1
|
Albrecht FB, Schick AK, Klatt A, Schmidt FF, Nellinger S, Kluger PJ. Exploring Morphological and Molecular Properties of Different Adipose Cell Models: Monolayer, Spheroids, Gellan Gum-Based Hydrogels, and Explants. Macromol Biosci 2024:e2400320. [PMID: 39450850 DOI: 10.1002/mabi.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Indexed: 10/26/2024]
Abstract
White adipose tissue (WAT) plays a crucial role in energy homeostasis and secretes numerous adipokines with far-reaching effects. WAT is linked to diseases such as diabetes, cardiovascular disease, and cancer. There is a high demand for suitable in vitro models to study diseases and tissue metabolism. Most of these models are covered by 2D-monolayer cultures. This study aims to evaluate the performance of different WAT models to better derive potential applications. The stability of adipocyte characteristics in spheroids and two 3D gellan gum hydrogels with ex situ lobules and 2D-monolayer culture is analyzed. First, the differentiation to achieve adipocyte-like characteristics is determined. Second, to evaluate the maintenance of differentiated ASC-based models, an adipocyte-based model, and explants over 3 weeks, viability, intracellular lipid content, perilipin A expression, adipokine, and gene expression are analyzed. Several advantages are supported using each of the models. Including, but not limited to, the strong differentiation in 2D-monolayers, the self-assembling within spheroids, the long-term stability of the stem cell-containing hydrogels, and the mature phenotype within adipocyte-containing hydrogels and the lobules. This study highlights the advantages of 3D models due to their more in vivo-like behavior and provides an overview of the different adipose cell models.
Collapse
Affiliation(s)
- Franziska B Albrecht
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
- Faculty of Natural Science, University of Hohenheim, Schloss Hohenheim 1, 70599, Stuttgart, Germany
| | - Ann-Kathrin Schick
- Faculty of Science, Energy and Building Services, Esslingen University, Kanalstraße 33, 73728, Esslingen, Germany
| | - Annemarie Klatt
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Freia F Schmidt
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Svenja Nellinger
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Petra J Kluger
- School of Life Sciences, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| |
Collapse
|
2
|
Jin X, Yoo H, Tran VVT, Yi C, Hong KY, Chang H. Efficacy and Safety of Cell-Assisted Acellular Adipose Matrix Transfer for Volume Retention and Regeneration Compared to Hyaluronic Acid Filler Injection. Aesthetic Plast Surg 2024:10.1007/s00266-024-04408-0. [PMID: 39354227 DOI: 10.1007/s00266-024-04408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Cell-assisted acellular adipose matrix (AAM) transfer is a novel technique for soft tissue volume restoration, where AAM acts as a scaffold for tissue proliferation and promotes host cell migration, vascularization, and adipogenesis. This study aimed to evaluate the efficacy and safety of in vivo cell-assisted AAM transfer compared to hyaluronic acid (HA) filler injection. METHODS Human adipose tissue was used to manufacture AAM, and murine adipose-derived stem cells (ASCs) were prepared. Nude mice were divided into four groups: AAM transfer (AT), ASC-assisted AAM transfer (CAT), HA filler injection (HI), and ASC-assisted HA filler injection (CHI). Eight weeks post-transfer, in vivo graft volume/weight, histology, and gene expression were analyzed to assess efficacy and safety. RESULTS The AAM retained its three-dimensional scaffold structure without cellular components. AT/CAT showed lower volume retention than HA/CHA; however, CAT maintained a similar volume to HA. Histologically, adipogenesis and collagen formation were increased in AT/CAT compared to HA/CHA, with CAT showing the highest levels. CAT also demonstrated superior angiogenesis, adipogenesis, and gene expression (Vegf and Pparg), along with lower Il-6 expression, higher Il-10 expression, and reduced capsule formation, indicating better biocompatibility. CONCLUSIONS Cell-assisted AAM transfer is a promising technique for volume retention and tissue regeneration, offering a safe and effective alternative to HA filler injections. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Xian Jin
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyokyung Yoo
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Vinh Vuong The Tran
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chenggang Yi
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ki Yong Hong
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Hak Chang
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Ostadi Y, Khanali J, Tehrani FA, Yazdanpanah G, Bahrami S, Niazi F, Niknejad H. Decellularized Extracellular Matrix Scaffolds for Soft Tissue Augmentation: From Host-Scaffold Interactions to Bottlenecks in Clinical Translation. Biomater Res 2024; 28:0071. [PMID: 39247652 PMCID: PMC11378302 DOI: 10.34133/bmr.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Along with a paradigm shift in looking at soft tissue fillers from space-filling to bioactive materials, decellularized extracellular matrix (DEM) fillers have gained more attention considering their superior bioactivity. However, the complex mechanisms that govern the interaction between host tissues and DEMs have been partially understood. This review first covers the mechanisms that determine immunogenicity, angiogenesis and vasculogenesis, and recellularization and remodeling after DEM implantation into host tissue, with a particular focus on related findings from filler materials. Accordingly, the review delves into the dual role of macrophages and their M1/M2 polarization paradigm to form both constructive and destructive immune responses to DEM implants. Moreover, the contribution of macrophages in angiogenesis has been elucidated, which includes but is not limited to the secretion of angiogenic growth factors and extracellular matrix (ECM) remodeling. The findings challenge the traditional view of immune cells as solely destructive entities in biomaterials and indicate their multifaceted roles in tissue regeneration. Furthermore, the review discusses how the compositional factors of DEMs, such as the presence of growth factors and matrikines, can influence angiogenesis, cell fate, and differentiation during the recellularization process. It is also shown that the biomechanical properties of DEMs, including tissue stiffness, modulate cell responses through mechanotransduction pathways, and the structural properties of DEMs, such as scaffold porosity, impact cell-cell and cell-ECM interactions. Finally, we pointed out the current clinical applications, the bottlenecks in the clinical translation of DEM biomaterials into soft tissue fillers, as well as the naïve research areas of the field.
Collapse
Affiliation(s)
- Yasamin Ostadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Khanali
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh A Tehrani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Feizollah Niazi
- Department of Plastic and Reconstructive Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Shukla P, Bera AK, Yeleswarapu S, Pati F. High Throughput Bioprinting Using Decellularized Adipose Tissue-Based Hydrogels for 3D Breast Cancer Modeling. Macromol Biosci 2024; 24:e2400035. [PMID: 38685795 DOI: 10.1002/mabi.202400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Indexed: 05/02/2024]
Abstract
3D bioprinting allows rapid automated fabrication and can be applied for high throughput generation of biomimetic constructs for in vitro drug screening. Decellularized extracellular matrix (dECM) hydrogel is a popular biomaterial choice for tissue engineering and studying carcinogenesis as a tumor microenvironmental mimetic. This study proposes a method for high throughput bioprinting with decellularized adipose tissue (DAT) based hydrogels for 3D breast cancer modeling. A comparative analysis of decellularization protocol using detergent-based and detergent-free decellularization methods for caprine-origin adipose tissue is performed, and the efficacy of dECM hydrogel for 3D cancer modeling is assessed. Histological, biochemical, morphological, and biological characterization and analysis showcase the cytocompatibility of DAT hydrogel. The rheological property of DAT hydrogel and printing process optimization is assessed to select a bioprinting window to attain 3D breast cancer models. The bioprinted tissues are characterized for cellular viability and tumor cell-matrix interactions. Additionally, an approach for breast cancer modeling is shown by performing rapid high throughput bioprinting in a 96-well plate format, and in vitro drug screening using 5-fluorouracil is performed on 3D bioprinted microtumors. The results of this study suggest that high throughput bioprinting of cancer models can potentially have downstream clinical applications like multi-drug screening platforms and personalized disease models.
Collapse
Affiliation(s)
- Priyanshu Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Sriya Yeleswarapu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| |
Collapse
|
5
|
Shukla P, Bera AK, Ghosh A, Kiranmai G, Pati F. Assessment and process optimization of high throughput biofabrication of immunocompetent breast cancer model for drug screening applications. Biofabrication 2024; 16:035030. [PMID: 38876096 DOI: 10.1088/1758-5090/ad586b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Recent advancements in 3D cancer modeling have significantly enhanced our ability to delve into the intricacies of carcinogenesis. Despite the pharmaceutical industry's substantial investment of both capital and time in the drug screening and development pipeline, a concerning trend persists: drug candidates screened on conventional cancer models exhibit a dismal success rate in clinical trials. One pivotal factor contributing to this discrepancy is the absence of drug testing on pathophysiologically biomimetic 3D cancer models during pre-clinical stages. Unfortunately, current manual methods of 3D cancer modeling, such as spheroids and organoids, suffer from limitations in reproducibility and scalability. In our study, we have meticulously developed 3D bioprinted breast cancer model utilizing decellularized adipose tissue-based hydrogel obtained via a detergent-free decellularization method. Our innovative printing techniques allows for rapid, high-throughput fabrication of 3D cancer models in a 96-well plate format, demonstrating unmatched scalability and reproducibility. Moreover, we have conducted extensive validation, showcasing the efficacy of our platform through drug screening assays involving two potent anti-cancer drugs, 5-Fluorouracil and PRIMA-1Met. Notably, our platform facilitates effortless imaging and gene expression analysis, streamlining the evaluation process. In a bid to enhance the relevance of our cancer model, we have introduced a heterogeneous cell population into the DAT-based bioink. Through meticulous optimization and characterization, we have successfully developed a biomimetic immunocompetent breast cancer model, complete with microenvironmental cues and diverse cell populations. This breakthrough paves the way for rapid multiplex drug screening and the development of personalized cancer models, marking a paradigm shift in cancer research and pharmaceutical development.
Collapse
Affiliation(s)
- Priyanshu Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Amit Ghosh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Gaddam Kiranmai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
6
|
Liang W, Han M, Li G, Dang W, Wu H, Meng X, Zhen Y, Lin W, Ao R, Hu X, An Y. Perfusable adipose decellularized extracellular matrix biological scaffold co-recellularized with adipose-derived stem cells and L6 promotes functional skeletal muscle regeneration following volumetric muscle loss. Biomaterials 2024; 307:122529. [PMID: 38489911 DOI: 10.1016/j.biomaterials.2024.122529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/02/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Muscle tissue engineering is a promising therapeutic strategy for volumetric muscle loss (VML). Among them, decellularized extracellular matrix (dECM) biological scaffolds have shown certain effects in restoring muscle function. However, researchers have inconsistent or even contradictory results on whether dECM biological scaffolds can efficiently regenerate muscle fibers and restore muscle function. This suggests that therapeutic strategies based on dECM biological scaffolds need to be further optimized and developed. In this study, we used a recellularization method of perfusing adipose-derived stem cells (ASCs) and L6 into adipose dECM (adECM) through vascular pedicles. On one hand, this strategy ensures sufficient quantity and uniform distribution of seeded cells inside scaffold. On the other hand, auxiliary L6 cells addresses the issue of low myogenic differentiation efficiency of ASCs. Subsequently, the treatment of VML animal experiments showed that the combined recellularization strategy can improve muscle regeneration and angiogenesis than the single ASCs recellularization strategy, and the TA of former had greater muscle contraction strength. Further single-nucleus RNA sequencing (snRNA-seq) analysis found that L6 cells induced ASCs transform into a new subpopulation of cells highly expressing Mki67, CD34 and CDK1 genes, which had stronger ability of oriented myogenic differentiation. This study demonstrates that co-seeding ASCs and L6 cells through vascular pedicles is a promising recellularization strategy for adECM biological scaffolds, and the engineered muscle tissue constructed based on this has significant therapeutic effects on VML. Overall, this study provides a new paradigm for optimizing and developing dECM-based therapeutic strategies.
Collapse
Affiliation(s)
- Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Meng Han
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Guan Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Wanwen Dang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Huiting Wu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoyu Meng
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Weibo Lin
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Rigele Ao
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China.
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
7
|
Xiong C, Yao W, Tao R, Yang S, Jiang W, Xu Y, Zhang J, Han Y. Application of Decellularized Adipose Matrix as a Bioscaffold in Different Tissue Engineering. Aesthetic Plast Surg 2024; 48:1045-1053. [PMID: 37726399 DOI: 10.1007/s00266-023-03608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023]
Abstract
With the development of tissue engineering, the application of decellularized adipose matrix as scaffold material in tissue engineering has been intensively explored due to its wide source and excellent potential in tissue regeneration. Decellularized adipose matrix is a promising candidate for adipose tissue regeneration, while modification of decellularized adipose matrix scaffold can also allow it to transcend the limitations of adipose tissue source properties and applied to other tissue engineering fields, including cartilage and bone tissue engineering, neural tissue engineering, and skin tissue engineering. In this review, we summarized the development of the applications of decellularized adipose matrix in different tissue engineering and present future perspectives.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Chenlu Xiong
- School of Medicine, Nankai University, Tianjin, China
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Wende Yao
- School of Medicine, Nankai University, Tianjin, China
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Ran Tao
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Sihan Yang
- School of Medicine, Nankai University, Tianjin, China
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Weiqian Jiang
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Julei Zhang
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China.
- Department of Burn and Plastic Surgery, The 980st Hospital of the PLA Joint Logistics Support Force, Hebei, China.
