1
|
Thilakan J, Goel SK, Arya N. In-situ collagen mineralization modulates metastatic properties of breast cancer cells. J Biosci Bioeng 2024:S1389-1723(24)00199-3. [PMID: 39580239 DOI: 10.1016/j.jbiosc.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 11/25/2024]
Abstract
Bone metastasis is the leading cause of morbidity and mortality in advanced-stage breast cancer patients. While most studies focus on the cellular and genetic factors associated with breast cancer metastasis, the role of the extracellular matrix (ECM) of bone in breast cancer metastasis remains elusive. In this study, we recapitulated the bone microenvironment using in-situ mineralized collagen type-I hydrogels and utilized them to understand breast cancer metastasis. Our results indicated successful mineralization of collagen type-I based hydrogels in the presence of serum proteins, which increased as a function of time. There was no difference in the adhesion of breast cancer cells seeded on collagen and mineralized collagen surfaces. However, there was a marked reduction in cell proliferation, down-regulation of various metastatic markers, and decreased migratory phenotype with a concomitant increase in cleaved caspase-3 on mineralized collagen compared to collagen hydrogels. In conclusion, our results suggest an inverse relationship between bone mineralization and the metastatic propensity of breast cancer cells. We further speculate the role of other factors in the skeletal ecosystem for mediating preferential homing of breast cancer cells to the bone microenvironment.
Collapse
Affiliation(s)
- Jaya Thilakan
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal 462020, Madhya Pradesh, India; Department of Genetics, UTD, Barkatullah University Bhopal, Bhopal 462026, Madhya Pradesh, India
| | - Sudhir Kumar Goel
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal 462020, Madhya Pradesh, India; Department of Biochemistry, T. S. Misra Medical College and Hospital, Amousi, Lucknow 226008, Uttar Pradesh, India
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal 462020, Madhya Pradesh, India.
| |
Collapse
|
2
|
Ma L, Dong W, Lai E, Wang J. Silk fibroin-based scaffolds for tissue engineering. Front Bioeng Biotechnol 2024; 12:1381838. [PMID: 38737541 PMCID: PMC11084674 DOI: 10.3389/fbioe.2024.1381838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Silk fibroin is an important natural fibrous protein with excellent prospects for tissue engineering applications. With profound studies in recent years, its potential in tissue repair has been developed. A growing body of literature has investigated various fabricating methods of silk fibroin and their application in tissue repair. The purpose of this paper is to trace the latest developments of SF-based scaffolds for tissue engineering. In this review, we first presented the primary and secondary structures of silk fibroin. The processing methods of SF scaffolds were then summarized. Lastly, we examined the contribution of new studies applying SF as scaffolds in tissue regeneration applications. Overall, this review showed the latest progress in the fabrication and utilization of silk fibroin-based scaffolds.
Collapse
Affiliation(s)
- Li Ma
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Wenyuan Dong
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Enping Lai
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Jiamian Wang
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| |
Collapse
|
3
|
Rajabi M, Cabral JD, Saunderson S, Gould M, Ali MA. Development and optimisation of hydroxyapatite-polyethylene glycol diacrylate hydrogel inks for 3D printing of bone tissue engineered scaffolds. Biomed Mater 2023; 18:065009. [PMID: 37699400 DOI: 10.1088/1748-605x/acf90a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
In the event of excessive damage to bone tissue, the self-healing process alone is not sufficient to restore bone integrity. Three-dimensional (3D) printing, as an advanced additive manufacturing technology, can create implantable bone scaffolds with accurate geometry and internal architecture, facilitating bone regeneration. This study aims to develop and optimise hydroxyapatite-polyethylene glycol diacrylate (HA-PEGDA) hydrogel inks for extrusion 3D printing of bone tissue scaffolds. Different concentrations of HA were mixed with PEGDA, and further incorporated with pluronic F127 (PF127) as a sacrificial carrier. PF127 provided good distribution of HA nanoparticle within the scaffolds and improved the rheological requirements of HA-PEGDA inks for extrusion 3D printing without significant reduction in the HA content after its removal. Higher printing pressures and printing rates were needed to generate the same strand diameter when using a higher HA content compared to a lower HA content. Scaffolds with excellent shape fidelity up to 75-layers and high resolution (∼200 µm) with uniform strands were fabricated. Increasing the HA content enhanced the compression strength and decreased the swelling degree and degradation rate of 3D printed HA-PEGDA scaffolds. In addition, the incorporation of HA improved the adhesion and proliferation of human bone mesenchymal stem cells (hBMSCs) onto the scaffolds. 3D printed scaffolds with 2 wt% HA promoted osteogenic differentiation of hBMSCs as confirmed by the expression of alkaline phosphatase activity and calcium deposition. Altogether, the developed HA-PEGDA hydrogel ink has promising potential as a scaffold material for bone tissue regeneration, with excellent shape fidelity and the ability to promote osteogenic differentiation of hBMSCs.
Collapse
Affiliation(s)
- Mina Rajabi
- Centre for Bioengineering & Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Jaydee D Cabral
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Sarah Saunderson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Rajabi M, Cabral JD, Saunderson S, Ali MA. 3D printing of chitooligosaccharide-polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration. J Biomed Mater Res A 2023; 111:1468-1481. [PMID: 37066870 DOI: 10.1002/jbm.a.37548] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
To date, lack of functional hydrogel inks has limited 3D printing applications in tissue engineering. This study developed a series of photocurable hydrogel inks based on chitooligosaccharide (COS)-polyethylene glycol diacrylate (PEGDA) for extrusion-based 3D printing of bone tissue scaffolds. The scaffolds were prepared by aza-Michael addition of COS and PEGDA followed by photopolymerisation of unreacted PEGDA. The hydrogel inks showed sufficient shear thinning properties required for extrusion 3D printing. The printed scaffolds exhibited excellent shape fidelity and fine microstructure with a resolution of 250 μm. By increasing the COS content, the swelling ratio of the scaffolds decreased, while the compressive strength increased. 3D printed COS-PEGDA scaffolds showed high viability of human bone mesenchymal stem cells in vitro. In addition, scaffolds containing 2 wt% COS showed significantly higher alkaline phosphatase activity, calcium deposition, and bioactivity in simulated body fluid compared to the control (PEGDA). Altogether, 3D printed COS-PEGDA scaffolds represent promising candidates for bone tissue regeneration.
Collapse
Affiliation(s)
- Mina Rajabi
- Faculty of Dentistry, Division of Health Sciences, Centre for Bioengineering & Nanomedicine, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Jaydee D Cabral
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sarah Saunderson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Faculty of Dentistry, Division of Health Sciences, Centre for Bioengineering & Nanomedicine, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Wu H, Lin K, Zhao C, Wang X. Silk fibroin scaffolds: A promising candidate for bone regeneration. Front Bioeng Biotechnol 2022; 10:1054379. [PMID: 36507269 PMCID: PMC9732393 DOI: 10.3389/fbioe.2022.1054379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
It remains a big challenge in clinical practice to repair large-sized bone defects and many factors limit the application of autografts and allografts, The application of exogenous scaffolds is an alternate strategy for bone regeneration, among which the silk fibroin (SF) scaffold is a promising candidate. Due to the advantages of excellent biocompatibility, satisfying mechanical property, controllable biodegradability and structural adjustability, SF scaffolds exhibit great potential in bone regeneration with the help of well-designed structures, bioactive components and functional surface modification. This review will summarize the cell and tissue interaction with SF scaffolds, techniques to fabricate SF-based scaffolds and modifications of SF scaffolds to enhance osteogenesis, which will provide a deep and comprehensive insight into SF scaffolds and inspire the design and fabrication of novel SF scaffolds for superior osteogenic performance. However, there still needs more comprehensive efforts to promote better clinical translation of SF scaffolds, including more experiments in big animal models and clinical trials. Furthermore, deeper investigations are also in demand to reveal the degradation and clearing mechanisms of SF scaffolds and evaluate the influence of degradation products.
