1
|
Bardini R, Di Carlo S. Computational methods for biofabrication in tissue engineering and regenerative medicine - a literature review. Comput Struct Biotechnol J 2024; 23:601-616. [PMID: 38283852 PMCID: PMC10818159 DOI: 10.1016/j.csbj.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/30/2024] Open
Abstract
This literature review rigorously examines the growing scientific interest in computational methods for Tissue Engineering and Regenerative Medicine biofabrication, a leading-edge area in biomedical innovation, emphasizing the need for accurate, multi-stage, and multi-component biofabrication process models. The paper presents a comprehensive bibliometric and contextual analysis, followed by a literature review, to shed light on the vast potential of computational methods in this domain. It reveals that most existing methods focus on single biofabrication process stages and components, and there is a significant gap in approaches that utilize accurate models encompassing both biological and technological aspects. This analysis underscores the indispensable role of these methods in understanding and effectively manipulating complex biological systems and the necessity for developing computational methods that span multiple stages and components. The review concludes that such comprehensive computational methods are essential for developing innovative and efficient Tissue Engineering and Regenerative Medicine biofabrication solutions, driving forward advancements in this dynamic and evolving field.
Collapse
Affiliation(s)
- Roberta Bardini
- Department of Control and Computer Engineering, Polytechnic University of Turin, Corso Duca Degli Abruzzi, 24, Turin, 10129, Italy
| | - Stefano Di Carlo
- Department of Control and Computer Engineering, Polytechnic University of Turin, Corso Duca Degli Abruzzi, 24, Turin, 10129, Italy
| |
Collapse
|
2
|
Kunrath MF, Garaicoa‐Pazmino C, Giraldo‐Osorno PM, Haj Mustafa A, Dahlin C, Larsson L, Asa'ad F. Implant surface modifications and their impact on osseointegration and peri-implant diseases through epigenetic changes: A scoping review. J Periodontal Res 2024; 59:1095-1114. [PMID: 38747072 PMCID: PMC11626700 DOI: 10.1111/jre.13273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 12/10/2024]
Abstract
Dental implant surfaces and their unique properties can interact with the surrounding oral tissues through epigenetic cues. The present scoping review provides current perspectives on surface modifications of dental implants, their impact on the osseointegration process, and the interaction between implant surface properties and epigenetics, also in peri-implant diseases. Findings of this review demonstrate the impact of innovative surface treatments on the epigenetic mechanisms of cells, showing promising results in the early stages of osseointegration. Dental implant surfaces with properties of hydrophilicity, nanotexturization, multifunctional coatings, and incorporated drug-release systems have demonstrated favorable outcomes for early bone adhesion, increased antibacterial features, and improved osseointegration. The interaction between modified surface morphologies, different chemical surface energies, and/or release of molecules within the oral tissues has been shown to influence epigenetic mechanisms of the surrounding tissues caused by a physical-chemical interaction. Epigenetic changes around dental implants in the state of health and disease are different. In conclusion, emerging approaches in surface modifications for dental implants functionalized with epigenetics have great potential with a significant impact on modulating bone healing during osseointegration.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
- Department of Dentistry, School of Health and Life SciencesPontifical Catholic University of Rio Grande do Sul (PUCRS)Porto AlegreBrazil
| | - Carlos Garaicoa‐Pazmino
- Department of PeriodonticsUniversity of Iowa College of DentistryIowa CityIowaUSA
- Research Center, School of DentistryEspiritu Santo UniversitySamborondónEcuador
| | - Paula Milena Giraldo‐Osorno
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
| | - Aya Haj Mustafa
- Institute of Odontology, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
| | - Lena Larsson
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
| |
Collapse
|
3
|
Conner AA, David D, Yim EKF. The Effects of Biomimetic Surface Topography on Vascular Cells: Implications for Vascular Conduits. Adv Healthc Mater 2024; 13:e2400335. [PMID: 38935920 DOI: 10.1002/adhm.202400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and represent a pressing clinical need. Vascular occlusions are the predominant cause of CVD and necessitate surgical interventions such as bypass graft surgery to replace the damaged or obstructed blood vessel with a synthetic conduit. Synthetic small-diameter vascular grafts (sSDVGs) are desired to bypass blood vessels with an inner diameter <6 mm yet have limited use due to unacceptable patency rates. The incorporation of biophysical cues such as topography onto the sSDVG biointerface can be used to mimic the cellular microenvironment and improve outcomes. In this review, the utility of surface topography in sSDVG design is discussed. First, the primary challenges that sSDVGs face and the rationale for utilizing biomimetic topography are introduced. The current literature surrounding the effects of topographical cues on vascular cell behavior in vitro is reviewed, providing insight into which features are optimal for application in sSDVGs. The results of studies that have utilized topographically-enhanced sSDVGs in vivo are evaluated. Current challenges and barriers to clinical translation are discussed. Based on the wealth of evidence detailed here, substrate topography offers enormous potential to improve the outcome of sSDVGs and provide therapeutic solutions for CVDs.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dency David
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
4
|
Hou Y, Conklin B, Choi HK, Yang L, Lee KB. Probing Nanotopography-Mediated Macrophage Polarization via Integrated Machine Learning and Combinatorial Biophysical Cue Mapping. ACS NANO 2024; 18:25465-25477. [PMID: 39226301 DOI: 10.1021/acsnano.4c04406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Inflammatory responses, leading to fibrosis and potential host rejection, significantly hinder the long-term success and widespread adoption of biomedical implants. The ability to control and investigated macrophage inflammatory responses at the implant-macrophage interface would be critical for reducing chronic inflammation and improving tissue integration. Nonetheless, the systematic investigation of how surface topography affects macrophage polarization is typically complicated by the restricted complexity of accessible nanostructures, difficulties in achieving exact control, and biased preselection of experimental parameters. In response to these problems, we developed a large-scale, high-content combinatorial biophysical cue (CBC) array for enabling high-throughput screening (HTS) of the effects of nanotopography on macrophage polarization and subsequent inflammatory processes. Our CBC array, created utilizing the dynamic laser interference lithography (DLIL) technology, contains over 1 million nanotopographies, ranging from nanolines and nanogrids to intricate hierarchical structures with dimensions ranging from 100 nm to several microns. Using machine learning (ML) based on the Gaussian process regression algorithm, we successfully identified certain topographical signals that either repress (pro-M2) or stimulate (pro-M1) macrophage polarization. The upscaling of these nanotopographies for further examination has shown mechanisms such as cytoskeletal remodeling and ROCK-dependent epigenetic activation to be critical to the mechanotransduction pathways regulating macrophage fate. Thus, we have also developed a platform combining advanced DLIL nanofabrication techniques, HTS, ML-driven prediction of nanobio interactions, and mechanotransduction pathway evaluation. In short, our developed platform technology not only improves our ability to investigate and understand nanotopography-regulated macrophage inflammatory responses but also holds great potential for guiding the design of nanostructured coatings for therapeutic biomaterials and biomedical implants.
Collapse
Affiliation(s)
- Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
5
|
Calzuola ST, Newman G, Feaugas T, Perrault CM, Blondé JB, Roy E, Porrini C, Stojanovic GM, Vidic J. Membrane-based microfluidic systems for medical and biological applications. LAB ON A CHIP 2024; 24:3579-3603. [PMID: 38954466 DOI: 10.1039/d4lc00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Microfluidic devices with integrated membranes that enable control of mass transport in constrained environments have shown considerable growth over the last decade. Membranes are a key component in several industrial processes such as chemical, pharmaceutical, biotechnological, food, and metallurgy separation processes as well as waste management applications, allowing for modular and compact systems. Moreover, the miniaturization of a process through microfluidic devices leads to process intensification together with reagents, waste and cost reduction, and energy and space savings. The combination of membrane technology and microfluidic devices allows therefore magnification of their respective advantages, providing more valuable solutions not only for industrial processes but also for reproducing biological processes. This review focuses on membrane-based microfluidic devices for biomedical science with an emphasis on microfluidic artificial organs and organs-on-chip. We provide the basic concepts of membrane technology and the laws governing mass transport. The role of the membrane in biomedical microfluidic devices, along with the required properties, available materials, and current challenges are summarized. We believe that the present review may be a starting point and a resource for researchers who aim to replicate a biological phenomenon on-chip by applying membrane technology, for moving forward the biomedical applications.
Collapse
Affiliation(s)
- Silvia Tea Calzuola
- UMR7646 Laboratoire d'hydrodynamique (LadHyX), Ecole Polytechnique, Palaiseau, France.