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China.
| |
Collapse
|
8
|
Bhar B, Ranta P, Samudrala PK, Mandal BB. Omentum Extracellular Matrix-Silk Fibroin Hydroscaffold Promotes Wound Healing through Vascularization and Tissue Remodeling in the Diabetic Rat Model. ACS Biomater Sci Eng 2024; 10:1090-1105. [PMID: 38275123 DOI: 10.1021/acsbiomaterials.3c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Nonhealing diabetic wounds are often associated with significant mortality and cause economic and clinical burdens to the healthcare system. Herein, a biomimetic hydroscaffold is developed using omentum tissue-derived decellularized-extracellular matrix (dECM) and silk fibroin (SF) proteins that associate the behavior of a collagenous fibrous scaffold and a hydrogel to reproduce all aspects of the provisional skin tissue matrix. The chemical cross-linker-free in situ gelation property of the two types of SF proteins from Bombyx mori and Antheraea assamensis ensures the adherence of dECM with surrounding tissue on the wound bed, circumventing further suturing. The physicochemical and mechanical properties of the composite hydroscaffold (SF-dECM) were thoroughly evaluated. The hydroscaffolds were found to support the growth and proliferation of human dermal fibroblasts and influence the angiogenic potential of endothelial cells under in vitro conditions. Furthermore, the healing efficacy of the composites was evaluated by generating full-thickness wounds on a streptozotocin-induced diabetic rat model. The presence of dECM components in the composite facilitated the rate of wound closure, granulation tissue formation, and re-epithelialization by providing intrinsic cues to advance the inflammatory stage and stimulating angiogenesis. Collectively, as an off-the-shelf wound dressing requiring only a single topical administration, the SF-dECM hydroscaffold is a promising, cost-effective dressing for the management of chronic diabetic wounds.
Collapse
Affiliation(s)
- Bibrita Bhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyanka Ranta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical and Educational Research Guwahati, Guwahati, Assam 781101, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical and Educational Research Guwahati, Guwahati, Assam 781101, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
9
|
Xu M, He Y, Li Y, Liu K, Zhang Y, Su T, Yao Y, Jin X, Zhang X, Lu F. Combined Use of Autologous Sustained-Release Scaffold of Adipokines and Acellular Adipose Matrix to Construct Vascularized Adipose Tissue. Plast Reconstr Surg 2024; 153:348e-360e. [PMID: 37171265 DOI: 10.1097/prs.0000000000010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Adipose tissue engineering plays a key role in the reconstruction of soft-tissue defects. The acellular adipose matrix (AAM) is a promising biomaterial for the construction of engineered adipose tissue. However, AAM lacks sufficient adipoinduction potency because of the abundant loss of matrix-bound adipokines during decellularization. METHODS An adipose-derived extracellular matrix collagen scaffold, "adipose collagen fragment" (ACF), was prepared using a novel mechanical method that provides sustained release of adipokines. Here, the authors used label-free proteomics methods to detect the protein components in AAM and ACF. In vivo, ACF was incorporated into AAM or acellular dermal matrix and implanted into nude mice to evaluate adipogenesis. Neoadipocytes, neovessels, and corresponding gene expression were evaluated. The effects of ACF on adipogenic differentiation of human adipose-derived stem cells and tube formation by human umbilical vein endothelial cells were tested in vitro. RESULTS Proteomics analysis showed that ACF contains diverse adipogenic and angiogenic proteins. ACF can release diverse adipokines and induce highly vascularized, mature adipose tissue in AAM, and even in nonadipogenic acellular dermal matrix. Higher expression of adipogenic markers peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha and greater numbers of tubule structures were observed in ACF-treated groups in vitro. CONCLUSION The combination of ACF and AAM could serve as a novel and promising strategy to construct mature, vascularized adipose tissue for soft-tissue reconstruction. CLINICAL RELEVANCE STATEMENT The combined use of AAM and ACF has been proven to induce a highly vascularized, mature, engineered adipose tissue in the nude mouse model, which may serve as a promising strategy for soft-tissue reconstruction.
Collapse
Affiliation(s)
- Mimi Xu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yunfan He
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yibao Li
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Kaiyang Liu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yuchen Zhang
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Ting Su
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yao Yao
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Xiaoxuan Jin
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Xiangdong Zhang
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Feng Lu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| |
Collapse
|
10
|
Qi J, Li Z, Li S, Fu S, Luan J. Effectiveness of a New Enzyme-Free Method for the Preparation of a Decellularized Adipose-Derived Matrix. Aesthet Surg J 2024; 44:NP184-NP192. [PMID: 37715728 DOI: 10.1093/asj/sjad307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Decellularized adipose-derived matrix (DAM) represents a new alternative to tissue fillers. The function of DAM is closely associated with the decellularization technique used for its preparation. However, most techniques are time-consuming and expensive, and this might reduce the popularity of DAM. OBJECTIVES The study aimed to investigate an enzyme-free adipose decellularization method and generate a DAM capable of adipose tissue regeneration. METHODS DAMs prepared by the enzyme-free and Flynn's methods were compared and co-cultured with human adipose-derived stem cells (hADSCs) to investigate cytocompatibility. Adipose tissue formation was evaluated by injecting the DAMs into the backs of nude mice over 4 weeks. Samples were harvested for gross and perilipin immunohistochemistry analysis at 1 and 4 weeks. RESULTS The enzyme-free method is effective for adipose decellularization because it removes adipocytes and preserves the microstructure. In vitro, the DAM made by the enzyme-free method could support the attachment, growth, proliferation, and differentiation of hADSCs, and promote the enhanced secretion of vascular endothelial growth factor by hADSCs; this DAM also induced the formation and maturity of adipocytes in vivo. CONCLUSIONS This study describes a highly effective enzyme-free method for adipose tissue decellularization that also promotes adipocyte formation and adipose tissue volume stability in vitro and in vivo, resulting in a new alternative tissue filler.
Collapse
|
11
|
Han S, Cruz SH, Park S, Shin SR. Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. NANO CONVERGENCE 2023; 10:48. [PMID: 37864632 PMCID: PMC10590364 DOI: 10.1186/s40580-023-00398-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Engineered three-dimensional (3D) tissue constructs have emerged as a promising solution for regenerating damaged muscle tissue resulting from traumatic or surgical events. 3D architecture and function of the muscle tissue constructs can be customized by selecting types of biomaterials and cells that can be engineered with desired shapes and sizes through various nano- and micro-fabrication techniques. Despite significant progress in this field, further research is needed to improve, in terms of biomaterials properties and fabrication techniques, the resemblance of function and complex architecture of engineered constructs to native muscle tissues, potentially enhancing muscle tissue regeneration and restoring muscle function. In this review, we discuss the latest trends in using nano-biomaterials and advanced nano-/micro-fabrication techniques for creating 3D muscle tissue constructs and their regeneration ability. Current challenges and potential solutions are highlighted, and we discuss the implications and opportunities of a future perspective in the field, including the possibility for creating personalized and biomanufacturable platforms.
Collapse
Affiliation(s)
- Seokgyu Han
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Sebastián Herrera Cruz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Islam MS, Molley TG, Hung TT, Sathish CI, Putra VDL, Jalandhra GK, Ireland J, Li Y, Yi J, Kruzic JJ, Kilian KA. Magnetic Nanofibrous Hydrogels for Dynamic Control of Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37643902 DOI: 10.1021/acsami.3c07021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The extracellular matrix in tissue consists of complex heterogeneous soft materials with hierarchical structure and dynamic mechanical properties dictating cell and tissue level function. In many natural matrices, there are nanofibrous structures that serve to guide cell activity and dictate the form and function of tissue. Synthetic hydrogels with integrated nanofibers can mimic the structural properties of native tissue; however, model systems with dynamic mechanical properties remain elusive. Here we demonstrate modular nanofibrous hydrogels that can be reversibly stiffened in response to applied magnetic fields. Iron oxide nanoparticles were incorporated into gelatin nanofibers through electrospinning, followed by chemical stabilization and fragmentation. These magnetoactive nanofibers can be mixed with virtually any hydrogel material and reversibly stiffen the matrix at a low fiber content (≤3%). In contrast to previous work, where a large quantity of magnetic material disallowed cell encapsulation, the low nanofiber content allows matrix stiffening with cells in 3D. Using adipose derived stem cells, we show how nanofibrous matrices are beneficial for both osteogenesis and adipogenesis, where stiffening the hydrogel with applied magnetic fields enhances osteogenesis while discouraging adipogenesis. Skeletal myoblast progenitors were used as a model of tissue morphogenesis with matrix stiffening augmenting myogenesis and multinucleated myotube formation. The ability to reversibly stiffen fibrous hydrogels through magnetic stimulation provides a useful tool for studying nanotopography and dynamic mechanics in cell culture, with a scope for stimuli responsive materials for tissue engineering.
Collapse
Affiliation(s)
- Md Shariful Islam
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - C I Sathish
- School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vina D L Putra
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Gagan K Jalandhra
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Jake Ireland
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Yancheng Li
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiabao Yi
- School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| |
Collapse
|
13
|
Ziegler ME, Khabaz K, Khoshab N, Halaseh FF, Chnari E, Chen S, Baldi P, Evans GRD, Widgerow AD. Combining Allograft Adipose and Fascia Matrix as an Off-the-Shelf Scaffold for Adipose Tissue Engineering Stimulates Angiogenic Responses and Activates a Proregenerative Macrophage Profile in a Rodent Model. Ann Plast Surg 2023; 91:294-300. [PMID: 37489973 DOI: 10.1097/sap.0000000000003587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
OBJECTIVE Bioscaffolds for treating soft tissue defects have limitations. As a bioscaffold, allograft adipose matrix (AAM) is a promising approach to treat soft tissue defects. Previously, we revealed that combining superficial adipose fascia matrix with AAM, components of the hypodermis layer of adipose tissue, improved volume retention, adipogenesis, and angiogenesis in rats 8 weeks after it was implanted compared with AAM alone. Here, we modified the fascia matrix and AAM preparation, examined the tissue over 18 weeks, and conducted a deeper molecular investigation. We hypothesized that the combined matrices created a better scaffold by triggering angiogenesis and proregenerative signals. METHODS Human AAM and fascia matrix were implanted (4 [1 mL] implants/animal) into the dorsum of male Fischer rats (6-8 weeks old; ~140 g) randomly as follows: AAM, fascia, 75/25 (AAM/fascia), 50/50, and 50/50 + hyaluronic acid (HA; to improve extrudability) (n = 4/group/time point). After 72 hours, as well as 1, 3, 6, 9, 12, and 18 weeks, graft retention was assessed by a gas pycnometer. Adipogenesis (HE), angiogenesis (CD31), and macrophage infiltration (CD80 and CD163) were evaluated histologically at all time points. The adipose area and M1/M2 macrophage ratio were determined using ImageJ. RNA sequencing (RNA-seq) and bioinformatics were conducted to evaluate pathway enrichments. RESULTS By 18 weeks, the adipose area was 2365% greater for 50/50 HA (281.6 ± 21.6) than AAM (11.4 ± 0.9) (P < 0.001). The M1/M2 macrophage ratio was significantly lower for 50/50 HA (0.8 ± 0.1) than AAM (0.9 ± 0.1) at 6 weeks (16%; P < 0.05). This inversely correlated with adipose area (r = -0.6; P > 0.05). The RNA-seq data revealed that upregulated adipogenesis, angiogenesis, and macrophage-induced tissue regeneration genes were temporally different between the groups. CONCLUSIONS Combining the fascia matrix with AAM creates a bioscaffold with an improved retention volume that supports M2 macrophage-mediated angiogenesis and adipogenesis. This bioscaffold is worthy of further investigation.
Collapse
Affiliation(s)
- Mary E Ziegler
- From the Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA
| | - Kameel Khabaz
- From the Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA
| | - Nima Khoshab
- From the Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA
| | - Faris F Halaseh
- From the Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA
| | | | | | | | - Gregory R D Evans
- From the Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA
| | - Alan D Widgerow
- From the Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA
| |
Collapse
|
14
|
Feng J, Fu S, Luan J. Selection of Mechanical Fragmentation Methods Based on Enzyme-Free Preparation of Decellularized Adipose-Derived Matrix. Bioengineering (Basel) 2023; 10:758. [PMID: 37508785 PMCID: PMC10376183 DOI: 10.3390/bioengineering10070758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The decellularized adipose-derived matrix (DAM) has emerged as a promising biomaterial for inducing adipose tissue regeneration. Various methods have been employed to produce DAM, among which the enzyme-free method is a relatively recent preparation technique. The mechanical fragmentation step plays a crucial role in determining the efficacy of the enzyme-free preparation. METHODS The adipose tissue underwent fragmentation through the application of ultrasonication, homogenization, and freeze ball milling. This study compared the central temperature of the mixture immediately following crushing, the quantity of oil obtained after centrifugation, and the thickness of the middle layer. Fluorescence staining was utilized to compare the residual cell activity of the broken fat in the middle layer, while electron microscopy was employed to assess the integrity and properties of the adipocytes among the three methods. The primary products obtained through the three methods were subsequently subjected to processing using the enzyme-free method DAM. The assessment of degreasing and denucleation of DAM was conducted through HE staining, oil red staining, and determination of DNA residues. Subsequently, the ultrasonication-DAM (U-DAM) and homogenation-DAM (H-DAM) were implanted bilaterally on the back of immunocompromised mice, and a comparative analysis of their adipogenic and angiogenic effects in vivo was performed. RESULTS Oil discharge following ultrasonication and homogenization was significantly higher compared to that observed after freeze ball milling (p < 0.001), despite the latter exhibiting the lowest center temperature (p < 0.001). The middle layer was found to be thinnest after ultrasonication (p < 0.001), and most of the remaining cells were observed to be dead following fragmentation. Except for DAM obtained through freeze ball milling, DAM obtained through ultrasonication and homogenization could be completely denucleated and degreased. In the in vivo experiment, the first adipocytes were observed in U-DAM as early as 1 week after implantation, but not in H-DAM. After 8 weeks, a significant number of adipocytes were regenerated in both groups, but the U-DAM group demonstrated a more efficient adipose regeneration than in H-DAM (p = 0.0057). CONCLUSIONS Ultrasonication and homogenization are effective mechanical fragmentation methods for breaking down adipocytes at the initial stage, enabling the production of DAM through an enzyme-free method that facilitates successful regeneration of adipose tissues in vivo. Furthermore, the enzyme-free method, which is based on the ultrasonication pre-fragmentation approach, exhibits superior performance in terms of denucleation, degreasing, and the removal of non-adipocyte matrix components, thereby resulting in the highest in vivo adipogenic induction efficiency.
