1
|
Zhu G, Chen W, Tang CY, McVicar A, Edwards D, Wang J, McConnell M, Yang S, Li Y, Chang Z, Li YP. Knockout and Double Knockout of Cathepsin K and Mmp9 reveals a novel function of Cathepsin K as a regulator of osteoclast gene expression and bone homeostasis. Int J Biol Sci 2022; 18:5522-5538. [PMID: 36147479 PMCID: PMC9461675 DOI: 10.7150/ijbs.72211] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/02/2022] [Indexed: 01/26/2023] Open
Abstract
Cathepsins play a role in regulation of cell function through their presence in the cell nucleus. However, the role of Cathepsin K (Ctsk) as an epigenetic regulator in osteoclasts remains unknown. Our data demonstrated that Ctsk-/-Mmp9-/- mice have a striking phenotype with a 5-fold increase in bone volume compared with WT. RNA-seq analysis of Ctsk-/- , Mmp9-/- and Ctsk-/-/Mmp9-/- osteoclasts revealed their distinct functions in gene expression regulation, including reduced Cebpa expression, increased Nfatc1 expression, and in signaling pathways activity regulation. Western blots and qPCR data validated these changes. ATAC-seq profiling of Ctsk-/- , Mmp9-/-, and Ctsk-/-/Mmp9-/- osteoclasts indicated the changes resulted from reduced chromatin openness in the promoter region of Cebpa and increased chromatin openness in Nfatc1 promoter in Ctsk-/-/Mmp9-/- osteoclasts compared to that in osteoclasts of WT, Ctsk/- and Mmp9-/- . We found co-localization of Ctsk with c-Fos and cleavage of H3K27me3 in wild-type osteoclasts. Remarkably, cleavage of H3K27me3 was blocked in osteoclasts of Ctsk-/- and Ctsk-/-/Mmp9-/- mice, suggesting that Ctsk may epigenetically regulate distinctive groups of genes' expression by regulating proteolysis of H3K27me3. Ctsk-/-/Mmp9-/- double knockout dramatically protects against ovariectomy induced bone loss. We found that Ctsk may function as an essential epigenetic regulator in modulating levels of H3K27me3 in osteoclast activation and maintaining bone homeostasis. Our study revealed complementary and unique functions of Ctsk as epigenetic regulators for maintaining osteoclast activation and bone homeostasis by orchestrating multiple signaling pathways and targeting both Ctsk and Mmp9 is a novel therapeutic approach for osteolytic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Guochun Zhu
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Chen-Yi Tang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Abigail McVicar
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Diep Edwards
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Jinwen Wang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Matthew McConnell
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| |
Collapse
|
2
|
Kumar S, Shandilya M, Uniyal P, Thakur S, Parihar N. Efficacy of polymeric nanofibrous membranes for proficient wastewater treatment. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Osuchukwu OA, Salihi A, Abdullahi I, Abdulkareem B, Nwannenna CS. Synthesis techniques, characterization and mechanical properties of natural derived hydroxyapatite scaffolds for bone implants: a review. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04795-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AbstractHydroxyapatite (HAp) with good mechanical properties is a promising material meant for a number of useful bids in dentistry and orthopedic for biomedical engineering applications for drug delivery, bone defect fillers, bone cements, etc. In this paper, a comprehensive review has been done, by reviewing different literatures related to synthesis techniques, mechanical properties and property testing, method of calcination and characterization of hydroxyapatite which are product of catfish and bovine bones. The discussion is in relations of the obligatory features vital to attain the best properties for the envisioned bid of bone graft. The process approaches that are capable of fabricating the essential microstructure and the ways to advance the mechanical properties of natural mined HAp are reviewed. The standard values for tensile strength were found to be within the range of 40–300 MPa, compressive strength was 400–900 MPa, while Elastic modulus was 80–120 GPa and fracture toughness was 0.6–1 MPa m1/2 (Ramesh et al. in Ceram Int 44(9):10525–10530, 2018; Landi et al. in J Eur Ceram Soc 20(14–15):2377–2387, 2000; Munar et al. in Dent Mater J 25(1):51–58, 2006). Also, the porosity range was 70–85% (Yang et al. in Am Ceram Soc Bull 89(2):24–32, 2010), density is 3.16 g/cm3 and relative density is 95–99.5% (Ramesh et al. 2018; Landi et al. 2000; Munar et al. 2006). The literature revealed that CaP ratio varies in relation to the source and sintering temperature. For example, for bovine bone, a CaP ratio of 1.7 (Mezahi et al. in J Therm Anal Calorim 95(1):21–29, 2009) and 1.65 (Barakat et al. in J Mater Process Technol 209(7):3408–3415, 2009) was obtained at 1100 °C and 750 °C respectively. Basic understanding on the effect of adding foreign material as a strengthening agent to the mechanical properties of HAp is ground factor for the development of new biomaterial (Natural hydroxyapatite, NHAp). Therefore, it is inferred that upon careful combination of main parameters such as compaction pressures, sintering temperatures, and sintering dwell times for production natural HAp (NHAp), mechanical properties can be enhanced.
