1
|
Islam MR, Manir MS, Razzak M, Mamun MA, Mortuza MF, Islam MJ, Yang S, Pan H, Alam AKMM, Shubhra QTH. Silk-enriched hydrogels with ROS-scavenging dendrimers for advanced wound care. Int J Biol Macromol 2024; 280:135567. [PMID: 39288850 DOI: 10.1016/j.ijbiomac.2024.135567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
This study explores the development of novel hydrogel composites for wound care, incorporating silk fibroin and reactive oxygen species (ROS)-scavenging dendrimers into a polyvinyl alcohol (PVA) matrix. Utilizing ionizing gamma radiation, we fabricated pristine PVA, silk-PVA (SPVA) binary, and dendrimer-silk-PVA (DSPVA) ternary hydrogel composites, with their composition confirmed via UV-visible absorption spectroscopy. Fourier-transform infrared (FTIR) and Raman spectroscopy analyses indicated complex interactions between the hydrogel components, enhancing their structural and biocompatible properties. Scanning electron microscopy (SEM) analysis revealed that dendrimer integration in DSPVA hydrogels significantly increased surface porosity, vital for tissue regeneration. The DSPVA hydrogels demonstrated effective ROS scavenging, reducing hydrogen peroxide (H2O2) concentrations by approximately 70 % within 24 h. In vivo wound healing studies in a diabetic mouse model showed enhanced wound closure in the DSPVA group, with a relative wound area reduction to 30 ± 4.3 % on day 10, compared to 56.5 ± 2.7 % in the control group. By the 16th day, the treated group exhibited near-complete wound contraction, markedly outperforming the control group. These findings underscore the potential of DSPVA hydrogels in diabetic wound management, combining silk fibroin's mechanical support, dendrimers' antioxidative properties, and PVA's structural benefits. Thus, DSPVA hydrogels are promising candidates for advanced wound care applications.
Collapse
Affiliation(s)
- M R Islam
- Institute of Radiation and Polymer Technology, AERE, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh
| | - M S Manir
- Institute of Radiation and Polymer Technology, AERE, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh
| | - M Razzak
- Institute of Radiation and Polymer Technology, AERE, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh
| | - M A Mamun
- Materials Science Division, AECD, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh
| | - M F Mortuza
- Gamma Source Division, IFRB, AERE, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh
| | - M J Islam
- Veterinary Drug Residue Analysis Division, IFRB, AERE, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh
| | - Shumin Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huachun Pan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - A K M M Alam
- Institute of Radiation and Polymer Technology, AERE, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh.
| | - Quazi T H Shubhra
- Institute of Radiation and Polymer Technology, AERE, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh; Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-003, Katowice, Poland; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
2
|
Huo P, Ming X, Wang Y, Yu Q, Liang R, Sun G. Stable Zinc Anode Facilitated by Regenerated Silk Fibroin-modified Hydrogel Protective Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400565. [PMID: 38602450 DOI: 10.1002/smll.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Inherent dendrite growth and side reactions of zinc anode caused by its unstable interface in aqueous electrolytes severely limit the practical applications of zinc-ion batteries (ZIBs). To overcome these challenges, a protective layer for Zn anode inspired by cytomembrane structure is developed with PVA as framework and silk fibroin gel suspension (SFs) as modifier. This PVA/SFs gel-like layer exerts similar to the solid electrolyte interphase, optimizing the anode-electrolyte interface and Zn2+ solvation structure. Through interface improvement, controlled Zn2+ migration/diffusion, and desolvation, this buffer layer effectively inhibits dendrite growth and side reactions. The additional SFs provide functional improvement and better interaction with PVA by abundant functional groups, achieving a robust and durable Zn anode with high reversibility. Thus, the PVA/SFs@Zn symmetric cell exhibits an ultra-long lifespan of 3150 h compared to bare Zn (182 h) at 1.0 mAh cm-2-1.0 mAh cm-2, and excellent reversibility with an average Coulombic efficiency of 99.04% under a large plating capacity for 800 cycles. Moreover, the PVA/SFs@Zn||PANI/CC full cells maintain over 20 000 cycles with over 80% capacity retention under harsh conditions at 5 and 10 A g-1. This SF-modified protective layer for Zn anode suggests a promising strategy for reliable and high-performance ZIBs.
Collapse
Affiliation(s)
- Peixian Huo
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Xing Ming
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, China
| | - Yueyang Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Qinglu Yu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Rui Liang
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, China
| | - Guoxing Sun
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| |
Collapse
|
3
|
Wang HY, Zhang Y, Zhang M, Zhang YQ. Functional modification of silk fibroin from silkworms and its application to medical biomaterials: A review. Int J Biol Macromol 2024; 259:129099. [PMID: 38176506 DOI: 10.1016/j.ijbiomac.2023.129099] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Silk fibroin (SF) from the silkworm Bombyx mori is a fibrous protein identified as a widely suitable biomaterial due to its biocompatibility, tunable degradation, and mechanical strength. Various modifications of SF protein can give SF fibers new properties and functions, broadening their applications in textile and biomedical industries. A diverse array of functional modifications on various forms of SF has been reported. In order to provide researchers with a more systematic understanding of the types of functional modifications of SF protein, as well as the corresponding applications, we comprehensively review the different types of functional modifications, including transgenic modification, modifications with chemical groups or biologically active substance, cross-linking and copolymerization without chemical reactions, their specific modification methods and applications. Furthermore, recent applications of SF in various medical biomaterials are briefly discussed.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Obstetrical department, The People's Hospital of Suzhou New District, Suzhou, China
| | - Yun Zhang
- Obstetrical department, The People's Hospital of Suzhou New District, Suzhou, China
| | - Meng Zhang
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Byram PK, Mukherjee M, Rahaman M, Bora H, Kaushal M, Dhara S, Chakravorty N. Bioactive self-assembling silk fibroin-sericin films for skin tissue engineering. Biomed Mater 2024; 19:025009. [PMID: 38194702 DOI: 10.1088/1748-605x/ad1c9d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
The quest for an ideal wound dressing material has been a strong motivation for researchers to explore novel biomaterials for this purpose. Such explorations have led to the extensive use of silk fibroin (SF) as a suitable polymer for several applications over the years. Unfortunately, another major silk protein-sericin has not received its due attention yet in spite of having favorable biological properties. In this study, we report an approach of blending SF and silk sericin (SS) without the usage of chemical crosslinkers is made possible by the usage of formic acid which evaporates to induceβ-sheets formation to form cytocompatible films. Raman spectroscopy confirms the presence of SF/SS components in blend and formation ofβ-sheet in films.In situ, gelation kinetics studies were conducted to understand the change in gelation properties with addition of sericin into SF. Methyl thiazolyl tetrazolium and live/dead assays were performed to study cellular attachment, viability and proliferation on SF/SS films. The antibacterial properties of SF/SS films were tested using Gram-negative and Gram-positive bacteria. The re-structured SF/SS films were stable, transparent, show good mechanical properties, antibacterial activity and cytocompatibility, therefore can serve as suitable biomaterial candidates for skin regeneration applications.
Collapse
Affiliation(s)
- Prasanna Kumar Byram
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Mandrita Mukherjee
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Hema Bora
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Manish Kaushal
- Department of Chemical Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
5
|
Zhu Y, Chen J, Liu H, Zhang W. Photo-cross-linked Hydrogels for Cartilage and Osteochondral Repair. ACS Biomater Sci Eng 2023; 9:6567-6585. [PMID: 37956022 DOI: 10.1021/acsbiomaterials.3c01132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Photo-cross-linked hydrogels, which respond to light and induce structural or morphological transitions, form a microenvironment that mimics the extracellular matrix of native tissue. In the last decades, photo-cross-linked hydrogels have been widely used in cartilage and osteochondral tissue engineering due to their good biocompatibility, ease of fabrication, rapid in situ gel-forming ability, and tunable mechanical and degradable properties. In this review, we systemically summarize the different types and physicochemical properties of photo-cross-linked hydrogels (including the materials and photoinitiators) and explore the biological properties modulated through the incorporation of additives, including cells, biomolecules, genes, and nanomaterials, into photo-cross-linked hydrogels. Subsequently, we compile the applications of photo-cross-linked hydrogels with a specific focus on cartilage and osteochondral repair. Finally, current limitations and future perspectives of photo-cross-linked hydrogels are also discussed.