Collapse
Affiliation(s)
- Jiayi Feng
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China
| | - Su Fu
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China
| | - Jie Luan
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China
| |
Collapse
|
15
|
Baptista LS, Silva KR, Jobeili L, Guillot L, Sigaudo-Roussel D. Unraveling White Adipose Tissue Heterogeneity and Obesity by Adipose Stem/Stromal Cell Biology and 3D Culture Models. Cells 2023; 12:1583. [PMID: 37371053 PMCID: PMC10296800 DOI: 10.3390/cells12121583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The immune and endocrine dysfunctions of white adipose tissue are a hallmark of metabolic disorders such as obesity and type 2 diabetes. In humans, white adipose tissue comprises distinct depots broadly distributed under the skin (hypodermis) and as internal depots (visceral). Depot-specific ASCs could account for visceral and subcutaneous adipose tissue properties, by regulating adipogenesis and immunomodulation. More importantly, visceral and subcutaneous depots account for distinct contributions to obesity and its metabolic comorbidities. Recently, distinct ASCs subpopulations were also described in subcutaneous adipose tissue. Interestingly, the superficial layer closer to the dermis shows hyperplastic and angiogenic capacities, whereas the deep layer is considered as having inflammatory properties similar to visceral. The aim of this focus review is to bring the light of recent discoveries into white adipose tissue heterogeneity together with the biology of distinct ASCs subpopulations and to explore adipose tissue 3D models revealing their advantages, disadvantages, and contributions to elucidate the role of ASCs in obesity development. Recent advances in adipose tissue organoids opened an avenue of possibilities to recreate the main cellular and molecular events of obesity leading to a deep understanding of this inflammatory disease besides contributing to drug discovery. Furthermore, 3D organ-on-a-chip will add reproducibility to these adipose tissue models contributing to their translation to the pharmaceutical industry.
Collapse
Affiliation(s)
- Leandra S. Baptista
- Numpex-bio, Campus UFRJ Duque de Caxias Prof Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25240005, Brazil
| | - Karina R. Silva
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550900, Brazil;
- Teaching and Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940070, Brazil
| | - Lara Jobeili
- Laboratory of Tissue Biology and Therapeutic Engineering, University of Lyon, Claude Bernard University Lyon 1, CNRS, LBTI UMR 5305, 69367 Lyon, France; (L.J.); (L.G.); (D.S.-R.)
| | - Lucile Guillot
- Laboratory of Tissue Biology and Therapeutic Engineering, University of Lyon, Claude Bernard University Lyon 1, CNRS, LBTI UMR 5305, 69367 Lyon, France; (L.J.); (L.G.); (D.S.-R.)
- Urgo Research Innovation and Development, 21300 Chenôve, France
| | - Dominique Sigaudo-Roussel
- Laboratory of Tissue Biology and Therapeutic Engineering, University of Lyon, Claude Bernard University Lyon 1, CNRS, LBTI UMR 5305, 69367 Lyon, France; (L.J.); (L.G.); (D.S.-R.)
| |
Collapse
|
16
|
Sariano PA, Mizenko RR, Shirure VS, Brandt AK, Nguyen BB, Nesiri C, Shergill BS, Brostoff T, Rocke DM, Borowsky AD, Carney RP, George SC. Convection and extracellular matrix binding control interstitial transport of extracellular vesicles. J Extracell Vesicles 2023; 12:e12323. [PMID: 37073802 PMCID: PMC10114097 DOI: 10.1002/jev2.12323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 04/20/2023] Open
Abstract
Extracellular vesicles (EVs) influence a host of normal and pathophysiological processes in vivo. Compared to soluble mediators, EVs can traffic a wide range of proteins on their surface including extracellular matrix (ECM) binding proteins, and their large size (∼30-150 nm) limits diffusion. We isolated EVs from the MCF10 series-a model human cell line of breast cancer progression-and demonstrated increasing presence of laminin-binding integrins α3β1 and α6β1 on the EVs as the malignant potential of the MCF10 cells increased. Transport of the EVs within a microfluidic device under controlled physiological interstitial flow (0.15-0.75 μm/s) demonstrated that convection was the dominant mechanism of transport. Binding of the EVs to the ECM enhanced the spatial concentration and gradient, which was mitigated by blocking integrins α3β1 and α6β1. Our studies demonstrate that convection and ECM binding are the dominant mechanisms controlling EV interstitial transport and should be leveraged in nanotherapeutic design.
Collapse
Affiliation(s)
- Peter A. Sariano
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Venktesh S. Shirure
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Abigail K. Brandt
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Bryan B. Nguyen
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Cem Nesiri
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Terza Brostoff
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Department of PathologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - David M. Rocke
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Department of Public Health Sciences, Division of BiostatisticsUniversity of CaliforniaDavisCaliforniaUSA
| | - Alexander D. Borowsky
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaDavis, SacramentoCaliforniaUSA
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Steven C. George
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
17
|
Oganesyan RV, Lellouch AG, Acun A, Lupon E, Taveau CB, Burlage LC, Lantieri LA, Randolph MA, Cetrulo CL, Uygun BE. Acellular Nipple Scaffold Development, Characterization, and Preliminary Biocompatibility Assessment in a Swine Model. Plast Reconstr Surg 2023; 151:618e-629e. [PMID: 36472499 PMCID: PMC10859846 DOI: 10.1097/prs.0000000000009998] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The standard in nipple reconstruction remains the autologous skin flap. Unfortunately, the results are not satisfying, with up to 75% loss of nipple projection over time. Existing studies investigated the use of primates as a source of implants. The authors hypothesized that the porcine nipple can serve as a perfect shape-supporting implant because of functional similarities to the human nipple. A decellularization protocol was developed to obtain an acellular nipple scaffold (ANS) for nipple reconstruction. METHODS Tissue samples were collected from eight disease-free female Yorkshire pigs (60 to 70 kg) and then decellularized. The decellularization efficiency and extracellular matrix characterization was performed histologically and quantitatively (DNA, total collagen, elastin, and glycosaminoglycan content). In vitro and in vivo biocompatibility was determined by human dermal fibroblast culture and subcutaneous implantation of six ANSs in a single Yorkshire pig (60 to 70 kg), respectively. Inflammation and adverse events were monitored daily based on local clinical signs. RESULTS The authors showed that all cellular structures and 96% of DNA [321.7 ± 57.6 ng DNA/mg wet tissue versus 11.7 ± 10.9 ng DNA/mg wet tissue, in native and ANS, respectively ( P < 0.001)] can be successfully removed. However, this was associated with a decrease in collagen [89.0 ± 11.4 and 58.8 ± 9.6 μg collagen/mg ( P < 0.001)] and elastin [14.2 ± 1.6 and 7.9 ± 2.4 μg elastin/mg ( P < 0.05)] and an increase in glycosaminoglycan content [5.0 ± 0.7 and 6.0 ± 0.8 ng/mg ( P < 0.05)]. ANS can support continuous cell growth in vitro and during preliminary biocompatibility tests in vivo. CONCLUSION This is a preliminary report of a novel promising ANS for nipple reconstruction, but more research is needed to validate results. CLINICAL RELEVANCE STATEMENT Breast cancer is very common among women. Treatment involves mastectomy, but its consequences affect patient mental well-being, and can lead to depression. Nipple-areola complex reconstruction is critical, and existing methods lead to unsatisfactory outcomes.
Collapse
Affiliation(s)
- Ruben V. Oganesyan
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School
- Shriners Children’s Boston
| | - Alexandre G. Lellouch
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School
- Department of Plastic Surgery, European George Pompidou Hospital, University of Paris
- Shriners Children’s Boston
| | - Aylin Acun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School
- Shriners Children’s Boston
- Department of Biomedical Engineering, Widener University
| | - Elise Lupon
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School
- University Institute of Locomotor and Sport (IULS), Pasteur Hospital
- Shriners Children’s Boston
| | - Corentin B. Taveau
- Department of Plastic Surgery, European George Pompidou Hospital, University of Paris
| | - Laura C. Burlage
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School
- Shriners Children’s Boston
- Department of Plastic Surgery, Amsterdam University Medical Center
| | - Laurent A. Lantieri
- Department of Plastic Surgery, European George Pompidou Hospital, University of Paris
| | - Mark A. Randolph
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School
- Shriners Children’s Boston
| | - Curtis L. Cetrulo
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School
- Shriners Children’s Boston
| | - Basak E. Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School
- Shriners Children’s Boston
| |
Collapse
|
18
|
Xiao H, Chen X, Liu X, Wen G, Yu Y. Recent advances in decellularized biomaterials for wound healing. Mater Today Bio 2023; 19:100589. [PMID: 36880081 PMCID: PMC9984902 DOI: 10.1016/j.mtbio.2023.100589] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The skin is one of the most essential organs in the human body, interacting with the external environment and shielding the body from diseases and excessive water loss. Thus, the loss of the integrity of large portions of the skin due to injury and illness may lead to significant disabilities and even death. Decellularized biomaterials derived from the extracellular matrix of tissues and organs are natural biomaterials with large quantities of bioactive macromolecules and peptides, which possess excellent physical structures and sophisticated biomolecules, and thus, promote wound healing and skin regeneration. Here, we highlighted the applications of decellularized materials in wound repair. First, the wound-healing process was reviewed. Second, we elucidated the mechanisms of several extracellular matrix constitutes in facilitating wound healing. Third, the major categories of decellularized materials in the treatment of cutaneous wounds in numerous preclinical models and over decades of clinical practice were elaborated. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues for research on decellularized biomaterials-based wound treatment.
Collapse
Affiliation(s)
- Huimin Xiao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xin Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
19
|
Mariniello MD, Ghilli M, Favati B, Gerges I, Colizzi L, Tamplenizza M, Tocchio A, Martello F, Ghilardi M, Cossu MC, Danti S, Roncella M. Cell-free biomimetic polyurethane-based scaffold for breast reconstruction following non-malignant lesion resection. A first-in-human study. Breast Cancer 2023:10.1007/s12282-023-01446-5. [PMID: 36977972 DOI: 10.1007/s12282-023-01446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Based on the volume of tissue removed, conservative surgery (BCS) cannot always guarantee satisfactory cosmetic results, unless resorting to more complex oncoplastic approaches. Investigating an alternative to optimize aesthetic outcomes minimizing surgical complexity, was the purpose of this study. We assessed an innovative surgical procedure based on the use of a biomimetic polyurethane-based scaffold intended for regenerating soft-tissue resembling fat, in patients undergoing BCS for non-malignant breast lesions. Safety and performance of the scaffold, and safety and feasibility of the entire implant procedure were evaluated. METHODS A volunteer sample of 15 female patients underwent lumpectomy with immediate device positioning, performing seven study visits with six-month follow-up. We evaluated incidence of adverse events (AEs), changes in breast appearance (using photographs and anthropomorphic measurements), interference with ultrasound and MRI (assessed by two independent investigators), investigator's satisfaction (through a VAS scale), patient's pain (through a VAS scale) and quality of life (QoL) (using the BREAST-Q© questionnaire). Data reported are the results of the interim analysis on the first 5 patients. RESULTS No AEs were device related nor serious. Breast appearance was unaltered and the device did not interference with imaging. High investigator's satisfaction, minimal post-operative pain and positive impact on QoL were also detected. CONCLUSIONS Albeit on a limited number of patients, data showed positive outcomes both in terms of safety and performance, paving the way to an innovative breast reconstructive approach with a potential remarkable impact on clinical application of tissue engineering. TRIAL REGISTRATION ClinicalTrials.gov (NCT04131972, October 18, 2019).
Collapse
Affiliation(s)
| | - Matteo Ghilli
- Breast Cancer Center, University Hospital of Pisa, Via Roma 57, 56126, Pisa, Italy
| | - Benedetta Favati
- Breast Radiology, Breast Cancer Center, University Hospital of Pisa, Via Roma 57, 56126, Pisa, Italy
| | | | - Livio Colizzi
- Breast Cancer Center, University Hospital of Pisa, Via Roma 57, 56126, Pisa, Italy
| | | | | | | | - Maria Ghilardi
- Breast Cancer Center, University Hospital of Pisa, Via Roma 57, 56126, Pisa, Italy
| | - Maria Cristina Cossu
- Breast Radiology, Breast Cancer Center, University Hospital of Pisa, Via Roma 57, 56126, Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122, Pisa, Italy
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Manuela Roncella
- Breast Cancer Center, University Hospital of Pisa, Via Roma 57, 56126, Pisa, Italy
| |
Collapse
|
20
|
Yoon H, Seo JK, Park TE. Microphysiological system recapitulating the pathophysiology of adipose tissue in obesity. Acta Biomater 2023; 159:188-200. [PMID: 36724863 DOI: 10.1016/j.actbio.2023.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/30/2023]
Abstract
A growing body of evidence has indicated that white adipose tissue (AT) remodeling is a major trigger for obesity-associated metabolic complications. However, the scarcity of translational models is an obstacle to the development of medicines that act on adipose restoration. Here, we describe a microphysiological system (MPS) that emulates the unique features of reprogrammed AT as a new in vitro tool for studying AT pathophysiology in obesity. The AT MPS contained mature adipocytes embedded in an extracellular matrix (ECM) hydrogel interfaced with AT microvascular endothelium, which was constantly perfused with fresh media. The unique biochemical signals due to the remodeled ECM in obesity were recapitulated using a decellularized AT ECM (AT dECM) hydrogel, which preserves the features of altered ECM composition in obesity. The mature adipocytes embedded in the AT dECM hydrogel maintained their function and morphology for a week without dedifferentiation. Using the AT MPS, we successfully modeled inflammation-induced AT microvascular dysfunction, the recruitment of immune cells due to the upregulation of cell adhesion molecules, and higher cancer cell adhesion as an indicator of metastasis, which are observed in obese individuals. The AT MPS may therefore represent a promising platform for understanding the dynamic cellular interplay in obesity-induced AT remodeling and validating the efficacy of drugs targeting AT in obesity. STATEMENT OF SIGNIFICANCE: The lack of translational in vitro white adipose tissue (AT) models is one of the main obstacles for understanding the obesity-induced reprogramming and the development of medicines. We report herein the AT microphysiological system (MPS), which recapitulates obesity and normal conditions and yields cell- and AT dECM-derived signals, thereby allowing accurate comparative in vitro analyses. Using the AT MPS, we successfully modeled reprogrammed AT in obesity conditions, including inflammation-induced AT vascular dysfunction, the recruitment of immune cells, and higher cancer cell metastasis, which are observed in obese individuals. Our proposed adipose tissue model providing physiological relevance and complexity may therefore enhance the understanding of obesity-associated disorders and be used to investigate their underlying molecular mechanisms to develop pharmacologic treatment strategies.
