1
|
De Mori A, Karali A, Daskalakis E, Hing R, Da Silva Bartolo PJ, Cooper G, Blunn G. Poly-ε-Caprolactone 3D-Printed Porous Scaffold in a Femoral Condyle Defect Model Induces Early Osteo-Regeneration. Polymers (Basel) 2023; 16:66. [PMID: 38201731 PMCID: PMC10780383 DOI: 10.3390/polym16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Large bone reconstruction following trauma poses significant challenges for reconstructive surgeons, leading to a healthcare burden for health systems, long-term pain for patients, and complex disorders such as infections that are difficult to resolve. The use of bone substitutes is suboptimal for substantial bone loss, as they induce localized atrophy and are generally weak, and unable to support load. A combination of strong polycaprolactone (PCL)-based scaffolds, with an average channel size of 330 µm, enriched with 20% w/w of hydroxyapatite (HA), β-tricalcium phosphate (TCP), or Bioglass 45S5 (Bioglass), has been developed and tested for bone regeneration in a critical-size ovine femoral condyle defect model. After 6 weeks, tissue ingrowth was analyzed using X-ray computed tomography (XCT), Backscattered Electron Microscopy (BSE), and histomorphometry. At this point, all materials promoted new bone formation. Histological analysis showed no statistical difference among the different biomaterials (p > 0.05), but PCL-Bioglass scaffolds enhanced bone formation in the center of the scaffold more than the other types of materials. These materials show potential to promote bone regeneration in critical-sized defects on load-bearing sites.
Collapse
Affiliation(s)
- Arianna De Mori
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Aikaterina Karali
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Evangelos Daskalakis
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK (G.C.)
| | - Richard Hing
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 2HB, UK
| | | | - Glen Cooper
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK (G.C.)
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK
| |
Collapse
|
2
|
Kim D, Youn J, Lee J, Kim H, Kim DS. Recent Progress in Fabrication of Electrospun Nanofiber Membranes for Developing Physiological In Vitro Organ/Tissue Models. Macromol Biosci 2023; 23:e2300244. [PMID: 37590903 DOI: 10.1002/mabi.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Nanofiber membranes (NFMs), which have an extracellular matrix-mimicking structure and unique physical properties, have garnered great attention as biomimetic materials for developing physiologically relevant in vitro organ/tissue models. Recent progress in NFM fabrication techniques immensely contributes to the development of NFM-based cell culture platforms for constructing physiological organ/tissue models. However, despite the significance of the NFM fabrication technique, an in-depth discussion of the fabrication technique and its future aspect is insufficient. This review provides an overview of the current state-of-the-art of NFM fabrication techniques from electrospinning techniques to postprocessing techniques for the fabrication of various types of NFM-based cell culture platforms. Moreover, the advantages of the NFM-based culture platforms in the construction of organ/tissue models are discussed especially for tissue barrier models, spheroids/organoids, and biomimetic organ/tissue constructs. Finally, the review concludes with perspectives on challenges and future directions for fabrication and utilization of NFMs.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jisang Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Mohammadi SS, Shafiei SS. Electrospun biodegradable scaffolds based on poly (ε-caprolactone)/gelatin containing titanium dioxide for bone tissue engineering application; in vitro study. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2193582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Seyedeh Shima Mohammadi
- Stem Cell and Regenerative Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering & Biotechnology, Tehran, Iran
| | - Seyedeh Sara Shafiei
- Stem Cell and Regenerative Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering & Biotechnology, Tehran, Iran
| |
Collapse
|
4
|
Tomasina C, Montalbano G, Fiorilli S, Quadros P, Azevedo A, Coelho C, Vitale-Brovarone C, Camarero-Espinosa S, Moroni L. Incorporation of strontium-containing bioactive particles into PEOT/PBT electrospun scaffolds for bone tissue regeneration. BIOMATERIALS ADVANCES 2023; 149:213406. [PMID: 37054582 DOI: 10.1016/j.bioadv.2023.213406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/11/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
The combination of biomaterials and bioactive particles has shown to be a successful strategy to fabricate electrospun scaffolds for bone tissue engineering. Among the range of bioactive particles, hydroxyapatite and mesoporous bioactive glasses (MBGs) have been widely used for their osteoconductive and osteoinductive properties. Yet, the comparison between the chemical and mechanical characteristics as well as the biological performances of these particle-containing scaffolds have been characterized to a limited extent. In this work, we fabricated PEOT/PBT-based composite scaffolds incorporating either nanohydroxyapatite (nHA), strontium-containing nanohydroxyapatite (nHA_Sr) or MBGs doped with strontium ions up to 15 wt./vol% and 12,5 wt./vol% for nHA and MBG, respectively. The composite scaffolds presented a homogeneous particle distribution. Morphological, chemical and mechanical analysis revealed that the introduction of particles into the electrospun meshes caused a decrease in the fiber diameter and mechanical properties, yet maintaining the hydrophilic nature of the scaffolds. The Sr2+ release profile differed according to the considered system, observing a 35-day slowly decreasing release from strontium-containing nHA scaffolds, whereas MBG-based scaffolds showed a strong burst release in the first week. In vitro, culture of human bone marrow-derived mesenchymal stromal cells (hMSCs) on composite scaffolds demonstrated excellent cell adhesion and proliferation. In maintenance and osteogenic media, all composite scaffolds showed high mineralization as well as expression of Col I and OCN compared to PEOT/PBT scaffolds, suggesting their ability to boost bone formation even without osteogenic factors. The presence of strontium led to an increase in collagen secretion and matrix mineralization in osteogenic medium, while gene expression analysis showed that hMSCs cultured on nHA-based scaffolds had a higher expression of OCN, ALP and RUNX2 compared to cells cultured on nHA_Sr scaffolds in osteogenic medium. Yet, cells cultured on MBGs-based scaffolds showed a higher gene expression of COL1, ALP, RUNX2 and BMP2 in osteogenic medium compared to nHA-based scaffolds, which is hypothesized to lead to high osteoinductivity in long term cultures.
Collapse
|
5
|
Kh. Kara G, Tadjarodi A, Kehtari M. Designing a novel 3D nanofibrous scaffold based on nanoalloy AuAg NPs (AuAg@ PAN NFs) for osteogenic differentiation of human adipose derived mesenchymal stem cells (hADMSCs). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Xing S, Yan M, Yang Y, Wang Y, Hu X, Ma B, Kang X. Diacerein Loaded Poly (Styrene Sulfonate) and Carbon Nanotubes Injectable Hydrogel: An Effective Therapy for Spinal Cord Injury Regeneration. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02240-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Biscaia S, Branquinho MV, Alvites RD, Fonseca R, Sousa AC, Pedrosa SS, Caseiro AR, Guedes F, Patrício T, Viana T, Mateus A, Maurício AC, Alves N. 3D Printed Poly(𝜀-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties. Int J Mol Sci 2022; 23:2318. [PMID: 35216432 PMCID: PMC8880322 DOI: 10.3390/ijms23042318] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Bone tissue engineering has been developed in the past decades, with the engineering of bone substitutes on the vanguard of this regenerative approach. Polycaprolactone-based scaffolds are fairly applied for bone regeneration, and several composites have been incorporated so as to improve the scaffolds' mechanical properties and tissue in-growth. In this study, hydroxyapatite is incorporated on polycaprolactone-based scaffolds at two different proportions, 80:20 and 60:40. Scaffolds are produced with two different blending methods, solvent casting and melt blending. The prepared composites are 3D printed through an extrusion-based technique and further investigated with regard to their chemical, thermal, morphological, and mechanical characteristics. In vitro cytocompatibility and osteogenic differentiation was also assessed with human dental pulp stem/stromal cells. The results show the melt-blending-derived scaffolds to present more promising mechanical properties, along with the incorporation of hydroxyapatite. The latter is also related to an increase in osteogenic activity and promotion. Overall, this study suggests polycaprolactone/hydroxyapatite scaffolds to be promising candidates for bone tissue engineering, particularly when produced by the MB method.
