1
|
Ni R, Cheng M, Meng J, Hu W, Ke Q, Zhao Y. Edible pullulan enhanced water-soluble keratin with improved sizing performance for sustainable textile industry. Int J Biol Macromol 2023; 238:124066. [PMID: 36934822 DOI: 10.1016/j.ijbiomac.2023.124066] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Feather keratin from waste feather has become an attractive target to replace petroleum-based Poly (vinyl alcohol) sizes due to its easy film-forming ability, excellent adhesive property, biodegradability and low cost. However, poor water-solubility and brittleness of pure keratin films have become the bottlenecks and restricted the application of keratin as sizing agents. Therefore, water-soluble keratin was extracted by the reduction-preservation method and enhanced by saccharides in aqueous system to obtain all-green keratin-based slurry. The results showed that the keratin-based slurry exhibited improved sizing performance in the order of sucrose ≤ glucose ≤ pullulan by the moderate Maillard reaction. Among them, the fabricated pullulan-keratin sizes films had 27.86 %, 2684.08 % and 2911.31 % increment in tensile strength, elongation and work of facture compared with pure keratin sizes films. Besides, the addition of pullulan and subsequently moderate Maillard reaction improved the thermo-tenacity of keratin-based sizes, which was expected to tackle with the brittleness of pure keratin size films. In addition, novel pullulan-keratin sizes had good sizing performance and high desizing efficiency to cotton, cotton/polyester and polyester yarns and fabrics. Successful utilization of pullulan-keratin sizes will bring opportunities for high value utilization of waste feather and promote the green and low-carbon development of textile industry.
Collapse
Affiliation(s)
- Ruiyan Ni
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Meiru Cheng
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jing Meng
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Wenfeng Hu
- School of Fashion Engineering Central Laboratory, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yi Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Chen L, Meng R, Qing R, Li W, Wang Z, Hou Y, Deng J, Pu W, Gao Z, Wang B, Hao S. Bioinspired Robust Keratin Hydrogels for Biomedical Applications. NANO LETTERS 2022; 22:8835-8844. [PMID: 36375092 DOI: 10.1021/acs.nanolett.2c02530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although keratins are robust in nature, hydrogels producing their extracts exhibit poor mechanical properties due to the complicated composition and ineffective self-assembly. Here we report a bioinspired strategy to fabricate robust keratin hydrogels based on mechanism study through recombinant proteins. Homotypic and heterotypic self-assembly of selected type I and type II keratins in different combinations was conducted to identify crucial domain structures for the process, their kinetics, and relationship with the mechanical strength of hydrogels. Segments with best performance were isolated and used to construct novel assembling units. The new design outperformed combinations of native proteins in mechanical properties and in biomedical applications such as controlled drug release and skin regeneration. Our approach not only elucidated the critical structural domains and underlying mechanisms for keratin self-assembly but also opens an avenue toward the rational design of robust keratin hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Liling Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ziwei Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wei Pu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Zibin Gao
- State Key Laboratory Breeding Base─Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
3
|
Ye W, Qin M, Qiu R, Li J. Keratin-based wound dressings: From waste to wealth. Int J Biol Macromol 2022; 211:183-197. [PMID: 35513107 DOI: 10.1016/j.ijbiomac.2022.04.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Keratin is a natural protein with a high content of cysteine residues (7-13%) and is widely found in hair, wool, horns, hooves, and nails. Keratin possesses abundant cell-binding motifs such as leucine-aspartate-valine (LDV), glutamate-aspartate-serine (EDS), and arginine-glycine-aspartate (RGD), which benefit cell attachment and proliferation. It has been confirmed that keratin plays important roles in every stage of wound healing, including hemostasis, inflammation, proliferation, and remodeling, making keratin-based materials good candidates for wound dressings. In combination with synthetic and natural polymers, keratin-based wound dressings in the forms of films, hydrogels, and nanofibers can be achieved with improved mechanical properties. This review focuses on the recent development of keratin-based wound dressings. Firstly, the physicochemical and biological properties of keratin, are systematically discussed. Secondly, the role of keratin in wound healing is proposed. Thirdly, the applications of keratin-based wound dressings are summarized, in terms of the forms and functionalization. Finally, the current challenges and future development of keratin-based wound dressings are presented.
Collapse
Affiliation(s)
- Wenjin Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Rongmin Qiu
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, Guangxi 530021, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China; Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
4
|
Kang HJ, Ko N, Oh SJ, An SY, Hwang YS, Kim SY. Injectable Human Hair Keratin-Fibrinogen Hydrogels for Engineering 3D Microenvironments to Accelerate Oral Tissue Regeneration. Int J Mol Sci 2021; 22:13269. [PMID: 34948063 PMCID: PMC8709435 DOI: 10.3390/ijms222413269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic injury of the oral cavity is atypical and often accompanied by uncontrolled bleeding and inflammation. Injectable hydrogels have been considered to be promising candidates for the treatment of oral injuries because of their simple formulation, minimally invasive application technique, and site-specific delivery. Fibrinogen-based hydrogels have been widely explored as effective materials for wound healing in tissue engineering due to their uniqueness. Recently, an injectable foam has taken the spotlight. However, the fibrin component of this biomaterial is relatively stiff. To address these challenges, we created keratin-conjugated fibrinogen (KRT-FIB). This study aimed to develop a novel keratin biomaterial and assess cell-biomaterial interactions. Consequently, a novel injectable KRT-FIB hydrogel was optimized through rheological measurements, and its injection performance, swelling behavior, and surface morphology were investigated. We observed an excellent cell viability, proliferation, and migration/cell-cell interaction, indicating that the novel KRT-FIB-injectable hydrogel is a promising platform for oral tissue regeneration with a high clinical applicability.