Collapse
Affiliation(s)
- Heejeong Yoon
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
21
|
Shepherd EL, Northall E, Papakyriacou P, Safranska K, Sorensen KK, Lalor PF. Decellularization of the Human Liver to Generate Native Extracellular Matrix for Use in Automated Functional Assays with Stellate Cells. Methods Mol Biol 2023; 2669:233-244. [PMID: 37247064 DOI: 10.1007/978-1-0716-3207-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
With the incidence of liver disease on the rise globally, increasing numbers of patients are presenting with advanced hepatic fibrosis and significant mortality risk. The demand far outstrips possible transplantation capacities, and thus there is an intense drive to develop new pharmacological therapies that stall or reverse liver scarring. Recent late-stage failures of lead compounds have highlighted the challenges of resolving fibrosis, which has developed and stabilized over many years and varies in nature and composition from individual to individual. Hence, preclinical tools are being developed in both the hepatology and tissue engineering communities to elucidate the nature, composition, and cellular interactions of the hepatic extracellular niche in health and disease. In this protocol, we describe strategies for decellularizing cirrhotic and healthy human liver specimens and show how these can be used in simple functional assays to detect the impact on stellate cell function. Our simple, small-scale approach is translatable to diverse lab settings and generates cell-free materials which could be used for a variety of in vitro analyses as well as a scaffold for repopulating with key hepatic cell populations.
Collapse
Affiliation(s)
- Emma L Shepherd
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Ellie Northall
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Pantelitsa Papakyriacou
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Karolina Safranska
- Vascular Biology Research Group, Department of Medical Biology, UiT The Arctic University of Norway., Tromso, Norway
| | - Karen K Sorensen
- Vascular Biology Research Group, Department of Medical Biology, UiT The Arctic University of Norway., Tromso, Norway
| | - Patricia F Lalor
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
22
|
Ziegler ME, Sorensen AM, Banyard DA, Sayadi LR, Chnari E, Hatch MM, Tassey J, Mirzakhanyan Y, Gershon PD, Hughes CC, Evans GR, Widgerow AD. Deconstructing Allograft Adipose and Fascia Matrix: Fascia Matrix Improves Angiogenesis, Volume Retention, and Adipogenesis in a Rodent Model. Plast Reconstr Surg 2023; 151:108-117. [PMID: 36219861 PMCID: PMC10081826 DOI: 10.1097/prs.0000000000009794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Autologous fat grafting is commonly used for soft-tissue repair (approximately 90,000 cases per year in the United States), but outcomes are limited by volume loss (20% to 80%) over time. Human allograft adipose matrix (AAM) stimulates de novo adipogenesis in vivo, but retention requires optimization. The extracellular matrix derived from superficial fascia, interstitial within the adipose layer, is typically removed during AAM processing. Thus, fascia, which contains numerous important proteins, might cooperate with AAM to stimulate de novo adipogenesis, improving long-term retention compared to AAM alone. METHODS Human AAM and fascia matrix proteins (back and upper leg regions) were identified by mass spectrometry and annotated by gene ontology. A three-dimensional in vitro angiogenesis assay was performed. Finally, AAM and/or fascia (1 mL) was implanted into 6- to 8-week-old male Fischer rats. After 8 weeks, the authors assessed graft retention by gas pycnometry and angiogenesis (CD31) and adipocyte counts (hematoxylin and eosin) histologically. RESULTS Gene ontology annotation revealed an angiogenic enrichment pattern unique to the fascia, including lactadherin, collagen alpha-3(V) chain, and tenascin-C. In vitro, AAM stimulated 1.0 ± 0.17 angiogenic sprouts per bead. The addition of fascia matrix increased sprouting by 88% (2.0 ± 0.12; P < 0.001). A similar angiogenic response (CD31) was observed in vivo. Graft retention volume was 25% (0.25 ± 0.13) for AAM, significantly increasing to 60% (0.60 ± 0.14) for AAM/fascia ( P < 0.05). De novo adipogenesis was 12% (12.4 ± 7.4) for AAM, significantly increasing to 51% (51.2 ± 8.0) for AAM/fascia ( P < 0.001) by means of adipocyte quantification. CONCLUSIONS Combining fascia matrix with AAM improves angiogenesis and adipogenesis compared to AAM alone in rats. These preliminary in vitro and pilot animal studies should be further validated before definitive clinical adoption. CLINICAL RELEVANCE STATEMENT When producing an off-the-shelf adipose inducing product by adding a connective tissue fascial component (that is normally discarded) to the mix of adipose matrix, vasculogenesis is increased and, thus, adipogenesis and graft survival is improved. This is a significant advance in this line of product.
Collapse
Affiliation(s)
- Mary E. Ziegler
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | | | - Derek A. Banyard
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | - Lohrasb R. Sayadi
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | | | - Michaela M. Hatch
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Jade Tassey
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | - Yeva Mirzakhanyan
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Paul D. Gershon
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Christopher C.W. Hughes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA; Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, UC Irvine, USA
| | - Gregory R.D. Evans
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | - Alan D. Widgerow
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| |
Collapse
|
23
|
Ni R, Luo C, Ci H, Sun D, An R, Wang Z, Yang J, Li Y, Sun J. Construction of vascularized tissue-engineered breast with dual angiogenic and adipogenic micro-tissues. Mater Today Bio 2022; 18:100539. [PMID: 36686035 PMCID: PMC9850046 DOI: 10.1016/j.mtbio.2022.100539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogel-based micro-tissue engineering technique, a bottom-up approach, is promising in constructing soft tissue of large size with homogeneous spatial distribution and superior regeneration capacity compared to the top-down approach. However, most of the studies employed micro-tissues with simple mesenchymal stem cells, which could hardly meet the growth of matrix and vessels. Therefore, we recommend a dual micro-tissues assembly strategy to construct vascularized tissue-engineered breast grafts (TEBGs). Adipose micro-tissues (AMs) and vessel micro-tissues (VMs) were fabricated by seeding adipose-derived stem cells (ADSCs) and human umbilical vein endothelial cells (HUVECs) on collagen microgels (COLs) with a uniform diameter of ∼250 μm, respectively. TEBGs were constructed by injecting the dual micro-tissues into 3D printed breast-like Thermoplastic Urethane (TPU) scaffolds, then implanted into the subcutaneous pockets on the back of nude mice. After 3 months of implantation, TEBGs based on dual micro-tissues performed larger volume of adipose tissue regeneration and neo-vessel formation compared to TEBGs based on single AMs. This study extends the application of micro-tissue engineering technique for the construction of soft grafts, and is expected to be useful for creating heterogeneous tissue constructs in the future.
Collapse
Affiliation(s)
- Ruopiao Ni
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Luo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Hai Ci
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Di Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Corresponding author. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Corresponding author.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Corresponding author. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
24
|
Naftaly A, Kislev N, Izgilov R, Adler R, Silber M, Shalgi R, Benayahu D. Nutrition Alters the Stiffness of Adipose Tissue and Cell Signaling. Int J Mol Sci 2022; 23:ijms232315237. [PMID: 36499567 PMCID: PMC9736042 DOI: 10.3390/ijms232315237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a complex organ composed of various cell types and an extracellular matrix (ECM). The visceral adipose tissue (VAT) is dynamically altered in response to nutritional regimens that lead to local cues affecting the cells and ECM. The adipocytes are in conjunction with the surrounding ECM that maintains the tissue's niche, provides a scaffold for cells and modulates their signaling. In this study, we provide a better understanding of the crosstalk between nutritional regimens and the ECM's stiffness. Histological analyses showed that the adipocytes in mice fed a high-fat diet (HFD) were increased in size, while the ECM was also altered with changes in mass and composition. HFD-fed mice exhibited a decrease in elastin and an increase in collagenous proteins. Rheometer measurements revealed a stiffer ECM in whole tissue (nECM) and decellularized (deECM) in HFD-fed animals. These alterations in the ECM regulate cellular activity and influence their metabolic function. HFD-fed mice expressed high levels of the receptor for advanced-glycation-end-products (RAGE), indicating that AGEs might play a role in these processes. The cells also exhibited an increase in phosphoserine332 of IRS-1, a decrease in the GLUT4 transporter levels at the cells' membrane, and a consequent reduction in insulin sensitivity. These results show how alterations in the stiffness of ECM proteins can affect the mechanical cues transferred to adipocytes and, thereby, influence the adipocytes' functionality, leading to metabolic disorders.
Collapse
|
25
|
Entz L, Falgayrac G, Chauveau C, Pasquier G, Lucas S. The extracellular matrix of human bone marrow adipocytes and glucose concentration differentially alter mineralization quality without impairing osteoblastogenesis. Bone Rep 2022; 17:101622. [PMID: 36187598 PMCID: PMC9519944 DOI: 10.1016/j.bonr.2022.101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Bone marrow adipocytes (BMAds) accrue in various states of osteoporosis and interfere with bone remodeling through the secretion of various factors. However, involvement of the extracellular matrix (ECM) produced by BMAds in the impairment of bone marrow mesenchymal stromal cell (BM-MSC) osteoblastogenesis has received little attention. In type 2 diabetes (T2D), skeletal fragility is associated with several changes in bone quality that are incompletely understood, and BMAd quantity increases in relationship to poor glycemic control. Considering their altered phenotype in this pathophysiological context, we aimed to determine the contribution of the ECM of mature BMAds to osteoblastogenesis and mineralization quality in the context of chronic hyperglycemia. Human BM-MSCs were differentiated for 21 days in adipogenic medium containing either a normoglycemic (LG, 5.5 mM) or a high glucose concentration (HG, 25 mM). The ECM laid down by BMAds were devitalized through cell removal to examine their impact on the proliferation and differentiation of BM-MSCs toward osteoblastogenesis in LG and HG conditions. Compared to control plates, both adipocyte ECMs promoted cell adhesion and proliferation. As shown by the unmodified RUNX2 and osteocalcin mRNA levels, BM-MSC commitment in osteoblastogenesis was hampered by neither the hyperglycemic condition nor the adipocyte matrices. However, adipocyte ECMs or HG condition altered the mineralization phase with perturbed expression levels of type 1 collagen, MGP and osteopontin. Despite higher ALP activity, mineralization levels per cell were decreased for osteoblasts grown on adipocyte ECMs compared to controls. Raman spectrometry revealed that culturing on adipocyte matrices specifically prevents type-B carbonate substitution and favors collagen crosslinking, in contrast to exposure to HG concentration alone. Moreover, the mineral to organic ratio was disrupted according to the presence of adipocyte ECM and the glucose concentration used for adipocyte or osteoblast culture. HG concentration and adipocyte ECM lead to different defects in mineralization quality, recapitulating contradictory changes reported in T2D osteoporosis. Our study shows that ECMs from BMAds do not impair osteoblastogenesis but alter both the quantity and quality of mineralization partly in a glucose concentration-dependent manner. This finding sheds light on the involvement of BMAds, which should be considered in the compromised bone quality of T2D and osteoporosis patients more generally. Glucose level alters the Extracellular Matrix composition of Bone Marrow adipocytes. Osteoblastogenesis on adipocyte ECMs is unaltered but produced less mineral amount. The quality of the mineral is altered differently by adipocyte ECMs or glucose levels. The presence of BM adipocytes should be valued in damaged osteoporosis bone quality.