Collapse
Affiliation(s)
- Hao Wu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Cancan Zhao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Cancan Zhao, ; Xudong Wang,
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Cancan Zhao, ; Xudong Wang,
| |
Collapse
|
6
|
de Wildt BWM, Ito K, Hofmann S. Human Platelet Lysate as Alternative of Fetal Bovine Serum for Enhanced Human In Vitro Bone Resorption and Remodeling. Front Immunol 2022; 13:915277. [PMID: 35795685 PMCID: PMC9251547 DOI: 10.3389/fimmu.2022.915277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction To study human physiological and pathological bone remodeling while addressing the principle of replacement, reduction and refinement of animal experiments (3Rs), human in vitro bone remodeling models are being developed. Despite increasing safety-, scientific-, and ethical concerns, fetal bovine serum (FBS), a nutritional medium supplement, is still routinely used in these models. To comply with the 3Rs and to improve the reproducibility of such in vitro models, xenogeneic-free medium supplements should be investigated. Human platelet lysate (hPL) might be a good alternative as it has been shown to accelerate osteogenic differentiation of mesenchymal stromal cells (MSCs) and improve subsequent mineralization. However, for a human in vitro bone model, hPL should also be able to adequately support osteoclastic differentiation and subsequent bone resorption. In addition, optimizing co-culture medium conditions in mono-cultures might lead to unequal stimulation of co-cultured cells. Methods We compared supplementation with 10% FBS vs. 10%, 5%, and 2.5% hPL for osteoclast formation and resorption by human monocytes (MCs) in mono-culture and in co-culture with (osteogenically stimulated) human MSCs. Results and Discussion Supplementation of hPL can lead to a less donor-dependent and more homogeneous osteoclastic differentiation of MCs when compared to supplementation with 10% FBS. In co-cultures, osteoclastic differentiation and resorption in the 10% FBS group was almost completely inhibited by MSCs, while the supplementation with hPL still allowed for resorption, mostly at low concentrations. The addition of hPL to osteogenically stimulated MSC mono- and MC-MSC co-cultures resulted in osteogenic differentiation and bone-like matrix formation, mostly at high concentrations. Conclusion We conclude that hPL could support both osteoclastic differentiation of human MCs and osteogenic differentiation of human MSCs in mono- and in co-culture, and that this can be balanced by the hPL concentration. Thus, the use of hPL could limit the need for FBS, which is currently commonly accepted for in vitro bone remodeling models.
Collapse
|
7
|
Grenadyorov A, Solovyev A, Oskomov K, Porokhova E, Brazovskii K, Gorokhova A, Nasibov T, Litvinova L, Khlusov I. In Vitro Biodegradation of a-C:H:SiO x Films on Ti-6Al-4V Alloy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4239. [PMID: 35744297 PMCID: PMC9231245 DOI: 10.3390/ma15124239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
This paper focuses mainly on the in vitro study of a five-week biodegradation of a-C:H:SiOx films of different thickness, obtained by plasma-assisted chemical vapor deposition onto Ti-6Al-4V alloy substrate using its pulsed bipolar biasing. In vitro immersion of a-C:H:SiOx films in a solution of 0.9% NaCl was used. It is shown how the a-C:H:SiOx film thickness (0.5-3 µm) affects the surface morphology, adhesive strength, and Na+ and Cl- precipitation on the film surface from the NaCl solution. With increasing film thickness, the roughness indices are reducing a little. The adhesive strength of the a-C:H:SiOx films to metal substrate corresponds to quality HF1 (0.5 µm in thickness) and HF2-HF3 (1.5-3 µm in thickness) of the Rockwell hardness test (VDI 3198) that defines strong interfacial adhesion and is usually applied in practice. The morphometric analysis of the film surface shows that on a-C:H:SiOx-coated Ti-6Al-4V alloy surface, the area occupied by the grains of sodium chloride is lower than on the uncoated surface. The reduction in the ion precipitation from 0.9% NaCl onto the film surface depended on the elemental composition of the surface layer conditioned by the thickness growth of the a-C:H:SiOx film. Based on the results of energy dispersive X-ray spectroscopy, the multiple regression equations are suggested to explain the effect of the elemental composition of the a-C:H:SiOx film on the decreased Na+ and Cl- precipitation. As a result, the a-C:H:SiOx films successfully combine good adhesion strength and rare ion precipitation and thus are rather promising for medical applications on cardiovascular stents and/or friction parts of heart pumps.
Collapse
Affiliation(s)
- Alexander Grenadyorov
- The Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., 634055 Tomsk, Russia; (A.G.); (A.S.); (K.O.)
| | - Andrey Solovyev
- The Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., 634055 Tomsk, Russia; (A.G.); (A.S.); (K.O.)
| | - Konstantin Oskomov
- The Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., 634055 Tomsk, Russia; (A.G.); (A.S.); (K.O.)
| | - Ekaterina Porokhova
- Department of Morphology and General Pathology, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia; (E.P.); (A.G.); (T.N.)
| | - Konstantin Brazovskii
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 43-A, Lenin Ave., 634050 Tomsk, Russia;
| | - Anna Gorokhova
- Department of Morphology and General Pathology, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia; (E.P.); (A.G.); (T.N.)
| | - Temur Nasibov
- Department of Morphology and General Pathology, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia; (E.P.); (A.G.); (T.N.)
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 14A, Nevskii Str., 236016 Kaliningrad, Russia;
| | - Igor Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia; (E.P.); (A.G.); (T.N.)
| |
Collapse
|
8
|
Ansari S, Ito K, Hofmann S. Alkaline Phosphatase Activity of Serum Affects Osteogenic Differentiation Cultures. ACS OMEGA 2022; 7:12724-12733. [PMID: 35474849 PMCID: PMC9026015 DOI: 10.1021/acsomega.1c07225] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 05/05/2023]
Abstract
Fetal bovine serum (FBS) is a widely used supplement in cell culture medium, despite its known variability in composition, which greatly affects cellular function and consequently the outcome of studies. In bone tissue engineering, the deposited mineralized matrix is one of the main outcome parameters, but using different brands of FBS can result in large variations. Alkaline phosphatase (ALP) is present in FBS. Not only is ALP used to judge the osteogenic differentiation of bone cells, it may affect deposition of mineralized matrix. The present study focused on the enzymatic activity of ALP in FBS of different suppliers and its contribution to mineralization in osteogenic differentiation cultures. It was hypothesized that culturing cells in a medium with high intrinsic ALP activity of FBS will lead to higher mineral deposition compared to media with lower ALP activity. The used FBS types were shown to have significant differences in enzymatic ALP activity. Our results indicate that the ALP activity of the medium not only affected the deposited mineralized matrix but also the osteogenic differentiation of cells as measured by a changed cellular ALP activity of human-bone-marrow-derived mesenchymal stromal cells (hBMSCs). In media with low inherent ALP activity, the cellular ALP activity was increased and played the major role in the mineralization process, while in media with high intrinsic ALP activity contribution from the serum, less cellular ALP activity was measured, and the ALP activity of the medium also contributed to mineral formation substantially. Our results highlight the diverse effects of ALP activity intrinsic to FBS on osteogenic differentiation and matrix mineralization and how FBS can determine the experimental outcomes, in particular for studies investigating matrix mineralization. Once again, the need to replace FBS with more controlled and known additives is highlighted.