Graphic abstract
Collapse
|
4
|
Bazrafshan Z, Stylios GK. Spinnability of collagen as a biomimetic material: A review. Int J Biol Macromol 2019; 129:693-705. [DOI: 10.1016/j.ijbiomac.2019.02.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/28/2022]
|
5
|
Jin S, Sun F, Zou Q, Huang J, Zuo Y, Li Y, Wang S, Cheng L, Man Y, Yang F, Li J. Fish Collagen and Hydroxyapatite Reinforced Poly(lactide-co-glycolide) Fibrous Membrane for Guided Bone Regeneration. Biomacromolecules 2019; 20:2058-2067. [PMID: 31009574 DOI: 10.1021/acs.biomac.9b00267] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shue Jin
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Fuhua Sun
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Jinhui Huang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Suping Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Lan C, Xiang X, Gao X, Sun D, Pan Y, Li J. Cellular Compatibility Analysis of nHAp/PPC Membrane. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Chuanjian Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling (School and Hospital of Stomatology, Jilin University)
| | - Xingchen Xiang
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University
| | - Xing Gao
- Department of Preventive Dentistry, School and Hospital of Stomatology, Jilin University
| | - Duo Sun
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Yongsheng Pan
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Jiang Li
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| |
Collapse
|
7
|
Ng HM, Bee ST, Tin Sin L, Ratnam CT, Rahmat AR. Hydroxyapatite For Poly(α-Hydroxy Esters) Biocomposites Applications. POLYM REV 2018. [DOI: 10.1080/15583724.2018.1488729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hon-Meng Ng
- Department of Chemical Engineering Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Soo-Tueen Bee
- Department of Chemical Engineering Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Lee Tin Sin
- Department of Chemical Engineering Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Chantara T. Ratnam
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Kajang, Malaysia
| | - Abdul Razak Rahmat
- Department of Polymer Engineering Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
8
|
Custom-built electrostatics and supplementary bonding in the design of reinforced Collagen-g-P(methyl methacrylate-co-ethyl acrylate)/ nylon 66 core-shell fibers. J Mech Behav Biomed Mater 2018; 87:19-29. [DOI: 10.1016/j.jmbbm.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/24/2018] [Accepted: 07/01/2018] [Indexed: 12/13/2022]
|
9
|
Shao N, Guo J, Guan Y, Zhang H, Li X, Chen X, Zhou D, Huang Y. Development of Organic/Inorganic Compatible and Sustainably Bioactive Composites for Effective Bone Regeneration. Biomacromolecules 2018; 19:3637-3648. [DOI: 10.1021/acs.biomac.8b00707] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nannan Shao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jinshan Guo
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yuyao Guan
- Department of Radiology, China Japan Union Hospital, Jilin University, Changchun 130022, P. R. China
| | - HuanHuan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaoyuan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
10
|
Bhuiyan DB, Middleton JC, Tannenbaum R, Wick TM. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds. Biomed Mater Eng 2017; 28:671-685. [DOI: 10.3233/bme-171703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Didarul B. Bhuiyan
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Rina Tannenbaum
- Department of Materials Science and Engineering, Program in Chemical and Molecular Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Timothy M. Wick
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Jin Y, Liu X, Liu H, Chen S, Gao C, Ge K, Zhang C, Zhang J. Oxidative stress-induced apoptosis of osteoblastic MC3T3-E1 cells by hydroxyapatite nanoparticles through lysosomal and mitochondrial pathways. RSC Adv 2017. [DOI: 10.1039/c7ra01008g] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hydroxyapatite nanoparticles (HAPs) cause apoptosis of osteoblastic MC3T3-E1 cells through oxidative stress-induced lysosomal and mitochondrial pathway.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| | - Xiaolong Liu