Collapse
Affiliation(s)
- Sara Biscaia
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (S.B.); (R.F.); (T.P.); (T.V.); (A.M.); (N.A.)
| | - Mariana V. Branquinho
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (M.V.B.); (R.D.A.); (A.C.S.); (S.S.P.); (A.R.C.); (F.G.)
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Rui D. Alvites
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (M.V.B.); (R.D.A.); (A.C.S.); (S.S.P.); (A.R.C.); (F.G.)
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Rita Fonseca
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (S.B.); (R.F.); (T.P.); (T.V.); (A.M.); (N.A.)
| | - Ana Catarina Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (M.V.B.); (R.D.A.); (A.C.S.); (S.S.P.); (A.R.C.); (F.G.)
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Sílvia Santos Pedrosa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (M.V.B.); (R.D.A.); (A.C.S.); (S.S.P.); (A.R.C.); (F.G.)
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- CBQF—Centre of Biotechnology and Fine Chemistry—Associated Laboratory, Faculty of Biotechnology, Catholic University of Portugal, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana R. Caseiro
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (M.V.B.); (R.D.A.); (A.C.S.); (S.S.P.); (A.R.C.); (F.G.)
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Vasco da Gama Research Center (CIVG)/Vasco da Gama University School (EUVG), Av. José R. Sousa Fernandes 197, Lordemão, 3020-210 Coimbra, Portugal
- Veterinary Clinics Department, Vasco da Gama University School (EUVG), Av. José R. Sousa Fernandes 197, Lordemão, 3020-210 Coimbra, Portugal
| | - Fernando Guedes
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (M.V.B.); (R.D.A.); (A.C.S.); (S.S.P.); (A.R.C.); (F.G.)
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Tatiana Patrício
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (S.B.); (R.F.); (T.P.); (T.V.); (A.M.); (N.A.)
| | - Tânia Viana
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (S.B.); (R.F.); (T.P.); (T.V.); (A.M.); (N.A.)
| | - Artur Mateus
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (S.B.); (R.F.); (T.P.); (T.V.); (A.M.); (N.A.)
| | - Ana C. Maurício
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (M.V.B.); (R.D.A.); (A.C.S.); (S.S.P.); (A.R.C.); (F.G.)
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (S.B.); (R.F.); (T.P.); (T.V.); (A.M.); (N.A.)
| |
Collapse
|
8
|
Tüzün-Antepli B, Elçin AE, Elçin YM. Construction of micro-grooved PCL/nanohydroxyapatite membranes by non-solvent induced phase separation method and its evaluation for use as a substrate for human periodontal ligament fibroblasts. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Tabia Z, Akhtach S, Bricha M, El Mabrouk K. Tailoring the biodegradability and bioactivity of green-electrospun polycaprolactone fibers by incorporation of bioactive glass nanoparticles for guided bone regeneration. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Pedrosa MCG, dos Anjos SA, Mavropoulos E, Bernardo PL, Granjeiro JM, Rossi AM, Dias ML. Structure and biological compatibility of polycaprolactone/zinc-hydroxyapatite electrospun nanofibers for tissue regeneration. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211022448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although guided tissue regeneration (GTR) is a useful tool for regenerating lost tissue as bone and periodontal tissue, a biocompatible membrane capable of regenerating large defects has yet to be discovered. This study aimed to characterize the physicochemical properties and biological compatibility of polycaprolactone (PCL) membranes associated with or without nanostructured hydroxyapatite (HA) (PCL/HA) and Zn-doped HA (PCL/ZnHA), produced by electrospinning. PCL, PCL/HA, and PCL/ZnHA were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Nanoparticles of HA or ZnHA were homogeneously distributed and dispersed inside the PCL fibers, which decreased the fiber thickness. At 1 wt% of HA or ZnHA, these nanoparticles acted as nucleating agents. Moreover, HA and ZnHA increased the onset of the degradation temperature and thermal stability of the electrospun membrane. All tested membranes showed no cytotoxicity and allowed murine pre-osteoblast adhesion and spreading; however, higher concentrations of PCL/ZnHA showed less cells and an irregular cell morphology compared to PCL and PCL/HA. This article presents a cytocompatible, electrospun, nanocomposite membrane with a novel morphology and physicochemical properties that make it eligible as a scaffold for GTR.
Collapse
Affiliation(s)
- Maria Clara Guimaraes Pedrosa
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Elena Mavropoulos
- Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
| | | | - José Mauro Granjeiro
- Directory of Life Sciences Applied Metrology, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ, Brazil
| | | | - Marcos Lopes Dias
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Borandeh S, van Bochove B, Teotia A, Seppälä J. Polymeric drug delivery systems by additive manufacturing. Adv Drug Deliv Rev 2021; 173:349-373. [PMID: 33831477 DOI: 10.1016/j.addr.2021.03.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
Additive manufacturing (AM) is gaining interests in drug delivery applications, offering innovative opportunities for the design and development of systems with complex geometry and programmed controlled release profile. In addition, polymer-based drug delivery systems can improve drug safety, efficacy, patient compliance, and are the key materials in AM. Therefore, combining AM and polymers can be beneficial to overcome the existing limitations in the development of controlled release drug delivery systems. Considering these advantages, here we are focusing on the recent developments in the field of polymeric drug delivery systems prepared by AM. This review provides a comprehensive overview on a holistic polymer-AM perspective for drug delivery systems with discussion on the materials, properties, design and fabrication techniques and the mechanisms used to achieve a controlled release system. The current challenges and future perspectives for personalized medicine and clinical use of these systems are also briefly discussed.
Collapse
Affiliation(s)
- Sedigheh Borandeh
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Bas van Bochove
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Arun Teotia
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo 02150, Finland.
| |
Collapse
|
12
|
Ferrara V, Zito G, Arrabito G, Cataldo S, Scopelliti M, Giordano C, Vetri V, Pignataro B. Aqueous Processed Biopolymer Interfaces for Single-Cell Microarrays. ACS Biomater Sci Eng 2020; 6:3174-3186. [PMID: 33463257 PMCID: PMC7997111 DOI: 10.1021/acsbiomaterials.9b01871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single-cell microarrays are emerging tools to unravel intrinsic diversity within complex cell populations, opening up new approaches for the in-depth understanding of highly relevant diseases. However, most of the current methods for their fabrication are based on cumbersome patterning approaches, employing organic solvents and/or expensive materials. Here, we demonstrate an unprecedented green-chemistry strategy to produce single-cell capture biochips onto glass surfaces by all-aqueous inkjet printing. At first, a chitosan film is easily inkjet printed and immobilized onto hydroxyl-rich glass surfaces by electrostatic immobilization. In turn, poly(ethylene glycol) diglycidyl ether is grafted on the chitosan film to expose reactive epoxy groups and induce antifouling properties. Subsequently, microscale collagen spots are printed onto the above surface to define the attachment area for single adherent human cancer cells harvesting with high yield. The reported inkjet printing approach enables one to modulate the collagen area available for cell attachment in order to control the number of captured cells per spot, from single-cells up to double- and multiple-cell arrays. Proof-of-principle of the approach includes pharmacological treatment of single-cells by the model drug doxorubicin. The herein presented strategy for single-cell array fabrication can constitute a first step toward an innovative and environmentally friendly generation of aqueous-based inkjet-printed cellular devices.