Collapse
Affiliation(s)
- Sana Ansari
- Orthopaedic
Biomechanics, Department of Biomedical Engineering and Institute for
Complex Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic
Biomechanics, Department of Biomedical Engineering and Institute for
Complex Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sandra Hofmann
- Orthopaedic
Biomechanics, Department of Biomedical Engineering and Institute for
Complex Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
9
|
Zhang Y, Chen X, Li Y, Bai T, Li C, Jiang L, Liu Y, Sun C, Zhou W. Biomimetic Inorganic Nanoparticle-Loaded Silk Fibroin-Based Coating with Enhanced Antibacterial and Osteogenic Abilities. ACS OMEGA 2021; 6:30027-30039. [PMID: 34778674 PMCID: PMC8582041 DOI: 10.1021/acsomega.1c04734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Poor osseointegration and infection are the main reasons leading to the failure of hard tissue implants; especially, in recent years, the failure rate has been increasing every year owing to the continuously increasing conditions such as injury, trauma, diseases, or infections. Therefore, the development of a biomimetic surface coating of bone tissues with antibacterial function is an effective means to improve bone healing and inhibit bacterial infection. Mimicking the natural bone, in this study, we have designed a silk fibroin (collagen-like structure)-based coating inlaid with nanohydroxyapatite (nHA) and silver nanoparticles (AgNPs) for promoting antibacterial ability and osteogenesis, especially focusing on the bone mimetic structure for enhancing bone health. Observing the morphology and size of the composite nanoparticles by transmission electron microscope (TEM), nHA provided nucleation sites for the formation of AgNPs, forming an nHA/AgNP complex with a size of about 100-200 nm. Characterization of the nHA/Ag-loaded silk fibroin biomimetic coating showed an increased surface roughness with good density and compact performances. The silk fibroin-based coating loaded with uniformly distributed AgNPs and nHA could effectively inhibit the adhesion of Staphylococcus aureus on the surface and, at the same time, quickly kill planktonic bacteria, indicating their good antibacterial ability. In vitro cell experiments revealed that the biomimetic silk fibroin-based coating was beneficial to the adhesion, spreading, and proliferation of osteoblasts (MC3T3-E1). In addition, by characterizing LDH and ROS, it was found that the nHA/Ag complex could significantly reduce the cytotoxicity of AgNPs, and the osteoblasts on the coating surface maintained the structure intact.
Collapse
Affiliation(s)
- Yunpeng Zhang
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Xiaorong Chen
- Changzhi
Medical College, Changzhi 046000, Shanxi, China
| | - Yuan Li
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Tian Bai
- Shaanxi
Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016, China
| | - Chen Li
- Changzhi
Medical College, Changzhi 046000, Shanxi, China
| | - Lingyan Jiang
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Yu Liu
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Changying Sun
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Wenhao Zhou
- Shaanxi
Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016, China
| |
Collapse
|
10
|
Jeyakumar V, Amraish N, Niculescu-Morsza E, Bauer C, Pahr D, Nehrer S. Decellularized Cartilage Extracellular Matrix Incorporated Silk Fibroin Hybrid Scaffolds for Endochondral Ossification Mediated Bone Regeneration. Int J Mol Sci 2021; 22:ijms22084055. [PMID: 33919985 PMCID: PMC8071030 DOI: 10.3390/ijms22084055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/10/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022] Open
Abstract
Tissue engineering strategies promote bone regeneration for large bone defects by stimulating the osteogenesis route via intramembranous ossification in engineered grafts, which upon implantation are frequently constrained by insufficient integration and functional anastomosis of vasculature from the host tissue. In this study, we developed a hybrid biomaterial incorporating decellularized cartilage extracellular matrix (CD-ECM) as a template and silk fibroin (SF) as a carrier to assess the bone regeneration capacity of bone marrow-derived mesenchymal stem cells (hBMSC’s) via the endochondral ossification (ECO) route. hBMSC’s were primed two weeks for chondrogenesis, followed by six weeks for hypertrophy onto hybrid CD-ECM/SF or SF alone scaffolds and evaluated for the mineralized matrix formation in vitro. Calcium deposition biochemically determined increased significantly from 4-8 weeks in both SF and CD-ECM/SF constructs, and retention of sGAG’s were observed only in CD-ECM/SF constructs. SEM/EDX revealed calcium and phosphate crystal localization by hBMSC’s under all conditions. Compressive modulus reached a maximum of 40 KPa after eight weeks of hypertrophic induction. μCT scanning at eight weeks indicated a cloud of denser minerals in groups after hypertrophic induction in CD-ECM/SF constructs than SF constructs. Gene expression by RT-qPCR revealed that hBMSC’s expressed hypertrophic markers VEGF, COL10, RUNX2, but the absence of early hypertrophic marker ChM1 and later hypertrophic marker TSBS1 and the presence of osteogenic markers ALPL, IBSP, OSX under all conditions. Our data indicate a new method to prime hBMSC’S into the late hypertrophic stage in vitro in mechanically stable constructs for ECO-mediated bone tissue regeneration.
Collapse
Affiliation(s)
- Vivek Jeyakumar
- Center for Regenerative Medicine, Danube University Krems, 3500 Krems, Austria; (E.N.-M.); (C.B.); (S.N.)
- Correspondence:
| | - Nedaa Amraish
- Department of Anatomy and Biomechanics, Karl Landsteiner University for Health Sciences, 3500 Krems, Austria; (N.A.); (D.P.)
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, 1060 Vienna, Austria
| | - Eugenia Niculescu-Morsza
- Center for Regenerative Medicine, Danube University Krems, 3500 Krems, Austria; (E.N.-M.); (C.B.); (S.N.)
| | - Christoph Bauer
- Center for Regenerative Medicine, Danube University Krems, 3500 Krems, Austria; (E.N.-M.); (C.B.); (S.N.)
| | - Dieter Pahr
- Department of Anatomy and Biomechanics, Karl Landsteiner University for Health Sciences, 3500 Krems, Austria; (N.A.); (D.P.)
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, 1060 Vienna, Austria
| | - Stefan Nehrer
- Center for Regenerative Medicine, Danube University Krems, 3500 Krems, Austria; (E.N.-M.); (C.B.); (S.N.)
| |
Collapse
|
11
|
3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Acta Biomater 2021; 121:637-652. [PMID: 33326888 DOI: 10.1016/j.actbio.2020.12.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/22/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022]
Abstract
Bioprinting is a promising technique for facilitating the fabrication of engineered bone tissues for patient-specific defect repair and for developing in vitro tissue/organ models for ex vivo tests. However, polymer-based ink materials often result in insufficient mechanical strength, low scaffold fidelity and loss of osteogenesis induction because of the intrinsic swelling/shrinking and bioinert properties of most polymeric hydrogels. Here, we developed a human mesenchymal stem cells (hMSCs)-laden graphene oxide (GO)/alginate/gelatin composite bioink to form 3D bone-mimicking scaffolds using a 3D bioprinting technique. Our results showed that the GO composite bioinks (0.5GO, 1GO, 2GO) with higher GO concentrations (0.5, 1 and 2 mg/ml) improved the bioprintability, scaffold fidelity, compressive modulus and cell viability at day 1. The higher GO concentration increased the cell body size and DNA content, but the 2GO group swelled and had the lowest compressive modulus at day 42. The 1GO group had the highest osteogenic differentiation of hMSC with the upregulation of osteogenic-related gene (ALPL, BGLAP, PHEX) expression. To mimic critical-sized calvarial bone defects in mice and prove scaffold fidelity, 3D cell-laden GO defect scaffolds with complex geometries were successfully bioprinted. 1GO maintained the best scaffold fidelity and had the highest mineral volume after culturing in the bioreactor for 42 days. In conclusion, GO composite bioinks had better bioprintability, scaffold fidelity, cell proliferation, osteogenic differentiation and ECM mineralization than the pure alginate/gelatin system. The optimal GO group was 1GO, which demonstrated the potential for 3D bioprinting of bone tissue models and tissue engineering applications.