- Eden Tech, Paris, France
| | - Gwenyth Newman
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Thomas Feaugas
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | | | | | | | | | - Goran M Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovića 6, 21000 Novi Sad, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
6
|
Mahmoudi N, Mohamed E, Dehnavi SS, Aguilar LMC, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Calming the Nerves via the Immune Instructive Physiochemical Properties of Self-Assembling Peptide Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303707. [PMID: 38030559 PMCID: PMC10837390 DOI: 10.1002/advs.202303707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/22/2023] [Indexed: 12/01/2023]
Abstract
Current therapies for the devastating damage caused by traumatic brain injuries (TBI) are limited. This is in part due to poor drug efficacy to modulate neuroinflammation, angiogenesis and/or promoting neuroprotection and is the combined result of challenges in getting drugs across the blood brain barrier, in a targeted approach. The negative impact of the injured extracellular matrix (ECM) has been identified as a factor in restricting post-injury plasticity of residual neurons and is shown to reduce the functional integration of grafted cells. Therefore, new strategies are needed to manipulate the extracellular environment at the subacute phase to enhance brain regeneration. In this review, potential strategies are to be discussed for the treatment of TBI by using self-assembling peptide (SAP) hydrogels, fabricated via the rational design of supramolecular peptide scaffolds, as an artificial ECM which under the appropriate conditions yields a supramolecular hydrogel. Sequence selection of the peptides allows the tuning of these hydrogels' physical and biochemical properties such as charge, hydrophobicity, cell adhesiveness, stiffness, factor presentation, degradation profile and responsiveness to (external) stimuli. This review aims to facilitate the development of more intelligent biomaterials in the future to satisfy the parameters, requirements, and opportunities for the effective treatment of TBI.
Collapse
Affiliation(s)
- Negar Mahmoudi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Elmira Mohamed
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
| | - Shiva Soltani Dehnavi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
| | - Lilith M. Caballero Aguilar
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Alan R. Harvey
- School of Human SciencesThe University of Western Australiaand Perron Institute for Neurological and Translational SciencePerthWA6009Australia
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleMelbourneVIC3010Australia
| | | | - David R. Nisbet
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
- Melbourne Medical SchoolFaculty of MedicineDentistry and Health ScienceThe University of MelbourneMelbourneVIC3010Australia
| |
Collapse
|
7
|
Sivolella S, Brunello G, Nika E, Badocco D, Pastore P, Carturan SM, Bernardo E, Elsayed H, Biasetto L, Brun P. In vitro evaluation of granules obtained from 3D sphene scaffolds and bovine bone grafts: chemical and biological assays. J Mater Chem B 2023; 11:8775-8787. [PMID: 37665632 DOI: 10.1039/d3tb00499f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Sphene is an innovative bone graft material. The aim of this study was to investigate and compare the physicochemical and biological properties of Bio-Oss® (BO) and in-lab synthesized and processed sphene granules. BO granules of 1000-2000 μm (BO-L), 250-1000 μm (BO-S) and 100-200 μm (BO-p) for derived granules, and corresponding groups of sphene granules obtained from 3D printed blocks (SB-L, SB-S, SB-p) and foams (SF-L, SF-S and SF-p) were investigated. The following analyses were conducted: morphological analysis, specific surface area and porosity, inductively coupled plasma mass spectrometry (ICP-MS), cytotoxicity assay, Alizarin staining, bone-related gene expression, osteoblast migration and proliferation assays. All pulverized granules exhibited a similar morphology and SF-S resembled natural bone. Sphene-derived granules showed absence of micro- and mesopores and a low specific surface area. ICP-MS revealed a tendency for absorption of Ca and P for all BO samples, while sphene granules demonstrated a release of Ca. No cellular cytotoxicity was detected and osteoblastic phenotype in primary cells was observed, with significantly increased values for SF-L, SF-S, BO-L and BO-p. Further investigations are needed before clinical use can be considered.
Collapse
Affiliation(s)
- Stefano Sivolella
- Department of Neuroscience, Dentistry Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Giulia Brunello
- Department of Neuroscience, Dentistry Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Ervin Nika
- Department of Neuroscience, Dentistry Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy.
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy.
| | - Sara M Carturan
- INFN-Laboratori Nazionali di Legnaro, Viale dell'Università 2, 35020, Legnaro, PD, Italy.
- Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 5131, Padua, Italy
| | - Enrico Bernardo
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy.
| | - Hamada Elsayed
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy.
- Refractories, Ceramics and Building Materials Department, National Research Centre, El Buhouth Str., Cairo 12622, Egypt
| | - Lisa Biasetto
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza, Italy.
| | - Paola Brun
- Department of Molecular Medicine, Section of Microbiology, University of Padova, via A. Gabelli, 63, 35121 Padova, Italy.
| |
Collapse
|
8
|
Camargo WA, Hoekstra JW, Jansen JA, van den Beucken JJJP. Influence of bisphosphonate treatment on bone substitute performance in osteoporotic conditions. Clin Implant Dent Relat Res 2023. [PMID: 37121910 DOI: 10.1111/cid.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/02/2023] [Accepted: 03/11/2023] [Indexed: 05/02/2023]
Abstract
OBJECTIVE Considering the elevated number of osteoporotic patients in need of bone graft procedures, we here evaluated the effect of alendronate (ALN) treatment on the regeneration of bone defects in osteoporotic rats. Bone formation was histologically and histomorphometrically assessed in rat femoral condyle bone defects filled with bone graft (Bio-Oss®) or left empty. METHODS Male Wistar rats were induced osteoporotic through orchidectomy (ORX) and SHAM-operated. The animals were divided into three groups: osteoporotic (ORX), osteoporotic treated with ALN (ORX + ALN) and healthy (SHAM). Six weeks after ORX or SHAM surgeries, bone defects were created bilaterally in femoral condyles; one defect was filled with Bio-Oss® and the other one left empty. Bone regeneration within the defects was analyzed by histology and histomorphometry after 4 and 12 weeks. RESULTS Histological samples showed new bone surrounding Bio-Oss® particles from week 4 onward in all three groups. At week 12, the data further showed that ALN treatment of osteoporotic animals enhanced bone formation to a 10-fold increase compared to non-treated osteoporotic control. Bio-Oss® filling of the defects promoted bone formation at both implantation periods compared to empty controls. CONCLUSION Our histological and histomorphometric results demonstrate that the enteral administration of alendronate under osteoporotic bone conditions leverages bone defect regeneration to a level comparable to that in healthy bone. Additionally, Bio-Oss® is an effective bone substitute, increasing bone formation, and acting as an osteoconductive scaffold guiding bone growth in both healthy and osteoporotic bone conditions. SIGNIFICANCE Based on the results of this study, enteral use of ALN mitigates adverse effects of an osteoporotic condition on bone defect regeneration.
Collapse
Affiliation(s)
- Winston Adam Camargo
- Dentistry - Regenerative Biomaterials (309), Radboudumc, Nijmegen, The Netherlands
| | - Jan Willem Hoekstra
- Dentistry - Regenerative Biomaterials (309), Radboudumc, Nijmegen, The Netherlands
| | - John A Jansen
- Dentistry - Regenerative Biomaterials (309), Radboudumc, Nijmegen, The Netherlands
| | | |
Collapse
|
9
|
Mou M, Pan Z, Lu M, Sun H, Wang Y, Luo Y, Zhu F. Application of Machine Learning in Spatial Proteomics. J Chem Inf Model 2022; 62:5875-5895. [PMID: 36378082 DOI: 10.1021/acs.jcim.2c01161] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spatial proteomics is an interdisciplinary field that investigates the localization and dynamics of proteins, and it has gained extensive attention in recent years, especially the subcellular proteomics. Numerous evidence indicate that the subcellular localization of proteins is associated with various cellular processes and disease progression. Mass spectrometry (MS)-based and imaging-based experimental approaches have been developed to acquire large-scale spatial proteomic data. To allow the reliable analysis of increasingly complex spatial proteomics data, machine learning (ML) methods have been widely used in both MS-based and imaging-based spatial proteomic data analysis pipelines. Here, we comprehensively survey the applications of ML in spatial proteomics from following aspects: (1) data resources for spatial proteome are comprehensively introduced; (2) the roles of different ML algorithms in data analysis pipelines are elaborated; (3) successful applications of spatial proteomics and several analytical tools integrating ML methods are presented; (4) challenges existing in modern ML-based spatial proteomics studies are discussed. This review provides guidelines for researchers seeking to apply ML methods to analyze spatial proteomic data and can facilitate insightful understanding of cell biology as well as the future research in medical and drug discovery communities.