Collapse
Affiliation(s)
- Vittorio Ferrara
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giovanni Zito
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (ProMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Sicilia, Italy
| | - Giuseppe Arrabito
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Sebastiano Cataldo
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Michelangelo Scopelliti
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Carla Giordano
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (ProMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Sicilia, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Bruno Pignataro
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
13
|
Azad MA, Olawuni D, Kimbell G, Badruddoza AZM, Hossain MS, Sultana T. Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials-Process Perspective. Pharmaceutics 2020; 12:E124. [PMID: 32028732 PMCID: PMC7076526 DOI: 10.3390/pharmaceutics12020124] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022] Open
Abstract
Three dimensional (3D) printing as an advanced manufacturing technology is progressing to be established in the pharmaceutical industry to overcome the traditional manufacturing regime of 'one size fits for all'. Using 3D printing, it is possible to design and develop complex dosage forms that can be suitable for tuning drug release. Polymers are the key materials that are necessary for 3D printing. Among all 3D printing processes, extrusion-based (both fused deposition modeling (FDM) and pressure-assisted microsyringe (PAM)) 3D printing is well researched for pharmaceutical manufacturing. It is important to understand which polymers are suitable for extrusion-based 3D printing of pharmaceuticals and how their properties, as well as the behavior of polymer-active pharmaceutical ingredient (API) combinations, impact the printing process. Especially, understanding the rheology of the polymer and API-polymer mixtures is necessary for successful 3D printing of dosage forms or printed structures. This review has summarized a holistic materials-process perspective for polymers on extrusion-based 3D printing. The main focus herein will be both FDM and PAM 3D printing processes. It elaborates the discussion on the comparison of 3D printing with the traditional direct compression process, the necessity of rheology, and the characterization techniques required for the printed structure, drug, and excipients. The current technological challenges, regulatory aspects, and the direction toward which the technology is moving, especially for personalized pharmaceuticals and multi-drug printing, are also briefly discussed.
Collapse
Affiliation(s)
- Mohammad A. Azad
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (D.O.); (G.K.)
| | - Deborah Olawuni
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (D.O.); (G.K.)
| | - Georgia Kimbell
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (D.O.); (G.K.)
| | - Abu Zayed Md Badruddoza
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Md. Shahadat Hossain
- Department of Engineering Technology, Queensborough Community College, City University of New York (CUNY), Bayside, NY 11364, USA;
| | - Tasnim Sultana
- Department of Public Health, School of Arts and Sciences, Massachusetts College of Pharmacy and Health Sciences (MCPHS), Boston, MA 02115, USA;
| |
Collapse
|
14
|
Huang B, Vyas C, Byun JJ, El-Newehy M, Huang Z, Bártolo P. Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110374. [PMID: 31924043 DOI: 10.1016/j.msec.2019.110374] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/11/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
The development of highly biomimetic scaffolds in terms of composition and structures, to repair or replace damaged bone tissues, is particularly relevant for tissue engineering. This paper investigates a 3D printed porous scaffold containing aligned multi-walled carbon nanotubes (MWCNTs) and nano-hydroxyapatite (nHA), mimicking the natural bone tissue from the nanoscale to macroscale level. MWCNTs with similar dimensions as collagen fibres are coupled with nHA and mixed within a polycaprolactone (PCL) matrix to produce scaffolds using a screw-assisted extrusion-based additive manufacturing system. Scaffolds with different material compositions were extensively characterised from morphological, mechanical and biological points of views. Transmission electron microscopy and polarised Raman spectroscopy confirm the presence of aligned MWCNTs within the printed filaments. The PCL/HA/MWCNTs scaffold are similar to the nanostructure of native bone and shows overall increased mechanical properties, cell proliferation, osteogenic differentiation and scaffold mineralisation, indicating a promising approach for bone tissue regeneration.
Collapse
Affiliation(s)
- Boyang Huang
- School of Mechanical, Aerospace and Civil Engineering, M13 9PL, University of Manchester, Manchester, UK
| | - Cian Vyas
- School of Mechanical, Aerospace and Civil Engineering, M13 9PL, University of Manchester, Manchester, UK
| | - Jae Jong Byun
- School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyad, 11451, Saudi Arabia
| | - Zhucheng Huang
- Department of Mineral Engineering, Central South University, Changsha, 410083, PR China.
| | - Paulo Bártolo
- School of Mechanical, Aerospace and Civil Engineering, M13 9PL, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Khader A, Arinzeh TL. Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells. Biotechnol Bioeng 2019; 117:194-209. [PMID: 31544962 DOI: 10.1002/bit.27173] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) involves the degeneration of articular cartilage and subchondral bone. The capacity of articular cartilage to repair and regenerate is limited. A biodegradable, fibrous scaffold containing zinc oxide (ZnO) was fabricated and evaluated for osteochondral tissue engineering applications. ZnO has shown promise for a variety of biomedical applications but has had limited use in tissue engineering. Composite scaffolds consisted of ZnO nanoparticles embedded in slow degrading, polycaprolactone to allow for dissolution of zinc ions over time. Zinc has well-known insulin-mimetic properties and can be beneficial for cartilage and bone regeneration. Fibrous ZnO composite scaffolds, having varying concentrations of 1-10 wt.% ZnO, were fabricated using the electrospinning technique and evaluated for human mesenchymal stem cell (MSC) differentiation along chondrocyte and osteoblast lineages. Slow release of the zinc was observed for all ZnO composite scaffolds. MSC chondrogenic differentiation was promoted on low percentage ZnO composite scaffolds as indicated by the highest collagen type II production and expression of cartilage-specific genes, while osteogenic differentiation was promoted on high percentage ZnO composite scaffolds as indicated by the highest alkaline phosphatase activity, collagen production, and expression of bone-specific genes. This study demonstrates the feasibility of ZnO-containing composites as a potential scaffold for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Ateka Khader
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | | |
Collapse
|
17
|
Nagrath M, Alhalawani A, Rahimnejad Yazdi A, Towler MR. Bioactive glass fiber fabrication via a combination of sol-gel process with electro-spinning technique. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:521-538. [PMID: 31029347 DOI: 10.1016/j.msec.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Malvika Nagrath
- Department of Biomedical Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto M5B 2K3, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, ON, Canada
| | - Adel Alhalawani
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, ON, Canada; Department of Mechanical and Industrial Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto M5B 2K3, ON, Canada
| | - Alireza Rahimnejad Yazdi
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, ON, Canada; Department of Mechanical and Industrial Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto M5B 2K3, ON, Canada
| | - Mark R Towler
- Department of Biomedical Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto M5B 2K3, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, ON, Canada; Department of Mechanical and Industrial Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto M5B 2K3, ON, Canada.
| |
Collapse
|
18
|
Electrospun Filaments Embedding Bioactive Glass Particles with Ion Release and Enhanced Mineralization. NANOMATERIALS 2019; 9:nano9020182. [PMID: 30717161 PMCID: PMC6410207 DOI: 10.3390/nano9020182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
Abstract
Efforts in tissue engineering aim at creating scaffolds that mimic the physiological environment with its structural, topographical and mechanical properties for restoring the function of damaged tissue. In this study we introduce composite fibres made by a biodegradable poly(lactic acid) (PLLA) matrix embedding bioactive silica-based glass particles (SBA2). Electrospinning is performed to achieve porous PLLA filaments with uniform dispersion of bioactive glass powder. The obtained composite fibres show in aligned arrays significantly increased elastic modulus compared with that of neat polymer fibres during uniaxial tensile stress. Additionally, the SBA2 bioactivity is preserved upon encapsulation as highlighted by the promoted deposition of hydroxycarbonate apatite (HCA) upon immersion in simulated body fluid solutions. HCA formation is sequential to earlier processes of polymer erosion and ion release leading to acidification of the surrounding solution environment. These findings suggest PLLA-SBA2 fibres as a composite, multifunctional system which might be appealing for both bone and soft tissue engineering applications.