Collapse
|
12
|
Schädli GN, Vetsch JR, Baumann RP, de Leeuw AM, Wehrle E, Rubert M, Müller R. Time-lapsed imaging of nanocomposite scaffolds reveals increased bone formation in dynamic compression bioreactors. Commun Biol 2021; 4:110. [PMID: 33495540 PMCID: PMC7835377 DOI: 10.1038/s42003-020-01635-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
Progress in bone scaffold development relies on cost-intensive and hardly scalable animal studies. In contrast to in vivo, in vitro studies are often conducted in the absence of dynamic compression. Here, we present an in vitro dynamic compression bioreactor approach to monitor bone formation in scaffolds under cyclic loading. A biopolymer was processed into mechanically competent bone scaffolds that incorporate a high-volume content of ultrasonically treated hydroxyapatite or a mixture with barium titanate nanoparticles. After seeding with human bone marrow stromal cells, time-lapsed imaging of scaffolds in bioreactors revealed increased bone formation in hydroxyapatite scaffolds under cyclic loading. This stimulatory effect was even more pronounced in scaffolds containing a mixture of barium titanate and hydroxyapatite and corroborated by immunohistological staining. Therefore, by combining mechanical loading and time-lapsed imaging, this in vitro bioreactor strategy may potentially accelerate development of engineered bone scaffolds and reduce the use of animals for experimentation. Schädli et al. present a bioreactor system that combines mechanical loading with longitudinal microCT imaging to assess bone mineralization in a poly(lactic-co-glycolic acid) (PLGA) scaffold reinforced with nanoparticles. This approach allows rapid and rigorous evaluation of engineered bone scaffolds performance in vitro and might reduce the use of animals for experimentation.
Collapse
Affiliation(s)
- Gian Nutal Schädli
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Jolanda R Vetsch
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Robert P Baumann
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Anke M de Leeuw
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marina Rubert
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Zhang H, You R, Yan K, Lu Z, Fan Q, Li X, Wang D. Silk as templates for hydroxyapatite biomineralization: A comparative study of Bombyx mori and Antheraea pernyi silkworm silks. Int J Biol Macromol 2020; 164:2842-2850. [DOI: 10.1016/j.ijbiomac.2020.08.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/29/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
|
14
|
Zhang J, Wehrle E, Adamek P, Paul GR, Qin XH, Rubert M, Müller R. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Acta Biomater 2020; 114:307-322. [PMID: 32673752 DOI: 10.1016/j.actbio.2020.07.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
Abstract
Bioprinting is an emerging technology in which cell-laden biomaterials are precisely dispersed to engineer artificial tissues that mimic aspects of the anatomical and structural complexity of relatively soft tissues such as skin, vessels, and cartilage. However, reproducing the highly mineralized and cellular diversity of bone tissue is still not easily achievable and is yet to be demonstrated. Here, an extrusion-based 3D bioprinting strategy is utilized to fabricate 3D bone-like tissue constructs containing osteogenic cellular organization. A simple and low-cost bioink for 3D bioprinting of bone-like tissue is prepared based on two unmodified polymers (alginate and gelatin) and combined with human mesenchymal stem cells (hMSCs). To form 3D bone-like tissue and bone cell phenotype, the influence of different scaffold stiffness and cell density of 3D bioprinted cell-laden porous scaffolds on osteogenic differentiation and bone-like tissue formation was investigated over time. Our results showed that soft scaffolds (0.8%alg, 0.66 ± 0.08 kPa) had higher DNA content, enhanced ALP activity and stimulated osteogenic differentiation than stiff scaffolds (1.8%alg, 5.4 ± 1.2 kPa). At day 42, significantly more mineralized tissue was formed in soft scaffolds than in stiff scaffolds (43.5 ± 7.1 mm3 vs. 22.6 ± 6.0 mm3). Importantly, immunohistochemistry staining demonstrated more osteocalcin protein expression in high mineral compared to low mineral regions. Additionally, cells in soft scaffolds exhibited osteoblast- and early osteocyte-related gene expression and 3D cellular network within the mineralized matrix at day 42. Furthermore, the results showed that cell density in 15 M cells/ml can promote cell-cell connections at day 7 and mineral formation at day 14, while 5 M cells/ml had the significantly higher mineral formation rate than 15 M cells/ml from day 14 to day 21. In summary, this work reports the formation of 3D bioprinted bone-like tissue using a simple and low-cost cell-laden bioink, which was optimized for stiffness and cell density, showing great promise for bone tissue engineering applications. STATEMENT OF SIGNIFICANCE: In this study, we presented for the first time a framework combining 3D bioprinting, bioreactor system and time-lapsed micro-CT monitoring to provide in vitro scaffold fabrication, maturation, and mineral visualization for bone tissue engineering. 3D bone-like tissue constructs have been formed via optimizing scaffold stiffness and cell density. The soft scaffolds had higher cell proliferation, enhanced alkaline phosphatase activity and stimulated osteogenic differentiation with 3D cellular network foramtion than stiff scaffolds. Significantly more mineralized bone-like tissue was formed in soft scaffolds than stiff scaffolds at day 42. Meanwhile, cell density in 15 M cells/ml can promote cell-cell connections and mineral formation in 14 days, while the higher mineral formation rate was found in 5 M cells/ml from day 14 to day 21.
Collapse
Affiliation(s)
- Jianhua Zhang
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland
| | - Pavel Adamek
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland
| | - Graeme R Paul
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland
| | - Xiao-Hua Qin
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland
| | - Marina Rubert
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland.
| |
Collapse
|
15
|
3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111433. [PMID: 33255027 DOI: 10.1016/j.msec.2020.111433] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
Polycaprolactone (PCL) scaffolds have been widely investigated for tissue engineering applications, however, they exhibit poor cell adhesion and mechanical properties. Subsequently, PCL composites have been produced to improve the material properties. This study utilises a natural material, Bombyx mori silk microparticles (SMP) prepared by milling silk fibre, to produce a composite to enhance the scaffolds properties. Silk is biocompatible and biodegradable with excellent mechanical properties. However, there are no studies using SMPs as a reinforcing agent in a 3D printed thermoplastic polymer scaffold. PCL/SMP (10, 20, 30 wt%) composites were prepared by melt blending. Rheological analysis showed that SMP loading increased the shear thinning and storage modulus of the material. Scaffolds were fabricated using a screw-assisted extrusion-based additive manufacturing system. Scanning electron microscopy and X-ray microtomography was used to determine scaffold morphology. The scaffolds had high interconnectivity with regular printed fibres and pore morphologies within the designed parameters. Compressive mechanical testing showed that the addition of SMP significantly improved the compressive Young's modulus of the scaffolds. The scaffolds were more hydrophobic with the inclusion of SMP which was linked to a decrease in total protein adsorption. Cell behaviour was assessed using human adipose derived mesenchymal stem cells. A cytotoxic effect was observed at higher particle loading (30 wt%) after 7 days of culture. By day 21, 10 wt% loading showed significantly higher cell metabolic activity and proliferation, high cell viability, and cell migration throughout the scaffold. Calcium mineral deposition was observed on the scaffolds during cell culture. Large calcium mineral deposits were observed at 30 wt% and smaller calcium deposits were observed at 10 wt%. This study demonstrates that SMPs incorporated into a PCL scaffold provided effective mechanical reinforcement, improved the rate of degradation, and increased cell proliferation, demonstrating potential suitability for bone tissue engineering applications.
