over 12 h, and were found to guide axon extension from dorsal root ganglia. Finally, in a pilot in vivo study utilizing a 10 mm rat sciatic nerve defect model, magnetically templated hydrogels demonstrated promising results with qualitatively increased remodeling and axon regeneration compared to non-templated controls. SIGNIFICANCE This simple and scalable technology has the flexibility to control tubular microstructure over long length scales, and thus the potential to meet the need for engineered scaffolds for tissue regeneration, including nerve guidance scaffolds.
Collapse
Affiliation(s)
- Christopher S Lacko
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, United States of America
| | | | | | | | | | | | | |
Collapse
|
41
|
Spearman BS, Agrawal NK, Rubiano A, Simmons CS, Mobini S, Schmidt CE. Tunable methacrylated hyaluronic acid-based hydrogels as scaffolds for soft tissue engineering applications. J Biomed Mater Res A 2020; 108:279-291. [PMID: 31606936 PMCID: PMC8591545 DOI: 10.1002/jbm.a.36814] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/18/2023]
Abstract
Hyaluronic acid (HA)-based biomaterials have been explored for a number of applications in biomedical engineering, particularly as tissue regeneration scaffolds. Crosslinked forms of HA are more robust and provide tunable mechanical properties and degradation rates that are critical in regenerative medicine; however, crosslinking modalities reported in the literature vary and there are few comparisons of different scaffold properties for various crosslinking approaches. In this study, we offer direct comparison of two methacrylation techniques for HA (glycidyl methacrylate HA [GMHA] or methacrylic anhydride HA [MAHA]). The two methods for methacrylating HA provide degrees of methacrylation ranging from 2.4 to 86%, reflecting a wider range of properties than is possible using only a single methacrylation technique. We have also characterized mechanical properties for nine different tissues isolated from rat (ranging from lung at the softest to muscle at the stiffest) using indentation techniques and show that we can match the full range of mechanical properties (0.35-6.13 kPa) using either GMHA or MAHA. To illustrate utility for neural tissue engineering applications, functional hydrogels with adhesive proteins (either GMHA or MAHA base hydrogels with collagen I and laminin) were designed with effective moduli mechanically matched to rat sciatic nerve (2.47 ± 0.31 kPa). We demonstrated ability of these hydrogels to support three-dimensional axonal elongation from dorsal root ganglia cultures. Overall, we have shown that methacrylated HA provides a tunable platform with a wide range of properties for use in soft tissue engineering.
Collapse
Affiliation(s)
- Benjamin S. Spearman
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Nikunj K. Agrawal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Andrés Rubiano
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL
| | - Chelsey S. Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL
| | - Sahba Mobini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Madrid, Spain
- Departamento de Biología Molecular and Centro de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
42
|
Benmassaoud MM, Gultian KA, DiCerbo M, Vega SL. Hydrogel screening approaches for bone and cartilage tissue regeneration. Ann N Y Acad Sci 2019; 1460:25-42. [DOI: 10.1111/nyas.14247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Matthew DiCerbo
- Department of Biomedical EngineeringRowan University Glassboro New Jersey
| | - Sebastián L. Vega
- Department of Biomedical EngineeringRowan University Glassboro New Jersey
| |
Collapse
|
43
|
|
44
|
Lee KW, Kuan TC, Lee MW, Yang CS, Hwang LC, Chen CJ, Chang SJ. Effects of bio-mimic collagen II-g-hyaluronic acid copolymers on chondrocyte maintenance. J BIOACT COMPAT POL 2019. [DOI: 10.1177/0883911519876069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular matrix has an important part of the role in tissue engineering and regenerative medicine, so it is necessary to understand the various interactions between cells and extracellular matrix. Type II collagen and hyaluronic acid are the major structural components of the extracellular matrix of articular cartilage, and they are involved in fibril formation, entanglement and binding. The aim of this study was to prepare type II collagen fibrils with surface grafted with hyaluronic acid modified at the reducing end. The topographic pattern of type II collagen fibrils showed a significant change after the surface coupling of hyaluronic acid according to atomic force microscopy scanning. The presence of hyaluronic acid on the type II collagen fibrillar surface was confirmed by the specific binding of nanogold labelled with lectin. No significant increase in cell proliferation was detected by a WST-1 assay. According to histochemical examination, the maintenance of the round shape of chondrocytes and increased glycosaminoglycan secretion revealed that these cell pellets with Col II- g-hyaluronic acid molecules contained un-dedifferentiated chondrocytes in vitro. In the mixture with the 220-kDa Col II- g-hyaluronic acid copolymer, the expression of type II collagen and aggrecan genes in chondrocytes increased as demonstrated by real-time polymerase chain reaction analysis. Experimental results show that the amount of hyaluronic acid added during culturing of chondrocytes can maintain the functionality of chondrocytes and thus allow for increased cell proliferation that is suitable for tissue repair of human cartilage.