Collapse
|
19
|
Xu Z, Zhao R, Huang X, Wang X, Tang S. Fabrication and biocompatibility of agarose acetate nanofibrous membrane by electrospinning. Carbohydr Polym 2018; 197:237-245. [PMID: 30007609 DOI: 10.1016/j.carbpol.2018.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/26/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
Abstract
In the present paper, agarose acetate (AGA) nanofibrous membranes containing different weight percentages of β-tricalcium phosphate (β-TCP) were successfully developed through electrospinning. The fibers in the nanofibrous membranes had a rough surface due to the β-TCP particles which were uniformly dispersed within or on the surface of AGA fibers. Rat-bone marrow-derived mesenchymal stem cells (rBMSCs) were cultured on the AGA based nanofibrous membranes while showed a good adhesion and proliferation. It was found that more rBMSCs were differentiated to osteoblast-like cells on the β-TCP containing nanofibrous membranes compared with the single AGA membrane, and more alkaline phosphatase (ALP) and mineralized matrix could be detected when rBMSCs were cultured on the β-TCP containing nanofibrous membranes. The nanofibrous membranes were implanted into Sprague-Dawley (SD) rats for biocompatibility test. Gross examination and histological analysis of the AGA based nanofibrous membranes results showed that there was less inflammatory response. All of experimental results suggested that the AGA based nanofibrous membranes had the great potential application in bone tissue engineering.
Collapse
Affiliation(s)
- Zunkai Xu
- Biomedical Engineering Institute, Jinan University, Guangzhou 510632, China
| | - Ruifang Zhao
- Biomedical Engineering Institute, Jinan University, Guangzhou 510632, China
| | - Xiuying Huang
- Biomedical Engineering Institute, Jinan University, Guangzhou 510632, China
| | - Xiaoying Wang
- Biomedical Engineering Institute, Jinan University, Guangzhou 510632, China
| | - Shunqing Tang
- Biomedical Engineering Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
20
|
Gelatin Scaffolds Containing Partially Sulfated Cellulose Promote Mesenchymal Stem Cell Chondrogenesis. Tissue Eng Part A 2017; 23:1011-1021. [DOI: 10.1089/ten.tea.2016.0461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
21
|
Sachot N, Roguska A, Planell JA, Lewandowska M, Engel E, Castaño O. Fast-degrading PLA/ORMOGLASS fibrous composite scaffold leads to a calcium-rich angiogenic environment. Int J Nanomedicine 2017; 12:4901-4919. [PMID: 28744124 PMCID: PMC5513849 DOI: 10.2147/ijn.s135806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The success of scaffold implantation in acellular tissue engineering approaches relies on the ability of the material to interact properly with the biological environment. This behavior mainly depends on the design of the graft surface and, more precisely, on its capacity to biodegrade in a well-defined manner (nature of ions released, surface-to-volume ratio, dissolution profile of this release, rate of material resorption, and preservation of mechanical properties). The assessment of the biological behavior of temporary templates is therefore very important in tissue engineering, especially for composites, which usually exhibit complicated degradation behavior. Here, blended polylactic acid (PLA) calcium phosphate ORMOGLASS (organically modified glass) nanofibrous mats have been incubated up to 4 weeks in physiological simulated conditions, and their morphological, topographical, and chemical changes have been investigated. The results showed that a significant loss of inorganic phase occurred at the beginning of the immersion and the ORMOGLASS maintained a stable composition afterward throughout the degradation period. As a whole, the nanostructured scaffolds underwent fast and heterogeneous degradation. This study reveals that an angiogenic calcium-rich environment can be achieved through fast-degrading ORMOGLASS/PLA blended fibers, which seems to be an excellent alternative for guided bone regeneration.
Collapse
Affiliation(s)
- Nadège Sachot
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza, Spain
| | - Agata Roguska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Josep Anton Planell
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza, Spain
| | - Malgorzata Lewandowska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza, Spain
- Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC)
| | - Oscar Castaño
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza, Spain
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona (UB)
- Department of Engineerings: Electronics, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1332640] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Faezeh Hajiali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Saeid Tajbakhsh
- College of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Akbar Shojaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
23
|
Huang GP, Molina A, Tran N, Collins G, Arinzeh TL. Investigating cellulose derived glycosaminoglycan mimetic scaffolds for cartilage tissue engineering applications. J Tissue Eng Regen Med 2017; 12:e592-e603. [DOI: 10.1002/term.2331] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/20/2016] [Accepted: 09/26/2016] [Indexed: 01/22/2023]
Affiliation(s)
- G. Portocarrero Huang
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ USA
| | - A. Molina
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ USA
| | - N. Tran
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ USA
| | - G. Collins
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ USA
| | | |
Collapse
|
24
|
Schussler SD, Uske K, Marwah P, Kemp FW, Bogden JD, Lin SS, Livingston Arinzeh T. Controlled Release of Vanadium from a Composite Scaffold Stimulates Mesenchymal Stem Cell Osteochondrogenesis. AAPS JOURNAL 2017; 19:1017-1028. [PMID: 28332167 DOI: 10.1208/s12248-017-0073-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/06/2017] [Indexed: 01/03/2023]
Abstract
Large bone defects often require the use of autograft, allograft, or synthetic bone graft augmentation; however, these treatments can result in delayed osseous integration. A tissue engineering strategy would be the use of a scaffold that could promote the normal fracture healing process of endochondral ossification, where an intermediate cartilage phase is later transformed to bone. This study investigated vanadyl acetylacetonate (VAC), an insulin mimetic, combined with a fibrous composite scaffold, consisting of polycaprolactone with nanoparticles of hydroxyapatite and beta-tricalcium phosphate, as a potential bone tissue engineering scaffold. The differentiation of human mesenchymal stem cells (MSCs) was evaluated on 0.05 and 0.025 wt% VAC containing composite scaffolds (VAC composites) in vitro using three different induction media: osteogenic (OS), chondrogenic (CCM), and chondrogenic/osteogenic (C/O) media, which mimics endochondral ossification. The controlled release of VAC was achieved over 28 days for the VAC composites, where approximately 30% of the VAC was released over this period. MSCs cultured on the VAC composites in C/O media had increased alkaline phosphatase activity, osteocalcin production, and collagen synthesis over the composite scaffold without VAC. In addition, gene expressions for chondrogenesis (Sox9) and hypertrophic markers (VEGF, MMP-13, and collagen X) were the highest on VAC composites. Almost a 1000-fold increase in VEGF gene expression and VEGF formation, as indicated by immunostaining, was achieved for cells cultured on VAC composites in C/O media, suggesting VAC will promote angiogenesis in vivo. These results demonstrate the potential of VAC composite scaffolds in supporting endochondral ossification as a bone tissue engineering strategy.
Collapse
Affiliation(s)
- S D Schussler
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - K Uske
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey, 07102, USA
| | - P Marwah
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey, 07102, USA
| | - F W Kemp
- Department of Preventive Medicine and Community Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, USA
| | - J D Bogden
- Department of Preventive Medicine and Community Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, USA
| | - S S Lin
- Department of Orthopaedic Surgery, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, USA
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey, 07102, USA.
| |
Collapse
|
25
|
Urbanek O, Sajkiewicz P, Pierini F, Czerkies M, Kołbuk D. Structure and properties of polycaprolactone/chitosan nonwovens tailored by solvent systems. Biomed Mater 2017; 12:015020. [DOI: 10.1088/1748-605x/aa5647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Khader A, Sherman LS, Rameshwar P, Arinzeh TL. Sodium Tungstate for Promoting Mesenchymal Stem Cell Chondrogenesis. Stem Cells Dev 2016; 25:1909-1918. [PMID: 27615276 PMCID: PMC5165671 DOI: 10.1089/scd.2016.0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023] Open
Abstract
Articular cartilage has a limited ability to heal. Mesenchymal stem cells (MSCs) derived from the bone marrow have shown promise as a cell type for cartilage regeneration strategies. In this study, sodium tungstate (Na2WO4), which is an insulin mimetic, was evaluated for the first time as an inductive factor to enhance human MSC chondrogenesis. MSCs were seeded onto three-dimensional electrospun scaffolds in growth medium (GM), complete chondrogenic induction medium (CCM) containing insulin, and CCM without insulin. Na2WO4 was added to the media leading to final concentrations of 0, 0.01, 0.1, and 1 mM. Chondrogenic differentiation was assessed by biochemical analyses, immunostaining, and gene expression. Cytotoxicity using human peripheral blood mononuclear cells (PBMCS) was also investigated. The chondrogenic differentiation of MSCs was enhanced in the presence of low concentrations of Na2WO4 compared to control, without Na2WO4. In the induction medium containing insulin, cells in 0.01 mM Na2WO4 produced significantly higher sulfated glycosaminoglycans, collagen type II, and chondrogenic gene expression than all other groups at day 28. Cells in 0.1 mM Na2WO4 had significantly higher collagen II production and significantly higher sox-9 and aggrecan gene expression compared to control at day 28. Cells in GM and induction medium without insulin containing low concentrations of Na2WO4 also expressed chondrogenic markers. Na2WO4 did not stimulate PBMC proliferation or apoptosis. The results demonstrate that Na2WO4 enhances chondrogenic differentiation of MSCs, does not have a toxic effect, and may be useful for MSC-based approaches for cartilage repair.