Collapse
|
16
|
Naqvi SM, Panadero Pérez JA, Kumar V, Verbruggen ASK, McNamara LM. A Novel 3D Osteoblast and Osteocyte Model Revealing Changes in Mineralization and Pro-osteoclastogenic Paracrine Signaling During Estrogen Deficiency. Front Bioeng Biotechnol 2020; 8:601. [PMID: 32656194 PMCID: PMC7326002 DOI: 10.3389/fbioe.2020.00601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Recent in vitro studies have revealed that the mechanobiological responses of osteoblasts and osteocytes are fundamentally impaired during estrogen deficiency. However, these two-dimensional (2D) cell culture studies do not account for in vivo biophysical cues. Thus, the objectives of this study are to (1) develop a three-dimensional (3D) osteoblast and osteocyte model integrated into a bioreactor and (2) apply this model to investigate whether estrogen deficiency leads to changes in osteoblast to osteocyte transition, mechanosensation, mineralization, and paracrine signaling associated with bone resorption by osteoclasts. MC3T3-E1s were expanded in media supplemented with estrogen (17β-estradiol). These cells were encapsulated in gelatin-mtgase before culture in (1) continued estrogen (E) or (2) no further estrogen supplementation. Constructs were placed in gas permeable and water impermeable cell culture bags and maintained at 5% CO2 and 37°C. These bags were either mechanically stimulated in a custom hydrostatic pressure (HP) bioreactor or maintained under static conditions (control). We report that osteocyte differentiation, characterized by the presence of dendrites and staining for osteocyte marker dentin matrix acidic phosphoprotein 1 (DMP1), was significantly greater under estrogen withdrawal (EW) compared to under continuous estrogen treatment (day 21). Mineralization [bone sialoprotein (BSP), osteopontin (OPN), alkaline phosphatase (ALP), calcium] and gene expression associated with paracrine signaling for osteoclastogenesis [receptor activator of nuclear factor kappa-β ligand (RANKL)/osteoprotegerin OPG ratio] were significantly increased in estrogen deficient and mechanically stimulated cells. Interestingly, BSP and DMP-1 were also increased at day 1 and day 21, respectively, which play a role in regulation of biomineralization. Furthermore, the increase in pro-osteoclastogenic signaling may be explained by altered mechanoresponsiveness of osteoblasts or osteocytes during EW. These findings highlight the impact of estrogen deficiency on bone cell function and provide a novel in vitro model to investigate the mechanisms underpinning changes in bone cells after estrogen deficiency.
Collapse
Affiliation(s)
| | | | | | | | - Laoise M. McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
17
|
Siavashani AZ, Mohammadi J, Rottmar M, Senturk B, Nourmohammadi J, Sadeghi B, Huber L, Maniura-Weber K. Silk fibroin/sericin 3D sponges: The effect of sericin on structural and biological properties of fibroin. Int J Biol Macromol 2020; 153:317-326. [DOI: 10.1016/j.ijbiomac.2020.02.316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
|
18
|
Nie L, Li X, Wang Z, Hu K, Cai R, Li P, Han Y, Sun M, Yuan H, Suo J, Yang S. In vitro biomineralization on poly(vinyl alcohol)/biphasic calcium phosphate hydrogels. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2020. [DOI: 10.1680/jbibn.19.00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biomineralized tissue is considered the final product of successful cell culture in bone tissue engineering. Dulbecco’s modified Eagle’s medium (DMEM) with fetal bovine serum (FBS) not only is used as a common culture medium but also provides a natural biomineralization environment, due to having similar ionic concentrations as blood plasma. Here, poly(vinyl alcohol) hydrogel with incorporated biphasic calcium phosphate nanoparticles was immersed in a DMEM–FBS cell culture medium, and then biomineralization occurred on the nanocomposite surface, which was characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. Such formed bone-like apatite on the surface facilitated the proliferation of osteoblasts, identified by Cell Counting Kit-8 analysis and fluorescent microscopy. This study verified the spontaneous biomineralization on the surface of a calcium phosphate-based nanocomposite by using a simple DMEM–FBS immersion strategy, which was promising for biomodification of bone substitutes.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xingchen Li
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Zheng Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Kehui Hu
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Ruihua Cai
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Pei Li
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yanting Han
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Meng Sun
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Hongyu Yuan
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jinping Suo
- State Key Laboratory of Mould Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Shoufeng Yang
- Department of Mechanical Engineering, Catholic University of Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Silk fibroin coated TiO2 nanotubes for improved osteogenic property of Ti6Al4V bone implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:109982. [DOI: 10.1016/j.msec.2019.109982] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/31/2023]
|
20
|
Hadida M, Marchat D. Strategy for achieving standardized bone models. Biotechnol Bioeng 2019; 117:251-271. [PMID: 31531968 PMCID: PMC6915912 DOI: 10.1002/bit.27171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022]
Abstract
Reliably producing functional in vitro organ models, such as organ-on-chip systems, has the potential to considerably advance biology research, drug development time, and resource efficiency. However, despite the ongoing major progress in the field, three-dimensional bone tissue models remain elusive. In this review, we specifically investigate the control of perfusion flow effects as the missing link between isolated culture systems and scientifically exploitable bone models and propose a roadmap toward this goal.
Collapse
Affiliation(s)
- Mikhael Hadida
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - David Marchat
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| |
Collapse
|
21
|
Nano-hydroxyapatite mineralized silk fibroin porous scaffold for tooth extraction site preservation. Dent Mater 2019; 35:1397-1407. [DOI: 10.1016/j.dental.2019.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/12/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
|
22
|
de Wildt BW, Ansari S, Sommerdijk NA, Ito K, Akiva A, Hofmann S. From bone regeneration to three-dimensional in vitro models: tissue engineering of organized bone extracellular matrix. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Kundu B, Bastos ARF, Brancato V, Cerqueira MT, Oliveira JM, Correlo VM, Reis RL, Kundu SC. Mechanical Property of Hydrogels and the Presence of Adipose Stem Cells in Tumor Stroma Affect Spheroid Formation in the 3D Osteosarcoma Model. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14548-14559. [PMID: 30943004 DOI: 10.1021/acsami.8b22724] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Osteosarcoma is one of the most common metastatic bone cancers, which results in significant morbidity and mortality. Unfolding of effectual therapeutic strategies against osteosarcoma is impeded because of the absence of adequate animal models, which can truly recapitulate disease biology of humans. Tissue engineering provides an opportunity to develop physiologically relevant, reproducible, and tunable in vitro platforms to investigate the interactions of osteosarcoma cells with its microenvironment. Adipose-derived stem cells (ASCs) are detected adjacent to osteosarcoma masses and are considered to have protumor effects. Hence, the present study focuses on investigating the role of reactive ASCs in formation of spheroids of osteosarcoma cells (Saos 2) within a three-dimensional (3D) niche, which is created using gellan gum (GG)-silk fibroin. By modifying the blending ratio of GG-silk, the optimum stiffness of the resultant hydrogels such as GG and GG75: S25 is obtained for cancer spheroid formation. This work indicates that the co-existence of cancer and stem cells can form a spheroid, the hallmark of cancer, only in particular microenvironment stiffness. The incorporation of fibrillar silk fibroin within the hydrophilic network of GG in GG75: S25 spongy-like hydrogels closely mimics the stiffness of commercially established cancer biomaterials (e.g., Matrigel, HyStem). The GG75: S25 hydrogel maintains the metabolically active construct for a longer time with elevated expression of osteopontin, osteocalcin, RUNX 2, and bone sialoprotein genes, the biomarkers of osteosarcoma, compared to GG. The GG75: S25 construct also exhibits intense alkaline phosphatase expression in immunohistochemistry compared to GG, indicating itspotentiality to serve as biomimetic niche to model osteosarcoma. Taken together, the GG-silk fibroin-blended spongy-like hydrogel is envisioned as an alternative low-cost platform for 3D cancer modeling.