Collapse
Key Words
- AGEs, Advanced glycation end-products
- BM-MSC, Bone marrow mesenchymal stromal cell
- BMAd, Bone marrow adipocyte
- ECM, Extracellular matrix
- ECMBMAd HG, Extracellular matrix obtained from BMAds cultured in HG concentration
- ECMBMAd LG, Extracellular matrix obtained from BMAds cultured in LG concentration
- ECMBMAd, Extracellular matrix obtained from BMAds
- Extracellular matrix
- GAG, glycosaminoglycan
- HA, hydroxyapatite
- HG, High glucose
- Hyperglycemia
- LG, Low glucose
- LGM, Low glucose and mannitol
- Marrow adipocytes
- Osteoblast
- Osteoporosis
- Skeletal mesenchymal stromal cells
- T2D, Type 2 diabetes
Collapse
|
26
|
Bobrova M, Safonova L, Efimov A, Lyundup A, Mozheiko N, Agapova O, Agapov I. Scaffolds Based on Silk Fibroin with Decellularized Rat Liver Microparticles: Investigation of the Structure, Biological Properties and Regenerative Potential for Skin Wound Healing. Pharmaceutics 2022; 14:2313. [PMID: 36365132 PMCID: PMC9693194 DOI: 10.3390/pharmaceutics14112313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 10/18/2023] Open
Abstract
The development of advanced biomaterials and constructs for accelerated recovery of damaged tissues is a key direction in regenerative medicine. Biocompatible scaffolds based on natural biopolymers are widely used for these tasks. Organ decellularization enables obtaining a cell-free extracellular matrix (ECM) with preserved composition and biological activity. The objectives of the present work were combining these two approaches for the development of a composite scaffold based on silk fibroin and ECM microparticles and assessing its structure, biological properties, and regenerative potential. ECM microparticles were obtained by grinding the decellularized matrix of Wistar rat liver in liquid nitrogen. Scaffolds in the form of films were prepared by the casting method. The sinuous and rough topography of the scaffold surface was assessed by the scanning probe nanotomography (SPNT) technique. The inclusion of ECM microparticles in the composition did not affect the elasticity and tensile strength of the scaffolds. The obtained scaffold was non-toxic to cells, maintained high levels of adhesion and proliferation of mouse 3T3 fibroblast and Hep-G2 cells, and showed high regenerative potential, which was studied in the experimental model of full-thickness rat skin wound healing. The wound healing was accelerated by 1.74 times in comparison with the control.
Collapse
Affiliation(s)
- Maria Bobrova
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 1 Shchukinskaya Street, 123182 Moscow, Russia
| | - Liubov Safonova
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 1 Shchukinskaya Street, 123182 Moscow, Russia
| | - Anton Efimov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 1 Shchukinskaya Street, 123182 Moscow, Russia
| | - Alexey Lyundup
- Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Natalya Mozheiko
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 1 Shchukinskaya Street, 123182 Moscow, Russia
| | - Olga Agapova
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 1 Shchukinskaya Street, 123182 Moscow, Russia
| | - Igor Agapov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 1 Shchukinskaya Street, 123182 Moscow, Russia
| |
Collapse
|
27
|
Saffari TM, Saffari S, Vyas KS, Mardini S, Shin AY. Role of adipose tissue grafting and adipose-derived stem cells in peripheral nerve surgery. Neural Regen Res 2022; 17:2179-2184. [PMID: 35259826 PMCID: PMC9083182 DOI: 10.4103/1673-5374.336870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The application of autologous fat grafting in reconstructive surgery is commonly used to improve functional form. This review aims to provide an overview of the scientific evidence on the biology of adipose tissue, the role of adipose-derived stem cells, and the indications of adipose tissue grafting in peripheral nerve surgery. Adipose tissue is easily accessible through the lower abdomen and inner thighs. Non-vascularized adipose tissue grafting does not support oxidative and ischemic stress, resulting in variable survival of adipocytes within the first 24 hours. Enrichment of adipose tissue with a stromal vascular fraction is purported to increase the number of adipose-derived stem cells and is postulated to augment the long-term stability of adipose tissue grafts. Basic science nerve research suggests an increase in nerve regeneration and nerve revascularization, and a decrease in nerve fibrosis after the addition of adipose-derived stem cells or adipose tissue. In clinical studies, the use of autologous lipofilling is mostly applied to secondary carpal tunnel release revisions with promising results. Since the use of adipose-derived stem cells in peripheral nerve reconstruction is relatively new, more studies are needed to explore safety and long-term effects on peripheral nerve regeneration. The Food and Drug Administration stipulates that adipose-derived stem cell transplantation should be minimally manipulated, enzyme-free, and used in the same surgical procedure, e.g. adipose tissue grafts that contain native adipose-derived stem cells or stromal vascular fraction. Future research may be shifted towards the use of tissue-engineered adipose tissue to create a supportive microenvironment for autologous graft survival. Shelf-ready alternatives could be enhanced with adipose-derived stem cells or growth factors and eliminate the need for adipose tissue harvest.
Collapse
Affiliation(s)
- Tiam M Saffari
- Department of Orthopedic Surgery, Division of Microvascular and Hand Surgery, Mayo Clinic, Rochester, MN, USA; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, The Netherlands
| | - Sara Saffari
- Department of Orthopedic Surgery, Division of Microvascular and Hand Surgery, Mayo Clinic, Rochester, MN, USA; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, The Netherlands
| | - Krishna S Vyas
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN, USA
| | - Samir Mardini
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Division of Microvascular and Hand Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
28
|
Adem S, Abbas DB, Lavin CV, Fahy EJ, Griffin M, Diaz Deleon NM, Borrelli MR, Mascharak S, Shen AH, Patel RA, Longaker MT, Nazerali RS, Wan DC. Decellularized Adipose Matrices Can Alleviate Radiation-Induced Skin Fibrosis. Adv Wound Care (New Rochelle) 2022; 11:524-536. [PMID: 34346243 PMCID: PMC9354001 DOI: 10.1089/wound.2021.0008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/29/2021] [Indexed: 01/29/2023] Open
Abstract
Objective: Radiation therapy is commonplace for cancer treatment but often results in fibrosis and atrophy of surrounding soft tissue. Decellularized adipose matrices (DAMs) have been reported to improve these soft tissue defects through the promotion of adipogenesis. These matrices are decellularized by a combination of physical, chemical, and enzymatic methods to minimize their immunologic effects while promoting their regenerative effects. In this study, we aimed at exploring the regenerative ability of a DAM (renuva®; MTF biologics, Edison, NJ) in radiation-induced soft tissue injury. Approach: Fresh human lipoaspirate or DAM was injected into the irradiated scalp of CD-1 nude mice, and volume retention was monitored radiographically over 8 weeks. Explanted grafts were histologically assessed, and overlying skin was examined histologically and biomechanically. Irradiated human skin was also evaluated from patients after fat grafting or DAM injection. However, integrating data between murine and human skin in all cohorts is limited given the genetic variability between the two species. Results: Volume retention was found to be greater with fat grafts, though DAM retention was, nonetheless, appreciated at irradiated sites. Improvement in both mouse and human irradiated skin overlying fat and DAM grafts was observed in terms of biomechanical stiffness, dermal thickness, collagen density, collagen fiber networks, and skin vascularity. Innovation: This is the first demonstration of the use of DAMs for augmenting the regenerative potential of irradiated mouse and human skin. Conclusions: These findings support the use of DAMs to address soft tissue atrophy after radiation therapy. Morphological characteristics of the irradiated skin can also be improved with DAM grafting.
Collapse
Affiliation(s)
- Sandeep Adem
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Darren B. Abbas
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Christopher V. Lavin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Evan J. Fahy
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Nestor M. Diaz Deleon
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Mimi R. Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Abra H. Shen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ronak A. Patel
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Rahim S. Nazerali
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
29
|
Girard P, Dulong J, Duisit J, Mocquard C, Le Gallou S, Chaput B, Lupon E, Watier E, Varin A, Tarte K, Bertheuil N. Modified nanofat grafting: Stromal vascular fraction simple and efficient mechanical isolation technique and perspectives in clinical recellularization applications. Front Bioeng Biotechnol 2022; 10:895735. [PMID: 36177178 PMCID: PMC9513316 DOI: 10.3389/fbioe.2022.895735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Nanofat grafting (NG) is a simple and cost-effective method of lipoaspirates with inter-syringe passages, to produce stromal vascular fraction (SVF) and isolate adipose-derived stem cells (ASCs). This represents a tremendous interest in the future clinical needs of tissue engineering. In this study, we optimized the NG technique to increase the yield of ASC extractions. Methods: We analyzed three groups of SVF obtained by 20, 30, and 40 inter-syringe passages. The control group was an SVF obtained by enzymatic digestion with Celase. We studied their cell composition by flow cytometry, observed their architecture by confocal microscopy, and observed immunomodulatory properties of the ASCs from each of the SVFs by measuring inflammatory markers of macrophages obtained by an ASC monocyte co-culture. Results: We have established the first cell mapping of the stromal vascular fraction of adipose tissue. The results showed that SVF obtained by 20 inter-syringe passages contains more statistically significant total cells, more cells expressing the ASC phenotype, more endothelial cells, and produces more CFU-F than the SVF obtained by 30 and 40 passages and by enzymatic digestion. Confocal microscopy showed the presence of residual adipocytes in SVF obtained by inter-syringe passages but not by enzymatic digestion. The functional study indicates an orientation toward a more anti-inflammatory profile and homogenization of their immunomodulatory properties. Conclusion: This study places mechanically dissociated SVF in the center of approaches to easily extract ASCs and a wide variety and number of other progenitor cells, immediately available in a clinical setting to provide both the amount and quality of cells required for decellularized tissues.
Collapse
Affiliation(s)
- Paul Girard
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
- INSERM U1236, University of Rennes I, Rennes, France
- SITI Laboratory, CHU Rennes, Rennes, France
- *Correspondence: Paul Girard, ; Nicolas Bertheuil,
| | - Joelle Dulong
- INSERM U1236, University of Rennes I, Rennes, France
- SITI Laboratory, CHU Rennes, Rennes, France
| | - Jerome Duisit
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
| | - Camille Mocquard
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
- INSERM U1236, University of Rennes I, Rennes, France
- SITI Laboratory, CHU Rennes, Rennes, France
| | - Simon Le Gallou
- INSERM U1236, University of Rennes I, Rennes, France
- SITI Laboratory, CHU Rennes, Rennes, France
| | - Benoit Chaput
- Department of Plastic, Reconstructive and Aesthetic Surgery, Rangueil Hospital, CHU Toulouse, Toulouse, France
- INSERM U1031 STROMALab, Toulouse, France
| | - Elise Lupon
- Department of Plastic, Reconstructive and Aesthetic Surgery, Rangueil Hospital, CHU Toulouse, Toulouse, France
| | - Eric Watier
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
| | | | - Karin Tarte
- INSERM U1236, University of Rennes I, Rennes, France
- SITI Laboratory, CHU Rennes, Rennes, France
| | - Nicolas Bertheuil
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
- INSERM U1236, University of Rennes I, Rennes, France
- SITI Laboratory, CHU Rennes, Rennes, France
- *Correspondence: Paul Girard, ; Nicolas Bertheuil,
| |
Collapse
|
30
|
Tamayo-Angorrilla M, López de Andrés J, Jiménez G, Marchal JA. The biomimetic extracellular matrix: a therapeutic tool for breast cancer research. Transl Res 2022; 247:117-136. [PMID: 34844003 DOI: 10.1016/j.trsl.2021.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022]
Abstract
A deeper knowledge of the functional versatility and dynamic nature of the ECM has improved the understanding of cancer biology. Translational Significance: This work provides an in-depth view of the importance of the ECM to develop more mimetic breast cancer models, which aim to recreate the components and architecture of tumor microenvironment. Special focus is placed on decellularized matrices derived from tissue and cell culture, both in procurement and applications, as they have achieved great success in cancer research and pharmaceutical sector. The extracellular matrix (ECM) is increasingly recognized as a master regulator of cell behavior and response to breast cancer (BC) treatment. During BC progression, the mammary gland ECM is remodeled and altered in the composition and organization. Accumulated evidence suggests that changes in the composition and mechanics of ECM, orchestrated by tumor-stromal interactions along with ECM remodeling enzymes, are actively involved in BC progression and metastasis. Understanding how specific ECM components modulate the tumorigenic process has led to an increased interest in the development of biomaterial-based biomimetic ECM models to recapitulate key tumor characteristics. The decellularized ECMs (dECMs) have emerged as a promising in vitro 3D tumor model, whose recent advances in the processing and application could become the biomaterial by excellence for BC research and the pharmaceutical industry. This review offers a detailed view of the contribution of ECM in BC progression, and highlights the application of dECM-based biomaterials as promising personalized tumor models that more accurately mimic the tumorigenic mechanisms of BC and the response to treatment. This will allow the design of targeted therapeutic approaches adapted to the specific characteristics of each tumor that will have a great impact on the precision medicine applied to BC patients.
Collapse
Affiliation(s)
- Marta Tamayo-Angorrilla
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.
| |
Collapse
|
31
|
Phothichailert S, Nowwarote N, Fournier BP, Trachoo V, Roytrakul S, Namangkalakul W, Osathanon T. Effects of decellularized extracellular matrix derived from Jagged1-treated human dental pulp stem cells on biological responses of stem cells isolated from apical papilla. Front Cell Dev Biol 2022; 10:948812. [PMID: 36081912 PMCID: PMC9445441 DOI: 10.3389/fcell.2022.948812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Objective: Indirect Jagged1 immobilization efficiently activates canonical Notch signaling in human dental pulp stem cells (hDPSCs). This study aimed to investigate the characteristics of the Jagged1-treated hDPSC-derived decellularized extracellular matrix (dECM) and its biological activity on odonto/osteogenic differentiation of stem cells isolated from apical papilla (SCAPs). Methods: Bioinformatic database of Jagged1-treated hDPSCs was analyzed using NetworkAnalyst. hDPSCs seeded on the Jagged1 immobilized surface were maintained with normal or osteogenic induction medium (OM) followed by decellularization procedure, dECM-N, or dECM-OM, respectively. SCAPs were reseeded on each dECM with either the normal medium or the OM. Cell viability was determined by MTT assay. Characteristics of dECMs and SCAPs were evaluated by SEM, EDX, immunofluorescent staining, and alcian blue staining. Mineralization was assessed by alizarin red S, Von Kossa, and alkaline phosphatase staining. Statistical significance was considered at p < 0.05. Results: RNA-seq database revealed upregulation of several genes involved in ECM organization, ECM–receptor interaction, and focal adhesion in Jagged1-treated hDPSCs. Immobilized Jagged1 increased the osteogenesis of the hDPSC culture with OM. dECMs showed fibrillar-like network structure and maintained major ECM proteins, fibronectin, type I-collagen, and glycosaminoglycans. A decrease in calcium and phosphate components was observed in dECMs after the decellularized process. Cell viability on dECMs did not alter by 7 days. Cell attachment and f-actin cytoskeletal organization of SCAPs proliferated on Jagged1-treated dECMs were comparable to those of the control dECMs. SCAPs exhibited significantly higher mineralization on dECM-N in OM and markedly enhanced on dECM-OM with normal medium or OM conditions. Conclusion: Jagged1-treated hDPSC-derived dECMs are biocompatible and increase odonto/osteogenic differentiation of SCAPs. The results suggested the potential of Jagged1 dECMs, which could be further developed into ECM scaffolds for application in regenerative medicine.