Collapse
Affiliation(s)
- Ateka Khader
- 1 Department of Biomedical Engineering, New Jersey Institute of Technology , Newark, New Jersey
| | - Lauren S Sherman
- 2 Department of Medicine-Hematology/Oncology, Rutgers-New Jersey Medical School , Newark, New Jersey
| | - Pranela Rameshwar
- 2 Department of Medicine-Hematology/Oncology, Rutgers-New Jersey Medical School , Newark, New Jersey
| | - Treena L Arinzeh
- 1 Department of Biomedical Engineering, New Jersey Institute of Technology , Newark, New Jersey
| |
Collapse
|
27
|
Suwantong O. Biomedical applications of electrospun polycaprolactone fiber mats. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3876] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Orawan Suwantong
- School of Science; Mae Fah Luang University; Tasud, Muang Chiang Rai 57100 Thailand
| |
Collapse
|
28
|
Adamska K, Kadlec K, Voelkel A. Application of Inverse Liquid Chromatography for Surface Characterization of Biomaterials. Chromatographia 2016; 79:473-480. [PMID: 27069275 PMCID: PMC4803825 DOI: 10.1007/s10337-016-3049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/19/2016] [Accepted: 02/08/2016] [Indexed: 10/28/2022]
|
29
|
Dávila JL, Freitas MS, Inforçatti Neto P, Silveira ZC, Silva JVL, d’Ávila MA. Fabrication of PCL/β-TCP scaffolds by 3D mini-screw extrusion printing. J Appl Polym Sci 2015. [DOI: 10.1002/app.43031] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- J. L. Dávila
- Department of Manufacturing and Materials Engineering, Faculty of Mechanical Engineering; University of Campinas; Campinas SP Brazil
- 3-D Technologies Division; Renato Archer Information Technology Center; Campinas SP Brazil
| | - M. S. Freitas
- 3-D Technologies Division; Renato Archer Information Technology Center; Campinas SP Brazil
- Department of Mechanical Engineering, São Carlos School of Engineering; University of São Paulo; São Carlos SP Brazil
| | - P. Inforçatti Neto
- 3-D Technologies Division; Renato Archer Information Technology Center; Campinas SP Brazil
| | - Z. C. Silveira
- Department of Mechanical Engineering, São Carlos School of Engineering; University of São Paulo; São Carlos SP Brazil
| | - J. V. L. Silva
- 3-D Technologies Division; Renato Archer Information Technology Center; Campinas SP Brazil
| | - M. A. d’Ávila
- Department of Manufacturing and Materials Engineering, Faculty of Mechanical Engineering; University of Campinas; Campinas SP Brazil
| |
Collapse
|
30
|
|
31
|
Guiro K, Patel SA, Greco SJ, Rameshwar P, Arinzeh TL. Investigating breast cancer cell behavior using tissue engineering scaffolds. PLoS One 2015; 10:e0118724. [PMID: 25837691 PMCID: PMC4383476 DOI: 10.1371/journal.pone.0118724] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 01/13/2015] [Indexed: 12/16/2022] Open
Abstract
Despite early detection through the use of mammograms and aggressive intervention, breast cancer (BC) remains a clinical dilemma. BC can resurge after >10 years of remission. Studies indicate that BC cells (BCCs) with self-renewal and chemoresistance could be involved in dormancy. The majority of studies use in vitro, two-dimensional (2-D) monolayer cultures, which do not recapitulate the in vivo microenvironment. Thus, to determine the effect of three-dimensional (3-D) microenvironment on BCCs, this study fabricated tissue engineering scaffolds made of poly (ε-caprolactone) (PCL) having aligned or random fibers. Random and aligned fibers mimic, respectively, the random and highly organized collagen fibers found in the tumor extracellular matrix. Chemoresistant BCCs were obtained by treating with carboplatin. Western blot analysis of carboplatin resistant (treated) MDA-MB-231 (highly invasive, basal-like) and T47D (low-invasive, luminal) BCCs showed an increase in Bcl-2, Oct-4 and Sox-2, suggesting protection from apoptosis and increase in stem-like markers. Further studies with MDA-MB-231 BCCs seeded on the scaffolds showed little to no change in cell number over time for non-treated BCCs whereas on tissue culture polystyrene (TCP), non-treated BCCs displayed a significant increase in cell number at days 4 and 7 as compared to day 1 (p<0.05). Treated BCCs did not proliferate on TCP and the fibrous scaffolds. Little to no cyclin D1 was expressed for non-treated BCCs on TCP. On fibrous scaffolds, non-treated BCCs stained for cyclin D1 during the 7-day culture period. Treated BCCs expressed cyclin D1 on TCP and fibrous scaffolds during the 7-day culture period. Proliferation, viability and cell cycle analysis indicated that this 3-D culture prompted the aggressive BCCs to adopt a dormant phenotype, while the treated BCCs retained their phenotype. The findings indicate that random and aligned fibrous PCL scaffolds may provide a useful system to study how the 3-D microenvironment affects the behavior of BCCs.
Collapse
Affiliation(s)
- Khadidiatou Guiro
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Shyam A. Patel
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Steven J. Greco
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Treena L. Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
32
|
Briggs T, Matos J, Collins G, Arinzeh TL. Evaluating protein incorporation and release in electrospun composite scaffolds for bone tissue engineering applications. J Biomed Mater Res A 2015; 103:3117-27. [DOI: 10.1002/jbm.a.35444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/06/2015] [Accepted: 02/19/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Tonye Briggs
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark New Jersey 07102
| | - Jeffrey Matos
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark New Jersey 07102
| | - George Collins
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark New Jersey 07102
| | | |
Collapse
|
33
|
Garg T, Rath G, Goyal AK. Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery. J Drug Target 2014; 23:202-21. [PMID: 25539071 DOI: 10.3109/1061186x.2014.992899] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanofiber scaffold formulations (diameter less than 1000 nm) were successfully used to deliver the drug/cell/gene into the body organs through different routes for an effective treatment of various diseases. Various fabrication methods like drawing, template synthesis, fiber-mesh, phase separation, fiber-bonding, self-assembly, melt-blown, and electrospinning are successfully used for fabrication of nanofibers. These formulations are widely used in various fields such as tissue engineering, drug delivery, cosmetics, as filter media, protective clothing, wound dressing, homeostatic, sensor devices, etc. The present review gives a detailed account on the need of the nanofiber scaffold formulation development along with the biomaterials and techniques implemented for fabrication of the same against innumerable diseases. At present, there is a huge extent of research being performed worldwide on all aspects of biomolecules delivery. The unique characteristics of nanofibers such as higher loading efficiency, superior mechanical performance (stiffness and tensile strength), controlled release behavior, and excellent stability helps in the delivery of plasmid DNA, large protein drugs, genetic materials, and autologous stem-cell to the target site in the future.