Collapse
Affiliation(s)
- Hyeon Jeong Kang
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea; (H.J.K.); (S.Y.A.)
| | - Nare Ko
- Biomedical Research Center, Asan Institute for Life Sciences, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea;
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea;
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea;
| | - Seong Yeong An
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea; (H.J.K.); (S.Y.A.)
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea; (H.J.K.); (S.Y.A.)
| | - So Yeon Kim
- Department of Dental Hygiene, College of Health & Medical Sciences, Cheongju University, Cheongju 28503, Korea
| |
Collapse
|
5
|
Kadirvelu K, Fathima NN. Deciphering Mechanism of Assembly of Keratin within Nanofibrous Matrix: Expanding the Horizon of Electrospun Polymer/Protein Composites. ChemistrySelect 2021. [DOI: 10.1002/slct.202103018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kavitha Kadirvelu
- Inorganic and Physical Chemistry Laboratory CSIR- Central Leather Research Institute Chennai 600020 Tamil Nadu India
| | - Nishter Nishad Fathima
- Inorganic and Physical Chemistry Laboratory CSIR- Central Leather Research Institute Chennai 600020 Tamil Nadu India
| |
Collapse
|
6
|
Chen M, Ren X, Dong L, Li X, Cheng H. Preparation of dynamic covalently crosslinking keratin hydrogels based on thiol/disulfide bonds exchange strategy. Int J Biol Macromol 2021; 182:1259-1267. [PMID: 33991559 DOI: 10.1016/j.ijbiomac.2021.05.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 01/16/2023]
Abstract
Dynamic covalently crosslinking (DCC) hydrogels can mimic extracellular matrix and have the functions such as self-healing, self-adapting, and shape memory. The DCC keratin hydrogels based on thiol group-disulfide bonds exchange strategy have no reports so far as we know. Herein, inspired by the rich content of the intramolecular disulfide bonds and free thiol groups in the keratins extracted by reducing agents, we report a simple thiol-disulfide bonds exchange strategy for preparing the DCC keratin hydrogels. While the pH value of the keratin solution extracted by reducing agents was adjusted to 9.5-10.0, the keratin hydrogels showed the characteristic with injectability, self-healing, self-adapting, biocompatibility, and redox-responsive capacity. The extracted type II neutral/alkali keratin plays a critical role in imparting the keratin hydrogels with the reversibility behaviors due to that the keratins could build dynamic covalent bonds through thiol oxidation and disulfide exchange reactions in alkali conditions. This strategy provides an inspiration for forming DCC keratin hydrogel by avoiding the extra introduction of chemical crosslinking agents.
Collapse
Affiliation(s)
- Mianhong Chen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xingrong Ren
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiaohe Li
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haiming Cheng
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Bellotto O, Cringoli MC, Perathoner S, Fornasiero P, Marchesan S. Peptide Gelators to Template Inorganic Nanoparticle Formation. Gels 2021; 7:14. [PMID: 33540722 PMCID: PMC7930985 DOI: 10.3390/gels7010014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/28/2022] Open
Abstract
The use of peptides to template inorganic nanoparticle formation has attracted great interest as a green route to advance structures with innovative physicochemical properties for a variety of applications that range from biomedicine and sensing, to catalysis. In particular, short-peptide gelators offer the advantage of providing dynamic supramolecular environments for the templating effect on the formation of inorganic nanoparticles directly in the resulting gels, and ideally without using further reductants or chemical reagents. This mini-review describes the recent progress in the field to outline future research directions towards dynamic functional materials that exploit the synergy between supramolecular chemistry, nanoscience, and the interface between organic and inorganic components for advanced performance.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (M.C.C.); (P.F.)
| | - Maria C. Cringoli
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (M.C.C.); (P.F.)
- INSTM, Unit of Trieste, 34127 Trieste, Italy
| | - Siglinda Perathoner
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, University of Messina, 98168 Messina, Italy;
- INSTM, Unit of Messina, 98168 Messina, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (M.C.C.); (P.F.)
- INSTM, Unit of Trieste, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (M.C.C.); (P.F.)