Collapse
Affiliation(s)
- Suphalak Phothichailert
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Nunthawan Nowwarote
- Universite Paris Cite, Faculty of Dentistry, Department of Oral Biology, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Universite, INSERM UMRS, Molecular Oral Pathophysiology, Paris, France
| | - Benjamin P.J. Fournier
- Universite Paris Cite, Faculty of Dentistry, Department of Oral Biology, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Universite, INSERM UMRS, Molecular Oral Pathophysiology, Paris, France
| | - Vorapat Trachoo
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center of Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Worachat Namangkalakul
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Worachat Namangkalakul,
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
32
|
Zhang G, Ci H, Ma C, Li Z, Jiang W, Chen L, Wang Z, Zhou M, Sun J. Additive manufactured macroporous chambers facilitate large volume soft tissue regeneration from adipose-derived extracellular matrix. Acta Biomater 2022; 148:90-105. [PMID: 35671873 DOI: 10.1016/j.actbio.2022.05.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
Breast tissue engineering is a promising alternative intervention for breast reconstruction. Due to their low immunogenicity and well-preserved adipogenic microenvironment, decellularized adipose tissue (DAT) can potentially regenerate adipose tissue in vivo. However, the volume of adipose tissue regenerated from DAT can hardly satisfy the demand for breast reconstruction. Tissue engineering chamber (TEC) is an effective technique for generation of large adipose tissue volumes. However, TEC applications necessitate reoperation to remove non-degradable plastic chambers and harvest autologous tissue flaps, which prolongs the operation time and causes potential damage to donor sites. We improved the TEC strategy by combining bioresorbable polycaprolactone (PCL) chambers and decellularized adipose tissues (DAT). A miniaturized porous PCL chamber was fabricated based on scaling differences between human and rabbit chests, and basic fibroblast growth factor (bFGF)-loaded DAT successfully prepared. In rabbit models, a highly vascularized adipose tissue that nearly filled up the PCL chamber (5 mL) was generated de novo from 0.5 mL bFGF-loaded DAT. The newly formed tissue had significantly high expressions of adipogenic genes, compared to the endogenous adipose tissue. The concept described here can be exploited for breast tissue engineering. STATEMENT OF SIGNIFICANCE: Decellularized adipose tissue (DAT), which provides infiltrated cells adipogenic microenvironment, can potentially regenerate adipose tissue in vivo. Nevertheless, the volume of regenerated adipose tissue is insufficient to repair large sized tissue defect. Tissue engineering chamber (TEC) could provide a protective space for in situ regeneration of large volume tissue. Herein, a new strategy by combining biodegradable polycaprolactone chambers and basic fibroblast growth factor-loaded decellularized adipose tissue is proposed. In rabbit model, newly formed adipose tissue regenerated from DAT successfully filled the dome shaped chamber with ten folds higher volume than DAT, which is proportionally similar to women breast. This work highlighted the importance of adipogenic microenvironment and protective space for adipose tissue regeneration.
Collapse
Affiliation(s)
- Guo Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| | - Hai Ci
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China; Department of Burn and Plastic Surgery, the First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang 832008, China
| | - Chenggong Ma
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhipeng Li
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| | - Wenbin Jiang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| | - Lifeng Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| | - Muran Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China.
| |
Collapse
|
33
|
Ahn WB, Lee YB, Ji YH, Moon KS, Jang HS, Kang SW. Decellularized Human Adipose Tissue as an Alternative Graft Material for Bone Regeneration. Tissue Eng Regen Med 2022; 19:1089-1098. [PMID: 35551635 PMCID: PMC9478008 DOI: 10.1007/s13770-022-00451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Tissue engineering approaches to treat damaged bone include various tissue transplants such as autologous, allogeneic, and xenografts. Artificial materials have been widely introduced to meet the demand for graft materials, but insufficiency in supply is still not resolved. In this study, human adipose tissue, easily obtained from the human body, was harvested, and the tissue was decellularized to fabricate a decellularized human adipose tissue matrix (DM) as an alternative graft material. METHODS Human adipose tissue was obtained via liposuction. The obtained fresh adipose tissue sample was cut into pieces then put into decellularization solution (1% antibiotic-antimycotic solution and 1% phenylmethanesulphonyl fluoride). Lipids were further removed via treatment in isopropanol. The sample was then subjected to another enzymatic digestion and lipid removal processes. The obtained decellularized adipose tissue matrix was lyophilized to form a graft material in disc shape. RESULTS Decellularization was confirmed by nuclear staining methods and detection of RNA and DNA via PCR. Bone morphogenetic protein 2 (BMP2)-loaded DM showed the ability to form new bone tissue when implanted in subcutaneous tissue. In recovery of a mouse calvarial defect model, BMP2-loaded DM exhibited similar levels of bone tissue regeneration efficiency compared with a well-defined commercial product, BMP2-loaded CollaCote®. CONCLUSION The DM developed in this study is expected to address the problem of insufficient supply of graft materials and contribute to the treatment of bone defects of critical size as an alternative bone graft material with preserved extracellular matrix components.
Collapse
Affiliation(s)
- Woo Beom Ahn
- Department of Medicine, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Yu Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yi-Hwa Ji
- Department of Dentistry, Korea University Ansan Hospital, Ansan, 15355, Republic of Korea
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyon-Seok Jang
- Department of Dentistry, Korea University Ansan Hospital, Ansan, 15355, Republic of Korea.
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejoen, 34114, Republic of Korea.
- Human and Environmental Toxicology Program, University of Science and Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
34
|
Zhu Z, Yuan Z, Guo L, Nurzat Y, Xu H, Zhang Y. Construction of adipose tissue using a silica expander capsule and cell sheet-assembled of decellularized adipose tissue. Acta Biomater 2022; 141:89-101. [PMID: 34974176 DOI: 10.1016/j.actbio.2021.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022]
Abstract
Delayed neovascularization and unstable adipose formation are major confounding factors in adipose tissue engineering. A system using decellularized adipose tissue (DAT), adipose-derived stem cells (ADSCs), and human umbilical vein endothelial cells (HUVECs) has been preliminarily studied, but it requires optimization, as adipogenic and angiogenic capabilities for maintaining a stable construct shape are limited. The current study aimed to address these limitations. Our initial modification involved the addition of exogenous chemokine (C-C motif) ligand 2 (CCL2), which resulted in enhanced adipogenesis and angiogenesis. However, further improvement was required due to delayed blood recanalization. To further optimize the system, a vascularized fibrous capsule derived from an implanted silica expander was utilized as a second modification. We hypothesized this would function as both a microbioreactor to fix the seed cells and exogenous CCL2 locally and as a vascular bed to promote neovascularization. Compared with that of the CCL2 loaded ADSC-HUVECs cell sheet assembled DAT system, adding the silica expander capsule resulted in significantly increased construct stability, new vessel intensity, a greater number of Oil Red O-positive lipid droplets, more enhanced tissue remodeling, and upregulated peroxisome proliferator-activated receptor gamma (PPARγ) & leptin expression. Thus, these two modifications helped optimize the currently available ADSC-HUVEC cell sheet assembled DAT system, providing an adipose tissue construction strategy with enhanced adipogenesis and angiogenesis to reconstruct soft tissue defects. Moreover, close-to-normal leptin expression provided the engineered adipose tissue with a glucometabolic function, in addition to remodeling capabilities. STATEMENT OF SIGNIFICANCE: Delayed neovascularization and unstable adipose formation are the two major problems in tissue engineering adipose. Here, we introduced an adipose tissue engineering construction strategy using a silica expander capsule along with hADSCs-HUVECs cell sheet-assembled DAT in a CCL2-rich microenvironment. Our data suggested that CCL2 could improve angiogenesis and adipogenesis in vitro and in vivo. The addition of tissue expander capsule could further improve the stability of construction and fabricated adipose tissue with increased new vessel intensity, greater numbers of Oil Red O-positive lipid droplets, more enhanced tissue remodeling, and upregulated leptin expression. CCL2 and expander capsule can have clinical utility for soft tissue defects repair, and these two factors can be useful in other tissue engineering.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China; Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Zhaoqi Yuan
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China; Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Linxiumei Guo
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China; Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Yeltai Nurzat
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China
| | - Heng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China.
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China.
| |
Collapse
|
35
|
Nellinger S, Mrsic I, Keller S, Heine S, Southan A, Bach M, Volz A, Chassé T, Kluger PJ. Cell‐derived and enzyme‐based decellularized extracellular matrix exhibit compositional and structural differences that are relevant for its use as a biomaterial. Biotechnol Bioeng 2022; 119:1142-1156. [DOI: 10.1002/bit.28047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/01/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Svenja Nellinger
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Ivana Mrsic
- Institute of Physical and Theoretical Chemistry, University of Tuebingen Auf der Morgenstelle 18 72076 Tuebingen Germany
| | - Silke Keller
- 3R‐Center for In Vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen Österbergstr. 3 72074 Tübingen Germany
- Department for Microphysiological Systems Institute of Biomedical Engineering, Faculty of Medicine of the Eberhard Karls University Tübingen Österbergstr. 3 72074 Tübingen Germany
| | - Simon Heine
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart Nobelstr. 12 70569 Stuttgart Germany
| | - Monika Bach
- Core Facility Hohenheim, University of Hohenheim Emil‐Wolff‐Str. 12 70599 Stuttgart Germany
| | - Ann‐Cathrin Volz
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Thomas Chassé
- Institute of Physical and Theoretical Chemistry, University of Tuebingen Auf der Morgenstelle 18 72076 Tuebingen Germany
| | - Petra J. Kluger
- School of Applied Chemistry, Reutlingen University Alteburgstr. 150 72762 Reutlingen Germany
| |
Collapse
|
36
|
Sajed R, Zarnani A, Madjd Z, Arefi S, Bolouri MR, Vafaei S, Samadikuchaksaraei A, Gholipourmalekabadi M, Haghighipour N, Ghods R. Introduction of an efficient method for placenta decellularization with high potential to preserve ultrastructure and support cell attachment. Artif Organs 2022; 46:375-386. [PMID: 35023156 DOI: 10.1111/aor.14162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/14/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Roya Sajed
- Department of Molecular Medicine Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences (IUMS) Tehran Iran
- Oncopathology Research Center Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Amir‐Hassan Zarnani
- Department of Immunology School of Public Health Tehran University of Medical Sciences (TUMS) Tehran Iran
- Reproductive Biotechnology Research Center Avicenna Research Institute (ACECR) Tehran Iran
| | - Zahra Madjd
- Department of Molecular Medicine Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences (IUMS) Tehran Iran
- Oncopathology Research Center Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Soheila Arefi
- Reproductive Biotechnology Research Center Avicenna Research Institute (ACECR) Tehran Iran
- Genetics and In Vitro Assisted Reproductive (GIVAR) Center Erfan Hospital Tehran Iran
| | - Mohammad Reza Bolouri
- Department of Immunology Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Sedigheh Vafaei
- Reproductive Biotechnology Research Center Avicenna Research Institute (ACECR) Tehran Iran
| | - Ali Samadikuchaksaraei
- Department of Tissue Engineering & Regenerative Medicine Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences (IUMS) Tehran Iran
- Cellular and Molecular Research Center Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Mazaher Gholipourmalekabadi
- Department of Tissue Engineering & Regenerative Medicine Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences (IUMS) Tehran Iran
- Cellular and Molecular Research Center Iran University of Medical Sciences (IUMS) Tehran Iran
| | | | - Roya Ghods
- Department of Molecular Medicine Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences (IUMS) Tehran Iran
- Oncopathology Research Center Iran University of Medical Sciences (IUMS) Tehran Iran
| |
Collapse
|
37
|
Zhang D, Sheng Y, Piano N, Jakuszeit T, Cozens E, Dong L, Buell AK, Pollet A, Lei IM, Wang W, Terentjev E, Huang YYS. Cancer cell migration on straight, wavy, loop and grid microfibre patterns. Biofabrication 2022; 14. [PMID: 34991078 DOI: 10.1088/1758-5090/ac48e6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/06/2022] [Indexed: 11/11/2022]
Abstract
Cell migration plays an important role in physiological and pathological processes where the fibrillar morphology of extracellular matrices (ECM) could regulate the migration dynamics. To mimic the morphological characteristics of fibrillar matrix structures, low-voltage continuous electrospinning was adapted to construct straight, wavy, looped and gridded fibre patterns made of polystyrene (of fibre diameter ca. 3 μm). Cells were free to explore their different shapes in response to the directly-adhered fibre, as well as to the neighbouring patterns. For all the patterns studied, analysing cellular migration dynamics of MDA-MB-231 (a highly migratory breast cancer cell line) demonstrated two interesting findings: first, although cells dynamically adjust their shapes and migration trajectories in response to different fibrillar environments, their average step speed is minimally affected by the fibre global pattern; secondly, a switch in behaviour was observed when the pattern features approach the upper limit of the cell body's minor axis, reflecting that cells' ability to divert from an existing fibre track is limited by the size along the cell body's minor axis. It is therefore concluded that the upper limit of cell body's minor axis might act as a guide for the design of microfibre patterns for different purposes of cell migration.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Yaqi Sheng
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Nicholas Piano
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Theresa Jakuszeit
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Edward Cozens
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Lingqing Dong
- School of Medicine, Zhejiang University, The Affiliated Stomatology Hospital., Hangzhou, Zhejiang, 310058, CHINA
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 227, 061 2800 Kgs. Lyngby, Lyngby, 2800, DENMARK
| | - Andreas Pollet
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, Eindhoven, Noord-Brabant, 5600 MB, NETHERLANDS
| | - Iek Man Lei
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Wenyu Wang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Eugene Terentjev
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CAMBRIDGE CB3 0HE, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
38
|
Moffat D, Ye K, Jin S. Decellularization for the retention of tissue niches. J Tissue Eng 2022; 13:20417314221101151. [PMID: 35620656 PMCID: PMC9128068 DOI: 10.1177/20417314221101151] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/01/2022] [Indexed: 12/25/2022] Open
Abstract
Decellularization of natural tissues to produce extracellular matrix is a promising method for three-dimensional scaffolding and for understanding microenvironment of the tissue of interest. Due to the lack of a universal standard protocol for tissue decellularization, recent investigations seek to develop novel methods for whole or partial organ decellularization capable of supporting cell differentiation and implantation towards appropriate tissue regeneration. This review provides a comprehensive and updated perspective on the most recent advances in decellularization strategies for a variety of organs and tissues, highlighting techniques of chemical, physical, biological, enzymatic, or combinative-based methods to remove cellular contents from tissues. In addition, the review presents modernized approaches for improving standard decellularization protocols for numerous organ types.