Collapse
Affiliation(s)
- Tarun Garg
- Department of Pharmaceutics, ISF College of Pharmacy , Moga, Punjab , India
| | | | | |
Collapse
|
34
|
Sachot N, Castano O, Planell JA, Engel E. Optimization of blend parameters for the fabrication of polycaprolactone-silicon based ormoglass nanofibers by electrospinning. J Biomed Mater Res B Appl Biomater 2014; 103:1287-93. [DOI: 10.1002/jbm.b.33306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/17/2014] [Accepted: 10/01/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Nadège Sachot
- Biomaterials for Regenerative Therapies Group; Institute for Bioengineering of Catalonia (IBEC); Baldiri Reixac 15-21 08028 Barcelona Spain
- CIBER de Bioingenieria; Biomateriales y Nanomedicina (CIBER-BBN); Baldiri Reixac 15-21 08028 Barcelona Spain
| | - Oscar Castano
- Biomaterials for Regenerative Therapies Group; Institute for Bioengineering of Catalonia (IBEC); Baldiri Reixac 15-21 08028 Barcelona Spain
- CIBER de Bioingenieria; Biomateriales y Nanomedicina (CIBER-BBN); Baldiri Reixac 15-21 08028 Barcelona Spain
- Materials Science and Metallurgical Engineering Dept.; Universitat Politècnica de Catalunya; 08028 Barcelona Spain
- Materials Science and Metallurgical Engineering Dept.; Universitat de Barcelona; 08028 Barcelona Spain
| | - Josep A. Planell
- Biomaterials for Regenerative Therapies Group; Institute for Bioengineering of Catalonia (IBEC); Baldiri Reixac 15-21 08028 Barcelona Spain
- CIBER de Bioingenieria; Biomateriales y Nanomedicina (CIBER-BBN); Baldiri Reixac 15-21 08028 Barcelona Spain
- Materials Science and Metallurgical Engineering Dept.; Universitat Politècnica de Catalunya; 08028 Barcelona Spain
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies Group; Institute for Bioengineering of Catalonia (IBEC); Baldiri Reixac 15-21 08028 Barcelona Spain
- CIBER de Bioingenieria; Biomateriales y Nanomedicina (CIBER-BBN); Baldiri Reixac 15-21 08028 Barcelona Spain
- Materials Science and Metallurgical Engineering Dept.; Universitat Politècnica de Catalunya; 08028 Barcelona Spain
| |
Collapse
|
35
|
Cardoso GBC, Machado-Silva AB, Sabino M, Santos AR, Zavaglia CAC. Novel hybrid membrane of chitosan/poly (ε-caprolactone) for tissue engineering. BIOMATTER 2014; 4:29508. [PMID: 25093398 PMCID: PMC4143402 DOI: 10.4161/biom.29508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the potential use of 3D hybrid membrane: poly (ε-caprolactone) (PCL) mesh using rotary jet spinning with subsequent chitosan (CH) coating. The morphological examinations by scanning electron microscopy (SEM) were proved the efficiency of this technique on obtaining relative homogeneous PCL fiber mats (15,49 ± 4,1µm), with high surface porosity (1,06 ± 0,41µm) and effective CH coating. The feasibility of rotary jet spinning allowed the solvent evaporation during the process; this fact was verified by differential scanning calorimetry (DSC), indeed also had verified changes in thermal properties on the hybrid membrane, since the present of CH. It was investigated the mechanical properties of the hybrid membrane and CH film, the data were that the samples presents good tensile modulus but low strain at the break. In addition, it was verified the biocompatibility properties in vitro using Vero cells. PCL mesh demonstrated cells more spread vastly in the pore surface, with attachments in between fibers indicating the potential for cell adhesion. The films samples (CH and hybrid membrane) resulted in a cells layer on the surfaces with an intense staining (metachromasy), which is the result of cells more active. The cell counting -5 days of culture- and the MTT assay -21 days of culture- demonstrated that the materials tested proved to be different from the positive control and equal to each other and this fact, in our view, this indicates a satisfactory proliferation. Thus, based on the results here, this novel hybrid membrane provides an attractive material for tissue engineering applications.
Collapse
Affiliation(s)
- Guinea B C Cardoso
- University of Campinas; Materials Engineering Department; Campinas, Brazil; Biofabris; Campinas, Brazil
| | | | - Marco Sabino
- Chemical Department; Grup B5IDA; Universidad Simón Bolívar; Caracas, Venezuela
| | | | - Cecília A C Zavaglia
- University of Campinas; Materials Engineering Department; Campinas, Brazil; Biofabris; Campinas, Brazil
| |
Collapse
|
36
|
Huang GP, Shanmugasundaram S, Masih P, Pandya D, Amara S, Collins G, Arinzeh TL. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. J Biomed Mater Res A 2014; 103:762-71. [DOI: 10.1002/jbm.a.35222] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Gloria Portocarrero Huang
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark New Jersey 07102-1982
| | - Shobana Shanmugasundaram
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark New Jersey 07102-1982
| | - Pallavi Masih
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark New Jersey 07102-1982
| | - Deep Pandya
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark New Jersey 07102-1982
| | - Suwah Amara
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark New Jersey 07102-1982
| | - George Collins
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark New Jersey 07102-1982
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark New Jersey 07102-1982
| |
Collapse
|
37
|
Silva CSR, Luz GM, Gamboa-martÍnez TC, Mano JF, GÓmez ribelles JL, GÓmez-tejedor JA. Poly(ɛ-caprolactone) Electrospun Scaffolds Filled with Nanoparticles. Production and Optimization According to Taguchi's Methodology. J MACROMOL SCI B 2014. [DOI: 10.1080/00222348.2013.861304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Patlolla A, Arinzeh TL. Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering. Biotechnol Bioeng 2013; 111:1000-17. [DOI: 10.1002/bit.25146] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/25/2013] [Accepted: 11/01/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Ajitha Patlolla
- Department of Biomedical Engineering; New Jersey Institute of Technology; University Heights; 614 Fenster Hall Newark New Jersey 07102-1982
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering; New Jersey Institute of Technology; University Heights; 614 Fenster Hall Newark New Jersey 07102-1982
| |
Collapse
|
39
|
Allo BA, Lin S, Mequanint K, Rizkalla AS. Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression. ACS APPLIED MATERIALS & INTERFACES 2013; 5:7574-7583. [PMID: 23826710 DOI: 10.1021/am401861w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Three-dimensional (3D) bioactive organic-inorganic (O/I) hybrid fibrous scaffolds are attractive extracellular matrix (ECM) surrogates for bone tissue engineering. With the aim of regulating osteoblast gene expression in 3D, a new class of hybrid fibrous scaffolds with two distinct fiber diameters (260 and 600 nm) and excellent physico-mechanical properties were fabricated from tertiary (SiO2-CaO-P2O5) bioactive glass (BG) and poly (ε-caprolactone) (PCL) by in situ sol-gel and electrospinning process. The PCL/BG hybrid fibrous scaffolds exhibited accelerated wetting properties, enhanced pore sizes and porosity, and superior mechanical properties that were dependent on fiber diameter. Contrary to control PCL fibrous scaffolds that were devoid of bonelike apatite particles, incubating PCL/BG hybrid fibrous scaffolds in simulated body fluid (SBF) revealed bonelike apatite deposition. Osteoblast cells cultured on PCL/BG hybrid fibrous scaffolds spread with multiple attachments and actively proliferated suggesting that the low temperature in situ sol-gel and electrospinning process did not have a detrimental effect. Targeted bone-associated gene expressions by rat calvarial osteoblasts seeded on these hybrid scaffolds demonstrated remarkable spatiotemporal gene activation. Transcriptional-level gene expressions for alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and osteocalcin (OCN) were significantly higher on the hybrid fibrous scaffolds (p < 0.001) that were largely dependent on fiber diameter compared. Taken together, our results suggest that PCL/BG fibrous scaffolds may accelerate bone formation by providing a favorable microenvironment.