Collapse
Affiliation(s)
- Kuan Wei Lee
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Tang-Ching Kuan
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Ming Wei Lee
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City, Taiwan, ROC
| | - Chen Show Yang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Lain-Chyr Hwang
- Department of Electrical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Ching-Jung Chen
- School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Shwu Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| |
Collapse
|
45
|
Khoo AS, Valentin TM, Leggett SE, Bhaskar D, Bye EM, Benmelech S, Ip BC, Wong IY. Breast Cancer Cells Transition from Mesenchymal to Amoeboid Migration in Tunable Three-Dimensional Silk-Collagen Hydrogels. ACS Biomater Sci Eng 2019; 5:4341-4354. [PMID: 31517039 DOI: 10.1021/acsbiomaterials.9b00519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Invading cancer cells adapt their migration phenotype in response to mechanical and biochemical cues from the extracellular matrix. For instance, mesenchymal migration is associated with strong cell-matrix adhesions and an elongated morphology, while amoeboid migration is associated with minimal cell-matrix adhesions and a rounded morphology. However, it remains challenging to elucidate the role of matrix mechan-ics and biochemistry, since these are both dependent on ECM protein concentration. Here, we demonstrate a composite silk fibroin and collagen I hydrogel where stiffness and microstructure can be systematically tuned over a wide range. Using an overlay assay geometry, we show that the invasion of metastatic breast cancer cells exhibits a biphasic dependence on silk fibroin concentration at fixed collagen I concentration, first increasing as the hydrogel stiffness increases, then decreasing as the pore size of silk fibroin decreases. Indeed, mesenchymal morphology exhibits a similar biphasic depen-dence on silk fibroin concentration, while amoeboid morphologies were favored when cell-matrix adhesions were less effective. We used exogenous biochemical treatment to perturb cells towards increased contractility and a mesenchymal morphology, as well as to disrupt cytoskeletal function and promote an amoeboid morphology. Overall, we envision that this tunable biomaterial platform in a 96-well plate format will be widely applicable to screen cancer cell migration against combinations of designer biomaterials and targeted inhibitors.