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| | - Huifang Liu
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| | - Shizhu Chen
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| | - Chunyue Gao
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| | - Kun Ge
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| | - Cuimiao Zhang
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| | - Jinchao Zhang
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| |
Collapse
|
12
|
Wahba SM, Darwish AS, Kamal SM. Ceria-containing uncoated and coated hydroxyapatite-based galantamine nanocomposites for formidable treatment of Alzheimer's disease in ovariectomized albino-rat model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:151-63. [DOI: 10.1016/j.msec.2016.04.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/27/2016] [Accepted: 04/11/2016] [Indexed: 01/16/2023]
|
13
|
Wang W, Liu Y, Liu A, Zhao Y, Chen X. Effect ofin situapatite on performance of collagen fiber film for food packaging applications. J Appl Polym Sci 2016. [DOI: 10.1002/app.44154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wenhang Wang
- Key Laboratory of Food Nutrition and Safety; Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology; Tianjin 300457 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center; 300457 Tianjin China
| | - Yaowei Liu
- Key Laboratory of Food Nutrition and Safety; Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology; Tianjin 300457 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center; 300457 Tianjin China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety; Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology; Tianjin 300457 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center; 300457 Tianjin China
| | - Yana Zhao
- Key Laboratory of Food Nutrition and Safety; Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology; Tianjin 300457 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center; 300457 Tianjin China
| | - Xin Chen
- Key Laboratory of Food Nutrition and Safety; Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology; Tianjin 300457 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center; 300457 Tianjin China
| |
Collapse
|
14
|
Bhuiyan DB, Middleton JC, Tannenbaum R, Wick TM. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1139-54. [PMID: 27120980 DOI: 10.1080/09205063.2016.1184121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A bone graft is a complicated structure that provides mechanical support and biological signals that regulate bone growth, reconstruction, and repair. A single-component material is inadequate to provide a suitable combination of structural support and biological stimuli to promote bone regeneration. Multicomponent composite biomaterials lack adequate bonding among the components to prevent phase separation after implantation. We have previously developed a novel multistep polymerization and fabrication process to construct a nano-hydroxyapatite-poly(D,L-lactide-co-glycolide)-collagen biomaterial (abbreviated nHAP-PLGA-collagen) with the components covalently bonded to each other. In the present study, the mechanical properties and osteogenic potential of nHAP-PLGA-collagen are characterized to assess the material's suitability to support bone regeneration. nHAP-PLGA-collagen films exhibit tensile strength very close to that of human cancellous bone. Human mesenchymal stem cells (hMSCs) are viable on 2D nHAP-PLGA-collagen films with a sevenfold increase in cell population after 7 days of culture. Over 5 weeks of culture, hMSCs deposit matrix and mineral consistent with osteogenic differentiation and bone formation. As a result of matrix deposition, nHAP-PLGA-collagen films cultured with hMSCs exhibit 48% higher tensile strength and fivefold higher moduli compared to nHAP-PLGA-collagen films without cells. More interestingly, secretion of matrix and minerals by differentiated hMSCs cultured on the nHAP-PLGA-collagen films for 5 weeks mitigates the loss of mechanical strength that accompanies PLGA hydrolysis.