Collapse
Affiliation(s)
- Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Rahimnejad M, Rasouli F, Jahangiri S, Ahmadi S, Rabiee N, Ramezani Farani M, Akhavan O, Asadnia M, Fatahi Y, Hong S, Lee J, Lee J, Hahn SK. Engineered Biomimetic Membranes for Organ-on-a-Chip. ACS Biomater Sci Eng 2022; 8:5038-5059. [PMID: 36347501 DOI: 10.1021/acsbiomaterials.2c00531] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Organ-on-a-chip (OOC) systems are engineered nanobiosystems to mimic the physiochemical environment of a specific organ in the body. Among various components of OOC systems, biomimetic membranes have been regarded as one of the most important key components to develop controllable biomimetic bioanalysis systems. Here, we review the preparation and characterization of biomimetic membranes in comparison with the features of the extracellular matrix. After that, we review and discuss the latest applications of engineered biomimetic membranes to fabricate various organs on a chip, such as liver, kidney, intestine, lung, skin, heart, vasculature and blood vessels, brain, and multiorgans with perspectives for further biomedical applications.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Fariba Rasouli
- Bioceramics and Implants Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14174-66191, Iran
| | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Sanghoon Hong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jungho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
11
|
Vermeulen S, Van Puyvelde B, Bengtsson del Barrio L, Almey R, van der Veer BK, Deforce D, Dhaenens M, de Boer J. Micro-Topographies Induce Epigenetic Reprogramming and Quiescence in Human Mesenchymal Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2203880. [PMID: 36414384 PMCID: PMC9811462 DOI: 10.1002/advs.202203880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Biomaterials can control cell and nuclear morphology. Since the shape of the nucleus influences chromatin architecture, gene expression and cell identity, surface topography can control cell phenotype. This study provides fundamental insights into how surface topography influences nuclear morphology, histone modifications, and expression of histone-associated proteins through advanced histone mass spectrometry and microarray analysis. The authors find that nuclear confinement is associated with a loss of histone acetylation and nucleoli abundance, while pathway analysis reveals a substantial reduction in gene expression associated with chromosome organization. In light of previous observations where the authors found a decrease in proliferation and metabolism induced by micro-topographies, they connect these findings with a quiescent phenotype in mesenchymal stem cells, as further shown by a reduction of ribosomal proteins and the maintenance of multipotency on micro-topographies after long-term culture conditions. Also, this influence of micro-topographies on nuclear morphology and proliferation is reversible, as shown by a return of proliferation when re-cultured on a flat surface. The findings provide novel insights into how biophysical signaling influences the epigenetic landscape and subsequent cellular phenotype.
Collapse
Affiliation(s)
- Steven Vermeulen
- Department of Instructive Biomaterials EngineeringMERLN InstituteUniversity of MaastrichtMaastricht6229 ERThe Netherlands
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Bart Van Puyvelde
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Laura Bengtsson del Barrio
- Department of Instructive Biomaterials EngineeringMERLN InstituteUniversity of MaastrichtMaastricht6229 ERThe Netherlands
| | - Ruben Almey
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Bernard K. van der Veer
- Laboratory for Stem Cell and Developmental EpigeneticsDepartment of Development and RegenerationKU LeuvenLeuven3000Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Jan de Boer
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
12
|
Bjørge IM, Correia CR, Mano JF. Hipster microcarriers: exploring geometrical and topographical cues of non-spherical microcarriers in biomedical applications. MATERIALS HORIZONS 2022; 9:908-933. [PMID: 34908074 DOI: 10.1039/d1mh01694f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Structure and organisation are key aspects of the native tissue environment, which ultimately condition cell fate via a myriad of processes, including the activation of mechanotransduction pathways. By modulating the formation of integrin-mediated adhesions and consequently impacting cell contractility, engineered geometrical and topographical cues may be introduced to activate downstream signalling and ultimately control cell morphology, proliferation, and differentiation. Microcarriers appear as attractive vehicles for cell-based tissue engineering strategies aiming to modulate this 3D environment, but also as vehicles for cell-free applications, given the ease in tuning their chemical and physical properties. In this review, geometry and topography are highlighted as two preponderant features in actively regulating interactions between cells and the extracellular matrix. While most studies focus on the 2D environment, we focus on how the incorporation of these strategies in 3D systems could be beneficial. The techniques applied to design 3D microcarriers with unique geometries and surface topographical cues are covered, as well as specific tissue engineering approaches employing these microcarriers. In fact, successfully achieving a functional histoarchitecture may depend on a combination of fine-tuned geometrically shaped microcarriers presenting intricately tailored topographical cues. Lastly, we pinpoint microcarrier geometry as a key player in cell-free biomaterial-based strategies, and its impact on drug release kinetics, the production of steerable microcarriers to target tumour cells, and as protein or antibody biosensors.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - Clara R Correia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
13
|
Peressotti S, Koehl GE, Goding JA, Green RA. Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomater Sci Eng 2021; 7:4136-4163. [PMID: 33780230 PMCID: PMC8441975 DOI: 10.1021/acsbiomaterials.1c00030] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Hydrogel materials have been employed as biological scaffolds for tissue regeneration across a wide range of applications. Their versatility and biomimetic properties make them an optimal choice for treating the complex and delicate milieu of neural tissue damage. Aside from finely tailored hydrogel properties, which aim to mimic healthy physiological tissue, a minimally invasive delivery method is essential to prevent off-target and surgery-related complications. The specific class of injectable hydrogels termed self-assembling peptides (SAPs), provide an ideal combination of in situ polymerization combined with versatility for biofunctionlization, tunable physicochemical properties, and high cytocompatibility. This review identifies design criteria for neural scaffolds based upon key cellular interactions with the neural extracellular matrix (ECM), with emphasis on aspects that are reproducible in a biomaterial environment. Examples of the most recent SAPs and modification methods are presented, with a focus on biological, mechanical, and topographical cues. Furthermore, SAP electrical properties and methods to provide appropriate electrical and electrochemical cues are widely discussed, in light of the endogenous electrical activity of neural tissue as well as the clinical effectiveness of stimulation treatments. Recent applications of SAP materials in neural repair and electrical stimulation therapies are highlighted, identifying research gaps in the field of hydrogels for neural regeneration.
Collapse
Affiliation(s)
- Sofia Peressotti
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Gillian E. Koehl
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Josef A. Goding
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Rylie A. Green
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| |
Collapse
|
14
|
Vermeulen S, Honig F, Vasilevich A, Roumans N, Romero M, Dede Eren A, Tuvshindorj U, Alexander M, Carlier A, Williams P, Uquillas J, de Boer J. Expanding Biomaterial Surface Topographical Design Space through Natural Surface Reproduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102084. [PMID: 34165820 PMCID: PMC11468538 DOI: 10.1002/adma.202102084] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Surface topography is a tool to endow biomaterials with bioactive properties. However, the large number of possible designs makes it challenging to find the optimal surface structure to induce a specific cell response. The TopoChip platform is currently the largest collection of topographies with 2176 in silico designed microtopographies. Still, it is exploring only a small part of the design space due to design algorithm limitations and the surface engineering strategy. Inspired by the diversity of natural surfaces, it is assessed as to what extent the topographical design space and consequently the resulting cellular responses can be expanded using natural surfaces. To this end, 26 plant and insect surfaces are replicated in polystyrene and their surface properties are quantified using white light interferometry. Through machine-learning algorithms, it is demonstrated that natural surfaces extend the design space of the TopoChip, which coincides with distinct morphological and focal adhesion profiles in mesenchymal stem cells (MSCs) and Pseudomonas aeruginosa colonization. Furthermore, differentiation experiments reveal the strong potential of the holy lotus to improve osteogenesis in MSCs. In the future, the design algorithms will be trained with the results obtained by natural surface imprint experiments to explore the bioactive properties of novel surface topographies.
Collapse
Affiliation(s)
- Steven Vermeulen
- MERLN InstituteMaastricht UniversityMaastricht6229 ERThe Netherlands
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Floris Honig
- MERLN InstituteMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Aliaksei Vasilevich
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Nadia Roumans
- MERLN InstituteMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Manuel Romero
- National Biofilms Innovation CentreBiodiscovery Institute and School of Life SciencesUniversity of NottinghamNottinghamNG7 2RDUK
| | - Aysegul Dede Eren
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Urnaa Tuvshindorj
- MERLN InstituteMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Morgan Alexander
- Advanced Materials and Healthcare TechnologiesThe School of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Aurélie Carlier
- MERLN InstituteMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Paul Williams
- National Biofilms Innovation CentreBiodiscovery Institute and School of Life SciencesUniversity of NottinghamNottinghamNG7 2RDUK
| | - Jorge Uquillas
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
15
|
Emmert M, Somorowsky F, Ebert J, Görick D, Heyn A, Rosenberger E, Wahl M, Heinrich D. Modulation of Mammalian Cell Behavior by Nanoporous Glass. Adv Biol (Weinh) 2021; 5:e2000570. [PMID: 33960740 DOI: 10.1002/adbi.202000570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/31/2021] [Indexed: 11/08/2022]
Abstract
The introduction of novel bioactive materials to manipulate living cell behavior is a crucial topic for biomedical research and tissue engineering. Biomaterials or surface patterns that boost specific cell functions can enable innovative new products in cell culture and diagnostics. This study investigates the influence of the intrinsically nano-patterned surface of nanoporous glass membranes on the behavior of mammalian cells. Three different cell lines and primary human mesenchymal stem cells (hMSCs) proliferate readily on nanoporous glass membranes with mean pore sizes between 10 and 124 nm. In both proliferation and mRNA expression experiments, L929 fibroblasts show a distinct trend toward mean pore sizes >80 nm. For primary hMSCs, excellent proliferation is observed on all nanoporous surfaces. hMSCs on samples with 17 nm pore size display increased expression of COL10, COL2A1, and SOX9, especially during the first two weeks of culture. In the upside down culture, SK-MEL-28 cells on nanoporous glass resist the gravitational force and proliferate well in contrast to cells on flat references. The effect of paclitaxel treatment of MDA-MB-321 breast cancer cells is already visible after 48 h on nanoporous membranes and strongly pronounced in comparison to reference samples, underlining the material's potential for functional drug screening.