Collapse
Affiliation(s)
- Yue Zhu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
6
|
Hua J, Huang R, Huang Y, Yan S, Zhang Q. Comparison of Silk Hydrogels Prepared via Different Methods. Polymers (Basel) 2023; 15:4419. [PMID: 38006143 PMCID: PMC10674597 DOI: 10.3390/polym15224419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Silk fibroin (SF) hydrogels have garnered extensive attention in biomedical materials, owing to their superior biological properties. However, the challenges facing the targeted silk fibroin hydrogels involve chemical agents and shortfalls in performance. In this study, the silk fibroin hydrogels were prepared in different ways: sonication induction, chemical crosslinking, photopolymerization, and enzyme-catalyzed crosslinking. The SF hydrogels derived from photopolymerization exhibited higher compressive properties, with 124 Kpa fracture compressive stress and breaks at about 46% compression. The chemical crosslinking and enzyme-catalyzed silk fibroin hydrogels showed superior toughness, yet sonication-induced hydrogels showed brittle performance resulting from an increase in silk II crystals. The chemical-crosslinked hydrogel demonstrated lower thermostability due to the weaker crosslinking degree. In vitro, all silk fibroin hydrogels supported the growth of human umbilical vein endothelial cells, as the cell viability of hydrogels without chemical agents was relatively higher. This study provides insights into the formation process of silk fibroin hydrogels and optimizes their design strategy for biomedical applications.
Collapse
Affiliation(s)
| | | | - Ying Huang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (J.H.); (R.H.); (Q.Z.)
| | - Shuqin Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (J.H.); (R.H.); (Q.Z.)
| | | |
Collapse
|
7
|
A Comprehensive Review on Silk Fibroin as a Persuasive Biomaterial for Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24032660. [PMID: 36768980 PMCID: PMC9917095 DOI: 10.3390/ijms24032660] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/02/2023] Open
Abstract
Bone tissue engineering (BTE) utilizes a special mix of scaffolds, cells, and bioactive factors to regulate the microenvironment of bone regeneration and form a three-dimensional bone simulation structure to regenerate bone tissue. Silk fibroin (SF) is perhaps the most encouraging material for BTE given its tunable mechanical properties, controllable biodegradability, and excellent biocompatibility. Numerous studies have confirmed the significance of SF for stimulating bone formation. In this review, we start by introducing the structure and characteristics of SF. After that, the immunological mechanism of SF for osteogenesis is summarized, and various forms of SF biomaterials and the latest development prospects of SF in BTE are emphatically introduced. Biomaterials based on SF have great potential in bone tissue engineering, and this review will serve as a resource for future design and research.
Collapse
|
8
|
Zhang H, Xu D, Zhang Y, Li M, Chai R. Silk fibroin hydrogels for biomedical applications. SMART MEDICINE 2022; 1:e20220011. [PMID: 39188746 PMCID: PMC11235963 DOI: 10.1002/smmd.20220011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/15/2022] [Indexed: 08/28/2024]
Abstract
Silk fibroin hydrogels occupy an essential position in the biomedical field due to their remarkable biological properties, excellent mechanical properties, flexible processing properties, as well as abundant sources and low cost. Herein, we introduce the unique structures and physicochemical characteristics of silk fibroin, including mechanical properties, biocompatibility, and biodegradability. Then, various preparation strategies of silk fibroin hydrogels are summarized, which can be divided into physical cross-linking and chemical cross-linking. Emphatically, the applications of silk fibroin hydrogel biomaterials in various biomedical fields, including tissue engineering, drug delivery, and wearable sensors, are systematically summarized. At last, the challenges and future prospects of silk fibroin hydrogels in biomedical applications are discussed.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Science and TechnologyJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Dongyu Xu
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Science and TechnologyJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yong Zhang
- School of PhysicsSoutheast UniversityNanjingChina
| | - Minli Li
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Renjie Chai
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Science and TechnologyJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
- Department of Otorhinolaryngology‐Head and Neck SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijingChina
| |
Collapse
|
9
|
Chen J, Li Y, Liu S, Du Y, Zhang S, Wang J. Freeze-casting osteochondral scaffolds: The presence of a nutrient-permeable film between the bone and cartilage defect reduces cartilage regeneration. Acta Biomater 2022; 154:168-179. [PMID: 36210044 DOI: 10.1016/j.actbio.2022.09.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Microfracture treatment that is basically relied on stem cells and growth factors in bone marrow has achieved a certain progress for cartilage repair in clinic. Nevertheless, the neocartilage generated from the microfracture strategy is limited endogenous regeneration and prone to fibrosis due to the influences of cell inflammation and vascular infiltration. To explore the crucial factor for articular cartilage remodeling, here we design a trilaminar osteochondral scaffold with a selective permeable film in middle isolation layer which can prevent stem cells, immune cells, and blood vessels in the bone marrow from invading into the cartilage layer, but allow the nutrients and cytokines to penetrate. Our findings show that the trilaminar scaffold exhibits a good biocompatibility and inflammatory regulation, but the osteochondral repair is far less effective than the control of double-layer scaffold without isolation layer. These results demonstrate that it is not adequate to rely only on nutrients and cytokines to promote reconstruction of articular cartilage, and the various cells in bone marrow are indispensable. Consequently, the current study illustrates that cell infiltration involving stem cells, immune cells and other cells from bone marrow plays a crucial role in articular cartilage remodeling based on the integrated scaffold strategy. STATEMENT OF SIGNIFICANCE: Clinical microfracture treatment plays a certain role on the restoration of injured cartilage, but the regenerative cartilage is prone to be fibrocartilage due to the modulation of bone marrow cells. Herein, we design a trilaminar osteochondral scaffold with a selective permeable film in middle isolation layer. This specific film made of dense electrospun nanofiber can prevent bone marrow cells from invading into the cartilage layer, but allow the nutrients and cytokines to penetrate. Our conclusion is that the cartilage remodeling will be extremely inhibited when the bone marrow cells are blocking. Owing to the diverse cells in bone marrow, we will further explore the influence of each cell type on cartilage repair in our continuous future work.
Collapse
Affiliation(s)
- Jia Chen
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Yawu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Shuaibing Liu
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Yingying Du
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shengmin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianglin Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China.
| |
Collapse
|
10
|
Wani SUD, Zargar MI, Masoodi MH, Alshehri S, Alam P, Ghoneim MM, Alshlowi A, Shivakumar HG, Ali M, Shakeel F. Silk Fibroin as an Efficient Biomaterial for Drug Delivery, Gene Therapy, and Wound Healing. Int J Mol Sci 2022; 23:ijms232214421. [PMID: 36430901 PMCID: PMC9692988 DOI: 10.3390/ijms232214421] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Silk fibroin (SF), an organic material obtained from the cocoons of a silkworm Bombyx mori, is used in several applications and has a proven track record in biomedicine owing to its superior compatibility with the human body, superb mechanical characteristics, and its controllable propensity to decay. Due to its robust biocompatibility, less immunogenic, non-toxic, non-carcinogenic, and biodegradable properties, it has been widely used in biological and biomedical fields, including wound healing. The key strategies for building diverse SF-based drug delivery systems are discussed in this review, as well as the most recent ways for developing functionalized SF for controlled or redirected medicines, gene therapy, and wound healing. Understanding the features of SF and the various ways to manipulate its physicochemical and mechanical properties enables the development of more effective drug delivery devices. Drugs are encapsulated in SF-based drug delivery systems to extend their shelf life and control their release, allowing them to travel further across the bloodstream and thus extend their range of operation. Furthermore, due to their tunable properties, SF-based drug delivery systems open up new possibilities for drug delivery, gene therapy, and wound healing.
Collapse
Affiliation(s)
- Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Jammu and Kashmir, Srinagar 190006, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Jammu and Kashmir, Srinagar 190006, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Jammu and Kashmir, Srinagar 190006, India
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Correspondence: (S.A.); (F.S.)