Collapse
Affiliation(s)
- Didarul B Bhuiyan
- a Department of Biomedical Engineering, School of Engineering , University of Alabama at Birmingham , Birmingham , AL , USA
| | | | - Rina Tannenbaum
- c Department of Materials Science and Engineering, Program in Chemical and Molecular Engineering , Stony Brook University , Stony Brook , NY , USA
| | - Timothy M Wick
- a Department of Biomedical Engineering, School of Engineering , University of Alabama at Birmingham , Birmingham , AL , USA
| |
Collapse
|
15
|
Selvakumar M, Pawar HS, Francis NK, Das B, Dhara S, Chattopadhyay S. Excavating the Role of Aloe Vera Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5941-5960. [PMID: 26889707 DOI: 10.1021/acsami.6b01014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Guided bone regeneration (GBR) scaffolds are unsuccessful in many clinical applications due to a high incidence of postoperative infection. The objective of this work is to fabricate GBR with an anti-infective electrospun scaffold by ornamenting segmented polyurethane (SPU) with two-dimensional Aloe vera wrapped mesoporous hydroxyapatite (Al-mHA) nanorods. The antimicrobial characteristic of the scaffold has been retrieved from the prepared Al-mHA frame with high aspect ratio (∼14.2) via biosynthesis route using Aloe vera (Aloe barbadensis miller) extract. The Al-mHA frame was introduced into an unprecedented SPU matrix (solution polymerized) based on combinatorial soft segments of poly(ε-caprolactone) (PCL), poly(ethylene carbonate) (PEC), and poly(dimethylsiloxane) (PDMS), by an in situ technique followed by electrospinning to fabricate scaffolds. For comparison, pristine mHA nanorods are also ornamented into it. An enzymatic ring-opening polymerization technique was adapted to synthesize soft segment of (PCL-PEC-b-PDMS). Structure elucidation of the synthesized polymers is established by nuclear magnetic resonance spectroscopy. Sparingly, Al-mHA ornamented scaffolds exhibit tremendous improvement (175%) in the mechanical properties with promising antimicrobial activity against various human pathogens. After confirmation of high osteoconductivity, improved biodegradation, and excellent biocompatibility against osteoblast-like MG63 cells (in vitro), the scaffolds were implanted in rabbits as an animal model by subcutaneous and intraosseous (tibial) sites. Improved in vivo biocompatibilities, biodegradation, osteoconductivity, and the ability to provide an adequate biomimetic environment for biomineralization for GBR of the scaffolds (SPU and ornamented SPUs) have been found from the various histological sections. Early cartilage formation, endochondral ossification, and rapid bone healing at 4 weeks were found in the defects filled with Al-mHA ornamented scaffold compared to pristine SPU scaffold. Organ toxicity studies further confirm the absence of appreciable tissue architecture abnormalities in the renal hepatic and cardiac tissue sections. The entire results of this study manifest the feasibility of fabricating a mechanically adequate tailored nanofibrous SPU scaffold based on combinatorial soft segments of PCL, PEC, and PDMS by a biomimetic approach and the advantages of an Aloe vera wrapped mHA frame in promoting osteoblast phenotype progression with microbial protection for potential GBR applications.
Collapse
Affiliation(s)
- M Selvakumar
- Rubber Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology , Kharagpur 721302, India
| | - Harpreet Singh Pawar
- Rubber Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology , Kharagpur 721302, India
| | - Nimmy K Francis
- Rubber Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology , Kharagpur 721302, India
| | - Bodhisatwa Das
- Rubber Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology , Kharagpur 721302, India
| | - Santanu Dhara
- Rubber Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology , Kharagpur 721302, India
| | - Santanu Chattopadhyay
- Rubber Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology , Kharagpur 721302, India
| |
Collapse
|
16
|
Liao J, Li Y, Zou Q, Duan X, Yang Z, Xie Y, Liu H. Preparation, characterization and properties of nano-hydroxyapatite/polypropylene carbonate biocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:285-91. [PMID: 27040221 DOI: 10.1016/j.msec.2016.02.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/21/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
Abstract
The combination of nano-hydroxyapatite (n-HA) and polypropylene carbonate (PPC) was used to make a composite materials by a coprecipitation method. The physical and chemical properties of the composite were tested. Scanning electron microscope (SEM) observation indicated that the biomimetic n-HA crystals were uniformly distributed in the polymer matrix. As the n-HA content increased in the composite, the fracture mechanism of the composites changes from gliding fracture to gliding and brittle fracture. Furthermore, the chemical interaction between inorganic n-HA and polypropylene carbonate was also investigated and discussed in detail. The hydrogen bonds might be formed between -OH/CO3(2-) of n-HA crystal and the ester group (-COO-) of PPC. The tensile strength of n-HA/PPC (40/60) was similar to that of the cancellous bone, and reached ca 58 MPa. The osteoblasts were cultured for up to 7 days, and then the adhesion and proliferation of osteoblasts were measured by Methyl thiazolyl tetrazolium (MTT) colorimetry assay and SEM. The cells proliferated, grew normally in fusiform shape and well attached. The in vitro test confirmed that the n-HA/PPC composites were biocompatible and showed undetectable negative effect on osteoblasts. In vivo implantation of the composite in New Zealand white rabbits was performed. It can stimulate the growth of a new bone, and at the same time the material begins to degrade. These results suggested that the composite may be suitable for the reparation or replacement of bone defects and possessed the potential for clinical applications.