Collapse
Affiliation(s)
- B Kundu
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
| | - A R F Bastos
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
| | - V Brancato
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
| | - M T Cerqueira
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
| | - J M Oliveira
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark , Barco, Guimarães 4805-017 , Portugal
| | - V M Correlo
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark , Barco, Guimarães 4805-017 , Portugal
| | - R L Reis
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark , Barco, Guimarães 4805-017 , Portugal
| | - S C Kundu
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
| |
Collapse
|
24
|
In Vivo Performance of Hierarchical HRP-Crosslinked Silk Fibroin/β-TCP Scaffolds for Osteochondral Tissue Regeneration. ACTA ACUST UNITED AC 2019. [DOI: 10.20900/rmf20190007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Yan J, Zhou W, Jia Z, Xiong P, Li Y, Wang P, Li Q, Cheng Y, Zheng Y. Endowing polyetheretherketone with synergistic bactericidal effects and improved osteogenic ability. Acta Biomater 2018; 79:216-229. [PMID: 30172936 DOI: 10.1016/j.actbio.2018.08.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 01/10/2023]
Abstract
Biomedical associated infections (BAI) are difficult to treat and may even lead to amputation and death, especially after the emergence of drug-resistant bacteria. The aim of this study was to harness the potential synergistic effects of multiple bactericidal agents to endow polyetheretherketone (PEEK) with the ability of achieving full eradication of planktonic and adherent bacteria while maintaining acceptable biocompatibility. In this work, a mussel inspired, silver nanoparticles (AgNPs) incorporated silk fibroin (SF)/gentamicin sulfate (GS) coating was constructed upon porous PEEK surface. The obtained coating greatly enhanced the bactericidal efficiency to Gram-positive bacteria and Gram-negative bacteria. The number of bacteria survived in the culture medium after treated with this coating was 106 fold lower than that survived after treated with PEEK sample, while the number of viable bacteria adhered to this coating was 105 lower than that adhered to PEEK sample. Furthermore, release of Ag+ and GS increased with decreasing pH, indicating great potential of this coating to be a "smart" bacteria-triggered self-defensive coating. Meanwhile, this functional coating shows favorable cytocompatibility and osteogenic ability. The mechanism behind this dual function is also partially revealed. Expectedly, this "smart" dual function coating can give a promise for PEEK to become a solution to increasingly deteriorated BAI. STATEMENT OF SIGNIFICANCE In this study, a mussel inspired, silver nanoparticles (AgNPs) incorporated silk fibroin (SF)/gentamicin sulfate (GS) coating was constructed upon porous polyetheretherketone (PEEK) surface. This design was aimed to provide a solution to the increasingly deteriorated biomedical associated infections (BAI). Actually, this design endowed PEEK with dual function: bacteria-triggered synergistic bactericidal effect and improved osteogenic ability. The combination of silver and GS exhibited synergistic bacteria killing effect on both Gram-positive and Gram-negative bacteria, which showed 106 times higher in releasing-killing and 105 times higher in anti-adhesion than that of untreated PEEK. Furthermore, release of bactericidal agents increased with decreasing pH, indicating great potential of this coating to be a bacteria-triggered self-defensive coating. More interestingly, this study revealed the mechanism of synergistic effect between silver and GS.
Collapse
|
26
|
Chawla S, Sharma A, Bandyopadhyay A, Ghosh S. Developmental Biology-Inspired Strategies To Engineer 3D Bioprinted Bone Construct. ACS Biomater Sci Eng 2018; 4:3545-3560. [DOI: 10.1021/acsbiomaterials.8b00757] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shikha Chawla
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Aarushi Sharma
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences & Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
27
|
Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv 2018; 36:68-91. [DOI: 10.1016/j.biotechadv.2017.10.001] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022]
|
28
|
Vetsch JR, Müller R, Hofmann S. The influence of curvature on three-dimensional mineralized matrix formation under static and perfused conditions: an in vitro bioreactor model. J R Soc Interface 2017; 13:rsif.2016.0425. [PMID: 27733699 DOI: 10.1098/rsif.2016.0425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/12/2016] [Indexed: 11/12/2022] Open
Abstract
Bone remodelling is the continuous turnover of bone by resorption and formation. It is controlled by interstitial fluid flow sensed by osteocytes. The refilling of bone resorption sites has been shown to be curvature driven. In vitro, curvature influences tissue growth and cytoskeletal arrangements under static and perfused conditions. Nevertheless, this has only been demonstrated for non-mineralized tissue in limited three-dimensional volumes. This study aims at investigating the influence of three different channel curvatures (S, -2.00 mm-1; M, -1.33 mm-1; L, -0.67 mm-1) on mineralized tissue formation in three dimensions under static and perfused conditions. The ingrowth of mineralized tissue into the channels was dependent on curvature and was higher under perfusion (M and S channels). L channels were not closed in any group compared with partially (static) or fully (perfused) closed M and S channels. Mineralized tissue morphology was cortical-like in static samples and trabecular-like in perfused samples. Our results suggest that the three-dimensional in vitro model presented is not only able to reveal effects of curvature on mineralized tissue formation, but may be used as an in vitro model for critical size defects in trabecular or cortical bone.
Collapse
Affiliation(s)
- Jolanda R Vetsch
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland
| | - Sandra Hofmann
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
29
|
Cai J, Jiang J, Mo X, Chen S. [Effect of silk fibroin/poly ( L-lactic acid-co-e-caprolactone) nanofibrous scaffold on tendon-bone healing of rabbits]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:957-962. [PMID: 29806433 DOI: 10.7507/1002-1892.201704077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To explore the effect of silk fibroin/poly( L-lactic acid-co-e-caprolactone) [SF/P(LLA-CL)] nanofibrous scaffold on tendon-bone healing of rabbits. Methods SF/P(LLA-CL) nanofibrous scaffold was fabricated by electrospinning methods. The morphology of the scaffold was observed by scanning electron microscope (SEM). Pre-osteoblasts MC3T3-E1 cells were seeded on the scaffold and cultured for 1, 3, and 5 days. Cell adhesion and proliferation were also observed by SEM. Meanwhile, twenty-four New Zealand white rabbits were randomly divided into the autogenous tendon group (control group) and the autogenous tendon wrapped with SF/P(LLA-CL) scaffold group (experimental group), with twelve rabbits in each group. An extra-articular model was established, the effect was evaluated by histological examination and mechanical testing. Results The morphology of SF/P(LLA-CL) nanofibrous scaffold was random, with a diameter of (219.4±66.5) nm. SEM showed that the MC3T3-E1 cells seeded on the scaffold were in the normal shape, growing well, and proliferating with time course. The results of histological examination showed that inflammatory cells infltrated into the graft-host bone interface at 6 weeks after operation in both groups. Besides, the width of interface showed no significant difference between groups. At 12 weeks after operation, protruding new bone tissue could be observed at the interface in the experimental group, while scar tissue but no new bone tissue could be seen at the interface in the control group. Mechanical testing showed that there was no significant difference in the failure load and the stiffness between groups at 6 weeks after operation ( P>0.05). The failure load and the stiffness in the experimental group were significantly higher than those in the control group at 12 weeks after operation ( P<0.05). Conclusion The SF/P(LLA-CL) nanofibrous scaffold has good cell biocompatibility and can effectively promote tendon-bone healing, thus providing new method for modifying graft for ACL reconstruction in the clinical practice.