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Areej Alshlowi
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - H. G. Shivakumar
- Department of Pharmaceutics, College of Pharmacy, JSS Academy of Technical Education, Noida 201301, India
| | - Mohammad Ali
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore 560049, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (S.A.); (F.S.)
| |
Collapse
|
11
|
A convergent synthetic platform of photocurable silk fibroin-polyvinylpyrrolidone hydrogels for local anaesthesia examination. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Dai M, Xu K, Xiao D, Zheng Y, Zheng Q, Shen J, Qian Y, Chen W. In Situ Forming Hydrogel as a Tracer and Degradable Lacrimal Plug for Dry Eye Treatment. Adv Healthc Mater 2022; 11:e2200678. [PMID: 35841368 DOI: 10.1002/adhm.202200678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/10/2022] [Indexed: 01/27/2023]
Abstract
Lacrimal plug is an effective and widely therapeutic strategy to treat dry eye. However, almost all commercialized plugs are fixed in a certain design and associated with many complications, such as spontaneous plug extrusion, epiphora, and granuloma and cannot be traced in the long-term. Herein, a simple in situ forming hydrogel is developed as a tracer and degradable lacrimal plug to achieve the best match with the irregular lacrimal passages. In this strategy, methacrylate-modified silk fibroin (SFMA) is served as a network, and a self-assembled indocyanine green fluorescence tracer nanoparticle (FTN) is embedded as an indicator to develop the hydrogel plug using visible photo-crosslinking. This SFMA/FTN hydrogel plug has excellent biocompatibility and biodegradability, which can be noninvasively monitored by near-infrared light. In vivo tests based on dry eye rabbits show that the SFMA/FTN hydrogel plug can completely block the lacrimal passages and greatly improve the various clinical indicators of dry eye. These results demonstrate that the SFMA/FTN hydrogel is suitable as an injectable and degradable lacrimal plug with a long-term tracking function. The work offers a new approach to the development of absorbable plugs for the treatment of dry eye.
Collapse
Affiliation(s)
- Mali Dai
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325001, China
| | - Kejia Xu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325001, China
| | - Decheng Xiao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325001, China
| | - Yujing Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325001, China
| | - Qinxiang Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325001, China
| | - Jianliang Shen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325001, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuna Qian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Wei Chen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
13
|
Photocrosslinkable Silk-Based Biomaterials for Regenerative Medicine and Healthcare Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Cano-Garrido O, Serna N, Unzueta U, Parladé E, Mangues R, Villaverde A, Vázquez E. Protein scaffolds in human clinics. Biotechnol Adv 2022; 61:108032. [PMID: 36089254 DOI: 10.1016/j.biotechadv.2022.108032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/30/2022] [Accepted: 09/03/2022] [Indexed: 11/02/2022]
Abstract
Fundamental clinical areas such as drug delivery and regenerative medicine require biocompatible materials as mechanically stable scaffolds or as nanoscale drug carriers. Among the wide set of emerging biomaterials, polypeptides offer enticing properties over alternative polymers, including full biocompatibility, biodegradability, precise interactivity, structural stability and conformational and functional versatility, all of them tunable by conventional protein engineering. However, proteins from non-human sources elicit immunotoxicities that might bottleneck further development and narrow their clinical applicability. In this context, selecting human proteins or developing humanized protein versions as building blocks is a strict demand to design non-immunogenic protein materials. We review here the expanding catalogue of human or humanized proteins tailored to execute different levels of scaffolding functions and how they can be engineered as self-assembling materials in form of oligomers, polymers or complex networks. In particular, we emphasize those that are under clinical development, revising their fields of applicability and how they have been adapted to offer, apart from mere mechanical support, highly refined functions and precise molecular interactions.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona (Barcelona), Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Ramón Mangues
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona (Barcelona), Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| |
Collapse
|
15
|
Shen X, Shi H, Wei H, Wu B, Xia Q, Yeo J, Huang W. Engineering Natural and Recombinant Silks for Sustainable Biodevices. Front Chem 2022; 10:881028. [PMID: 35601555 PMCID: PMC9117649 DOI: 10.3389/fchem.2022.881028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/15/2022] [Indexed: 01/12/2023] Open
Abstract
Silk fibroin (SF) is a structural protein derived from natural silkworm silks. Materials fabricated based on SF usually inherit extraordinary physical and biological properties, including high mechanical strength, toughness, optical transparency, tailorable biodegradability, and biocompatibility. Therefore, SF has attracted interest in the development of sustainable biodevices, especially for emergent bio-electronic technologies. To expand the function of current silk devices, the SF characteristic sequence has been used to synthesize recombinant silk proteins that benefit from SF and other functional peptides, such as stimuli-responsive elastin peptides. In addition to genetic engineering methods, innovated chemistry modification approaches and improved material processing techniques have also been developed for fabricating advanced silk materials with tailored chemical features and nanostructures. Herein, this review summarizes various methods to synthesize functional silk-based materials from different perspectives. This review also highlights the recent advances in the applications of natural and recombinant silks in tissue regeneration, soft robotics, and biosensors, using B. mori SF and silk-elastin-like proteins (SELPs) as examples.
Collapse
Affiliation(s)
- Xinchen Shen
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyuan Shi
- J Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Hongda Wei
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Boxuan Wu
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingyuan Xia
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjie Yeo
- J Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Wenwen Huang
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Isely C, Atube KJ, Cheung CV, Steege CF, Pellechia PJ, Gower RM. Surface Functionalization of Polymer Particles for Cell Targeting by Modifying Emulsifier Chemistry. ACS APPLIED POLYMER MATERIALS 2022; 4:2269-2282. [PMID: 35493439 PMCID: PMC9049500 DOI: 10.1021/acsapm.1c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The oil in water emulsion/solvent extraction method is used to fabricate many FDA approved, polymer particle formulations for drug delivery. However, these formulations do not benefit from surface functionalization that can be achieved through tuning particle surface chemistry. Poly(vinyl alcohol) (PVA) is the emulsifier used for many FDA approved formulations and remains associated with the particle surface after fabrication. We hypothesized that the hydroxyl groups in PVA could be conjugated with biomolecules using isothiocyanate chemistry and that these modifications would endow the particle surface with additional functionality. We demonstrate that fluorescein isothiocyanate and an isothiocyanate derivatized mannose molecule can be covalently attached to PVA in a one-step reaction. The modified PVA polymers perform as well as unmodified PVA in acting as an emulsifier for fabrication of poly(lactide-co-glycolide) particles. Particles made with the fluorescein modified PVA exhibit fluorescence confined to the particle surface, while particles made with mannose modified PVA bind concanavalin A. In addition, mannose modified PVA increases particle association with primary macrophages by three-fold. Taken together, we present a facile method for modifying the surface reactivity of polymer particles widely used for drug delivery in basic research and clinical practice. Given that methods are established for conjugating the isothiocyanate functional group to a wide range of biomolecules, our approach may enable PVA based biomaterials to engage a multitude of biological systems.