- INSTM, Unit of Trieste, 34127 Trieste, Italy
| |
Collapse
|
8
|
Baus RA, Leichner C, Steinbring C, Bernkop-Schnürch A. Strategies for improved hair binding: Keratin fractions and the impact of cationic substructures. Int J Biol Macromol 2020; 160:201-211. [PMID: 32445814 DOI: 10.1016/j.ijbiomac.2020.05.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/09/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
Keratin extracts and hydrolysates from varying sources, their chemical modifications and compositions thereof have shown potential in the restoration of hair properties. Within this study on reactivity of thiol groups and the shielding effect of anionic charges the binding of keratin-associated proteins (KAP) and α-keratins (Ker) extracted from human hair to natural and permed hair fibers was evaluated. Selectively extracted KAP and Ker were preactivated with 6-mercaptonicotinamide in a quantity of 194 ± 21 μmol/g for KAP and 169 ± 27 μmol/g for Ker resulting in 1.9- and 1.4-fold enhanced binding to natural hair, respectively. The amount of accumulated Ker on hair fibers was furthermore increased by 1.7-fold in presence of 25 mM L-arginine. Perming of hair impaired binding characteristics of Ker with negligible effects for preactivation, whereas unmodified and preactivated KAP showed results comparable to natural hair. Strongly enhanced penetrability after perming was reflected by the mean penetration depth for fluorescein of 25 μm compared to 5 μm for natural fibers.
Collapse
Affiliation(s)
- Randi Angela Baus
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christina Leichner
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christian Steinbring
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
9
|
Chua HM, Zhao Z, Ng KW. Cryogelation of Human Hair Keratins. Macromol Rapid Commun 2020; 41:e2000254. [DOI: 10.1002/marc.202000254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/17/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Huei Min Chua
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Zhitong Zhao
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
- Center for Nanotechnology and Nanotoxicology Harvard T.H. Chan School of Public Health Harvard University 665 Huntington Avenue Boston MA 02115 USA
- Environmental Chemistry and Materials Centre Nanyang Environment and Water Research Institution Nanyang Technological University 1 Cleantech Loop, CleanTech One Singapore 637141 Singapore
- Skin Research Institute of Singapore Biomedical Science Institutes Immunos, 8A Biomedical Grove Singapore 138648 Singapore
| |
Collapse
|
10
|
Lu TY, Huang WC, Chen Y, Baskaran N, Yu J, Wei Y. Effect of varied hair protein fractions on the gel properties of keratin/chitosan hydrogels for the use in tissue engineering. Colloids Surf B Biointerfaces 2020; 195:111258. [PMID: 32683238 DOI: 10.1016/j.colsurfb.2020.111258] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023]
Abstract
Keratin/chitosan composite is a readily available source for a hybrid hydrogel in tissue engineering. While human hair keratins could provide biological functions, chitosan could further enhance the mechanical strength of the hybrid hydrogels. However, hair keratin is a group of natural proteins, and the uncontrolled hair protein contents in a hydrogel may lead to the batch-to-batch inconsistent gel properties. The purpose of this study was to investigate the role of hair protein composition, including the keratin-associated proteins (KAPs, 6-30 kDa) and keratin intermediate filaments (KIFs, 45-60 kDa) on gel characteristics of the keratin/chitosan hydrogel. The various compressive and tensile modulus of the gel was observed based on the selection of different protein fractions as the significant gel components. These results thus suggest a straightforward method of preparing hair keratin/chitosan hydrogel with much more controllable gel properties by merely modulating the KAPs/KIFs ratios in a gel.
Collapse
Affiliation(s)
- Ting-Yu Lu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei, 106, Taiwan
| | - Wen-Chuan Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 106, Taiwan
| | - Yi Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 106, Taiwan
| | - Nareshkumar Baskaran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 106, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei, 106, Taiwan.
| | - Yang Wei
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 106, Taiwan.
| |
Collapse
|
11
|
Suarato G, Contardi M, Perotto G, Heredia-Guerrero JA, Fiorentini F, Ceseracciu L, Pignatelli C, Debellis D, Bertorelli R, Athanassiou A. From fabric to tissue: Recovered wool keratin/polyvinylpyrrolidone biocomposite fibers as artificial scaffold platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111151. [PMID: 32806258 DOI: 10.1016/j.msec.2020.111151] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Keratin extracted from wool fibers has recently gained attention as an abundant source of renewable, biocompatible material for tissue engineering and drug delivery applications. However, keratin extraction and processing generally require a copious use of chemicals, not only bearing consequences for the environment but also possibly compromising the envisioned biological outcome. In this study, we present, for the first time, keratin-PVP biocomposite fibers obtained via an all-water co-electrospinning process and explored their properties modulation as a result of different thermal crosslinking treatments. The protein-based fibers featured homogenous morphologies and average diameters in the range of 170-290 nm. The thermomechanical stability and response to a wet environment can be tuned by acting on the curing time; this can be achieved without affecting the 3D fibrous network nor the intrinsic hydrophilic behavior of the material. More interestingly, our protein-based membranes treated at 170 °C for 18 h successfully sustained the attachment and growth of primary human dermal fibroblasts, a cellular model which can recapitulate more faithfully the physiological human tissue conditions. Our proposed approach can be viewed as pivotal in designing tunable protein-based scaffolds for the next generation of skin tissue growth devices.