Collapse
Affiliation(s)
- Deana Moffat
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| | - Sha Jin
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| |
Collapse
|
39
|
Kislev N, Izgilov R, Adler R, Benayahu D. Exploring the Cell Stemness and the Complexity of the Adipose Tissue Niche. Biomolecules 2021; 11:biom11121906. [PMID: 34944549 PMCID: PMC8699211 DOI: 10.3390/biom11121906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a complex organ composed of different cellular populations, including mesenchymal stem and progenitor cells, adipocytes, and immune cells such as macrophages and lymphocytes. These cellular populations alter dynamically during aging or as a response to pathophysiology such as obesity. Changes in the various inflammatory cells are associated with metabolic complications and the development of insulin resistance, indicating that immune cells crosstalk with the adipocytes. Therefore, a study of the cell populations in the adipose tissue and the extracellular matrix maintaining the tissue niche is important for the knowledge on the regulatory state of the organ. We used a combination of methods to study various parameters to identify the composition of the resident cells in the adipose tissue and evaluate their profile. We analyzed the tissue structure and cells based on histology, immune fluorescence staining, and flow cytometry of cells present in the tissue in vivo and these markers’ expression in vitro. Any shift in cells’ composition influences self-renewal of the mesenchymal progenitors, and other cells affect the functionality of adipogenesis.
Collapse
|
40
|
Schmitt T, Katz N, Kishore V. A Feasibility Study on 3D Bioprinting of Microfat Constructs Towards Wound Healing Applications. Front Bioeng Biotechnol 2021; 9:707098. [PMID: 34386485 PMCID: PMC8353388 DOI: 10.3389/fbioe.2021.707098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic wounds affect over 400,000 people in the United States alone, with up to 60,000 deaths each year from non-healing ulcerations. Tissue grafting (e.g., autografts, allografts, and xenografts) and synthetic skin substitutes are common treatment methods, but most solutions are limited to symptomatic treatment and do not address the underlying causes of the chronic wound. Use of fat grafts for wound healing applications has demonstrated promise but these grafts suffer from low cell viability and poor retention at the wound site resulting in suboptimal healing of chronic wounds. Herein, we report on an innovative closed-loop fat processing system (MiniTCTM) that can efficiently process lipoaspirates into microfat clusters comprising of highly viable regenerative cell population (i.e., adipose stromal cells, endothelial progenitors) preserved in their native niche. Cryopreservation of MiniTCTM isolated microfat retained cell count and viability. To improve microfat retention and engraftment at the wound site, microfat was mixed with methacrylated collagen (CMA) bioink and 3D printed to generate microfat-laden collagen constructs. Modulating the concentration of microfat in CMA constructs had no effect on print fidelity or stability of the printed constructs. Results from the Alamar blue assay showed that the cells remain viable and metabolically active in microfat-laden collagen constructs for up to 10 days in vitro. Further, quantitative assessment of cell culture medium over time using ELISA revealed a temporal expression of proinflammatory and anti-inflammatory cytokines indicative of wound healing microenvironment progression. Together, these results demonstrate that 3D bioprinting of microfat-laden collagen constructs is a promising approach to generate viable microfat grafts for potential use in treatment of non-healing chronic wounds.
Collapse
Affiliation(s)
- Trevor Schmitt
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Nathan Katz
- Jointechlabs Inc., North Barrington, IL, United States
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
41
|
Chen H, Wang X, Wang J, Shi X, Li X, Wang J, Li D, Zhu Y, Tan W, Tan Z. In vitroadipogenesis and long-term adipocyte culture in adipose tissue-derived cell banks. Biofabrication 2021; 13. [PMID: 34044385 DOI: 10.1088/1758-5090/ac0610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/27/2021] [Indexed: 11/12/2022]
Abstract
There is a critical need to developin vitroculture systems appropriate for the expansion of adipose tissue, in order to gain new insights into metabolic diseases and to assist in the restoration of tissue defects. Conventional two- or three-dimensional (2D or 3D)in vitromodels of adipocytes require a combination of supplements to induce adipocyte maturation that greatly increases the cost of large-scale industrial production. In the present study, a microporous, perforated bacterial cellulose (BC)-assisted culture system was developed that promoted the adhesion, proliferation, and adipogenic differentiation of preadipocytes. Additionally, the system maintained the cells as mature unilocular adipocytesex vivoin normal cell culture medium in long-term culture. All cells were derived from isolated adipose tissue without the use of expensive enzymes for tissue digestion. In contrast to culture in hard tissue culture plates, preadipocytes in the soft 3D environments formed multidimensional interlaced cell contacts, undergoing significant spontaneous lipid accumulation and could be cultured for up to threemonths in maintenance medium. More importantly, the cultured adipose tissue-derived cell bank created here was able to produce injury repair activators that promoted the proliferation of fibroblasts with little fibrosis and the functional differentiation of myoblasts, displaying the potential for use in adipose reconstruction. Thus, the present study demonstrates the potential of a mechanically flexible BC scaffold to generate volume tunable adipose constructs and provides a low-cost and user-friendly strategy for large-scale industrial production of adipose tissue.
Collapse
Affiliation(s)
- Haoxiang Chen
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China.,State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xiaocheng Wang
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Jian Wang
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China.,State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xuelei Shi
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xinghuan Li
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Jianlong Wang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Dan Li
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yonghua Zhu
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Weihong Tan
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China.,State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
42
|
Zhong Y, Li X, Wang F, Wang S, Wang X, Tian X, Bai S, Miao D, Fan J. Emerging Potential of Exosomes on Adipogenic Differentiation of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:649552. [PMID: 34239869 PMCID: PMC8258133 DOI: 10.3389/fcell.2021.649552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
The mesenchymal stem cells have multidirectional differentiation potential and can differentiate into adipocytes, osteoblasts, cartilage tissue, muscle cells and so on. The adipogenic differentiation of mesenchymal stem cells is of great significance for the construction of tissue-engineered fat and the treatment of soft tissue defects. Exosomes are nanoscale vesicles secreted by cells and widely exist in body fluids. They are mainly involved in cell communication processes and transferring cargo contents to recipient cells. In addition, exosomes can also promote tissue and organ regeneration. Recent studies have shown that various exosomes can influence the adipogenic differentiation of stem cells. In this review, the effects of exosomes on stem cell differentiation, especially on adipogenic differentiation, will be discussed, and the mechanisms and conclusions will be drawn. The main purpose of studying the role of these exosomes is to understand more comprehensively the influencing factors existing in the process of stem cell differentiation into adipocytes and provide a new idea in adipose tissue engineering research.
Collapse
Affiliation(s)
- Yuxuan Zhong
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Xiang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Fanglin Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Shoushuai Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Shuling Bai
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Di Miao
- China Medical University-The Queen's University of Belfast Joint College-Combination, Shenyang, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| |
Collapse
|
43
|
Modular cell-assembled adipose matrix-derived bead foams as a mesenchymal stromal cell delivery platform for soft tissue regeneration. Biomaterials 2021; 275:120978. [PMID: 34182328 DOI: 10.1016/j.biomaterials.2021.120978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
With the goal of establishing a new clinically-relevant bioscaffold format to enable the delivery of high densities of human adipose-derived stromal cells (ASCs) for applications in soft tissue regeneration, a novel "cell-assembly" method was developed to generate robust 3-D scaffolds comprised of fused networks of decellularized adipose tissue (DAT)-derived beads. In vitro studies confirmed that the assembly process was mediated by remodelling of the extracellular matrix by the seeded ASCs, which were well distributed throughout the scaffolds and remained highly viable after 8 days in culture. The ASC density, sulphated glycosaminoglycan content and scaffold stability were enhanced under culture conditions that included growth factor preconditioning. In vivo testing was performed to compare ASCs delivered within the cell-assembled DAT bead foams to an equivalent number of ASCs delivered on a previously-established pre-assembled DAT bead foam platform in a subcutaneous implant model in athymic nude mice. Scaffolds were fabricated with human ASCs engineered to stably co-express firefly luciferase and tdTomato to enable long-term cell tracking. Longitudinal bioluminescence imaging showed a significantly stronger signal associated with viable human ASCs at timepoints up to 7 days in the cell-assembled scaffolds, although both implant groups were found to retain similar densities of human ASCs at 28 days. Notably, the infiltration of CD31+ murine endothelial cells was enhanced in the cell-assembled implants at 28 days. Moreover, microcomputed tomography angiography revealed that there was a marked reduction in vascular permeability in the cell-assembled group, indicating that the developing vascular network was more stable in the new scaffold format. Overall, the novel cell-assembled DAT bead foams represent a promising platform to harness the pro-regenerative paracrine functionality of human ASCs and warrant further investigation as a clinically-translational approach for volume augmentation.
Collapse
|
44
|
Lee S, Lee HS, Chung JJ, Kim SH, Park JW, Lee K, Jung Y. Enhanced Regeneration of Vascularized Adipose Tissue with Dual 3D-Printed Elastic Polymer/dECM Hydrogel Complex. Int J Mol Sci 2021; 22:ijms22062886. [PMID: 33809175 PMCID: PMC7999751 DOI: 10.3390/ijms22062886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
A flexible and bioactive scaffold for adipose tissue engineering was fabricated and evaluated by dual nozzle three-dimensional printing. A highly elastic poly (L-lactide-co-ε-caprolactone) (PLCL) copolymer, which acted as the main scaffolding, and human adipose tissue derived decellularized extracellular matrix (dECM) hydrogels were used as the printing inks to form the scaffolds. To prepare the three-dimensional (3D) scaffolds, the PLCL co-polymer was printed with a hot melting extruder system while retaining its physical character, similar to adipose tissue, which is beneficial for regeneration. Moreover, to promote adipogenic differentiation and angiogenesis, adipose tissue-derived dECM was used. To optimize the printability of the hydrogel inks, a mixture of collagen type I and dECM hydrogels was used. Furthermore, we examined the adipose tissue formation and angiogenesis of the PLCL/dECM complex scaffold. From in vivo experiments, it was observed that the matured adipose-like tissue structures were abundant, and the number of matured capillaries was remarkably higher in the hydrogel–PLCL group than in the PLCL-only group. Moreover, a higher expression of M2 macrophages, which are known to be involved in the remodeling and regeneration of tissues, was detected in the hydrogel–PLCL group by immunofluorescence analysis. Based on these results, we suggest that our PLCL/dECM fabricated by a dual 3D printing system will be useful for the treatment of large volume fat tissue regeneration.
Collapse
Affiliation(s)
- Soojin Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
| | - Hyun Su Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
| | - Justin J. Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul 02841, Korea;
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Correspondence: (K.L.); (Y.J.)
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Korea
- Correspondence: (K.L.); (Y.J.)
| |
Collapse
|
45
|
Shi Q, Chen C, Li M, Chen Y, Xu Y, Hu J, Liu J, Lu H. Characterization of the distributions of collagen and PGs content in the decellularized book-shaped enthesis scaffolds by SR-FTIR. BMC Musculoskelet Disord 2021; 22:235. [PMID: 33648475 PMCID: PMC7923620 DOI: 10.1186/s12891-021-04106-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background Bone-tendon interface (enthesis) plays a pivotal role in relaxing load transfer between otherwise structurally and functionally distinct tissue types. Currently, decellularized extracellular matrix (DEM) from enthesis provide a natural three-dimensional scaffold with tissue-specific orientations of extracellular matrix molecules for enthesis regeneration, however, the distributions of collagen and PGs content in the decellularized book-shaped enthesis scaffolds from rabbit rotator cuff by SR-FTIR have not been reported. Methods Native enthesis tissues (NET) harvested from rabbit rotator cuff were sectioned into cuboid (about 30 mm × 1.2 mm × 10 mm) for decalcification. The decellularized book-shaped enthesis scaffolds and intrinsic ultrastructure were evaluated by histological staining and scanning electron microscopy (SEM), respectively. The distributions of collagen and PGs content in the decellularized book-shaped enthesis scaffolds from rabbit rotator cuff were also measured innovatively by SR-FTIR. Results The decellularized book-shaped enthesis scaffolds from rabbit rotator cuff were successfully obtained. Histomorphology and SEM evaluated the effect of decellularization and the structure of extracellular matrix during decellularization. After mechanical testing, the failure load in the NET group showed significantly higher than that in the DEM group (P < 0.05). Meanwhile, the stiffness of the DEM group was significantly lower than the NET group. Furthermore, the distributions of collagen and PGs content in the decellularized book-shaped enthesis scaffolds were decreased obviously after decellularization by SR-FTIR quantitative analysis. Conclusion SR-FTIR was applied innovatively to characterize the histological morphology of native enthesis tissues from rabbit rotator cuff. Moreover, this technology can be applied for quantitative mapping of the distribution of collagen and PGs content in the decellularized book-shaped enthesis scaffolds.