Collapse
Affiliation(s)
- Christopher Isely
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Kidochukwu J. Atube
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Candice V. Cheung
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Christine F. Steege
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Perry J. Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - R. Michael Gower
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Veterans Affairs Medical Center, Columbia SC, 29209, USA
| |
Collapse
|
17
|
Mechanical response and yielding transition of silk-fibroin and silk-fibroin/cellulose nanocrystals composite gels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Tang Z, He H, Zhu L, Liu Z, Yang J, Qin G, Wu J, Tang Y, Zhang D, Chen Q, Zheng J. A General Protein Unfolding-Chemical Coupling Strategy for Pure Protein Hydrogels with Mechanically Strong and Multifunctional Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102557. [PMID: 34939355 PMCID: PMC8844490 DOI: 10.1002/advs.202102557] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Indexed: 05/29/2023]
Abstract
Protein-based hydrogels have attracted great attention due to their excellent biocompatible properties, but often suffer from weak mechanical strength. Conventional strengthening strategies for protein-based hydrogels are to introduce nanoparticles or synthetic polymers for improving their mechanical strength, but often compromise their biocompatibility. Here, a new, general, protein unfolding-chemical coupling (PNC) strategy is developed to fabricate pure protein hydrogels without any additives to achieve both high mechanical strength and excellent cell biocompatibility. This PNC strategy combines thermal-induced protein unfolding/gelation to form a physically-crosslinked network and a -NH2/-COOH coupling reaction to generate a chemicallycrosslinked network. Using bovine serum albumin (BSA) as a globular protein, PNC-BSA hydrogels show macroscopic transparency, high stability, high mechanical properties (compressive/tensile strength of 115/0.43 MPa), fast stiffness/toughness recovery of 85%/91% at room temperature, good fatigue resistance, and low cell cytotoxicity and red blood cell hemolysis. More importantly, the PNC strategy can be not only generally applied to silk fibroin, ovalbumin, and milk albumin protein to form different, high strength protein hydrogels, but also modified with PEDOT/PSS nanoparticles as strain sensors and fluorescent fillers as color sensors. This work demonstrates a new, universal, PNC method to prepare high strength, multi-functional, pure protein hydrogels beyond a few available today.
Collapse
Affiliation(s)
- Ziqing Tang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Huacheng He
- College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035China
| | - Lin Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiang325000China
| | - Zhuangzhuang Liu
- School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuo454003China
| | - Jia Yang
- School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuo454003China
| | - Gang Qin
- School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuo454003China
| | - Jiang Wu
- School of Pharmaceutical SciencesKey Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOH44325USA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOH44325USA
| | - Qiang Chen
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiang325000China
- Wenzhou Key Laboratory of Perioperative MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOH44325USA
| |
Collapse
|
19
|
Adelnia H, Ensandoost R, Shebbrin Moonshi S, Gavgani JN, Vasafi EI, Ta HT. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110974] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Asci H, Savran M, Cengiz Callıoglu F, Sahin S, Hasseyid N, Kaynak M, Izat N, Kesici Guler H. Supralingual administration of paracetamol embedded in polyvinyl alcohol nanofibers: A pharmacokinetic study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Xiong H, Liu L, Wang Y, Jiang H, Wang X. Engineered Aptamer-Organic Amphiphile Self-Assemblies for Biomedical Applications: Progress and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104341. [PMID: 34622570 DOI: 10.1002/smll.202104341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Currently, nucleic acid aptamers are exploited as robust targeting ligands in the biomedical field, due to their specific molecular recognition, little immunogenicity, low cost, ect. Thanks to the facile chemical modification and high hydrophilicity, aptamers can be site-specifically linked with hydrophobic moieties to prepare aptamer-organic amphiphiles (AOAs), which spontaneously assemble into aptamer-organic amphiphile self-assemblies (AOASs). These polyvalent self-assemblies feature with enhanced target-binding ability, increased resistance to nuclease, and efficient cargo-loading, making them powerful platforms for bioapplications, including targeted drug delivery, cell-based cancer therapy, biosensing, and bioimaging. Besides, the morphology of AOASs can be elaborately manipulated for smarter biomedical functions, by regulating the hydrophilicity/hydrophobicity ratio of AOAs. Benefiting from the boom in DNA synthesis technology and nanotechnology, various types of AOASs, including aptamer-polymer amphiphile self-assemblies, aptamer-lipid amphiphile self-assemblies, aptamer-cell self-assemblies, ect, have been constructed with great biomedical potential. Particularly, stimuli-responsive AOASs with transformable structure can realize site-specific drug release, enhanced tumor penetration, and specific target molecule detection. Herein, the general synthesis methods of oligonucleotide-organic amphiphiles are firstly summarized. Then recent progress in different types of AOASs for bioapplications and strategies for morphology control are systematically reviewed. The present challenges and future perspectives of this field are also discussed.
Collapse
Affiliation(s)
- Hongjie Xiong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
22
|
Abstract
In contrast to conventional hard actuators, soft actuators offer many vivid advantages, such as improved flexibility, adaptability, and reconfigurability, which are intrinsic to living systems. These properties make them particularly promising for different applications, including soft electronics, surgery, drug delivery, artificial organs, or prosthesis. The additional degree of freedom for soft actuatoric devices can be provided through the use of intelligent materials, which are able to change their structure, macroscopic properties, and shape under the influence of external signals. The use of such intelligent materials allows a substantial reduction of a device's size, which enables a number of applications that cannot be realized by externally powered systems. This review aims to provide an overview of the properties of intelligent synthetic and living/natural materials used for the fabrication of soft robotic devices. We discuss basic physical/chemical properties of the main kinds of materials (elastomers, gels, shape memory polymers and gels, liquid crystalline elastomers, semicrystalline ferroelectric polymers, gels and hydrogels, other swelling polymers, materials with volume change during melting/crystallization, materials with tunable mechanical properties, and living and naturally derived materials), how they are related to actuation and soft robotic application, and effects of micro/macro structures on shape transformation, fabrication methods, and we highlight selected applications.
Collapse
Affiliation(s)
- Indra Apsite
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Sahar Salehi
- Department of Biomaterials, Center of Energy Technology und Materials Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Leonid Ionov
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
23
|
Goldvaser M, Epstein E, Rosen O, Jayson A, Natan N, Ben-Shalom T, Saphier S, Katalan S, Shoseyov O. Poly(vinyl alcohol)-methacrylate with CRGD peptide: A photocurable biocompatible hydrogel. J Tissue Eng Regen Med 2021; 16:140-150. [PMID: 34808035 DOI: 10.1002/term.3265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022]
Abstract
Polyvinyl alcohol (PVA)-based hydrogels are promising biomaterials for tissue engineering printing applications. However, one of their main disadvantages is their inability to support cell attachment, which is a critical feature for the preparation of biological scaffolds. The goal of this study was to develop a printable, cell-supportive PVA-based bioink with tunable mechanical properties, without using animal-derived polymers which potentially harbor human pathogens. An ultraviolet light (UV) curable PVA-methacrylate (PVA-MA) polymer mixed with Cys-Arg-Gly-Asp (CRGD) peptide was developed. This peptide holds the integrin receptor binding sequence - RGD, that can enhance cell attachment. The additional cysteine was designed to enable its thiol binding under UV to methacrylate groups of the UV curable PVA-MA. Vero cell, as an adherent cell model was used to assess the hydrogel's cell adhesion. It was found that the PVA-MA-CRGD formula enables the preparation of hydrogels with excellent cell attachment and had even shown superior cell attachment properties relative to added gelatin. Adding hyaluronic acid (HA) as a rheologic modulator enabled the printing of this new formula. Our overall data demonstrates the applicability of this mixture as a bioink for soft tissue engineering such as skin, adipose, liver or kidney tissue.
Collapse
Affiliation(s)
- Michael Goldvaser
- Robert H Smith Institute of Plant Science and Genetics, Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel.,Division of Medicinal Chemistry, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Eyal Epstein
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Osnat Rosen
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Avital Jayson
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Niva Natan
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Tal Ben-Shalom
- Robert H Smith Institute of Plant Science and Genetics, Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Sigal Saphier
- Division of Medicinal Chemistry, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shahaf Katalan
- Division of Medicinal Chemistry, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Oded Shoseyov
- Robert H Smith Institute of Plant Science and Genetics, Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel.,CollPlant Ltd, Ness-Ziona, Israel
| |
Collapse
|
24
|
Xu W, Li Y, Wang H, Du Q, Li M, Sun Y, Cui M, Li L. Study on the Adsorption Performance of Casein/Graphene Oxide Aerogel for Methylene Blue. ACS OMEGA 2021; 6:29243-29253. [PMID: 34746612 PMCID: PMC8567406 DOI: 10.1021/acsomega.1c04938] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 05/14/2023]
Abstract
Casein (CS) and graphene oxide (GO) were employed for the fabrication of a casein/graphene oxide (CS/GO) aerogel by vacuum freeze drying. Fourier transform infrared spectroscopy, scanning electron microscopy, surface area and micropore analysis (BET), and thermogravimetric analysis were used to characterize the specific surface area, structure, thermal stability, and morphology of the CS/GO aerogel. The influence of experimental parameters such as the GO mass fraction in the aerogel, metering of the adsorbent, pH, contact time, and temperature on the adsorption capacity of the CS/GO aerogel on methylene blue (MB) was also investigated. According to Langmuir isotherm determination, the maximum removal rate of MB from the CS/GO aerogel was 437.29 mg/g when the temperature was 293 K and pH was 8. Through kinetic and thermodynamic studies, it is found that adsorption follows a pseudo-second-order reaction model and is also an exothermic and spontaneous process.