Collapse
Affiliation(s)
- Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy; Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy.
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Jose' A Heredia-Guerrero
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy; IHSM La Mayora, Departamento de Mejora Genética y Biotecnología, Consejo Superior de Investigaciones Científicas, E-29750 Algarrobo-Costa, Málaga, Spain
| | - Fabrizio Fiorentini
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Luca Ceseracciu
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Cataldo Pignatelli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | | |
Collapse
|
12
|
Effect of thermal treatments on the structural change and the hemostatic property of hair extracted proteins. Colloids Surf B Biointerfaces 2020; 190:110951. [DOI: 10.1016/j.colsurfb.2020.110951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/16/2023]
|
13
|
Li Y, Cao Y, Wei L, Wang J, Zhang M, Yang X, Wang W, Yang G. The assembly of protein-templated gold nanoclusters for enhanced fluorescence emission and multifunctional applications. Acta Biomater 2020; 101:436-443. [PMID: 31672583 DOI: 10.1016/j.actbio.2019.10.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
Protein-templated gold nanoclusters have attracted attention in fluorescence imaging due to their simple synthesis and good biocompatibility. However, limitations still exist such as poor colloid stability and undesirable fluorescence intensity. Here we describe the self-assembly of keratin-templated gold nanoclusters via a simple and mild preparation process, including keratin-templated synthesis of gold nanoclusters (AuNCs@Keratin), silver ions modification of AuNCs@Keratin (AuNCs-Ag@Keratin), and gadolinium ions-induced aggregation of AuNCs-Ag@Keratin (AuNCs-Ag@Keratin-Gd). It was demonstrated that the AuNCs-Ag@Keratin-Gd obtained an enhanced fluorescence intensity (6.5 times that of AuNCs@Keratin), high colloid stability for more than 4 months, and good biocompatibility. Moreover, the AuNCs-Ag@Keratin-Gd holds promise in multifunctional applications such as near-infrared (NIR) fluorescence imaging, magnetic resonance (MR) imaging, and redox-responsive drug delivery, extending the applicability of fluorescent gold nanoclusters, especially in biomedical fields. STATEMENT OF SIGNIFICANCE: Assembly-induced fluorescence enhancement has been rarely reported on as it relates to the protein-templated gold nanoclusters (AuNCs). In this work, self-assembly of protein-templated AuNCs was developed for enhanced fluorescence intensity and multifunctional applications, including bioimaging and responsive drug delivery. A cysteine-rich protein, keratin, was utilized as the template to synthesize AuNCs, which underwent silver ion modification and gadolinium ion-induced aggregation. The silver modification of the keratin-templated AuNCs facilitated the formation of a dense aggregate after gadolinium ion-induced assembly, thus generating an enhanced fluorescence intensity. Such a mechanism was confirmed by fluorescence correlation spectroscopy analysis. We believe that this work will extend the applicability of the fluorescent gold nanoclusters, especially in biomedical fields, and provided an effective approach for the mechanism analysis of the assembly-induced fluorescence enhancement via fluorescence correlation spectroscopy.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China
| | - Yu Cao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China
| | - Lai Wei
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinjie Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Xuexia Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China
| | - Wenshuo Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Guang Yang
- Key Laboratory of Science & Technology of Eco-Textile, Donghua University, Ministry of Education, Shanghai 201620, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China.
| |
Collapse
|
14
|
Wang D, Li W, Wang Y, Yin H, Ding Y, Ji J, Wang B, Hao S. Fabrication of an expandable keratin sponge for improved hemostasis in a penetrating trauma. Colloids Surf B Biointerfaces 2019; 182:110367. [DOI: 10.1016/j.colsurfb.2019.110367] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/22/2019] [Accepted: 07/14/2019] [Indexed: 01/14/2023]
|
15
|
Comparative study of keratin extraction from human hair. Int J Biol Macromol 2019; 133:382-390. [DOI: 10.1016/j.ijbiomac.2019.04.098] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 01/19/2023]
|
16
|
Gao F, Li W, Deng J, Kan J, Guo T, Wang B, Hao S. Recombinant Human Hair Keratin Nanoparticles Accelerate Dermal Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18681-18690. [PMID: 31038908 DOI: 10.1021/acsami.9b01725] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In recent years, favorable enhanced wound-healing properties and excellent biocompatibility of keratin derived from human hair have attracted considerable attention. Recombinant keratin proteins can be produced by recombinant DNA technology and have higher purity than extracted keratin. However, the wound-healing properties of recombinant keratin proteins remain unclear. Herein, two recombinant trichocyte keratins including human type I hair keratin 37 and human type II hair keratin 81 were expressed using a bacterial expression system, and recombinant keratin nanoparticles (RKNPs) were prepared via an ultrasonic dispersion method. The molecular weight, purity, and physicochemical properties of the recombinant keratin proteins and nanoparticles were assessed using gel electrophoresis, circular dichroism, mass spectrometry, and scanning electron microscope analyses. The RKNPs significantly enhanced cell proliferation and migration in vitro, and the treatment of dermal wounds in vivo with RKNPs resulted in improved wound healing associated with improved epithelialization, vascularization, and collagen deposition and remodeling. In addition, the in vivo biocompatibility test revealed no systemic toxicity. Overall, this work demonstrates that RKNPs are a promising candidate for enhanced wound healing, and this study opens up new prospects for the development of keratin biomaterials.