Collapse
Affiliation(s)
- Jianguo Liao
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Yanqun Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Qin Zou
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xingze Duan
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhengpeng Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yufen Xie
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Haohuai Liu
- School of Chemistry and Chemical Engineering, Analytical and Testing Center, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
17
|
Selvakumar M, Srivastava P, Pawar HS, Francis NK, Das B, Sathishkumar G, Subramanian B, Jaganathan SK, George G, Anandhan S, Dhara S, Nando GB, Chattopadhyay S. On-Demand Guided Bone Regeneration with Microbial Protection of Ornamented SPU Scaffold with Bismuth-Doped Single Crystalline Hydroxyapatite: Augmentation and Cartilage Formation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4086-4100. [PMID: 26799576 DOI: 10.1021/acsami.5b11723] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Guided bone regeneration (GBR) scaffolds are futile in many clinical applications due to infection problems. In this work, we fabricated GBR with an anti-infective scaffold by ornamenting 2D single crystalline bismuth-doped nanohydroxyapatite (Bi-nHA) rods onto segmented polyurethane (SPU). Bi-nHA with high aspect ratio was prepared without any templates. Subsequently, it was introduced into an unprecedented synthesized SPU matrix based on dual soft segments (PCL-b-PDMS) of poly(ε-caprolactone) (PCL) and poly(dimethylsiloxane) (PDMS), by an in situ technique followed by electrospinning to fabricate scaffolds. For comparison, undoped pristine nHA rods were also ornamented into it. The enzymatic ring-opening polymerization technique was adapted to synthesize soft segments of PCL-b-PDMS copolymers of SPU. Structure elucidation of the synthesized polymers is done by nuclear magnetic resonance spectroscopy. Sparingly, Bi-nHA ornamented scaffolds exhibit tremendous improvement (155%) in the mechanical properties with excellent antimicrobial activity against various human pathogens. After confirmation of high osteoconductivity, improved biodegradation, and excellent biocompatibility against osteoblast cells (in vitro), the scaffolds were implanted in rabbits by subcutaneous and intraosseous (tibial) sites. Various histological sections reveal the signatures of early cartilage formation, endochondral ossification, and rapid bone healing at 4 weeks of the critical defects filled with ornamented scaffold compared to SPU scaffold. This implies osteogenic potential and ability to provide an adequate biomimetic microenvironment for mineralization for GBR of the scaffolds. Organ toxicity studies further confirm that no tissue architecture abnormalities were observed in hepatic, cardiac, and renal tissue sections. This finding manifests the feasibility of fabricating a mechanically adequate nanofibrous SPU scaffold by a biomimetic strategy and the advantages of Bi-nHA ornamentation in promoting osteoblast phenotype progression with microbial protection (on-demand) for GBR applications.