Collapse
Affiliation(s)
- Wenshuo Xu
- State
Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical
and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Yanhui Li
- State
Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical
and Electrical Engineering, Qingdao University, Qingdao 266071, China
- College
of Materials Science and Engineering, Qingdao
University, 308 Ningxia Road, Qingdao 266071, China
| | - Huimin Wang
- State
Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical
and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Qiuju Du
- College
of Materials Science and Engineering, Qingdao
University, 308 Ningxia Road, Qingdao 266071, China
| | - Meixiu Li
- College
of Materials Science and Engineering, Qingdao
University, 308 Ningxia Road, Qingdao 266071, China
| | - Yong Sun
- State
Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical
and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Mingfei Cui
- State
Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical
and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Liubo Li
- State
Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical
and Electrical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
25
|
Zhao Y, Zhu ZS, Guan J, Wu SJ. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels. Acta Biomater 2021; 125:57-71. [PMID: 33601067 DOI: 10.1016/j.actbio.2021.02.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Hydrogels are an attractive class of materials that possess similar structural and functional characteristics to wet biological tissues and demonstrate a diversity of applications in biomedical engineering. Silk fibroin (SF) is a unique natural polymer due to its fibrous protein nature, versatile formats, biocompatibility, tunable biodegradation and is thus a good hydrogel candidate for bio-applications. Compared to synthetic polymer hydrogels, poor mechanical performance is still a fatal drawback that hinders the application of SF hydrogels as structural materials. Researchers have attempted to develop strategies to construct silk fibroin-based high-strength hydrogels (SF-HSHs). Herein, we firstly provide an overview of the approaches of processing SF-HSHs with a focus on the physical/non-covalent crosslinking mechanisms. The examples of SF-HSHs are discussed in detail under four categories, including physical-crosslinked, dual-crosslinked, double network and composite hydrogels respectively. A brief section follows to elucidate on the gelation mechanisms of SF-HSHs before a description of the utility of SF-HSHs in biomedicine and devices is presented. Finally, the potential challenges and future development of SF-HSHs are briefly discussed. This review aims to enhance our understanding of the structure-mechanical property-function relationships of soft materials made from natural polymers and guide future research of silk fibroin-based hydrogels for biomedical applications. STATEMENT OF SIGNIFICANCE: Silk fibroin (SF) extracted from silk fibres is increasingly applied in the biomedical field, and SF hydrogel has been an emerging area for frontier bio-research. Since SF biopolymer has an intrinsic tendency to form regular β-sheet stacks, it can be processed into purely physically crosslinked hydrogels, thus avoiding the use of chemical crosslinkers. Nevertheless, akin to other natural polymers, lab-produced SF is variable (i.e. the molecular weight and distribution), and the gelation of SF hydrogel is challenging to control. In addition, hydrogels made from SF are usually weak and brittle, which hinders the wide use of this biofriendly and biodegradable hydrogel. Recently, there is a pressing need for high strength hydrogels from natural polymers for biomedical applications, and SF is proposed as a strong candidate. Therefore, we have studied the literature in the past 10 years and would like to focus on the gelation mechanism and mechanical strength of SF hydrogels for the review.
Collapse
|
26
|
Abstract
Hydrogels are polymeric networks highly swollen with water. Because of their versatility and properties mimicking biological tissues, they are very interesting for biomedical applications. In this aim, the control of porosity is of crucial importance since it governs the transport properties and influences the fate of cells cultured onto or into the hydrogels. Among the techniques allowing for the elaboration of hydrogels, photopolymerization or photo-cross-linking are probably the most powerful and versatile synthetic routes. This Review aims at giving an overview of the literature dealing with photopolymerized hydrogels for which the generation or characterization of porosity is studied. First, the materials (polymers and photoinitiating systems) used for synthesizing hydrogels are presented. The different ways for generating porosity in the photopolymerized hydrogels are explained, and the characterization techniques allowing adequate study of the porosity are presented. Finally, some applications in the field of controlled release and tissue engineering are reviewed.
Collapse
Affiliation(s)
- Erwan Nicol
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| |
Collapse
|
27
|
Parushuram N, Ranjana R, Harisha KS, Shilpa M, Narayana B, Neelakandan R, Sangappa Y. Silk fibroin and silk fibroin-gold nanoparticles nanocomposite films: sustainable adsorbents for methylene blue dye. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1848578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- N. Parushuram
- Department of Studies in Physics, Mangalore University, Mangalagangotri, India
| | - R. Ranjana
- Department of Studies in Physics, Mangalore University, Mangalagangotri, India
| | - K. S. Harisha
- Department of Studies in Physics, Mangalore University, Mangalagangotri, India
| | - M. Shilpa
- Department of Studies in Physics, Mangalore University, Mangalagangotri, India
| | - B. Narayana
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore, India
| | - R. Neelakandan
- Department of Textile Technology, Anna University, Chennai, India
| | - Y. Sangappa
- Department of Studies in Physics, Mangalore University, Mangalagangotri, India
| |
Collapse
|
28
|
Samadian H, Maleki H, Allahyari Z, Jaymand M. Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213432] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Hu F, Lin N, Liu XY. Interplay between Light and Functionalized Silk Fibroin and Applications. iScience 2020; 23:101035. [PMID: 32311584 PMCID: PMC7168770 DOI: 10.1016/j.isci.2020.101035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 11/15/2022] Open
Abstract
Silkworm silk has been considered to be a luxurious textile for more than five thousand years. Native silk fibroin (SF) films have excellent (ca. 90%) optical transparency and exhibit fluorescence under UV light. The silk dyeing process is very important and difficult, and methods such as pigmentary coloration and structural coloration have been tested for coloring silk fabrics. To functionalize silk that exhibits fluorescence, the in vivo and in vitro assembly of functional compounds with SF and the resulting amplification of fluorescence emission are examined. Finally, we discuss the applications of SF materials in basic optical elements, light energy conversion devices, photochemical reactions, sensing, and imaging. This review is expected to provide insight into the interaction between light and silk and to inspire researchers to develop silk materials with a consideration of history, material properties, and future prospects.
Collapse
Affiliation(s)
- Fan Hu
- Institute of Advanced Materials, East China Jiaotong University, No. 808 Shuanggang East Street, Nanchang 330013, China; Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, Shenzhen Research Institute of Xiamen University, 422 Siming South Road, Xiamen 361005, China
| | - Naibo Lin
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, Shenzhen Research Institute of Xiamen University, 422 Siming South Road, Xiamen 361005, China.
| | - X Y Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Singapore.