Collapse
Affiliation(s)
- Feiyan Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Jia Deng
- College of Environment and Resources , Chongqing Technology and Business University , Chongqing 400067 , China
| | - Jinlan Kan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Tingwang Guo
- College of Environment and Resources , Chongqing Technology and Business University , Chongqing 400067 , China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| |
Collapse
|
17
|
Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering. J Colloid Interface Sci 2019; 544:121-129. [DOI: 10.1016/j.jcis.2019.02.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 02/07/2023]
|
18
|
Abbasian M, Mousavi E, Khalili M, Arab‐Bafrani Z. Using of keratin substrate for enrichment of HT29 colorectal cancer stem‐like cells. J Biomed Mater Res B Appl Biomater 2018; 107:1264-1271. [DOI: 10.1002/jbm.b.34219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/08/2018] [Accepted: 08/02/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Mahdi Abbasian
- Metabolic Disorders Research CenterGolestan University of Medical Sciences Gorgan Iran
- Department of Biotechnology, College of AgricultureIsfahan University of Technology Isfahan Iran
| | - Elham Mousavi
- Department of Medical MicrobiologyFaculty of Medicine, Kerman University of Medical Sciences Kerman Iran
| | - Mohsen Khalili
- Medical Cellular and Molecular Research CenterGolestan University of Medical Sciences Gorgan Iran
| | - Zahra Arab‐Bafrani
- Metabolic Disorders Research CenterGolestan University of Medical Sciences Gorgan Iran
- Department of Biochemistry and Biophysics, Faculty of MedicineGolestan University of Medical Sciences Gorgan Iran
- Health technology Research CenterOxin Sabz Espadan Company, Esfahan university of Medical Sciences Esfahan Iran
| |
Collapse
|
19
|
Suarato G, Bertorelli R, Athanassiou A. Borrowing From Nature: Biopolymers and Biocomposites as Smart Wound Care Materials. Front Bioeng Biotechnol 2018; 6:137. [PMID: 30333972 PMCID: PMC6176001 DOI: 10.3389/fbioe.2018.00137] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022] Open
Abstract
Wound repair is a complex and tightly regulated physiological process, involving the activation of various cell types throughout each subsequent step (homeostasis, inflammation, proliferation, and tissue remodeling). Any impairment within the correct sequence of the healing events could lead to chronic wounds, with potential effects on the patience quality of life, and consequent fallouts on the wound care management. Nature itself can be of inspiration for the development of fully biodegradable materials, presenting enhanced bioactive potentialities, and sustainability. Naturally-derived biopolymers are nowadays considered smart materials. They provide a versatile and tunable platform to design the appropriate extracellular matrix able to support tissue regeneration, while contrasting the onset of adverse events. In the past decades, fabrication of bioactive materials based on natural polymers, either of protein derivation or polysaccharide-based, has been extensively exploited to tackle wound-healing related problematics. However, in today's World the exclusive use of such materials is becoming an urgent challenge, to meet the demand of environmentally sustainable technologies to support our future needs, including applications in the fields of healthcare and wound management. In the following, we will briefly introduce the main physico-chemical and biological properties of some protein-based biopolymers and some naturally-derived polysaccharides. Moreover, we will present some of the recent technological processing and green fabrication approaches of novel composite materials based on these biopolymers, with particular attention on their applications in the skin tissue repair field. Lastly, we will highlight promising future perspectives for the development of a new generation of environmentally-friendly, naturally-derived, smart wound dressings.