Collapse
Affiliation(s)
- Qiang Shi
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, Hunan, China
| | - Can Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, Hunan, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Muzhi Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, Hunan, China
| | - Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, Hunan, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, Hunan, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, Hunan, China.,Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jun Liu
- Department of limbs (foot and hand) microsurgery, Affiliated Chenzhou No.1 People's Hospital, Southern Medical University, Chenzhou, 423000, Hunan, China.
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, Hunan, China
| |
Collapse
|
46
|
Cho W, Kim BS, Ahn M, Ryu YH, Ha D, Kong JS, Rhie J, Cho D. Flexible Adipose-Vascular Tissue Assembly Using Combinational 3D Printing for Volume-Stable Soft Tissue Reconstruction. Adv Healthc Mater 2021; 10:e2001693. [PMID: 33236508 DOI: 10.1002/adhm.202001693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/05/2020] [Indexed: 12/12/2022]
Abstract
A new concept, assembling cell-laden tissue modules, is for the first time proposed for soft tissue engineering. Adipose-vascular tissue modules composed of a synthetic polymer-based substructure and customized bioinks using planar 3D cell printing are engineered. Such tissue modules are systematically assembled into a synthetic polymer-based module holder fabricated with rotational 3D printing, resulting in the development of a flexible and volumetric tissue assembly. Whereas most of the previous studies about the construction of adipose tissue are limited to hypoxia, poor vascularization, rapid resorption, and mismatch in mechanical properties, it is aimed to realize the construction of nonhypoxic, flexible, and volume-stable tissue assembly in this study. The significance of engineered tissue assembly is proven through various in vitro and in vivo evaluations. In particular, stable volume and remarkable neovascularization/adipogenesis are observed in the implanted assembly over four weeks. Interestingly, the size of newly formed lipid droplets and the remodeled morphology in the assembly are comparable to those in native adipose tissue. As far as it is known, this work is a first report suggesting a cell printing-based tissue assembly for functional reconstruction of soft tissue.
Collapse
Affiliation(s)
- Won‐Woo Cho
- Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
- POSTECH‐Catholic Biomedical Engineering Institute POSTECH Pohang Kyungbuk 37673 Republic of Korea
| | - Byoung Soo Kim
- POSTECH‐Catholic Biomedical Engineering Institute POSTECH Pohang Kyungbuk 37673 Republic of Korea
- Future IT Innovation Laboratory POSTECH 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
| | - Minjun Ahn
- Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
- POSTECH‐Catholic Biomedical Engineering Institute POSTECH Pohang Kyungbuk 37673 Republic of Korea
| | - Yeon Hee Ryu
- Department of Biomedicine and Health Sciences College of Medicine The Catholic University of Korea 222, Banpo‐daero Seoul 06591 Republic of Korea
| | - Dong‐Heon Ha
- Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
- EDmicBio Inc. 26, Kyungheedae‐ro, Dongdaemun‐gu Seoul 02447 Republic of Korea
| | - Jeong Sik Kong
- POSTECH‐Catholic Biomedical Engineering Institute POSTECH Pohang Kyungbuk 37673 Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering POSTECH 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
| | - Jong‐Won Rhie
- Department of Plastic and Reconstructive Surgery Seoul St. Mary's Hospital College of Medicine The Catholic University of Korea 222, Banpo‐daero Seoul 06591 Republic of Korea
| | - Dong‐Woo Cho
- Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro, Nam‐gu Pohang Kyungbuk 37673 Republic of Korea
- POSTECH‐Catholic Biomedical Engineering Institute POSTECH Pohang Kyungbuk 37673 Republic of Korea
| |
Collapse
|
47
|
Xu Y, Shao B, Zeng X, Song Z, Jia M, Gong Z. Biofunctional Extracellular Matrix-Polycaprolactone-Hydroxyapatite Scaffold and Synovium Mesenchymal Stem Cells/Chondrocytes for Repairing Cartilage Defects. Tissue Eng Part A 2021; 27:1250-1263. [PMID: 33397197 DOI: 10.1089/ten.tea.2020.0245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Articular cartilage defects and degeneration can be caused by multiple factors, and the current clinical treatment schemes for pathological changes are relatively limited. Engineered cartilage tissue represents an alternative therapy for repairing cartilage defects in regenerative medicine. The scaffold material is considered the framework of tissue engineering; thus, scaffold material selection plays a crucial role in the therapy outcome. Polycaprolactone (PCL)-hydroxyapatite (HA) has been applied as a scaffold material for bone and cartilage tissue engineering with nontoxic, harmless metabolites and proper physical properties. The extracellular matrix (ECM) is mainly composed of collagen and proteoglycan, as well as a large number of growth factors and cytokines, which provide a tissue-specific microenvironment for host cells. Adipose-derived stem cells are pluripotent stem cells, and transforming growth factor-β3 (TGF-β3) enables mesenchymal stem cells to promote ECM production. This study, via in vitro and in vivo experiments, elucidated that the synovium mesenchymal stem cells (SMSCs) + chondrocytes + ECM-PCL-HA repair system, which is constructed upon the ECM-PCL-HA scaffold material, exhibits an adequate chondrogenic ability and reparatory effect. Overall, ECM-PCL-HA can be defined as a biofunctional scaffold material. The SMSCs + chondrocytes + ECM-PCL-HA repair system showed good confluency between the new cartilage and the surface, as well as the interface of the adjacent host cartilage. Furthermore, the structure of new cartilage tissue is consistent with adjacency. Thus, it can be used as a preferred plan for articular cartilage defect repair.
Collapse
Affiliation(s)
- Yingjie Xu
- Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital (the Affiliated Stomatological Hospital) of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi, China
| | - Bo Shao
- Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital (the Affiliated Stomatological Hospital) of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi, China
| | - Xuemin Zeng
- Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital (the Affiliated Stomatological Hospital) of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi, China
| | - Zhiqiang Song
- Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital (the Affiliated Stomatological Hospital) of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi, China
| | - Mengying Jia
- Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital (the Affiliated Stomatological Hospital) of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi, China
| | - Zhongcheng Gong
- Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital (the Affiliated Stomatological Hospital) of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi, China
| |
Collapse
|
48
|
Han TTY, Walker JT, Grant A, Dekaban GA, Flynn LE. Preconditioning Human Adipose-Derived Stromal Cells on Decellularized Adipose Tissue Scaffolds Within a Perfusion Bioreactor Modulates Cell Phenotype and Promotes a Pro-regenerative Host Response. Front Bioeng Biotechnol 2021; 9:642465. [PMID: 33816453 PMCID: PMC8012684 DOI: 10.3389/fbioe.2021.642465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-based therapies involving the delivery of adipose-derived stromal cells (ASCs) on decellularized adipose tissue (DAT) scaffolds are a promising approach for soft tissue augmentation and reconstruction. Our lab has recently shown that culturing human ASCs on DAT scaffolds within a perfusion bioreactor prior to implantation can enhance their capacity to stimulate in vivo adipose tissue regeneration. Building from this previous work, the current study investigated the effects of bioreactor preconditioning on the ASC phenotype and secretory profile in vitro, as well as host cell recruitment following implantation in an athymic nude mouse model. Immunohistochemical analyses indicated that culturing within the bioreactor increased the percentage of ASCs co-expressing inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1), as well as tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10), within the peripheral regions of the DAT relative to statically cultured controls. In addition, bioreactor culture altered the expression levels of a range of immunomodulatory factors in the ASC-seeded DAT. In vivo testing revealed that culturing the ASCs on the DAT within the perfusion bioreactor prior to implantation enhanced the infiltration of host CD31+ endothelial cells and CD26+ cells into the DAT implants, but did not alter CD45+F4/80+CD68+ macrophage recruitment. However, a higher fraction of the CD45+ cell population expressed the pro-regenerative macrophage marker CD163 in the bioreactor group, which may have contributed to enhanced remodeling of the scaffolds into host-derived adipose tissue. Overall, the findings support that bioreactor preconditioning can augment the capacity of human ASCs to stimulate regeneration through paracrine-mediated mechanisms.
Collapse
Affiliation(s)
- Tim Tian Y. Han
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - John T. Walker
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Aaron Grant
- Division of Plastic and Reconstructive Surgery, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Gregory A. Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Lauren E. Flynn
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn,
| |
Collapse
|
49
|
Asgari F, Khosravimelal S, Koruji M, Aliakbar Ahovan Z, Shirani A, Hashemi A, Ghasemi Hamidabadi H, Chauhan NPS, Moroni L, Reis RL, Kundu SC, Gholipourmalekabadi M. Long-term preservation effects on biological properties of acellular placental sponge patches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111814. [PMID: 33579458 DOI: 10.1016/j.msec.2020.111814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
Decellularization, preservation protocol and storage time influence the biomechanical and biological properties of allografts and xenografts. Here, we examined the consequences of storage time on the antibacterial, angiogenic and biocompatibility properties of the decellularized placental sponge (DPS) in vitro and in vivo. The DPS samples were preserved for one, three and six months at -20 °C. The decellularized scaffolds showed uniform morphology with interconnected pores compared with not decellularized sponges. Storage time did not interfere with collagen and vascular endothelial growth factor contents, and cytobiocompatibility for Hu02 fibroblast cells. Chorioallantoic membrane assay and subcutaneous implantation indicated a decreased new vessel formation and neovascularization in six months DPS sample compared with other experimental groups. The number of CD4+ and CD68+ cells infiltrated into the six months DPS on the implanted site showed a significant increase compared with one and three months sponges. The antibacterial activities and angiogenic properties of the DPS decreased over storage time. Three months preservation at -20 °C is suggested as the optimal storage period to retain its antibacterial activity and high stimulation of new vessel formation. This storage protocol could be considered for preservation of similar decellularized placenta-derived products with the aim of retaining their biological properties.
Collapse
Affiliation(s)
- Fatemeh Asgari
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadjad Khosravimelal
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Aliakbar Ahovan
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Shirani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hatef Ghasemi Hamidabadi
- Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Lorenzo Moroni
- Complex Tissue Regeneration Department, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Guimaraes, Portugal.
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Robb KP, Juignet L, Morissette Martin P, Walker JT, Brooks CR, Barreira C, Dekaban GA, Flynn LE. Adipose Stromal Cells Enhance Decellularized Adipose Tissue Remodeling Through Multimodal Mechanisms. Tissue Eng Part A 2020; 27:618-630. [PMID: 32873224 DOI: 10.1089/ten.tea.2020.0180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Decellularized adipose tissue (DAT) scaffolds represent a promising cell-instructive platform for soft tissue engineering. While recent work has highlighted that mesenchymal stromal cells, including adipose-derived stromal cells (ASCs), can be combined with decellularized scaffolds to augment tissue regeneration, the mechanisms involved require further study. The objective of this work was to probe the roles of syngeneic donor ASCs and host-derived macrophages in tissue remodeling of DAT scaffolds within an immunocompetent mouse model. Dual transgenic reporter mouse strains were employed to track and characterize the donor ASCs and host macrophages within the DAT implants. More specifically, ASCs isolated from dsRed mice were seeded on DAT scaffolds, and the seeded and unseeded control scaffolds were implanted subcutaneously into MacGreen transgenic mice for up to 8 weeks. ASC seeding was shown to augment cell infiltration into the DAT implants at 8 weeks, and this was linked to significantly enhanced angiogenesis relative to the unseeded controls. Immunohistochemical staining demonstrated long-term retention of the syngeneic donor ASCs over the duration of the 8-week study, providing evidence that the DAT scaffolds are a cell-supportive delivery platform. Notably, newly formed adipocytes within the DAT implants were not dsRed+, indicating that the donor ASCs supported fat formation through indirect mechanisms. Immunohistochemical tracking of host macrophages through costaining for enhanced green fluorescent protein with the macrophage marker Iba1 revealed that ASC seeding significantly increased the number of infiltrating macrophages within the DAT implants at 3 weeks, while the fraction of macrophages relative to the total cellular infiltrate was similar between the groups at 1, 3, and 8 weeks. Consistent with the tissue remodeling response that was observed, western blotting demonstrated that there was significantly augmented expression of CD163 and CD206, markers of constructive M2-like macrophages, within the ASC-seeded DAT implants. Overall, our results demonstrate that exogenous ASCs enhance tissue regeneration within DAT scaffolds indirectly through multimodal mechanisms that include host cell recruitment and immunomodulation. These data provide further evidence to support the use of decellularized scaffolds as a delivery platform for ASCs in tissue engineering.
Collapse
Affiliation(s)
- Kevin P Robb
- School of Biomedical Engineering, University of Western Ontario, London, Canada
| | - Laura Juignet
- Department of Anatomy and Cell Biology and Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Pascal Morissette Martin
- Department of Anatomy and Cell Biology and Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - John T Walker
- Department of Anatomy and Cell Biology and Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Courtney R Brooks
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Christy Barreira
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Canada.,Department of Microbiology & Immunology and University of Western Ontario, London, Canada
| | - Lauren E Flynn
- School of Biomedical Engineering, University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology and Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.,Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Canada.,Bone and Joint Institute, University of Western Ontario, London, Canada
| |
Collapse
|