| |
Collapse
|
30
|
Zhou X, Hou C, Chang TL, Zhang Q, Liang JF. Controlled released of drug from doubled-walled PVA hydrogel/PCL microspheres prepared by single needle electrospraying method. Colloids Surf B Biointerfaces 2020; 187:110645. [DOI: 10.1016/j.colsurfb.2019.110645] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/17/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
|
31
|
Kim MS, Oh GW, Jang YM, Ko SC, Park WS, Choi IW, Kim YM, Jung WK. Antimicrobial hydrogels based on PVA and diphlorethohydroxycarmalol (DPHC) derived from brown alga Ishige okamurae: An in vitro and in vivo study for wound dressing application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110352. [PMID: 31761165 DOI: 10.1016/j.msec.2019.110352] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/20/2022]
Abstract
In this study, we fabricated polyvinyl alcohol hydrogels containing diphlorethohydroxycarmalol (DPHC) from Ishige okamurae for its anti-bacterial effect in wound-dressing applications. First, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of DPHC against Staphylococcus aureus and Pseudomonas aeruginosa were investigated, and these were found to be about 128 μg/mL and 512 μg/mL, respectively. Polyvinyl alcohol hydrogels loaded with different concentrations of DPHC were then produced for the dressing of wounds to assist in the healing process and to provide an antibacterial effect. To investigate the characteristics of the proposed PVA/DPHC hydrogels, we conducted SEM analysis, rheological analysis, thermogravimetric analysis, water swelling analysis, drug release testing, and gel fraction assessment. The antibacterial activity of the PVA/DPHC hydrogels was also tested against the gram-positive bacterium S. aureus and the gram-negative bacterium P. aeruginosa using ASTM E2149 tests. The biocompatibility of the PVA/DPHC hydrogels was assessed using in vitro indirect and direct contact tests and in vivo tests on ICR mice. The PVA/DPHC hydrogels exhibited the ability to reduce the viability of S. aureus and P. aeruginosa by about 99% in ASTM E2149 testing, while not producing any toxic effect on NHDF-Neo or HaCaT cells as shown in MTT assays and in vitro FDA fluorescence analysis. In addition, the PVA/DPHC hydrogels had a strong wound healing effect when compared to non-treated groups of ICR mice in vivo. Based on the characterization of the PVA/DPHC hydrogels in vitro and in vivo, this study suggests that the proposed hydrogel has significant potential for use in wound dressing.
Collapse
Affiliation(s)
- Min-Sung Kim
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Gun-Woo Oh
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Yu-Mi Jang
- Division of Food Science and Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seok-Chun Ko
- Team of Marine Bio-resources, National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, Republic of Korea
| | - Won-Sun Park
- Department of Physiology, Kangwon National University, School of Medicine, Chuncheon, Gangwon, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Mog Kim
- Division of Food Science and Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
32
|
Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110219. [DOI: 10.1016/j.msec.2019.110219] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
|
33
|
Jiang Q, Chen P, Gao B. An Antibacterial Wound Dressing Based on GS-SF Composite Scaffold. Health (London) 2020. [DOI: 10.4236/health.2020.128068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Liu Z, Tang Z, Zhu L, Lu S, Chen F, Tang C, Sun H, Yang J, Qin G, Chen Q. Natural protein-based hydrogels with high strength and rapid self-recovery. Int J Biol Macromol 2019; 141:108-116. [DOI: 10.1016/j.ijbiomac.2019.08.258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 12/29/2022]
|
35
|
Yi J, Li Y, Yang L, Zhang LM. Kinetics and thermodynamics of adsorption of Cu2+ and methylene blue to casein hydrogels. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1870-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Yang N, Qi P, Ren J, Yu H, Liu S, Li J, Chen W, Kaplan DL, Ling S. Polyvinyl Alcohol/Silk Fibroin/Borax Hydrogel Ionotronics: A Highly Stretchable, Self-Healable, and Biocompatible Sensing Platform. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23632-23638. [PMID: 31117474 DOI: 10.1021/acsami.9b06920] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The emergence of hydrogel ionotronics has significantly extended the applications of soft electronics by allowing intimate interfaces between electronic units and biological/engineered surfaces for better sensing and communication with surrounding stimuli. However, hydrogel ionotronic devices that combine high stretchability, self-healing, good water retention, and biocompatibility are still desired. Here, we report a biocompatible ionic hydrogel made of polyvinyl alcohol, silk fibroin, and borax. In this ionic hydrogel, polyvinyl alcohol and borax offer the high stretchability and conductivity, respectively, while silk fibroin improves the stability of the hydrogel and increases water uptake by the gels. The hydrogel features strain larger than 5000%, good water retention, self-healing, and tunable conductivity and adhesive capabilities. We also demonstrate the use of the hydrogel as a sensing platform to monitor human body motion for applications in health management, soft robotics, and human-machine interfaces.
Collapse
Affiliation(s)
- Ningning Yang
- Key Laboratory of Bio-Based Material Science & Technology, Ministry of Education , Northeast Forestry University , Harbin 150040 , China
| | - Ping Qi
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Jing Ren
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Haipeng Yu
- Key Laboratory of Bio-Based Material Science & Technology, Ministry of Education , Northeast Forestry University , Harbin 150040 , China
| | - Shouxin Liu
- Key Laboratory of Bio-Based Material Science & Technology, Ministry of Education , Northeast Forestry University , Harbin 150040 , China
| | - Jian Li
- Key Laboratory of Bio-Based Material Science & Technology, Ministry of Education , Northeast Forestry University , Harbin 150040 , China
| | - Wenshuai Chen
- Key Laboratory of Bio-Based Material Science & Technology, Ministry of Education , Northeast Forestry University , Harbin 150040 , China
| | - David L Kaplan
- Department of Biomedical Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| | - Shengjie Ling
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
- Department of Biomedical Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
37
|
Zhou Q, Yuan J, Wang Y, Wang P, Yuan J, Deng C, Wang Q. Biomimetic mineralization behavior of COS-grafted silk fibroin following hexokinase-mediated phosphorylation. Int J Biol Macromol 2019; 131:241-252. [PMID: 30878613 DOI: 10.1016/j.ijbiomac.2019.03.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
Silk fibroin (SF) has potential applications in the biomedical field because of its excellent mechanical properties and biocompatibility. In the current study, chitooligosaccharide (COS) was enzymatically grafted onto SF using laccase. Subsequently, COS-grafted SF (SF-g-COS) was treated enzymatically in the presence of hexokinase and Mg-chelated adenosine triphosphate (ATP), so as to introduce phosphate groups onto the fibroin chains and promote the deposition of hydroxyapatite (HAp) during in situ biomimetic mineralization. The efficacy of phosphorylation and biomimetic mineralization of the SF-g-COS was evaluated by means of HPLC, MALDI-TOF MS, FTIR, XRD and EDS-Mapping. The results indicate that hexokinase has the capability to catalyze the phosphorylation of COS, resulting in an increase in the quantity of phosphorus in the SF-g-COS. Following mineralization of the phosphorylated SF-g-COS, a greater number of mineral phases were detected on its surface, accompanied by a higher content of calcium and phosphorus compared with other specimens. Cell viability tests using NIH/3T3 cells and cellular adhesion potential with MG-63 cells indicated that the fibroin-based biocomposite exhibited acceptable biocompatibility and superior cellular adhesion properties. The present study describes a novel method for preparation of fibroin/HAp biocomposites for bone tissue engineering.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jingjing Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yalin Wang
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chao Deng
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
38
|
Carrasco-Torres G, Valdés-Madrigal MA, Vásquez-Garzón VR, Baltiérrez-Hoyos R, De la Cruz-Burelo E, Román-Doval R, Valencia-Lazcano AA. Effect of Silk Fibroin on Cell Viability in Electrospun Scaffolds of Polyethylene Oxide. Polymers (Basel) 2019; 11:E451. [PMID: 30960435 PMCID: PMC6473723 DOI: 10.3390/polym11030451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 01/06/2023] Open
Abstract
In this study, a coating from electrospun silk fibroin was performed with the aim to modify the surface of breast implants. We evaluated the effect of fibroin on polymeric matrices of poly (ethylene oxide) (PEO) to enhance cell viability, adhesion, and proliferation of HaCaT human keratinocytes to enhance the healing process on breast prosthesis implantation. We electrospun six blends of fibroin and PEO at different concentrations. These scaffolds were characterized by scanning electron microscopy, contact angle measurements, ATR-FTIR spectroscopy, and X-ray diffraction. We obtained diverse network conformations at different combinations to examine the regulation of cell adhesion and proliferation by modifying the microstructure of the matrix to be applied as a potential scaffold for coating breast implants. The key contribution of this work is the solution it provides to enhance the healing process on prosthesis implantation considering that the use of these PEO⁻fibroin scaffolds reduced (p < 0.05) the amount of pyknotic nuclei. Therefore, viability of HaCaT human keratinocytes on PEO⁻fibroin matrices was significantly improved (p < 0.001). These findings provide a rational strategy to coat breast implants improving biocompatibility.