Collapse
Affiliation(s)
- Martin Emmert
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany.,Julius-Maximilians-Universität Würzburg, Chemical Technology of Material Synthesis, Röntgenring 11, 97070, Würzburg, Germany
| | - Ferdinand Somorowsky
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Jutta Ebert
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Dominik Görick
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Andreas Heyn
- Julius-Maximilians-Universität Würzburg, Chemical Technology of Material Synthesis, Röntgenring 11, 97070, Würzburg, Germany
| | - Eva Rosenberger
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Moritz Wahl
- Julius-Maximilians-Universität Würzburg, Chemical Technology of Material Synthesis, Röntgenring 11, 97070, Würzburg, Germany
| | - Doris Heinrich
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany.,Leiden University, LION Leiden Institute of Physics, Niels Bohrweg 2, Leiden, 2333 CA, The Netherlands
| |
Collapse
|
16
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
17
|
Sutthavas P, Habibovic P, van Rijt SH. The shape-effect of calcium phosphate nanoparticle based films on their osteogenic properties. Biomater Sci 2021; 9:1754-1766. [PMID: 33433541 DOI: 10.1039/d0bm01494j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium phosphates (CaPs) in the form of hydroxyapatite (HA) have been extensively studied in the context of bone regeneration due to their chemical similarity to natural bone mineral. While HA is known to promote osteogenic differentiation, the structural properties of the ceramic have been shown to affect the extent of this effect; several studies have suggested that nanostructured HA can improve the bioactivity. However, the role shape plays in the osteogenic potential is more elusive. Here we studied the effect of HA nanoparticle shape on the ability to induce osteogenesis in human mesenchymal stromal cells (hMSCs) by developing nanoparticle films using needle-, rice- and spherical-shaped HA. We showed that the HA films made from all three shapes of nanoparticles induced increased levels of osteogenic markers (i.e. runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN) on protein and gene level in comparison to hMSCs cultured on cover glass slides. Furthermore, their expression levels and profiles differed significantly as a function of nanoparticle shape. We also showed that nanoparticle films were more efficient in inducing osteogenic gene expression in hMSCs compared to adding nanoparticles to hMSCs in culture media. Finally, we demonstrated that hMSC morphology upon adhesion to the HA nanoparticle films is dependent on nanoparticle shape, with hMSCs exhibiting a more spread morphology on needle-shaped nanoparticle films compared to hMSCs seeded on rice- and spherical-shaped nanoparticle films. Our data suggests that HA nanoparticle films are efficient in inducing hMSC osteogenesis in basic cell culture conditions and that nanoparticle shape plays a vital role in cell adhesion and morphology and extent of induction of osteogenic differentiation.
Collapse
Affiliation(s)
- Pichaporn Sutthavas
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Sabine H van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
18
|
Tamashunas AC, Tocco VJ, Matthews J, Zhang Q, Atanasova KR, Paschall L, Pathak S, Ratnayake R, Stephens AD, Luesch H, Licht JD, Lele TP. High-throughput gene screen reveals modulators of nuclear shape. Mol Biol Cell 2020; 31:1392-1402. [PMID: 32320319 PMCID: PMC7353136 DOI: 10.1091/mbc.e19-09-0520] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Irregular nuclear shapes characterized by blebs, lobules, micronuclei, or invaginations are hallmarks of many cancers and human pathologies. Despite the correlation between abnormal nuclear shape and human pathologies, the mechanism by which the cancer nucleus becomes misshapen is not fully understood. Motivated by recent evidence that modifying chromatin condensation can change nuclear morphology, we conducted a high-throughput RNAi screen to identify epigenetic regulators that are required to maintain normal nuclear shape in human breast epithelial MCF-10A cells. We silenced 608 genes in parallel using an epigenetics siRNA library and used an unbiased Fourier analysis approach to quantify nuclear contour irregularity from fluorescent images captured on a high-content microscope. Using this quantitative approach, which we validated with confocal microscopy, we significantly expand the list of epigenetic regulators that impact nuclear morphology.
Collapse
Affiliation(s)
| | | | - James Matthews
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | | | - Kalina R. Atanasova
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | | | | | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | - Jonathan D. Licht
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, FL 32610
| | | |
Collapse
|
19
|
Tang SW, Tong WY, Pang SW, Voelcker NH, Lam YW. Deconstructing, Replicating, and Engineering Tissue Microenvironment for Stem Cell Differentiation. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:540-554. [PMID: 32242476 DOI: 10.1089/ten.teb.2020.0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the most crucial components of regenerative medicine is the controlled differentiation of embryonic or adult stem cells into the desired cell lineage. Although most of the reported protocols of stem cell differentiation involve the use of soluble growth factors, it is increasingly evident that stem cells also undergo differentiation when cultured in the appropriate microenvironment. When cultured in decellularized tissues, for instance, stem cells can recapitulate the morphogenesis and functional specialization of differentiated cell types with speed and efficiency that often surpass the traditional growth factor-driven protocols. This suggests that the tissue microenvironment (TME) provides stem cells with a holistic "instructive niche" that harbors signals for cellular reprogramming. The translation of this into medical applications requires the decoding of these signals, but this has been hampered by the complexity of TME. This problem is often addressed by a reductionist approach, in which cells are exposed to substrates decorated with simple, empirically designed geometries, textures, and chemical compositions ("bottom-up" approach). Although these studies are invaluable in revealing the basic principles of mechanotransduction mechanisms, their physiological relevance is often uncertain. This review examines the recent progress of an alternative, "top-down" approach, in which the TME is treated as a holistic biological entity. This approach is made possible by recent advances in systems biology and fabrication technologies that enable the isolation, characterization, and reconstitution of TME. It is hoped that these new techniques will elucidate the nature of niche signals so that they can be extracted, replicated, and controlled. This review summarizes these emerging techniques and how the data they generated are changing our view on TME. Impact statement This review summarizes the current state of art of the understanding of instructive niche in the field of tissue microenvironment. Not only did we survey the use of different biochemical preparations as stimuli of stem cell differentiation and summarize the recent effort in dissecting the biochemical composition of these preparations, through the application of extracellular matrix (ECM) arrays and proteomics, but we also introduce the use of open-source, high-content immunohistochemistry projects in contributing to the understanding of tissue-specific composition of ECM. We believe this review would be highly useful for our peer researching in the same field. "Mr. Tulkinghorn is always the same… so oddly out of place and yet so perfectly at home." -Charles Dickens, Bleak House.
Collapse
Affiliation(s)
- Sze Wing Tang
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong
| | - Wing Yin Tong
- Melbourne Center for Nanofabrication, Victorian Node of the Australian National Fabrication, Clayton, Australia.,Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Stella W Pang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong
| | - Nicolas H Voelcker
- Melbourne Center for Nanofabrication, Victorian Node of the Australian National Fabrication, Clayton, Australia.,Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
20
|
Pot M, Mihaila SM, te Brinke D, van der Borg G, Oosterwijk E, Daamen WF, van Kuppevelt TH. Introduction of Specific 3D Micromorphologies in Collagen Scaffolds Using Odd and Even Dicarboxylic Acids. ACS OMEGA 2020; 5:3908-3916. [PMID: 32149217 PMCID: PMC7057318 DOI: 10.1021/acsomega.9b03350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/10/2020] [Indexed: 05/03/2023]
Abstract
The construction of scaffolds and subsequent incorporation of cells and biologics have been widely investigated to regenerate damaged tissues. Scaffolds act as a template to guide tissue formation, and their characteristics have a considerable impact on the regenerative process. Whereas many technologies exist to induce specific two-dimensional (2D) morphologies into biomaterials, the introduction of three-dimensional (3D) micromorphologies into individual pore walls of scaffolds produced from biological molecules such as collagen poses a challenge. We here report the use of dicarboxylic acids to induce specific micromorphologies in collagen scaffolds and evaluate their effect on cellular migration and differentiation. Insoluble type I collagen fibrils were suspended in monocarboxylic and dicarboxylic acids of different concentrations, and unidirectional and random pore scaffolds were constructed by freezing and lyophilization. The application of various acids and concentrations resulted in variations in 3D micromorphologies, including wall structure, wall thickness, and pore size. The use of dicarboxylic acids resulted in acid-specific micromorphologies, whereas monocarboxylic acids did not. Dicarboxylic acids with an odd or even number of C-atoms resulted in frayed/fibrillar or smooth wall structures, respectively, with varying appearances. The formation of micromorphologies was concentration-dependent. In vitro analysis indicated the cytocompatibility of scaffolds, and micromorphology-related cell behavior was indicated by enhanced myosin staining and myosin heavy chain gene expression for C2C12 myoblasts cultured on scaffolds with frayedlike micromorphologies compared to those with smooth micromorphologies. In conclusion, porous collagen scaffolds with various intrawall 3D micromorphologies can be constructed by application of dicarboxylic acids, superimposing the second level of morphology to the overall scaffold structure. Acid crystal formation is key to the specific micromorphologies observed and can be explained by the odd/even theory for dicarboxylic acids. Scaffolds with a 3D micrometer-defined topography may be used as a screening platform to select optimal substrates for the regeneration of specific tissues.