Collapse
Affiliation(s)
- M Selvakumar
- Indian Institute of Technology , Rubber Technology Centre, Kharagpur 721302, India
| | - Priyanka Srivastava
- Sanjay Gandhi Post Graduate Institute of Medical Science , Department of Medical Genetics, Lucknow 226014, Uttar Pradesh India
| | - Harpreet Singh Pawar
- Indian Institute of Technology , School of Medical Science and Technology, Kharagpur 721302, India
| | - Nimmy K Francis
- Indian Institute of Technology , School of Medical Science and Technology, Kharagpur 721302, India
| | - Bodhisatwa Das
- Indian Institute of Technology , School of Medical Science and Technology, Kharagpur 721302, India
| | - G Sathishkumar
- Bharathidasan University , Department of Biotechnology and Genetic Engineering, Tiruchirappalli 620024, Tamilnadu India
| | - Bhuvaneshwaran Subramanian
- Indian Institute of Technology , RISUG® and Allied Science Laboratories, School of Medical Science and Technology, Kharagpur 721302, India
| | - Saravana Kumar Jaganathan
- Universiti Teknologi Malaysia , Faculty of Bioscience and Medical Engineering, IJN-UTM Cardiovascular Engineering Centre, Johor Bahru 81310, Malaysia
| | - Gibin George
- National Institute of Technology Karnataka , Department of Metallurgical and Materials Engineering, Mangalore 575025, Karnataka India
| | - S Anandhan
- National Institute of Technology Karnataka , Department of Metallurgical and Materials Engineering, Mangalore 575025, Karnataka India
| | - Santanu Dhara
- Indian Institute of Technology , School of Medical Science and Technology, Kharagpur 721302, India
| | - Golok B Nando
- Indian Institute of Technology , Rubber Technology Centre, Kharagpur 721302, India
| | | |
Collapse
|
18
|
Wang Z, Xu Y, Wang Y, Ito Y, Zhang P, Chen X. Enhanced in Vitro Mineralization and in Vivo Osteogenesis of Composite Scaffolds through Controlled Surface Grafting of L-Lactic Acid Oligomer on Nanohydroxyapatite. Biomacromolecules 2016; 17:818-29. [PMID: 26821731 DOI: 10.1021/acs.biomac.5b01543] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanocomposite of hydroxyapatite (HA) surface grafted with L-lactic acid oligomer (LAc oligomer) (op-HA) showed improved interface compatibility, mechanical property, and biocompatibility in our previous study. In this paper, composite scaffolds of op-HA with controlled grafting different amounts of LAc oligomer (1.1, 5.2, and 9.1 wt %) were fabricated and implanted to repair rabbit radius defects. The dispersion of op-HA nanoparticles was more uniform than n-HA in chloroform and nanocomposites scaffold. Calcium and phosphorus exposure, in vitro biomineralization ability, and cell proliferation were much higher in the op-HA1.1 wt %/PLGA scaffolds than the other groups. The osteodifferentiation and bone fusion in animal tests were significantly enhanced for op-HA5.2 wt %/PLGA scaffolds. The results indicated that the grafted LAc oligomer of 5.2 or 9.1 wt %, which formed a barrier layer on the HA surface, prevented the exposure of nucleation sites. The shielded nucleation sites of op-HA particles (5.2 wt %) might be easily exposed as the grafted LAc oligomer was decomposed easily by enzyme systems in vivo. Findings from this study have revealed that grafting 1.1 wt % amount of LAc oligomer on hydroxyapatite could improve in vitro mineralization, and 5.2 wt % could promote in vivo osteogenesis capacity of composite scaffolds.
Collapse
Affiliation(s)
- Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, PR China.,University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Yang Xu
- Department of Medical Cosmetology, The First Affiliated Hospital of Xiamen University , Xiamen 361003, PR China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, PR China
| | | | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, PR China
| |
Collapse
|
19
|
Cao Z, Wang D, Lyu L, Gong Y, Li Y. Fabrication and characterization of PCL/CaCO3 electrospun composite membrane for bone repair. RSC Adv 2016. [DOI: 10.1039/c5ra22548e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CaCO3/casein microspheres were entrapped in PCL membranes using electrospinning to mimic the hierarchical structure of ECM in bone. The composite membranes showed enhanced biomineralization property, proliferation and osteogenic differentiation potential of HMSCs.