Collapse
Affiliation(s)
- Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Genoa, Italy
- In vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Rosalia Bertorelli
- In vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | | |
Collapse
|
20
|
Guo T, Li W, Wang J, Luo T, Lou D, Wang B, Hao S. Recombinant human hair keratin proteins for halting bleeding. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:456-461. [DOI: 10.1080/21691401.2018.1459633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tingwang Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Ju Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Tiantian Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Deshuai Lou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| |
Collapse
|
21
|
Esparza Y, Ullah A, Wu J. Molecular mechanism and characterization of self-assembly of feather keratin gelation. Int J Biol Macromol 2018; 107:290-296. [DOI: 10.1016/j.ijbiomac.2017.08.168] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 11/24/2022]
|
22
|
Lai HY, Wang S, Singh V, Nguyen LTH, Ng KW. Evaluating the antioxidant effects of human hair protein extracts. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1081-1093. [DOI: 10.1080/09205063.2017.1421345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hui Ying Lai
- Nanyang Environment & Water Research Institute (Environmental Chemistry and Materials Centre), Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shuai Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Vaishali Singh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Luong T. H. Nguyen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kee Woei Ng
- Nanyang Environment & Water Research Institute (Environmental Chemistry and Materials Centre), Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
23
|
Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1144-1153. [DOI: 10.1016/j.msec.2017.03.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/22/2017] [Accepted: 03/04/2017] [Indexed: 02/06/2023]
|
24
|
Wang J, Hao S, Luo T, Yang Q, Wang B. Development of feather keratin nanoparticles and investigation of their hemostatic efficacy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:768-773. [DOI: 10.1016/j.msec.2016.07.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/28/2016] [Accepted: 07/16/2016] [Indexed: 11/25/2022]
|
25
|
Development and assessment of kerateine nanoparticles for use as a hemostatic agent. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:352-8. [DOI: 10.1016/j.msec.2016.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 02/09/2016] [Accepted: 03/01/2016] [Indexed: 12/16/2022]
|
26
|
Development and Characterization of a 3D Printed, Keratin-Based Hydrogel. Ann Biomed Eng 2016; 45:237-248. [DOI: 10.1007/s10439-016-1621-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
|
27
|
PEG-Immobilized Keratin for Protein Drug Sequestration and pH-Mediated Delivery. JOURNAL OF DRUG DELIVERY 2016; 2016:7843951. [PMID: 26904294 PMCID: PMC4745968 DOI: 10.1155/2016/7843951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 11/17/2022]
Abstract
Protein drugs like growth factors are promising therapeutics for damaged-tissue repair. Their local delivery often requires biomaterial carriers for achieving the therapeutic dose range while extending efficacy. In this study, polyethylene glycol (PEG) and keratin were crosslinked and used as sponge-like scaffolds (KTN-PEG) to absorb test proteins with different isoelectric points (pI): albumin (~5), hemoglobin (~7), and lysozyme (~11). The protein release kinetics was influenced by charge at physiological pH 7.4. The keratin network, with pI 5.3, electrostatically attracted lysozyme and repulsed albumin generating the release rate profile: albumin > hemoglobin > lysozyme. However, under acidic conditions (pH 4), all proteins including keratins were positively charged and consequently intermolecular repulsion altered the release hierarchy, now determined by size (MW) diffusion: lysozyme (14 kDa) > hemoglobin (64 kDa) > albumin (66 kDa). Vascular endothelial growth factor C (VEGF-C), with properties comparable to lysozyme, was absorbed into the KTN-PEG scaffold. Endothelial cells cultured on this substrate had significantly larger numbers than on scaffolds without VEGF-C suggesting that the ionically bound and retained growth factor at neutral pH indirectly increased acute cell attachment and viability. PEG and keratin based sequestrations of proteins with basic pIs are therefore a feasible strategy with potential applications for selective biologics delivery.
Collapse
|
28
|
Li T, Yin X, Zhai W, He YF, Wang RM. Enzymatic Digestion of Keratin for Preparing a pH-Sensitive Biopolymer Hydrogel. Aust J Chem 2016. [DOI: 10.1071/ch15224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Keratin, a typical natural biopolymer, has been applied in the biomedical field due to its biocompatible, eco-friendly, and inexpensive characteristics. In this paper, pig hair keratin (PHK) was pre-treated and efficiently digested by enzyme to afford enzymatically digested pig hair keratin (E-PHK) with short polymer chains. Then, by using methacrylic acid (MAA), as a functional monomer, a novel keratin (E- PHK)-based biopolymer hydrogel (E-PHKPGel) was prepared via grafting copolymerization. It was characterized by Fourier transform infrared spectroscopy, gel permeation chromatography, thermogravimetric analysis, and scanning electron microscopy. The swelling behaviours, salt sensitivity, and release behaviours of E-PHKPGel were also investigated. As a result, the enzymatic digestion method was found to improve the swelling and release properties of PHK. The release behaviours of pH-sensitive E-PHKPGel were controllable by adjustment of the pH value. For the small molecular model drug (rhodamine B), the cumulative release rate was 89 % in 12 h at pH 7.2. For the macromolecular model drug (bovine serum albumin), the cumulative release rate reached 70.7 % in 12 h at pH 7.2. In conclusion, a simple and efficient enzymatic digestion method to PHK has been found. E-PHKPGel is expected to be used in the biomedical field as a sustained drug carrier as well as a humid medicinal material in the clinical nursing field.