Collapse
Affiliation(s)
- Michiel
W. Pot
- Department
of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Silvia M. Mihaila
- Department
of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dana te Brinke
- Department
of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Guus van der Borg
- Department
of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department
of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Willeke F. Daamen
- Department
of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Toin H. van Kuppevelt
- Department
of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
21
|
Menzyanova NG, Pyatina SA, Shabanov AV, Nemtsev IV, Stolyarov DP, Dryganov DB, Sakhnov EV, Shishatskaya EI. The Morphology and Phenotype of Monocyte-Macrophages When Cultured on Bionanofilms Substrates with Different Surface Relief Profiles. Biomolecules 2019; 10:biom10010065. [PMID: 31906038 PMCID: PMC7022488 DOI: 10.3390/biom10010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022] Open
Abstract
The effect of surface relief profiles of alkanoate-based bionanofilms to the monocyte-macrophages (MN-MPhs) from peripheral blood of patients with atherosclerosis was studied in vitro. Patients were subjected to coronary stenting. Cell morphology and phenotype (expression of CD antigens, levels of production of marker cytokines) in vitro were analyzed before and after the installation of stents. It was shown, that the mean square roughness (Rq) of the bionanofilms determined the variability of cell morphology, CD antigens spectraand activity of production interleukins-6 and -10. Also, it was revealed, that the “activity” of the surface topography of biopolymer substrates depends on the functional state of MNs, isolated in different time points: Before and after stenting the ratios of cell morphotypes and production of cytokines in MN-MPhs differed significantly.
Collapse
Affiliation(s)
- Natalia G. Menzyanova
- Siberian Federal University, 79, Svobodnyav, 660041 Krasnoyarsk, Russia; (S.A.P.); (E.I.S.)
- Correspondence: ; Tel.: +7-983-501-8880
| | - Svetlana A. Pyatina
- Siberian Federal University, 79, Svobodnyav, 660041 Krasnoyarsk, Russia; (S.A.P.); (E.I.S.)
| | - Alexander V. Shabanov
- L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Ivan V. Nemtsev
- Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 50 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Dmitry P. Stolyarov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, 660020 Krasnoyarsk, Russia; (D.P.S.); (D.B.D.); (E.V.S.)
| | - Dmitry B. Dryganov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, 660020 Krasnoyarsk, Russia; (D.P.S.); (D.B.D.); (E.V.S.)
| | - Eugene V. Sakhnov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, 660020 Krasnoyarsk, Russia; (D.P.S.); (D.B.D.); (E.V.S.)
| | | |
Collapse
|
22
|
Das P, van der Meer AD, Vivas A, Arik YB, Remigy JC, Lahitte JF, Lammertink RG, Bacchin P. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance. Tissue Eng Part A 2019; 25:1635-1645. [DOI: 10.1089/ten.tea.2019.0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pritam Das
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France
- Applied Stem Cell Technologies, TechMed Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- BIOS Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
- Soft Matter, Fluidics and Interfaces, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Andries D. van der Meer
- Applied Stem Cell Technologies, TechMed Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Aisen Vivas
- Applied Stem Cell Technologies, TechMed Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- BIOS Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Yusuf B. Arik
- Applied Stem Cell Technologies, TechMed Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- BIOS Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Jean-Christophe Remigy
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France
| | - Jean-François Lahitte
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France
| | - Rob G.H. Lammertink
- Soft Matter, Fluidics and Interfaces, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France
| |
Collapse
|
23
|
Zhu M, Ye H, Fang J, Zhong C, Yao J, Park J, Lu X, Ren F. Engineering High-Resolution Micropatterns Directly onto Titanium with Optimized Contact Guidance to Promote Osteogenic Differentiation and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43888-43901. [PMID: 31680521 DOI: 10.1021/acsami.9b16050] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Topographical cues play an important role in directing cell behavior, and thus, extensive research efforts have been devoted to fabrication of surface patterns and exploring the contact guidance effect. However, engineering high-resolution micropatterns directly onto metallic implants remains a grand challenge. Moreover, there still lacks evidence that allows translation of in vitro screening to in vivo tissue response. Herein, we demonstrate a fast, cost-effective, and feasible approach to the precise fabrication of shape- and size-controlled micropatterns on titanium substrates using a combination of photolithography and inductively coupled plasma-based dry etching. A titanium TopoChip containing 34 microgrooved patterns with varying geometry parameters and a flat surface as the control was designed for a high-throughput in vitro study of the contact guidance of osteoblasts. The correlation between the surface pattern dimensions, cell morphological characteristics, proliferation, and osteogenic marker expression was systematically investigated in vitro. Furthermore, the surface with the highest osteogenic potential in vitro along with representative controls was evaluated in rat cranial defect models. The results show that microgrooved pattern parameters have almost no effect on osteoblast proliferation but significantly regulate the cell morphology, orientation, focal adhesion (FA) formation, and osteogenic differentiation in vitro. In particular, a specific groove pattern with a ridge width of 3 μm, groove width of 7 μm, and depth of 2 μm can most effectively align the cells through regulating the distribution of FAs, resulting in an anisotropic actin cytoskeleton, and thereby promoting osteogenic differentiation. In vivo, microcomputed tomography and histological analyses show that the optimized pattern can apparently stimulate new bone formation. This study not only offers a microfabrication method that can be extended to fabricate various shape- and size-controlled micropatterns on titanium alloys but also provides insight into the surface structure design of orthopedic and dental implants for enhanced bone regeneration.
Collapse
Affiliation(s)
| | | | | | - Chuanxin Zhong
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong , Hong Kong 999077 , China
| | | | | | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031, China
| | | |
Collapse
|
24
|
der Boon TAB, Yang L, Li L, Córdova Galván DE, Zhou Q, Boer J, Rijn P. Well Plate Integrated Topography Gradient Screening Technology for Studying Cell‐Surface Topography Interactions. ACTA ACUST UNITED AC 2019; 4:e1900218. [DOI: 10.1002/adbi.201900218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/02/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Torben A. B. der Boon
- W.J. Kolff Institute for Biomedical Engineering and Materials Science Department of Biomedical EngineeringUniversity Medical Center GroningenUniversity of Groningen A. Deusinglaan 1 9713 AV Groningen the Netherlands
| | - Liangliang Yang
- W.J. Kolff Institute for Biomedical Engineering and Materials Science Department of Biomedical EngineeringUniversity Medical Center GroningenUniversity of Groningen A. Deusinglaan 1 9713 AV Groningen the Netherlands
| | - Linfeng Li
- Merln Institue for Technology‐inspired Regenerative MedicineMaastricht University Universiteitssingel 40 6229 ER Maastricht the Netherlands
| | - Daniel E. Córdova Galván
- W.J. Kolff Institute for Biomedical Engineering and Materials Science Department of Biomedical EngineeringUniversity Medical Center GroningenUniversity of Groningen A. Deusinglaan 1 9713 AV Groningen the Netherlands
| | - Qihui Zhou
- W.J. Kolff Institute for Biomedical Engineering and Materials Science Department of Biomedical EngineeringUniversity Medical Center GroningenUniversity of Groningen A. Deusinglaan 1 9713 AV Groningen the Netherlands
- Institute for Translational Medicine State Key Laboratory of Bio‐fibers and Eco‐textilesQingdao University Qingdao 266021 China
| | - Jan Boer
- Department of Biomedical EngineeringEindhoven University of Technology De Zaale 5600 MB Eindhoven the Netherlands
| | - Patrick Rijn
- W.J. Kolff Institute for Biomedical Engineering and Materials Science Department of Biomedical EngineeringUniversity Medical Center GroningenUniversity of Groningen A. Deusinglaan 1 9713 AV Groningen the Netherlands
| |
Collapse
|
25
|
Pasman T, Grijpma D, Stamatialis D, Poot A. Flat and microstructured polymeric membranes in organs-on-chips. J R Soc Interface 2019; 15:rsif.2018.0351. [PMID: 30045892 DOI: 10.1098/rsif.2018.0351] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/03/2018] [Indexed: 01/30/2023] Open
Abstract
In recent years, organs-on-chips (OOCs) have been developed to meet the desire for more realistic in vitro cell culture models. These systems introduce microfluidics, mechanical stretch and other physiological stimuli to in vitro models, thereby significantly enhancing their descriptive power. In most OOCs, porous polymeric membranes are used as substrates for cell culture. The polymeric material, morphology and shape of these membranes are often suboptimal, despite their importance for achieving ideal cell functionality such as cell-cell interaction and differentiation. The currently used membranes are flat and thus do not account for the shape and surface morphology of a tissue. Moreover, the polymers used for fabrication of these membranes often lack relevant characteristics, such as mechanical properties matching the tissue to be developed and/or cytocompatibility. Recently, innovative techniques have been reported for fabrication of porous membranes with suitable porosity, shape and surface morphology matching the requirements of OOCs. In this paper, we review the state of the art for developing these membranes and discuss their application in OOCs.