Collapse
Affiliation(s)
- Amanda S Khoo
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA
| | - Thomas M Valentin
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA.,Current Address: Department of Health Sciences and Technology, ETH Zürich. Zürich, Switzerland
| | - Susan E Leggett
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA.,Pathobiology Graduate Program. Brown University, Providence, RI, USA.,Current Address: Department of Chemical and Biological Engineering, Princeton University. Princeton, NJ 08544, USA
| | - Dhananjay Bhaskar
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA
| | - Elisa M Bye
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA
| | - Shoham Benmelech
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA
| | - Blanche C Ip
- Pathobiology Graduate Program. Brown University, Providence, RI, USA
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA.,Pathobiology Graduate Program. Brown University, Providence, RI, USA
| |
Collapse
|
46
|
A facile approach for engineering tissue constructs with vessel-like channels by cell-laden hydrogel fibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:370-379. [DOI: 10.1016/j.msec.2019.03.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/20/2019] [Accepted: 03/25/2019] [Indexed: 01/21/2023]
|
47
|
Wechsler ME, Stephenson RE, Murphy AC, Oldenkamp HF, Singh A, Peppas NA. Engineered microscale hydrogels for drug delivery, cell therapy, and sequencing. Biomed Microdevices 2019; 21:31. [PMID: 30904963 DOI: 10.1007/s10544-019-0358-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Engineered microscale hydrogels have emerged as promising therapeutic approaches for the treatment of various diseases. These microgels find wide application in the biomedical field because of the ease of injectability, controlled release of therapeutics, flexible means of synthesis, associated tunability, and can be engineered as stimuli-responsive. While bulk hydrogels of several length-scale dimensions have been used for over two decades in drug delivery applications, their use as microscale carriers of drug and cell-based therapies is relatively new. Herein, we critically summarize the fundamentals of hydrogels based on their equilibrium and dynamics of their molecular structure, as well as solute diffusion as it relates to drug delivery. In addition, examples of common microgel synthesis techniques are provided. The ability to tune microscale hydrogels to obtain controlled release of therapeutics is discussed, along with microgel considerations for cell encapsulation as it relates to the development of cell-based therapies. We conclude with an outlook on the use of microgels for cell sequencing, and the convergence of the use of microscale hydrogels for drug delivery, cell therapy, and cell sequencing based systems.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Regan E Stephenson
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Andrew C Murphy
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Heidi F Oldenkamp
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
48
|
Krishnamoorthy S, Zhang Z, Xu C. Biofabrication of three-dimensional cellular structures based on gelatin methacrylate-alginate interpenetrating network hydrogel. J Biomater Appl 2019; 33:1105-1117. [PMID: 30636494 DOI: 10.1177/0885328218823329] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrogels have been widely used as extracellular matrix materials in various three-dimensional bioprinting applications. However, they possess limitations such as insufficient mechanical integrity and strength, especially in the vascular applications requiring suture retention and tolerance of systemic intraluminal pressure. Interpenetrating network hydrogels are unique mixtures of two separate hydrogels with enhanced properties. This paper has demonstrated the fabrication of three-dimensional cellular constructs based on gelatin methacrylate-alginate interpenetrating network hydrogels using a microgel-assisted bioprinting method. Filament formation was investigated in terms of the filament diameter under different nozzle speed and dispensing pressure, and a phase diagram to identify the optimal conditions for continuous and uniform filaments was prepared. Three-dimensional hollow cellular constructs were fabricated and the cell viability was 75% after 24-hour incubation. The post-printing properties were characterized including mechanical properties, degradation and swelling properties, and pore size. The interpenetrating network hydrogels with different concentrations were compared with their individual components. It is found that the interpenetrating network hydrogels exhibit stronger mechanical properties, faster degradation and larger pore sizes than their individual components.
Collapse
Affiliation(s)
- Srikumar Krishnamoorthy
- 1 Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| | - Zhengyi Zhang
- 2 School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Changxue Xu
- 1 Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
49
|
Zhang T, Chen H, Zhang Y, Zan Y, Ni T, Liu M, Pei R. Osteogenic differentiation of BMSCs in collagen-based 3D scaffolds. NEW J CHEM 2019. [DOI: 10.1039/c8nj04100h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Collagen-based scaffolds was fabricated through covalent crosslinking, and used as 3D scaffolds for promoting the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Tingting Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Hong Chen
- CAS Key Laboratory for Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Yue Zan
- CAS Key Laboratory for Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Tianyu Ni
- CAS Key Laboratory for Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Min Liu
- Institute for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| |
Collapse
|
50
|
Tiwari S, Bahadur P. Modified hyaluronic acid based materials for biomedical applications. Int J Biol Macromol 2019; 121:556-571. [DOI: 10.1016/j.ijbiomac.2018.10.049] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022]
|