Collapse
Affiliation(s)
- Jiangyu Cai
- Department of Sports Medicine and Arthroscopic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, P.R.China
| | - Jia Jiang
- Department of Sports Medicine and Arthroscopic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, P.R.China
| | - Xiumei Mo
- Biomaterials and Tissue Engineering Laboratory, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P.R.China
| | - Shiyi Chen
- Department of Sports Medicine and Arthroscopic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040,
| |
Collapse
|
30
|
Zhou W, Jia Z, Xiong P, Yan J, Li Y, Li M, Cheng Y, Zheng Y. Bioinspired and Biomimetic AgNPs/Gentamicin-Embedded Silk Fibroin Coatings for Robust Antibacterial and Osteogenetic Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25830-25846. [PMID: 28731325 DOI: 10.1021/acsami.7b06757] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
With the progressively increasing demand for orthopedic Ti implants, the balance between two primary complications restricting implant applications is needed to be solved: the lack of bone tissue integration and biomedical device-associated infections (BAI), where emergence of multiresistance bacteria make it worse. Notably, a combination of silver nanoparticles (AgNPs) and a kind of antibiotic can synergistically inhibit bacterial growth, where a low concentration of AgNPs has been confirmed to promote the proliferation and osteogenesis of osteoblasts. In this work, we built AgNPs/gentamicin (Gen)-embedded silk fibroin (SF)-based biomimetic coatings on orthopedic titanium by a facile dipping-drying circular process and with the assistance of polydopamine (PD). Ag+ was reduced to AgNPs by SF under ultraviolet (UV) irradiation, and then they were detected by transmission electron microscope (TEM) images and UV-visible (UV-vis) analyses. Intriguingly, the addition of Gen highly improved the reduction efficiency of Ag+. The antibacterial efficiency of SF-based coatings was examined by challenging them with pathogenic Staphylococcus aureus (S. aureus) bacteria which produced biofilms, and consequently, we found that low concentration loading, durable release of Ag+ (28 days), and 10-fold improvement of antibacterial efficiency were achieved for our novel AgNPs- and Gen-embeded silk fibroin coatings. In bacteria and a cells cocultured system, AgNPs/Gen-embedded coatings strongly inhibited adhesion and proliferation of S. aureus, simultaneously improving cell adhesion and growth. To investigate cytocompatibility and osteogenic potential, different coatings were cultured with MC3T3 cells; AgNPs/Gen-embedded coatings showed generally acceptable biocompatibility (cell adhesion, proliferation, and viability) and accelerated osteoblast maturation (alkaline phosphatase production, matrix secretion, and calcification). Expectantly, this novel biofunctional coating will have promising applications in orthopedic and dental titanium implants thanks to its excellently antibacterial, biocompatible, and osteogenic activities.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Li
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University , Beijing 100053, China
| | | | | |
Collapse
|
31
|
Midha S, Tripathi R, Geng H, Lee PD, Ghosh S. Elucidation of differential mineralisation on native and regenerated silk matrices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:663-674. [DOI: 10.1016/j.msec.2016.06.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/16/2016] [Accepted: 06/12/2016] [Indexed: 02/02/2023]
|
32
|
Ninan N, Forget A, Shastri VP, Voelcker NH, Blencowe A. Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28511-28521. [PMID: 27704757 DOI: 10.1021/acsami.6b10491] [Citation(s) in RCA: 402] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
pH-sensitive hydrogels play an important role in controlled drug release applications and have the potential to impact the management of wounds. In this study, we report the fabrication of novel carboxylated agarose/tannic acid hydrogel scaffolds cross-linked with zinc ions for the pH-controlled release of tannic acid. The resulting hydrogels exhibited negligible release of tannic acid at neutral and alkaline pH and sustained release at acidic pH, where they also displayed maximum swelling. The hydrogels also displayed favorable antibacterial and anti-inflammatory properties, and a lack of cytotoxicity toward 3T3 fibroblast cell lines. In simulated wound assays, significantly greater cell migration and proliferation was observed for cells exposed to tannic acid hydrogel extracts. In addition, the tannic acid hydrogels were able to suppress NO production in stimulated human macrophages in a concentration-dependent manner, indicating effective anti-inflammatory activity. Taken together, the cytocompatibility, antibacterial, and anti-inflammatory characteristics of these novel pH-sensitive hydrogels make them promising candidates for wound dressings.
Collapse
Affiliation(s)
- Neethu Ninan
- Future Industries InstituteARC Centre of Excellence in Convergent BioNano Science and Technology, University of South Australia , Mawson Lakes, South Australia 5095, Australia
- School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, South Australia 5000, Australia
| | - Aurelien Forget
- Future Industries InstituteARC Centre of Excellence in Convergent BioNano Science and Technology, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg , Freiburg 79106, Germany
- BIOSS-Centre for Biological Signalling Studies, University of Freiburg , Freiburg 79104, Germany
| | - Nicolas H Voelcker
- Future Industries InstituteARC Centre of Excellence in Convergent BioNano Science and Technology, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Anton Blencowe
- School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, South Australia 5000, Australia
| |
Collapse
|
33
|
Oliveira MB, Custódio CA, Gasperini L, Reis RL, Mano JF. Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Acta Biomater 2016; 41:119-32. [PMID: 27233132 DOI: 10.1016/j.actbio.2016.05.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/27/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED Methacrylated gellan-gum (GG-MA) alone and combined with collagen type I (Coll) is suggested here for the first time as a cell-laden injectable biomaterial for bone regeneration. On-chip high-throughput studies allowed rapidly assessing the suitability of 15 biomaterials/media combinations for the osteodifferentiation of human adipose stem cells (hASCs). Hydrogels composed solely of GG-MA (GG100:0Coll) led hASCs from three different donors into the osteogenic lineage after 21days of cell culture, in the absence of any osteogenic or osteoconductive factors. Hydrogels containing more than 30% of Coll promoted increased cellular proliferation and led hASCs into osteogenic differentiation under basal conditions. Studies using isolated individual hydrogels - excluding eventual on-chip crosstalk - and standard biochemical assays corroborated such findings. The formation of focal adhesions of hASCs on GG100:0Coll hydrogels was verified. We hypothesize that the hydrogels osteogenic effect could be guided by mechanotransduction phenomena. Indeed, the hydrogels showed elastic modulus in ranges previously reported as osteoinductive and the inhibition of the actin-myosin contractility pathway impaired hASCs' osteodifferentiation. GG-MA hydrogels also did not promote hASCs' adipogenesis while used in basal conditions. Overall, GG-MA showed promising properties as an innovative and off-the shelf self-inducing osteogenic injectable biomaterial. STATEMENT OF SIGNIFICANCE Methacrylated gellan gum (GG-MA) is here suggested for the first time as a widely available polysaccharide to easily prepare hydrogels with cell adhesion properties and capability of inducing the autonomous osteogenic differentiation of human adipose-derived stem cells (hASCs). GG-MA was processed as stand-alone hydrogels or in different combinations with collage type I. All hydrogel formulations elicited the osteogenic differentiation of hASCs, independently of the addition of any osteoconductive or osteogenic stimuli, i.e. in basal/growth medium. Effective cellular adhesion to methacrylated gellan gum hydrogels in the absence of any cell-ligand peptide/protein was here proved for the first time. Moreover, we showed that the encapsulated hASCs underwent osteogenic differentiation due to a mechanotransduction phenomenon dependent on the actin-myosin contractility pathway.