Collapse
Affiliation(s)
- Thijs Pasman
- Biomaterials Science and Technology, Universiteit Twente Faculteit Technische Natuurwetenschappen, Enschede, The Netherlands
| | - Dirk Grijpma
- Biomaterials Science and Technology, Universiteit Twente Faculteit Technische Natuurwetenschappen, Enschede, The Netherlands.,Biomedical Engineering, Rijksuniversiteit Groningen Faculteit voor Wiskunde en Natuurwetenschappen, Groningen, The Netherlands
| | - Dimitrios Stamatialis
- Biomaterials Science and Technology, Universiteit Twente Faculteit Technische Natuurwetenschappen, Enschede, The Netherlands
| | - Andreas Poot
- Biomaterials Science and Technology, Universiteit Twente Faculteit Technische Natuurwetenschappen, Enschede, The Netherlands
| |
Collapse
|
26
|
Mantz A, Pannier AK. Biomaterial substrate modifications that influence cell-material interactions to prime cellular responses to nonviral gene delivery. Exp Biol Med (Maywood) 2019; 244:100-113. [PMID: 30621454 PMCID: PMC6405826 DOI: 10.1177/1535370218821060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
IMPACT STATEMENT This review summarizes how biomaterial substrate modifications (e.g. chemical modifications like natural coatings, ligands, or functional side groups, and/or physical modifications such as topography or stiffness) can prime the cellular response to nonviral gene delivery (e.g. affecting integrin binding and focal adhesion formation, cytoskeletal remodeling, endocytic mechanisms, and intracellular trafficking), to aid in improving gene delivery for applications where a cell-material interface might exist (e.g. tissue engineering scaffolds, medical implants and devices, sensors and diagnostics, wound dressings).
Collapse
Affiliation(s)
- Amy Mantz
- Department of Biological Systems Engineering,
University
of Nebraska-Lincoln, Lincoln, NE 68583,
USA
| | - Angela K Pannier
- Department of Biological Systems Engineering,
University
of Nebraska-Lincoln, Lincoln, NE 68583,
USA
| |
Collapse
|
27
|
Zijl S, Vasilevich AS, Viswanathan P, Helling AL, Beijer NRM, Walko G, Chiappini C, de Boer J, Watt FM. Micro-scaled topographies direct differentiation of human epidermal stem cells. Acta Biomater 2019; 84:133-145. [PMID: 30528608 PMCID: PMC6336537 DOI: 10.1016/j.actbio.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 11/25/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023]
Abstract
Human epidermal stem cells initiate terminal differentiation when spreading is restricted on ECM-coated micropatterned islands, soft hydrogels or hydrogel-nanoparticle composites with high nanoparticle spacing. The effect of substrate topography, however, is incompletely understood. To explore this, primary human keratinocytes enriched for stem cells were seeded on a topographical library with over 2000 different topographies in the micrometre range. Twenty-four hours later the proportion of cells expressing the differentiation marker transglutaminase-1 was determined by high content imaging. As predicted, topographies that prevented spreading promoted differentiation. However, we also identified topographies that supported differentiation of highly spread cells. Topographies supporting differentiation of spread cells were more irregular than those supporting differentiation of round cells. Low topography coverage promoted differentiation of spread cells, whereas high coverage promoted differentiation of round cells. Based on these observations we fabricated a topography in 6-well plate format that supported differentiation of spread cells, enabling us to examine cell responses at higher resolution. We found that differentiated spread cells did not assemble significant numbers of hemidesmosomes, focal adhesions, adherens junctions, desmosomes or tight junctions. They did, however, organise the actin cytoskeleton in response to the topographies. Rho kinase inhibition and blebbistatin treatment blocked the differentiation of spread cells, whereas SRF inhibition did not. These observations suggest a potential role for actin polymerization and actomyosin contraction in the topography-induced differentiation of spread cells. STATEMENT OF SIGNIFICANCE: The epidermis is the outer covering of the skin. It is formed by layers of cells called keratinocytes. The basal cell layer contains stem cells, which divide to replace cells in the outermost layers that are lost through a process known as differentiation. In this manuscript we have developed surfaces that promote the differentiation of epidermal stem cells in order to understand the signals that control differentiation. The experimental tools we have developed have the potential to help us to devise new treatments that control diseases such as psoriasis and eczema in which epidermal stem cell proliferation and differentiation are disturbed.
Collapse
Affiliation(s)
- Sebastiaan Zijl
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Aliaksei S Vasilevich
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Priyalakshmi Viswanathan
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Ayelen Luna Helling
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Nick R M Beijer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gernot Walko
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom; Department of Biology and Biochemistry, University of Bath, United Kingdom
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, 27th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Jan de Boer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Materiomics bv, Maastricht, The Netherlands
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom.
| |
Collapse
|
28
|
Polysaccharides for tissue engineering: Current landscape and future prospects. Carbohydr Polym 2018; 205:601-625. [PMID: 30446147 DOI: 10.1016/j.carbpol.2018.10.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022]
Abstract
Biological studies on the importance of carbohydrate moieties in tissue engineering have incited a growing interest in the application of polysaccharides as scaffolds over the past two decades. This review provides a perspective of the recent approaches in developing polysaccharide scaffolds, with a focus on their chemical modification, structural versatility, and biological applicability. The current major limitations are assessed, including structural reproducibility, the narrow scope of polysaccharide modifications being applied, and the effective replication of the extracellular environment. Areas with opportunities for further development are addressed with an emphasis on the application of rationally designed polysaccharides and their importance in elucidating the molecular interactions necessary to properly design tissue engineering materials.
Collapse
|
29
|
Vasilevich AS, Mourcin F, Mentink A, Hulshof F, Beijer N, Zhao Y, Levers M, Papenburg B, Singh S, Carpenter AE, Stamatialis D, van Blitterswijk C, Tarte K, de Boer J. Designed Surface Topographies Control ICAM-1 Expression in Tonsil-Derived Human Stromal Cells. Front Bioeng Biotechnol 2018; 6:87. [PMID: 30003080 PMCID: PMC6031747 DOI: 10.3389/fbioe.2018.00087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Fibroblastic reticular cells (FRCs), the T-cell zone stromal cell subtype in the lymph nodes, create a scaffold for adhesion and migration of immune cells, thus allowing them to communicate. Although known to be important for the initiation of immune responses, studies about FRCs and their interactions have been impeded because FRCs are limited in availability and lose their function upon culture expansion. To circumvent these limitations, stromal cell precursors can be mechanotranduced to form mature FRCs. Here, we used a library of designed surface topographies to trigger FRC differentiation from tonsil-derived stromal cells (TSCs). Undifferentiated TSCs were seeded on a TopoChip containing 2176 different topographies in culture medium without differentiation factors, then monitored cell morphology and the levels of ICAM-1, a marker of FRC differentiation. We identified 112 and 72 surfaces that upregulated and downregulated, respectively, ICAM-1 expression. By monitoring cell morphology, and expression of the FRC differentiation marker ICAM-1 via image analysis and machine learning, we discovered correlations between ICAM-1 expression, cell shape and design of surface topographies and confirmed our findings by using flow cytometry. Our findings confirmed that TSCs are mechano-responsive cells and identified particular topographies that can be used to improve FRC differentiation protocols.
Collapse
Affiliation(s)
- Aliaksei S Vasilevich
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Frédéric Mourcin
- Institut National de la Santé et de la Recherche Médicale, U917, Equipe Labelisée Ligue Contre le Cancer, Université Rennes, I'Etablissement Français du Sang Bretagne, Rennes, France
| | - Anouk Mentink
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Frits Hulshof
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Nick Beijer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | | | | | | | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Karin Tarte
- Institut National de la Santé et de la Recherche Médicale, U917, Equipe Labelisée Ligue Contre le Cancer, Université Rennes, I'Etablissement Français du Sang Bretagne, Rennes, France
| | - Jan de Boer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
30
|
Kukumberg M, Yao Y, Goh SH, Neo DJ, Yao JY, Yim EK. Evaluation of the topographical influence on the cellular behavior of human umbilical vein endothelial cells. ADVANCED BIOSYSTEMS 2018; 2:1700217. [PMID: 30766915 PMCID: PMC6370334 DOI: 10.1002/adbi.201700217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Indexed: 12/17/2022]
Abstract
Adhesion and proliferation of vascular endothelial cells are important parameters in the endothelialization of biomedical devices for vascular applications. Endothelialization is a complex process affected by endothelial cells and their interaction with the extracellular microenvironment. Although numerous approaches are taken to study the influence of the external environment, a systematic investigation of the impact of an engineered microenvironment on endothelial cell processes is needed. This study aims to investigate the influence of topography, initial cell seeding density, and collagen coating on human umbilical vein endothelial cells (HUVECs). Utilizing the MultiARChitecture (MARC) chamber, the effects of various topographies on HUVECs are identified, and those with more prominent effects were further evaluated individually using the MARC plate. Endothelial cell marker expression and monocyte adhesion assay are examined on the HUVEC monolayer. HUVECs on 1.8 μm convex and concave microlens topographies demonstrate the lowest cell adhesion and proliferation, regardless of initial cell seeding density and collagen I coating, and the HUVEC monolayer on the microlens shows the lowest monocyte adhesion. This property of lens topographies would potentially be a useful parameter in designing vascular biomedical devices. The MARC chamber and MARC plate show a great potential for faster and easy pattern identification for various cellular processes.