Collapse
Affiliation(s)
- Bedilu A Allo
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
40
|
Vines JB, Lim DJ, Anderson JM, Jun HW. Hydroxyapatite nanoparticle reinforced peptide amphiphile nanomatrix enhances the osteogenic differentiation of mesenchymal stem cells by compositional ratios. Acta Biomater 2012; 8:4053-63. [PMID: 22842043 PMCID: PMC3462224 DOI: 10.1016/j.actbio.2012.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 12/13/2022]
Abstract
In the field of bone tissue engineering, there is a need for materials that mimic the native bone extracellular matrix (ECM). This need is met through the creation of biphasic composites intended to mimic both the organic and inorganic facets of the native bone ECM. However, few studies have created composites with organic ECM analogous components capable of directing cellular behaviors and many are not fabricated in the nanoscale. Furthermore, few attempts have been made at investigating how variations of organic and inorganic components affect the osteogenic differentiation of human mesenchymal stem cells (hMSCs). To address these issues, biphasic nanomatrix composites consisting of hydroxyapatite nanoparticles (HANPs) embedded within peptide amphiphile (PA) nanofibers tailored with the RGDS cellular adhesion motif (PA-RGDS) were created at various HANP to PA-RGDS ratios. Fabrication of these biphasic nanomatrix composites was confirmed via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The long-term cellularity and osteogenic differentiation of hMSCs in response to the different compositional ratios were then assessed by quantifying the timed expression of genes indicative of osteogenic differentiation, alkaline phosphatase activity, and DNA content over time. Decreased cellularity and the expression of genes over time correlated with increasing compositional ratios between HANP and PA-RGDS. The highest HANP to PA-RGDS ratio (66% HANP) exhibited the greatest improvement to the osteogenic differentiation of hMSCs. Overall, these results demonstrate that the compositional ratio of biphasic nanomatrix composites plays an important role in influencing the osteogenic differentiation of hMSCs. Based on the observations presented within this study, these biphasic nanomatrix composites show promise for future usage in bone tissue engineering applications.
Collapse
Affiliation(s)
- Jeremy B. Vines
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dong-Jin Lim
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joel M. Anderson
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
41
|
Maes J, Verlooy L, Buenafe OE, de Witte PAM, Esguerra CV, Crawford AD. Evaluation of 14 organic solvents and carriers for screening applications in zebrafish embryos and larvae. PLoS One 2012; 7:e43850. [PMID: 23082109 PMCID: PMC3474771 DOI: 10.1371/journal.pone.0043850] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
Zebrafish are rapidly growing in popularity as an in vivo model system for chemical genetics, drug discovery, and toxicology, and more recently also for natural product discovery. Experiments involving the pharmacological evaluation of small molecules or natural product extracts in zebrafish bioassays require the effective delivery of these compounds to embryos and larvae. While most samples to be screened are first solubilized in dimethyl sulfoxide (DMSO), which is then diluted in the embryo medium, often this method is not sufficient to prevent the immediate or eventual precipitation of the sample. Certain compounds and extracts are also not highly soluble in DMSO. In such instances the use of carriers and/or other solvents might offer an alternative means to achieve the required sample concentration. Towards this end, we determined the maximum tolerated concentration (MTC) of several commonly used solvents and carriers in zebrafish embryos and larvae at various developmental stages. Solvents evaluated for this study included acetone, acetonitrile, butanone, dimethyl formamide, DMSO, ethanol, glycerol, isopropanol, methanol, polyethylene glycol (PEG-400), propylene glycol, and solketal, and carriers included albumin (BSA) and cyclodextrin (2-hydroxypropyl-beta-cyclodextrin, or HPBCD). This study resulted in the identification of polyethylene glycol (PEG400), propylene glycol, and methanol as solvents that were relatively well-tolerated over a range of developmental stages. In addition, our results showed that acetone was well-tolerated by embryos but not by larvae, and 1% cyclodextrin (HPBCD) was well-tolerated by both embryos and larvae, indicating the utility of this carrier for compound screening in zebrafish. However, given the relatively small differences (2-3 fold) between concentrations that are apparently safe and those that are clearly toxic, further studies - e.g. omics analyses -should be carried out to determine which cellular processes and signalling pathways are affected by any solvents and carriers that are used for small-molecule screens in zebrafish.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander D. Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
42
|
Sridhar R, Sundarrajan S, Venugopal JR, Ravichandran R, Ramakrishna S. Electrospun inorganic and polymer composite nanofibers for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:365-85. [DOI: 10.1080/09205063.2012.690711] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Radhakrishnan Sridhar
- a Faculty of Engineering, National University of Singapore, Nanoscience and Nanotechnology Initiative , Block E3, #05-12, 2 Engineering Drive 3, Singapore , 117576 , Singapore
| | - Subramanian Sundarrajan
- a Faculty of Engineering, National University of Singapore, Nanoscience and Nanotechnology Initiative , Block E3, #05-12, 2 Engineering Drive 3, Singapore , 117576 , Singapore
| | - Jayarama Reddy Venugopal
- a Faculty of Engineering, National University of Singapore, Nanoscience and Nanotechnology Initiative , Block E3, #05-12, 2 Engineering Drive 3, Singapore , 117576 , Singapore
| | - Rajeswari Ravichandran
- a Faculty of Engineering, National University of Singapore, Nanoscience and Nanotechnology Initiative , Block E3, #05-12, 2 Engineering Drive 3, Singapore , 117576 , Singapore
| | - Seeram Ramakrishna
- a Faculty of Engineering, National University of Singapore, Nanoscience and Nanotechnology Initiative , Block E3, #05-12, 2 Engineering Drive 3, Singapore , 117576 , Singapore
- b King Saud University , Riyadh , 11451 , Kingdom of Saudi Arabia
| |
Collapse
|
43
|
Pramanik S, Pingguan-Murphy B, Abu Osman NA. Progress of key strategies in development of electrospun scaffolds: bone tissue. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:043002. [PMID: 27877500 PMCID: PMC5090556 DOI: 10.1088/1468-6996/13/4/043002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/26/2012] [Indexed: 05/31/2023]
Abstract
There has been unprecedented development in tissue engineering (TE) over the last few years owing to its potential applications, particularly in bone reconstruction or regeneration. In this article, we illustrate several advantages and disadvantages of different approaches to the design of electrospun TE scaffolds. We also review the major benefits of electrospun fibers for three-dimensional scaffolds in hard connective TE applications and identify the key strategies that can improve the mechanical properties of scaffolds for bone TE applications. A few interesting results of recent investigations have been explained for future trends in TE scaffold research.
Collapse
Affiliation(s)
- Sumit Pramanik
- Department of Biomedical Engineering, Faculty of Engineering, Centre for Applied Biomechanics, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | | | | |
Collapse
|
44
|
Guo H, Wei J, Song W, Zhang S, Yan Y, Liu C, Xiao T. Wollastonite nanofiber-doped self-setting calcium phosphate bioactive cement for bone tissue regeneration. Int J Nanomedicine 2012; 7:3613-24. [PMID: 22848181 PMCID: PMC3405877 DOI: 10.2147/ijn.s32061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to synthesize a self-setting bioactive cement by incorporation of wollastonite nanofibers (WNFs) into calcium phosphate cement (CPC). The composition, morphology, setting time, compressive strength, hydrophilicity, and degradation of WNF-doped CPC (wnf-CPC) were investigated. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and inductively coupled plasma atomic emission spectroscopy were utilized. Additionally, methyl-thiazolyl-tetrazolium bromide assay, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, and histological evaluation were used to study the cell and tissue responses to wnf-CPC, both in vitro and in vivo. The results confirmed that the addition of WNFs into CPC had no obvious effect on the setting time or the compressive strength of wnf-CPC, provided the WNF amount was not more than 10 wt%. However, the hydrophilicity and degradability of wnf-CPC were significantly improved by the addition of WNFs – this was because of the change of microstructure caused by the WNFs. The preferred dissolution of WNFs caused the formation of microporosity in wnf-CPC when soaked in tris hydrochloride solution. The microporosity enlarged the surface area of the wnf-CPC and so promoted degradation of the wnf-CPC when in contact with liquid. In addition, MG-63 cell attachment and proliferation on the wnf-CPC were superior to that on the CPC, indicating that incorporation of WNFs into CPC improved the biological properties for wnf-CPC. Following the implantation of wnf-CPC into bone defects of rabbits, histological evaluation showed that wnf-CPC enhanced the efficiency of new bone formation in comparison with CPC, indicating excellent biocompatibility and osteogenesis of wnf-CPC. In conclusion, wnf-CPC exhibited promising prospects in bone regeneration.