Collapse
Affiliation(s)
- Mariana B Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Catarina A Custódio
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Luca Gasperini
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
34
|
Lauzon MA, Drevelle O, Daviau A, Faucheux N. Effects of BMP-9 and BMP-2 on the PI3K/Akt Pathway in MC3T3-E1 Preosteoblasts. Tissue Eng Part A 2016; 22:1075-85. [PMID: 27477105 DOI: 10.1089/ten.tea.2016.0151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The bone morphogenetic proteins (BMPs), which are involved in bone formation and repair, play an important role in tissue engineering. For example, BMP-9 and BMP-2, which are members of different BMP subfamilies, are osteoinductive factors. However, several studies have recently shown that BMP-9 is more osteogenic than BMP-2. We have previously shown that fetal bovine serum (FBS) strongly enhances the osteoblast differentiation of murine preosteoblasts (MC3T3-E1) to BMP-9 but not to BMP-2. This effect is mimicked by IGF-2, which primarily activates the PI3K/Akt pathway, but how Akt phosphorylation sites are implicated in such differentiation is unclear. The effects of BMP-9 and BMP-2 with or without FBS or IGF-2 on Akt phosphorylation sites and subsequent osteoblastic differentiation were determined, respectively, by western blot analysis and alkaline phosphatase activity measurements. The involvement of phosphorylated Akt at Thr308 and/or Ser473 on BMP-mediated osteoblast differentiation was further studied using specific inhibitors. In MC3T3-E1 incubated with or without FBS, BMP-9 and BMP-2 activate Akt on Ser473 and Thr308 very differently in a time and dose-dependent manner. Using inhibitors specific to each Akt phosphorylation site, we showed that both Ser473 and Thr308 must be phosphorylated for BMP-9 and/or IGF-2-induced osteoblast differentiation, whereas BMP-2 requires phosphorylation of only Ser473. Furthermore, cells stimulated with BMP-2 in the presence of FBS require the phosphorylation of Akt at Ser473 and the dephosphorylation of Akt at Thr308 to increase the osteoblast differentiation with alkaline phosphatase activity similar to that of BMP-9 plus FBS. These results provide a better understanding into how BMP-9 induces osteoblast differentiation and its synergy with IGF-2 at the signaling level. This knowledge is essential for preparing the serum-free osteogenic media required for bone tissue engineering or developing growth factor delivery systems to improve bone formation.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- 1 Department of Chemical and Biotechnological Engineering, Université de Sherbrooke , Sherbrooke, Canada
| | - Olivier Drevelle
- 1 Department of Chemical and Biotechnological Engineering, Université de Sherbrooke , Sherbrooke, Canada .,2 Department of Chemical Engineering, École Polytechnique de Montréal , Montréal, Canada
| | - Alex Daviau
- 1 Department of Chemical and Biotechnological Engineering, Université de Sherbrooke , Sherbrooke, Canada
| | - Nathalie Faucheux
- 1 Department of Chemical and Biotechnological Engineering, Université de Sherbrooke , Sherbrooke, Canada
| |
Collapse
|
35
|
Osteogenic signaling on silk-based matrices. Biomaterials 2016; 97:133-53. [DOI: 10.1016/j.biomaterials.2016.04.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
|
36
|
Wang Z, Lin M, Xie Q, Sun H, Huang Y, Zhang D, Yu Z, Bi X, Chen J, Wang J, Shi W, Gu P, Fan X. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Int J Nanomedicine 2016; 11:1483-500. [PMID: 27114708 PMCID: PMC4833379 DOI: 10.2147/ijn.s97445] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Tissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM). Poly(lactide-co-ε-caprolactone) (PLCL) has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the surface of PLCL scaffold is hydrophobic. Silk fibroin (SF) is a kind of natural polymer with inherent bioactivity, and supports mesenchymal stem cell attachment, osteogenesis, and ECM deposition. Therefore, we fabricated hybrid nanofibrous scaffolds by adding different weight ratios of SF to PLCL in order to find a scaffold with improved properties for bone regeneration. Methods Hybrid nanofibrous scaffolds were fabricated by blending different weight ratios of SF with PLCL. Human adipose-derived stem cells (hADSCs) were seeded on SF/PLCL nanofibrous scaffolds of various ratios for a systematic evaluation of cell adhesion, proliferation, cytotoxicity, and osteogenic differentiation; the efficacy of the composite of hADSCs and scaffolds in repairing critical-sized calvarial defects in rats was investigated. Results The SF/PLCL (50/50) scaffold exhibited favorable tensile strength, surface roughness, and hydrophilicity, which facilitated cell adhesion and proliferation. Moreover, the SF/PLCL (50/50) scaffold promoted the osteogenic differentiation of hADSCs by elevating the expression levels of osteogenic marker genes such as BSP, Ocn, Col1A1, and OPN and enhanced ECM mineralization. In vivo assays showed that SF/PLCL (50/50) scaffold improved the repair of the critical-sized calvarial defect in rats, resulting in increased bone volume, higher trabecular number, enhanced bone mineral density, and increased new bone areas, compared with the pure PLCL scaffold. Conclusion The SF/PLCL (50/50) nanofibrous scaffold facilitated hADSC proliferation and osteogenic differentiation in vitro and further promoted new bone formation in vivo, suggesting that the SF/PLCL (50/50) nanofibrous scaffold holds great potential in bone tissue regeneration.
Collapse
Affiliation(s)
- Zi Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Donghua University, Shanghai, People's Republic of China
| | - Ming Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Donghua University, Shanghai, People's Republic of China
| | - Qing Xie
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Donghua University, Shanghai, People's Republic of China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Donghua University, Shanghai, People's Republic of China
| | - Yazhuo Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Donghua University, Shanghai, People's Republic of China
| | - DanDan Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Donghua University, Shanghai, People's Republic of China
| | - Zhang Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Donghua University, Shanghai, People's Republic of China
| | - Xiaoping Bi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Donghua University, Shanghai, People's Republic of China
| | - Junzhao Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Donghua University, Shanghai, People's Republic of China
| | - Jing Wang
- Biomaterials and Tissue Engineering Laboratory, College of Chemistry & Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Wodong Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Donghua University, Shanghai, People's Republic of China
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Donghua University, Shanghai, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Donghua University, Shanghai, People's Republic of China
| |
Collapse
|
37
|
Melke J, Midha S, Ghosh S, Ito K, Hofmann S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 2016; 31:1-16. [PMID: 26360593 DOI: 10.1016/j.actbio.2015.09.005] [Citation(s) in RCA: 474] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/24/2015] [Accepted: 09/06/2015] [Indexed: 01/08/2023]
Abstract
Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. STATEMENT OF SIGNIFICANCE Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted.
Collapse
|
38
|
Sahu N, Baligar P, Midha S, Kundu B, Bhattacharjee M, Mukherjee S, Mukherjee S, Maushart F, Das S, Loparic M, Kundu SC, Ghosh S, Mukhopadhyay A. Nonmulberry Silk Fibroin Scaffold Shows Superior Osteoconductivity Than Mulberry Silk Fibroin in Calvarial Bone Regeneration. Adv Healthc Mater 2015; 4:1709-21. [PMID: 26084249 DOI: 10.1002/adhm.201500283] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/16/2015] [Indexed: 12/24/2022]
Abstract
Recent years have witnessed the advancement of silk biomaterials in bone tissue engineering, although clinical application of the same is still in its infancy. In this study, the potential of pure nonmulberry Antheraea mylitta (Am) fibroin scaffold, without preloading with bone precursor cells, to repair calvarial bone defect in a rat model is explored and compared with its mulberry counterpart Bombyx mori (Bm) silk fibroin. After 3 months of implantation, Am scaffold culminates in a completely ossified regeneration with a progressive increase in mineralization at the implanted site. On the other hand, the Bm scaffold fails to repair the damaged bone, presumably due to its low osteoconductivity and early degradation. The deposition of bone matrix on scaffolds is evaluated by scanning electron and atomic force microscopy. These results are corroborated by in vitro studies of enzymatic degradation, colony formation, and secondary conformational features of the scaffold materials. The greater biocompatibility and mineralization in pure nonmulberry fibroin scaffolds warrants the use of these scaffolds as an "ideal bone graft" biomaterial for effective repair of critical size defects.
Collapse
Affiliation(s)
- Neety Sahu
- Stem Cell Biology Laboratory; National Institute of Immunology; Aruna Asaf Ali Marg New Delhi-110067 India
| | - Prakash Baligar
- Stem Cell Biology Laboratory; National Institute of Immunology; Aruna Asaf Ali Marg New Delhi-110067 India
| | - Swati Midha
- Department of Textile Technology; Indian Institute of Technology; Delhi, Hauz Khas New Delhi-110016 India
| | - Banani Kundu
- Department of Biotechnology; Indian Institute of Technology; Kharagpur West Bengal-721302 India
| | - Maumita Bhattacharjee
- Department of Textile Technology; Indian Institute of Technology; Delhi, Hauz Khas New Delhi-110016 India
| | - Snehasish Mukherjee
- Stem Cell Biology Laboratory; National Institute of Immunology; Aruna Asaf Ali Marg New Delhi-110067 India
| | - Souhrid Mukherjee
- Department of Textile Technology; Indian Institute of Technology; Delhi, Hauz Khas New Delhi-110016 India
| | - Florian Maushart
- Biozentrum and Swiss Nanoscience Institute; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| | - Sanskrita Das
- Department of Textile Technology; Indian Institute of Technology; Delhi, Hauz Khas New Delhi-110016 India
| | - Marko Loparic
- Biozentrum and Swiss Nanoscience Institute; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| | - Subhas C. Kundu
- Department of Biotechnology; Indian Institute of Technology; Kharagpur West Bengal-721302 India
| | - Sourabh Ghosh
- Department of Textile Technology; Indian Institute of Technology; Delhi, Hauz Khas New Delhi-110016 India
| | - Asok Mukhopadhyay
- Stem Cell Biology Laboratory; National Institute of Immunology; Aruna Asaf Ali Marg New Delhi-110067 India
| |
Collapse
|