Collapse
Affiliation(s)
- Marek Kukumberg
- Mechanobiology Institute, National University of Singapore, #05-01 T-lab, 5A Engineering Drive 1, Singapore 117411
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Seok Hong Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, 138634, Singapore, Department of Biomedical Engineering, National University of Singapore, E4, #04-10,4 Engineering Drive 3, Singapore 117583
| | - Dawn Jh Neo
- Mechanobiology Institute, National University of Singapore, #05-01 T-lab, 5A Engineering Drive 1, Singapore 117411
| | - Jia Yi Yao
- Department of Biomedical Engineering, National University of Singapore, E4, #04-10,4 Engineering Drive 3, Singapore 117583
| | - Evelyn Kf Yim
- Mechanobiology Institute, National University of Singapore, #05-01 T-lab, 5A Engineering Drive 1, Singapore 117411, Department of Biomedical Engineering, National University of Singapore, E4, #04-10,4 Engineering Drive 3, Singapore 117583, Department of Surgery, National University of Singapore, NUHS Tower Block, Level 8,1E Kent Ridge Road, Singapore 119228, Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
31
|
Anselme K, Wakhloo NT, Rougerie P, Pieuchot L. Role of the Nucleus as a Sensor of Cell Environment Topography. Adv Healthc Mater 2018; 7:e1701154. [PMID: 29283219 DOI: 10.1002/adhm.201701154] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Indexed: 12/25/2022]
Abstract
The proper integration of biophysical cues from the cell vicinity is crucial for cells to maintain homeostasis, cooperate with other cells within the tissues, and properly fulfill their biological function. It is therefore crucial to fully understand how cells integrate these extracellular signals for tissue engineering and regenerative medicine. Topography has emerged as a prominent component of the cellular microenvironment that has pleiotropic effects on cell behavior. This progress report focuses on the recent advances in the understanding of the topography sensing mechanism with a special emphasis on the role of the nucleus. Here, recent techniques developed for monitoring the nuclear mechanics are reviewed and the impact of various topographies and their consequences on nuclear organization, gene regulation, and stem cell fate is summarized. The role of the cell nucleus as a sensor of cell-scale topography is further discussed.
Collapse
Affiliation(s)
- Karine Anselme
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| | - Nayana Tusamda Wakhloo
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| | - Pablo Rougerie
- Institute of Biomedical SciencesFederal University of Rio de Janeiro Rio de Janeiro RJ 21941‐902 Brazil
| | - Laurent Pieuchot
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| |
Collapse
|
32
|
Höner M, Lauria I, Dabhi C, Kant S, Leube RE, Fischer H. Periodic microstructures on bioactive glass surfaces enhance osteogenic differentiation of human mesenchymal stromal cells and promote osteoclastogenesis in vitro. J Biomed Mater Res A 2018; 106:1965-1978. [PMID: 29569421 DOI: 10.1002/jbm.a.36399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 11/06/2022]
Abstract
Bioactive glasses (BG) are known for their ability to bond to hard and soft tissues. We hypothesized that the stimulation of bone remodeling, including cellular bone forming and bone resorbing processes, can be increased by applying periodic microstructures on the glass surfaces in vitro. To test our hypothesis, two different BG (45S5 and 13-93) were microstructured in a groove-and-ridge pattern of different sizes by a novel casting process and tested in cell culture experiments using human mesenchymal stromal cells (hMSCs) and RAW 264.7 cells. The microstructures induced contact guidance of hMSCs and increased osteogenic marker gene expression of the stem cells, compared to non-structured glass surfaces as verified by ELISA and quantitative real-time PCR (qPCR) analyses. Furthermore, the structures stimulated the differentiation of RAW cells to osteoclast-like cells confirmed by TRAP gene expression and their resorption activity causing visible resorption lacunae. Our results demonstrate that periodically microstructured BG (especially 45S5) might improve the osteogenic differentiation of hMSCs and influence the activity of material resorbing cells in vitro. Hence, microstructuring of BG could enhance the remodeling process of bone substitutes critical for the formation of new bone tissue in vivo and thus be used to trigger bone remodeling kinetics in vivo. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1965-1978, 2018.
Collapse
Affiliation(s)
- Miriam Höner
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Ines Lauria
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Christina Dabhi
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Sebastian Kant
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, Aachen, 52074, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, Aachen, 52074, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| |
Collapse
|
33
|
Rose JC, De Laporte L. Hierarchical Design of Tissue Regenerative Constructs. Adv Healthc Mater 2018; 7:e1701067. [PMID: 29369541 DOI: 10.1002/adhm.201701067] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/01/2017] [Indexed: 02/05/2023]
Abstract
The worldwide shortage of organs fosters significant advancements in regenerative therapies. Tissue engineering and regeneration aim to supply or repair organs or tissues by combining material scaffolds, biochemical signals, and cells. The greatest challenge entails the creation of a suitable implantable or injectable 3D macroenvironment and microenvironment to allow for ex vivo or in vivo cell-induced tissue formation. This review gives an overview of the essential components of tissue regenerating scaffolds, ranging from the molecular to the macroscopic scale in a hierarchical manner. Further, this review elaborates about recent pivotal technologies, such as photopatterning, electrospinning, 3D bioprinting, or the assembly of micrometer-scale building blocks, which enable the incorporation of local heterogeneities, similar to most native extracellular matrices. These methods are applied to mimic a vast number of different tissues, including cartilage, bone, nerves, muscle, heart, and blood vessels. Despite the tremendous progress that has been made in the last decade, it remains a hurdle to build biomaterial constructs in vitro or in vivo with a native-like structure and architecture, including spatiotemporal control of biofunctional domains and mechanical properties. New chemistries and assembly methods in water will be crucial to develop therapies that are clinically translatable and can evolve into organized and functional tissues.
Collapse
Affiliation(s)
- Jonas C. Rose
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen D‐52074 Germany
| | - Laura De Laporte
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen D‐52074 Germany
| |
Collapse
|
34
|
Marklein RA, Lam J, Guvendiren M, Sung KE, Bauer SR. Functionally-Relevant Morphological Profiling: A Tool to Assess Cellular Heterogeneity. Trends Biotechnol 2018; 36:105-118. [DOI: 10.1016/j.tibtech.2017.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
|
35
|
Hebels DG, Carlier A, Coonen ML, Theunissen DH, de Boer J. cBiT: A transcriptomics database for innovative biomaterial engineering. Biomaterials 2017; 149:88-97. [DOI: 10.1016/j.biomaterials.2017.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023]
|
36
|
Barata D, Provaggi E, van Blitterswijk C, Habibovic P. Development of a microfluidic platform integrating high-resolution microstructured biomaterials to study cell-material interactions. LAB ON A CHIP 2017; 17:4134-4147. [PMID: 29114689 DOI: 10.1039/c7lc00802c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microfluidic screening platforms offer new possibilities for performing in vitro cell-based assays with higher throughput and in a setting that has the potential to closely mimic the physiological microenvironment. Integrating functional biomaterials into such platforms is a promising approach to obtain a deeper insight into the interactions occurring at the cell-material interface. The success of such an approach is, however, largely dependent on the ability to miniaturize the biomaterials as well as on the choice of the assay used to study the cell-material interactions. In this work, we developed a microfluidic device, the main component of which is made of a widely used biocompatible polymer, polylactic acid (PLA). This device enabled cell culture under different fluidic regimes, including perfusion and diffusion. Through a combination of photolithography, two-photon polymerization and hot embossing, it was possible to microstructure the surface of the cell culture chamber of the device with highly defined geometrical features. Furthermore, using pyramids with different heights and wall microtopographies as an example, adhesion, morphology and distribution of human MG63 osteosarcoma cells were studied. The results showed that both the height of the topographical features and the microstructural properties of their walls affected cell spreading and distribution. This proof-of-concept study shows that the platform developed here is a useful tool for studying interactions between cells and clinically relevant biomaterials under controlled fluidic regimes.