Collapse
Affiliation(s)
- Gabriela Carrasco-Torres
- Departamento de Nanociencias y Nanotecnología. Centro de Investigación y de Estudios Avanzados del IPN. Av. IPN 2508, la laguna Ticomán, Ciudad de México 07360, Mexico.
| | - Manuel A Valdés-Madrigal
- Departamento de Nanociencias y Nanotecnología. Centro de Investigación y de Estudios Avanzados del IPN. Av. IPN 2508, la laguna Ticomán, Ciudad de México 07360, Mexico.
- Instituto Tecnológico Superior de Ciudad Hidalgo. Av. Ing. Carlos Rojas Gutiérrez 2120, fracc. Valle de la herradura, Michoacán 61100, Mexico.
| | - Verónica R Vásquez-Garzón
- CONACYT-Facultad de Medicina y Cirugía Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Carretera a San Felipe del Agua S/N, Oaxaca 68020, Mexico.
| | - Rafael Baltiérrez-Hoyos
- CONACYT-Facultad de Medicina y Cirugía Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Carretera a San Felipe del Agua S/N, Oaxaca 68020, Mexico.
| | - Eduard De la Cruz-Burelo
- Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, la laguna Ticomán, Ciudad de México 07360, Mexico.
| | - Ramón Román-Doval
- Departamento de investigación y posgrado en alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro universitario, Santiago de Querétaro, Querétaro 76010, Mexico.
| | - Anaí A Valencia-Lazcano
- Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, la laguna Ticomán, Ciudad de México 07360, Mexico.
| |
Collapse
|
39
|
Patil PP, Bohara RA, Meshram JV, Nanaware SG, Pawar SH. Hybrid chitosan-ZnO nanoparticles coated with a sonochemical technique on silk fibroin-PVA composite film: A synergistic antibacterial activity. Int J Biol Macromol 2019; 122:1305-1312. [DOI: 10.1016/j.ijbiomac.2018.09.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022]
|
40
|
Niu C, Li X, Wang Y, Liu X, Shi J, Wang X. Design and performance of a poly(vinyl alcohol)/silk fibroin enzymatically crosslinked semi-interpenetrating hydrogel for a potential hydrophobic drug delivery. RSC Adv 2019; 9:41074-41082. [PMID: 35540084 PMCID: PMC9076402 DOI: 10.1039/c9ra09344c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 01/24/2023] Open
Abstract
In this study, in order to obtain hydrogels with good properties for sustained release of hydrophobic drugs or for tissue engineering, poly(vinyl alcohol) (PVA)/silk fibroin (SF) semi-interpenetrating (semi-IPN) hydrogels with varied ratios of PVA/SF were enzymatically cross-linked using horseradish peroxidase. A vial inversion test determined approximate gelation times of PVA/SF hydrogels ranging from 5 to 10 min. The hydrogels with varied ratios showed differences in pore size and morphology. Mass loss rate of hydrogels increased from 15% to 58% with increasing PVA concentration. Stable hydrogels with PVA/SF at 0.5 : 1 w/w showed the best swelling ratio values in distilled water (7.36). FTIR analysis revealed that silk fibroin in these hydrogels exhibited the coexistence of amorphous and silk I crystalline structures and the SF and PVA molecules interacted with each other well. The mechanical properties of the composite hydrogels were controlled by the SF content. From the cell viability results, it was found that the hydrogels exerted very low cytotoxicity. Paeonol was chosen as the hydrophobic drug model for release studies from the hydrogels. Paeonol can be uniformly loaded into the composite hydrogels using the emulsifying property of PVA and paeonol release from the hydrogels was dependent on the PVA/SF ratio. This study applied a novel type of enzymatically crosslinked semi-IPN hydrogel that may have potential applications in drug delivery. Enzymatically cross-linked PVA/SF semi-IPN hydrogels with tunable pore structure have potential applications in sustained release of hydrophobic drug.![]()
Collapse
Affiliation(s)
- Chunqing Niu
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients
- Hubei Engineering University
- Xiaogan 432000
- People's Republic of China
| | - Xiang Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients
- Hubei Engineering University
- Xiaogan 432000
- People's Republic of China
| | - Yiyu Wang
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients
- Hubei Engineering University
- Xiaogan 432000
- People's Republic of China
| | - Xinyu Liu
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients
- Hubei Engineering University
- Xiaogan 432000
- People's Republic of China
| | - Jian Shi
- Department of Machine Intelligence and Systems Engineering
- Faculty of Systems Science and Technology
- Akita Prefectural University
- Akita 015-0055
- Japan
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- People's Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province
| |
Collapse
|
41
|
Zhou Q, Cui L, Ren L, Wang P, Deng C, Wang Q, Fan X. Preparation of a multifunctional fibroin-based biomaterial via laccase-assisted grafting of chitooligosaccharide. Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2018.03.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Deneufchâtel M, Larreta-Garde V, Fichet O. Polyethylene glycol-albumin/fibrin interpenetrating polymer networks with adaptable enzymatic degradation for tissue engineering applications. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB, Sultan MT, Lee OJ, Lee JS, Yoon SI, Hong IS, Khang G, Lee SJ, Yoo JJ, Park CH. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 2018; 9:1620. [PMID: 29693652 PMCID: PMC5915392 DOI: 10.1038/s41467-018-03759-y] [Citation(s) in RCA: 426] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 03/08/2018] [Indexed: 01/08/2023] Open
Abstract
Although three-dimensional (3D) bioprinting technology has gained much attention in the field of tissue engineering, there are still several significant engineering challenges to overcome, including lack of bioink with biocompatibility and printability. Here, we show a bioink created from silk fibroin (SF) for digital light processing (DLP) 3D bioprinting in tissue engineering applications. The SF-based bioink (Sil-MA) was produced by a methacrylation process using glycidyl methacrylate (GMA) during the fabrication of SF solution. The mechanical and rheological properties of Sil-MA hydrogel proved to be outstanding in experimental testing and can be modulated by varying the Sil-MA contents. This Sil-MA bioink allowed us to build highly complex organ structures, including the heart, vessel, brain, trachea and ear with excellent structural stability and reliable biocompatibility. Sil-MA bioink is well-suited for use in DLP printing process and could be applied to tissue and organ engineering depending on the specific biological requirements.
Collapse
Affiliation(s)
- Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Yeung Kyu Yeon
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Jung Min Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Janet Ren Chao
- School of Medicine, George Washington University, Washington, D.C., 20037, USA
| | - Young Jin Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ye Been Seo
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
44
|
Li C, Yang M, Zhu L, Zhu Y. Honeysuckle flowers extract loaded Bombyx mori silk fibroin films for inducing apoptosis of HeLa cells. Microsc Res Tech 2017; 80:1297-1303. [PMID: 28841768 PMCID: PMC5763328 DOI: 10.1002/jemt.22928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/30/2023]
Abstract
This study aimed to prepare silk fibroin (SF) films loaded with honeysuckle flowers extract (HFE) for inducing apoptosis of HeLa cells. We mixed solution of SF and HFE by air-drying for preparing the honeysuckle flowers extract loaded silk fibroin (SFH) films. The physical properties including morphologies, contact angle, roughness, and Z range were characterized. MTS assay and fluorescence micrographs proved that SFH films inhibited the proliferation rate of HeLa cells due to induction of HFE into SF films. Furthermore, cell apoptosis assay and cell cycle analysis confirmed that the apoptosis of HeLa cells resulted from SFH films. Therefore, SFH films designed in our study might be a promising candidate material for cancer therapy.