Collapse
|
29
|
Ham TR, Lee RT, Han S, Haque S, Vodovotz Y, Gu J, Burnett LR, Tomblyn S, Saul JM. Tunable Keratin Hydrogels for Controlled Erosion and Growth Factor Delivery. Biomacromolecules 2015; 17:225-36. [PMID: 26636618 DOI: 10.1021/acs.biomac.5b01328] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tunable erosion of polymeric materials is an important aspect of tissue engineering for reasons that include cell infiltration, controlled release of therapeutic agents, and ultimately to tissue healing. In general, the biological response to proteinaceous polymeric hydrogels is favorable (e.g., minimal inflammatory response). However, unlike synthetic polymers, achieving tunable erosion with natural materials is a challenge. Keratins are a class of intermediate filament proteins that can be obtained from several sources, including human hair, and have gained increasing levels of use in tissue engineering applications. An important characteristic of keratin proteins is the presence of a large number of cysteine residues. Two classes of keratins with different chemical properties can be obtained by varying the extraction techniques: (1) keratose by oxidative extraction and (2) kerateine by reductive extraction. Cysteine residues of keratose are "capped" by sulfonic acid and are unable to form covalent cross-links upon hydration, whereas cysteine residues of kerateine remain as sulfhydryl groups and spontaneously form covalent disulfide cross-links. Here, we describe a straightforward approach to fabricate keratin hydrogels with tunable rates of erosion by mixing keratose and kerateine. SEM imaging and mechanical testing of freeze-dried materials showed similar pore diameters and compressive moduli, respectively, for each keratose-kerateine mixture formulation (∼1200 kPa for freeze-dried materials and ∼1.5 kPa for hydrogels). However, the elastic modulus (G') determined by rheology varied in proportion with the keratose-kerateine ratios, as did the rate of hydrogel erosion and the release rate of thiol from the hydrogels. The variation in keratose-kerateine ratios also led to tunable control over release rates of recombinant human insulin-like growth factor 1.
Collapse
Affiliation(s)
- Trevor R Ham
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States.,Department of Biomedical Engineering, University of Akron , Auburn Science and Engineering Center 275, West Tower, Akron, Ohio 44325, United States
| | - Ryan T Lee
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Sangheon Han
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Salma Haque
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University , 2015 Fyffe Court, Columbus, Ohio 43210, United States
| | - Junnan Gu
- Department of Food Science and Technology, The Ohio State University , 2015 Fyffe Court, Columbus, Ohio 43210, United States
| | - Luke R Burnett
- KeraNetics, LLC , 200 East First Street, Box 4, Suite 102, Winston-Salem, North Carolina 27101, United States
| | - Seth Tomblyn
- KeraNetics, LLC , 200 East First Street, Box 4, Suite 102, Winston-Salem, North Carolina 27101, United States
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
30
|
Han S, Ham TR, Haque S, Sparks JL, Saul JM. Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications. Acta Biomater 2015; 23:201-213. [PMID: 25997587 PMCID: PMC4522204 DOI: 10.1016/j.actbio.2015.05.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 12/11/2022]
Abstract
Polymeric biomaterials that provide a matrix for cell attachment and proliferation while achieving delivery of therapeutic agents are an important component of tissue engineering and regenerative medicine strategies. Keratins are a class of proteins that have received attention for numerous tissue engineering applications because, like other natural polymers, they promote favorable cell interactions and have non-toxic degradation products. Keratins can be extracted from various sources including human hair, and they are characterized by a high percentage of cysteine residues. Thiol groups on reductively extracted keratin (kerateine) form disulfide bonds, providing a more stable cross-linked hydrogel network than oxidatively extracted keratin (keratose) that cannot form disulfide crosslinks. We hypothesized that an iodoacetamide alkylation (or "capping") of cysteine thiol groups on the kerateine form of keratin could be used as a simple method to modulate the levels of disulfide crosslinking in keratin hydrogels, providing tunable rates of gel erosion and therapeutic agent release. After alkylation, the alkylated kerateines still formed hydrogels and the alkylation led to changes in the mechanical and visco-elastic properties of the materials consistent with loss of disulfide crosslinking. The alkylated kerateines did not lead to toxicity in MC3T3-E1 pre-osteoblasts. These cells adhered to keratin at levels comparable to fibronectin and greater than collagen. Alkylated kerateine gels eroded more rapidly than non-alkylated kerateine and this control over erosion led to tunable rates of delivery of rhBMP-2, rhIGF-1, and ciprofloxacin. These results demonstrate that alkylation of kerateine cysteine residues provides a cell-compatible approach to tune rates of hydrogel erosion and therapeutic agent release within the context of a naturally-derived polymeric system.
Collapse
Affiliation(s)
- Sangheon Han
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 E. High Street, Oxford, OH 45056, USA
| | - Trevor R Ham
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 E. High Street, Oxford, OH 45056, USA; Department of Biomedical Engineering, University of Akron, Auburn Science and Engineering Center 275, West Tower, Akron, OH 44325, USA
| | - Salma Haque
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 E. High Street, Oxford, OH 45056, USA
| | - Jessica L Sparks
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 E. High Street, Oxford, OH 45056, USA
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 E. High Street, Oxford, OH 45056, USA.