Collapse
Affiliation(s)
- Han Guo
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
45
|
Lee YS, Arinzeh TL. The influence of piezoelectric scaffolds on neural differentiation of human neural stem/progenitor cells. Tissue Eng Part A 2012; 18:2063-72. [PMID: 22646285 DOI: 10.1089/ten.tea.2011.0540] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human neural stem/progenitor cells (hNSCs/NPCs) are a promising cell source for neural tissue engineering because of their ability to differentiate into various neural lineages. In this study, hNSC/NPC differentiation was evaluated on piezoelectric, fibrous scaffolds. These smart materials have an intrinsic material property where transient electric potential can be generated in the material upon minute mechanical deformation. hNSCs/NPCs cultured on the scaffolds and films differentiated into β-III tubulin-positive cells, a neuronal cell marker, with or without the presence of inductive factors. In contrast, hNSCs/NPCs cultured on laminin-coated plates were predominantly nestin positive, a NSC marker, in the control medium. Gene expression results suggest that the scaffolds may have promoted the formation of mature neural cells exhibiting neuron-like characteristics. hNSCs/NPCs differentiated mostly into β-III tubulin-positive cells and had the greatest average neurite length on micron-sized, annealed (more piezoelectric), aligned scaffolds, demonstrating their potential for neural tissue-engineering applications.
Collapse
Affiliation(s)
- Yee-Shuan Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | | |
Collapse
|
46
|
Polini A, Pisignano D, Parodi M, Quarto R, Scaglione S. Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS One 2011; 6:e26211. [PMID: 22022571 PMCID: PMC3192176 DOI: 10.1371/journal.pone.0026211] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/22/2011] [Indexed: 01/16/2023] Open
Abstract
The development of a new family of implantable bioinspired materials is a focal point of bone tissue engineering. Implant surfaces that better mimic the natural bone extracellular matrix, a naturally nano-composite tissue, can stimulate stem cell differentiation towards osteogenic lineages in the absence of specific chemical treatments. Herein we describe a bioactive composite nanofibrous scaffold, composed of poly-caprolactone (PCL) and nano-sized hydroxyapatite (HA) or beta-tricalcium phosphate (TCP), which was able to support the growth of human bone marrow mesenchymal stem cells (hMSCs) and guide their osteogenic differentiation at the same time. Morphological and physical/chemical investigations were carried out by scanning, transmission electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, mechanical and wettability analysis. Upon culturing hMSCs on composite nanofibers, we found that the incorporation of either HA or TCP into the PCL nanofibers did not affect cell viability, meanwhile the presence of the mineral phase increases the activity of alkaline phosphatase (ALP), an early marker of bone formation, and mRNA expression levels of osteoblast-related genes, such as the Runt-related transcription factor 2 (Runx-2) and bone sialoprotein (BSP), in total absence of osteogenic supplements. These results suggest that both the nanofibrous structure and the chemical composition of the scaffolds play a role in regulating the osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Alessandro Polini
- CNR - National Research Council of Italy, NNL (National Nanotechnology Laboratory) of Institute Nanoscience, Lecce, Italy
- * E-mail: (AP); (DP)
| | - Dario Pisignano
- CNR - National Research Council of Italy, NNL (National Nanotechnology Laboratory) of Institute Nanoscience, Lecce, Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
- * E-mail: (AP); (DP)
| | - Manuela Parodi
- Dipartimento di Medicina Sperimentale (DIMES), Università di Genova, Genova, Italy
| | - Rodolfo Quarto
- Dipartimento di Medicina Sperimentale (DIMES), Università di Genova, Genova, Italy
| | - Silvia Scaglione
- CNR - National Research Council of Italy, IEIIT Institute, Genova, Italy
| |
Collapse
|
47
|
Neuss S, Denecke B, Gan L, Lin Q, Bovi M, Apel C, Wöltje M, Dhanasingh A, Salber J, Knüchel R, Zenke M. Transcriptome analysis of MSC and MSC-derived osteoblasts on Resomer® LT706 and PCL: impact of biomaterial substrate on osteogenic differentiation. PLoS One 2011; 6:e23195. [PMID: 21935359 PMCID: PMC3173366 DOI: 10.1371/journal.pone.0023195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/08/2011] [Indexed: 11/19/2022] Open
Abstract
Background Mesenchymal stem cells (MSC) represent a particularly attractive cell type for bone tissue engineering because of their ex vivo expansion potential and multipotent differentiation capacity. MSC are readily differentiated towards mature osteoblasts with well-established protocols. However, tissue engineering frequently involves three-dimensional scaffolds which (i) allow for cell adhesion in a spatial environment and (ii) meet application-specific criteria, such as stiffness, degradability and biocompatibility. Methodology/Principal Findings In the present study, we analysed two synthetic, long-term degradable polymers for their impact on MSC-based bone tissue engineering: PLLA-co-TMC (Resomer® LT706) and poly(ε-caprolactone) (PCL). Both polymers enhance the osteogenic differentiation compared to tissue culture polystyrene (TCPS) as determined by Alizarin red stainings, scanning electron microscopy, PCR and whole genome expression analysis. Resomer® LT706 and PCL differ in their influence on gene expression, with Resomer® LT706 being more potent in supporting osteogenic differentiation of MSC. The major trigger on the osteogenic fate, however, is from osteogenic induction medium. Conclusion This study demonstrates an enhanced osteogenic differentiation of MSC on Resomer® LT706 and PCL compared to TCPS. MSC cultured on Resomer® LT706 showed higher numbers of genes involved in skeletal development and bone formation. This identifies Resomer® LT706 as particularly attractive scaffold material for bone tissue engineering.
Collapse
Affiliation(s)
- Sabine Neuss
- Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS 2011; 49:832-864. [PMID: 21769165 PMCID: PMC3136871 DOI: 10.1002/polb.22259] [Citation(s) in RCA: 1193] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Bret D. Ulery
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Lakshmi S. Nair
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| | - Cato T. Laurencin
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| |
Collapse
|
49
|
|
50
|
Shanmugasundaram S, Chaudhry H, Arinzeh TL. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng Part A 2010; 17:831-40. [PMID: 20973751 DOI: 10.1089/ten.tea.2010.0409] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nanofiber scaffolds, produced by the electrospinning technique, have gained widespread attention in tissue engineering due to their morphological similarities to the native extracellular matrix. For cartilage repair, studies have examined their feasibility; however these studies have been limited, excluding the influence of other scaffold design features. This study evaluated the effect of scaffold design, specifically examining a range of nano to micron-sized fibers and resulting pore size and mechanical properties, on human mesenchymal stem cells (MSCs) derived from the adult bone marrow during chondrogenesis. MSC differentiation was examined on these scaffolds with an emphasis on temporal gene expression of chondrogenic markers and the pluripotent gene, Sox2, which has yet to be explored for MSCs during chondrogenesis and in combination with tissue engineering scaffolds. Chondrogenic markers of aggrecan, chondroadherin, sox9, and collagen type II were highest for cells on micron-sized fibers (5 and 9 μm) with pore sizes of 27 and 29 μm, respectively, in comparison to cells on nano-sized fibers (300 nm and 600 to 1400 nm) having pore sizes of 2 and 3 μm, respectively. Undifferentiated MSCs expressed high levels of the Sox2 gene but displayed negligible levels on all scaffolds with or without the presence of inductive factors, suggesting that the physical features of the scaffold play an important role in differentiation. Micron-sized fibers with large pore structures and mechanical properties comparable to the cartilage ECM enhanced chondrogenesis, demonstrating architectural features as well as mechanical properties of electrospun fibrous scaffolds enhance differentiation.
Collapse
|