Collapse
Affiliation(s)
- Chenlin Li
- Institute of Applied Bioresource, College of Animal ScienceZhejiang UniversityHangzhou, Zhejiang 310058People's Republic of China
| | - Mingying Yang
- Institute of Applied Bioresource, College of Animal ScienceZhejiang UniversityHangzhou, Zhejiang 310058People's Republic of China
| | - Liangjun Zhu
- Institute of Applied Bioresource, College of Animal ScienceZhejiang UniversityHangzhou, Zhejiang 310058People's Republic of China
| | - Yongqiang Zhu
- Zhejiang Academy of Traditional Chinese MedicineHangzhou, Zhejiang 310058People's Republic of China
| |
Collapse
|
45
|
Bhattacharjee P, Kundu B, Naskar D, Kim HW, Maiti TK, Bhattacharya D, Kundu SC. Silk scaffolds in bone tissue engineering: An overview. Acta Biomater 2017; 63:1-17. [PMID: 28941652 DOI: 10.1016/j.actbio.2017.09.027] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/26/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022]
Abstract
Bone tissue plays multiple roles in our day-to-day functionality. The frequency of accidental bone damage and disorder is increasing worldwide. Moreover, as the world population continues to grow, the percentage of the elderly population continues to grow, which results in an increased number of bone degenerative diseases. This increased elderly population pushes the need for artificial bone implants that specifically employ biocompatible materials. A vast body of literature is available on the use of silk in bone tissue engineering. The current work presents an overview of this literature from materials and fabrication perspective. As silk is an easy-to-process biopolymer; this allows silk-based biomaterials to be molded into diverse forms and architectures, which further affects the degradability. This makes silk-based scaffolds suitable for treating a variety of bone reconstruction and regeneration objectives. Silk surfaces offer active sites that aid the mineralization and/or bonding of bioactive molecules that facilitate bone regeneration. Silk has also been blended with a variety of polymers and minerals to enhance its advantageous properties or introduce new ones. Several successful works, both in vitro and in vivo, have been reported using silk-based scaffolds to regenerate bone tissues or other parts of the skeletal system such as cartilage and ligament. A growing trend is observed toward the use of mineralized and nanofibrous scaffolds along with the development of technology that allows to control scaffold architecture, its biodegradability and the sustained releasing property of scaffolds. Further development of silk-based scaffolds for bone tissue engineering, taking them up to and beyond the stage of human trials, is hoped to be achieved in the near future through a cross-disciplinary coalition of tissue engineers, material scientists and manufacturing engineers. STATEMENT OF SIGNIFICANCE The state-of-art of silk biomaterials in bone tissue engineering, covering their wide applications as cell scaffolding matrices to micro-nano carriers for delivering bone growth factors and therapeutic molecules to diseased or damaged sites to facilitate bone regeneration, is emphasized here. The review rationalizes that the choice of silk protein as a biomaterial is not only because of its natural polymeric nature, mechanical robustness, flexibility and wide range of cell compatibility but also because of its ability to template the growth of hydroxyapatite, the chief inorganic component of bone mineral matrix, resulting in improved osteointegration. The discussion extends to the role of inorganic ions such as Si and Ca as matrix components in combination with silk to influence bone regrowth. The effect of ions or growth factor-loaded vehicle incorporation into regenerative matrix, nanotopography is also considered.
Collapse
|
46
|
Lee JM, Sultan MT, Kim SH, Kumar V, Yeon YK, Lee OJ, Park CH. Artificial Auricular Cartilage Using Silk Fibroin and Polyvinyl Alcohol Hydrogel. Int J Mol Sci 2017; 18:E1707. [PMID: 28777314 PMCID: PMC5578097 DOI: 10.3390/ijms18081707] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 01/28/2023] Open
Abstract
Several methods for auricular cartilage engineering use tissue engineering techniques. However, an ideal method for engineering auricular cartilage has not been reported. To address this issue, we developed a strategy to engineer auricular cartilage using silk fibroin (SF) and polyvinyl alcohol (PVA) hydrogel. We constructed different hydrogels with various ratios of SF and PVA by using salt leaching, silicone mold casting, and freeze-thawing methods. We characterized each of the hydrogels in terms of the swelling ratio, tensile strength, pore size, thermal properties, morphologies, and chemical properties. Based on the cell viability results, we found a blended hydrogel composed of 50% PVA and 50% SF (P50/S50) to be the best hydrogel among the fabricated hydrogels. An intact 3D ear-shaped auricular cartilage formed six weeks after the subcutaneous implantation of a chondrocyte-seeded 3D ear-shaped P50/S50 hydrogel in rats. We observed mature cartilage with a typical lacunar structure both in vitro and in vivo via histological analysis. This study may have potential applications in auricular tissue engineering with a human ear-shaped hydrogel.
Collapse
Affiliation(s)
- Jung Min Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Vijay Kumar
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Yeung Kyu Yeon
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 200-704, Korea.
| |
Collapse
|
47
|
İnal M, Işıklan N, Yiğitoğlu M. Preparation and characterization of pH-sensitive alginate-g-poly(N-vinyl-2-pyrrolidone)/gelatin blend beads. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, Zhang KQ. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. Int J Mol Sci 2017; 18:E237. [PMID: 28273799 PMCID: PMC5372488 DOI: 10.3390/ijms18030237] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 12/25/2022] Open
Abstract
The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF), extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D) porous scaffolds. This review discusses and summarizes the various constructions of SF-based materials, from single structures to multi-level structures, and their applications. In combination with single structures, new techniques for creating special multi-level structures of SF-based materials, such as micropatterning and 3D-printing, are also briefly addressed.
Collapse
Affiliation(s)
- Yu Qi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Hui Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Kai Wei
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Ya Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Ru-Yue Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Ick Soo Kim
- Nano Fusion Technology Research Lab, Interdisciplinary Cluster for Cutting Edge Research (ICCER), Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Shinshu University, Ueda, Nagano 386 8567, Japan.
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| |
Collapse
|
49
|
Zhou B, Wang P, Cui L, Yu Y, Deng C, Wang Q, Fan X. Self-Crosslinking of Silk Fibroin Using H 2O 2-Horseradish Peroxidase System and the Characteristics of the Resulting Fibroin Membranes. Appl Biochem Biotechnol 2017; 182:1548-1563. [PMID: 28138929 DOI: 10.1007/s12010-017-2417-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022]
Abstract
Silk fibroin has been widely used in biomedical and clinical fields owing to its good biocompatibility. In the present work, self-crosslinking of fibroin molecules was carried out using the hydrogen peroxide (H2O2)-horseradish peroxidase system, followed by preparation of the fibroin membranes, aiming at improving the mechanical property of fibroin-based material and expanding its applications. P-Hydroxyphenylacetamide (PHAD), as the model compound of tyrosine residues in fibroins, was used to investigate the possibility of horseradish peroxidase (HRP)-catalyzed crosslinking. The results were characterized by means of 1H NMR and UPLC-TQD. The efficacy of enzymatic crosslinking of silk fibroins was examined by determining the changes in the relative viscosity, amino acid compositions, and SEC chromatogram. The obtained data indicated that H2O2-HRP incubation led to PHAD polymerization, and the molecular weight of fibroin proteins was also noticeably increased after the enzymatic treatment. CD and ATR-FTIR spectra revealed that H2O2-HRP treatments had an evident impact on the conformational structure of silk fibroins. The mechanical property and thermal behavior for the modified fibroin membrane were noticeably improved compared to the untreated. Meanwhile, the obtained membrane exhibited good biocompatibility according to the cell growth experiment. The present work provides a novel method for preparation of the fibroin-based materials for biomedical applications.
Collapse
Affiliation(s)
- Buguang Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.
| | - Li Cui
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Chao Deng
- Wuxi Medical School, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| |
Collapse
|
50
|
Liu J, Lu F, Chen H, Bao R, Li Z, Lu B, Yu K, Dai F, Wu D, Lan G. Healing of skin wounds using a new cocoon scaffold loaded with platelet-rich or platelet-poor plasma. RSC Adv 2017. [DOI: 10.1039/c6ra27021b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cocoons of the silkwormBombyx moriare widely used as biofunctional materials.
Collapse
Affiliation(s)
- Jiawei Liu
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
| | - Fei Lu
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - HongLei Chen
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
| | - Rong Bao
- The Ninth People's Hospital of Chongqing
- Chongqing 400715
- China
| | - Zhiquan Li
- The Ninth People's Hospital of Chongqing
- Chongqing 400715
- China
| | - Bitao Lu
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
| | - Kun Yu
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
| | - Fangying Dai
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Dayang Wu
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Guangqian Lan
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| |
Collapse
|