| |
Collapse
|
31
|
de Guzman RC, Tsuda SM, Ton MTN, Zhang X, Esker AR, Van Dyke ME. Binding Interactions of Keratin-Based Hair Fiber Extract to Gold, Keratin, and BMP-2. PLoS One 2015; 10:e0137233. [PMID: 26317522 PMCID: PMC4552821 DOI: 10.1371/journal.pone.0137233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/14/2015] [Indexed: 11/22/2022] Open
Abstract
Hair-derived keratin biomaterials composed mostly of reduced keratin proteins (kerateines) have demonstrated their utility as carriers of biologics and drugs for tissue engineering. Electrostatic forces between negatively-charged keratins and biologic macromolecules allow for effective drug retention; attraction to positively-charged growth factors like bone morphogenetic protein 2 (BMP-2) has been used as a strategy for osteoinduction. In this study, the intermolecular surface and bulk interaction properties of kerateines were investigated. Thiol-rich kerateines were chemisorbed onto gold substrates to form an irreversible 2-nm rigid layer for surface plasmon resonance analysis. Kerateine-to-kerateine cohesion was observed in pH-neutral water with an equilibrium dissociation constant (KD) of 1.8 × 10(-4) M, indicating that non-coulombic attractive forces (i.e. hydrophobic and van der Waals) were at work. The association of BMP-2 to kerateine was found to be greater (KD = 1.1 × 10(-7) M), within the range of specific binding. Addition of salts (phosphate-buffered saline; PBS) shortened the Debye length or the electrostatic field influence which weakened the kerateine-BMP-2 binding (KD = 3.2 × 10(-5) M). BMP-2 in bulk kerateine gels provided a limited release in PBS (~ 10% dissociation in 4 weeks), suggesting that electrostatic intermolecular attraction was significant to retain BMP-2 within the keratin matrix. Complete dissociation between kerateine and BMP-2 occurred when the PBS pH was lowered (to 4.5), below the keratin isoelectric point of 5.3. This phenomenon can be attributed to the protonation of keratin at a lower pH, leading to positive-positive repulsion. Therefore, the dynamics of kerateine-BMP-2 binding is highly dependent on pH and salt concentration, as well as on BMP-2 solubility at different pH and molarity. The study findings may contribute to our understanding of the release kinetics of drugs from keratin biomaterials and allow for the development of better, more clinically relevant BMP-2-conjugated systems for bone repair and regeneration.
Collapse
Affiliation(s)
- Roche C. de Guzman
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Shanel M. Tsuda
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Minh-Thi N. Ton
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Xiao Zhang
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Alan R. Esker
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Mark E. Van Dyke
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
32
|
Preparation of keratin and chemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability. J Biosci Bioeng 2015; 120:111-6. [DOI: 10.1016/j.jbiosc.2014.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 11/20/2022]
|
33
|
Porous hydrogel of wool keratin prepared by a novel method: An extraction with guanidine/2-mercaptoethanol solution followed by a dialysis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:146-54. [DOI: 10.1016/j.msec.2014.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/28/2014] [Accepted: 05/13/2014] [Indexed: 12/27/2022]
|
34
|
Purification of Porcine Hair Keratin Subunits and Their Immobilization for Use as Cell Culture Substrates. Biosci Biotechnol Biochem 2014; 77:1894-900. [DOI: 10.1271/bbb.130339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Burnett LR, Rahmany MB, Richter JR, Aboushwareb TA, Eberli D, Ward CL, Orlando G, Hantgan RR, Van Dyke ME. Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels. Biomaterials 2013; 34:2632-40. [DOI: 10.1016/j.biomaterials.2012.12.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/18/2012] [Indexed: 01/11/2023]
|
36
|
Taraballi F, Wang S, Li J, Lee FYY, Venkatraman SS, Birch WR, Teoh SH, Boey FYC, Ng KW. Understanding the nano-topography changes and cellular influences resulting from the surface adsorption of human hair keratins. Adv Healthc Mater 2012. [PMID: 23184785 DOI: 10.1002/adhm.201200043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent interest in the use of human hair keratins as a biomaterial has grown, fuelled by improvements in keratin extraction methods and better understanding of keratin bioactivity. The use of keratins as a bioactive coating for in vitro cell culture studies is an attractive proposition. In this light, the surface adsorption of human hair keratins onto tissue culture polystyrene surfaces has been investigated. Keratin density, nano-topography and hydrophobicity of keratin coated surfaces were characterized. To understand the cellular influence of these coated surfaces, murine L929 fibroblasts were cultured on them and evaluated for cytotoxicity, proliferation, metabolic activity and detachment behaviors compared to collagen type 1 coated surfaces. Keratins were deposited up to a density of 650 ng/cm(2) when a coating concentration of 80 μg/ml or higher was used. The surface features formed by adsorbed keratins also changed in a coating concentration dependent manner. These surfaces improved L929 mouse fibroblast adhesion and proliferation in comparison to uncoated and collagen type 1 coated tissue culture polystyrene. Furthermore, the expression of fibronectin was accelerated on surfaces coated with solutions of higher keratin concentrations. These results suggest that human hair keratins can be used as a viable surface coating material to enhance substrate compliance for culturing cells.
Collapse
Affiliation(s)
- Francesca Taraballi
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|