Collapse
Affiliation(s)
- Zhinan Cao
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| | - Dandan Wang
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| | - Lingwei Lyu
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| | - Yihong Gong
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| | - Yan Li
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- P.R. China
| |
Collapse
|
20
|
Wang YF, Wang CY, Wan P, Wang SG, Wang XM. Comparison of bone regeneration in alveolar bone of dogs on mineralized collagen grafts with two composition ratios of nano-hydroxyapatite and collagen. Regen Biomater 2015; 3:33-40. [PMID: 26816654 PMCID: PMC4723277 DOI: 10.1093/rb/rbv025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 02/04/2023] Open
Abstract
To study the effect of two composition ratios of nano-hydroxyapatite and collagen (NHAC) composites on repairing alveolar bone defect of dogs. Eighteen healthy adult dogs were randomly divided into three groups. Two kinds of the NHAC composites were prepared according to the constituent ratios of 3:7 and 5:5; immediately after extraction of the mandibular second premolars, each kind of the NHAC composite was implanted into extraction socket, respectively: Group I, nHA/Col = 3:7; Group II, nHA/Col = 5:5 and Group III, blank control group. The bone-repairing ability of the two grafts was separately analyzed by morphometric measurement, X-ray tomography examination and biomechanical analysis at 1st, 3rd and 6th month post-surgical, respectively. The NHAC composites were absorbed gradually after implanting into alveolar bone defect and were replaced by new bone. The ratios of new bone formation of Group I was significantly higher than that of Group II after 3 months (P < 0.05). The structure and bioactive performance can be improved when the ratio between the collagen and the hydroxyapatite was reasonable, and the repairing ability and effect in extraction sockets are obviously better.
Collapse
Affiliation(s)
- Yan-Fu Wang
- Graduate School, Liaoning Medical University, Jinzhou 121000, China
| | - Cheng-Yue Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of Liaoning Medical University, Jinzhou 121000, China
| | - Peng Wan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shao-Gang Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiu-Mei Wang
- Institute for Regenerative Medicine and Biomimetic Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Mighri N, Mao J, Mighri F, Ajji A, Rouabhia M. Chitosan-Coated Collagen Membranes Promote Chondrocyte Adhesion, Growth, and Interleukin-6 Secretion. MATERIALS (BASEL, SWITZERLAND) 2015; 8:7673-7689. [PMID: 28793669 PMCID: PMC5458886 DOI: 10.3390/ma8115413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/06/2015] [Accepted: 10/19/2015] [Indexed: 12/23/2022]
Abstract
Designing scaffolds made from natural polymers may be highly attractive for tissue engineering strategies. We sought to produce and characterize chitosan-coated collagen membranes and to assess their efficacy in promoting chondrocyte adhesion, growth, and cytokine secretion. Porous collagen membranes were placed in chitosan solutions then crosslinked with glutaraldehyde vapor. Fourier transform infrared (FTIR) analyses showed elevated absorption at 1655 cm-1 of the carbon-nitrogen (N=C) bonds formed by the reaction between the (NH₂) of the chitosan and the (C=O) of the glutaraldehyde. A significant peak in the amide II region revealed a significant deacetylation of the chitosan. Scanning electron microscopy (SEM) images of the chitosan-coated membranes exhibited surface variations, with pore size ranging from 20 to 50 µm. X-ray photoelectron spectroscopy (XPS) revealed a decreased C-C groups and an increased C-N/C-O groups due to the reaction between the carbon from the collagen and the NH2 from the chitosan. Increased rigidity of these membranes was also observed when comparing the chitosan-coated and uncoated membranes at dried conditions. However, under wet conditions, the chitosan coated collagen membranes showed lower rigidity as compared to dried conditions. Of great interest, the glutaraldehyde-crosslinked chitosan-coated collagen membranes promoted chondrocyte adhesion, growth, and interleukin (IL)-6 secretion. Overall results confirm the feasibility of using designed chitosan-coated collagen membranes in future applications, such as cartilage repair.
Collapse
Affiliation(s)
- Nabila Mighri
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada.
- Department of Chemical Engineering, Université Laval, 1065 avenue de la Médecine, Québec, QC G1V 0A6, Canada.
- Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, QC H3C 3A7, Canada.
| | - Jifu Mao
- Axe Médecine régénératrice, Centre de Recherche du CHU de Québec, Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1L 3L5, Canada.
| | - Frej Mighri
- Department of Chemical Engineering, Université Laval, 1065 avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| | - Abdallah Ajji
- Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, QC H3C 3A7, Canada.
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada.
| |
Collapse
|