Collapse
Affiliation(s)
- D Barata
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
| | | | | | | |
Collapse
|
37
|
Hulshof FFB, Zhao Y, Vasilevich A, Beijer NRM, de Boer M, Papenburg BJ, van Blitterswijk C, Stamatialis D, de Boer J. NanoTopoChip: High-throughput nanotopographical cell instruction. Acta Biomater 2017; 62:188-198. [PMID: 28823718 DOI: 10.1016/j.actbio.2017.08.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/08/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023]
Abstract
Surface topography is able to influence cell phenotype in numerous ways and offers opportunities to manipulate cells and tissues. In this work, we develop the Nano-TopoChip and study the cell instructive effects of nanoscale topographies. A combination of deep UV projection lithography and conventional lithography was used to fabricate a library of more than 1200 different defined nanotopographies. To illustrate the cell instructive effects of nanotopography, actin-RFP labeled U2OS osteosarcoma cells were cultured and imaged on the Nano-TopoChip. Automated image analysis shows that of many cell morphological parameters, cell spreading, cell orientation and actin morphology are mostly affected by the nanotopographies. Additionally, by using modeling, the changes of cell morphological parameters could by predicted by several feature shape parameters such as lateral size and spacing. This work overcomes the technological challenges of fabricating high quality defined nanoscale features on unprecedented large surface areas of a material relevant for tissue culture such as PS and the screening system is able to infer nanotopography - cell morphological parameter relationships. Our screening platform provides opportunities to identify and study the effect of nanotopography with beneficial properties for the culture of various cell types. STATEMENT OF SIGNIFICANCE The nanotopography of biomaterial surfaces can be modified to influence adhering cells with the aim to improve the performance of medical implants and tissue culture substrates. However, the necessary knowledge of the underlying mechanisms remains incomplete. One reason for this is the limited availability of high-resolution nanotopographies on relevant biomaterials, suitable to conduct systematic biological studies. The present study shows the fabrication of a library of nano-sized surface topographies with high fidelity. The potential of this library, called the 'NanoTopoChip' is shown in a proof of principle HTS study which demonstrates how cells are affected by nanotopographies. The large dataset, acquired by quantitative high-content imaging, allowed us to use predictive modeling to describe how feature dimensions affect cell morphology.
Collapse
Affiliation(s)
- Frits F B Hulshof
- MIRA Institute for Biomedical Technology and Technical Medicine, (Bio)artificial Organs, Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands; MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-inspired Tissue Engineering, Maastricht, The Netherlands
| | | | - Aliaksei Vasilevich
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-inspired Tissue Engineering, Maastricht, The Netherlands
| | - Nick R M Beijer
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-inspired Tissue Engineering, Maastricht, The Netherlands
| | - Meint de Boer
- MESA+Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | | | - Clemens van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, University of Maastricht, Maastricht, The Netherlands
| | - Dimitrios Stamatialis
- MIRA Institute for Biomedical Technology and Technical Medicine, (Bio)artificial Organs, Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Jan de Boer
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-inspired Tissue Engineering, Maastricht, The Netherlands.
| |
Collapse
|
38
|
Data-analysis strategies for image-based cell profiling. Nat Methods 2017; 14:849-863. [PMID: 28858338 PMCID: PMC6871000 DOI: 10.1038/nmeth.4397] [Citation(s) in RCA: 427] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/28/2017] [Indexed: 12/16/2022]
Abstract
Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.
Collapse
|
39
|
Barata D, Dias P, Wieringa P, van Blitterswijk C, Habibovic P. Cell-instructive high-resolution micropatterned polylactic acid surfaces. Biofabrication 2017; 9:035004. [PMID: 28671108 DOI: 10.1088/1758-5090/aa7d24] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Micro and nanoscale topographical structuring of biomaterial surfaces has been a valuable tool for influencing cell behavior, including cell attachment, proliferation and differentiation. However, most fabrication techniques for surface patterning of implantable biomaterials suffer from a limited resolution, not allowing controlled generation of sub-cellular three-dimensional features. Here, a direct laser lithography technique based on two-photon absorption was used to construct several patterns varying in size between 500 nm and 15 μm. Through replication via an intermediate mold, the patterns were transferred into polylactic acid (PLA), a widely used biomedical polymer, while retaining the original geometry. An osteoblast-like cell line, MG-63 was used for characterizing the morphological response to the topographical patterns. The results indicated that semi-continuous (dashed) lines, with a height of 1 μm were able to induce cell elongation in the direction of the lines. However, when dashes with a height of 0.5 μm were combined with perpendicularly crossing continuous lines (rails) with a height of 8 μm, the contact guidance effect of the dashes was lost and elongation of the cells was observed in the direction of the larger features. A second pattern, consisting of different arrays of pillars showed that, depending on the pillar height, the cells were either able to spread over the pattern or were confined between the pattern features. These differences in the ability of cells to spread further resulted in the formation of tension forces through stress fibers and displacement of vimentin. The method for high-resolution micropatterning of PLA as presented here can also be applied to other biomedical polymers, making it useful both for fundamental studies and for designing new biomaterials with improved functionality.
Collapse
Affiliation(s)
- David Barata
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, Netherlands. Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Limburg, Netherlands
| | | | | | | | | |
Collapse
|
40
|
Hulshof F, Schophuizen C, Mihajlovic M, van Blitterswijk C, Masereeuw R, de Boer J, Stamatialis D. New insights into the effects of biomaterial chemistry and topography on the morphology of kidney epithelial cells. J Tissue Eng Regen Med 2017; 12:e817-e827. [PMID: 27977906 DOI: 10.1002/term.2387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 11/17/2016] [Accepted: 12/06/2016] [Indexed: 11/05/2022]
Abstract
Increasing incidence of renal pathology in the western world calls for innovative research for the development of cell-based therapies such as a bioartificial kidney (BAK) device. To fulfil the multitude of kidney functions, the core component of the BAK is a living membrane consisting of a tight kidney cell monolayer with preserved functional organic ion transporters cultured on a polymeric membrane surface. This membrane, on one side, is in contact with blood and therefore should have excellent blood compatibility, whereas the other side should facilitate functional monolayer formation. This work investigated the effect of membrane chemistry and surface topography on kidney epithelial cells to improve the formation of a functional monolayer. To achieve this, microtopographies were fabricated with high resolution and reproducibility on polystyrene films and on polyethersulfone-polyvinyl pyrrolidone (PES-PVP) porous membranes. A conditionally immortalized proximal tubule epithelial cell line (ciPTEC) was cultured on both, and subsequently, the cell morphology and monolayer formation were assessed. Our results showed that L-dopamine coating of the PES-PVP was sufficient to support ciPTEC monolayer formation. The polystyrene topographies with large features were able to align the cells in various patterns without significantly disruption of monolayer formation; however, the PES-PVP topographies with large features disrupted the monolayer. In contrast, the PES-PVP membranes with small features and with large spacing supported well the ciPTEC monolayer formation. In addition, the topographical PES-PVP membranes were compatible as a substrate membrane to measure organic cation transporter activity in Transwell® systems. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Frits Hulshof
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,Department of Cell Biology inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, University of Maastricht, Maastricht, The Netherlands
| | - Carolien Schophuizen
- Department of Pediatric Nephrology, Radboudumc, Nijmegen, The Netherlands.,Department of Physiology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Milos Mihajlovic
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, University of Maastricht, Maastricht, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, University of Maastricht, Maastricht, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Jan de Boer
- Department of Cell Biology inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, University of Maastricht, Maastricht, The Netherlands
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
41
|
Criscenti G, Vasilevich A, Longoni A, De Maria C, van Blitterswijk CA, Truckenmuller R, Vozzi G, De Boer J, Moroni L. 3D screening device for the evaluation of cell response to different electrospun microtopographies. Acta Biomater 2017; 55:310-322. [PMID: 28373083 DOI: 10.1016/j.actbio.2017.03.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 03/04/2017] [Accepted: 03/27/2017] [Indexed: 12/28/2022]
Abstract
Micro- and nano-topographies of scaffold surfaces play a pivotal role in tissue engineering applications, influencing cell behavior such as adhesion, orientation, alignment, morphology and proliferation. In this study, a novel microfabrication method based on the combination of soft-lithography and electrospinning for the production of micro-patterned electrospun scaffolds was proposed. Subsequently, a 3D screening device for electrospun meshes with different micro-topographies was designed, fabricated and biologically validated. Results indicated that the use of defined patterns could induce specific morphological variations in human mesenchymal stem cell cytoskeletal organization, which could be related to differential activity of signaling pathways. STATEMENT OF SIGNIFICANCE We introduce a novel and time saving method to fabricate 3D micropatterns with controlled micro-architectures on electrospun meshes using a custom made collector and a PDMS mold with the desired topography. A possible application of this fabrication technique is represented by a 3D screening system for patterned electrospun meshes that allows the screening of different scaffold/electrospun parameters on cell activity. In addition, what we have developed in this study could be modularly applied to existing platforms. Considering the different patterned geometries, the cell morphological data indicated a change in the cytoskeletal organization with a close correspondence to the patterns, as shown by phenoplot and boxplot analysis, and might hint at the differential activity of cell signaling. The 3D screening system proposed in this study could be used to evaluate topographies favoring cell alignment, proliferation and functional performance, and has the potential to be upscaled for high-throughput.
Collapse
Affiliation(s)
- G Criscenti
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Research Center "E. Piaggio", Faculty of Engineering, University of Pisa, Pisa, Italy
| | - A Vasilevich
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - A Longoni
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - C De Maria
- Research Center "E. Piaggio", Faculty of Engineering, University of Pisa, Pisa, Italy
| | - C A van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - R Truckenmuller
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - G Vozzi
- Research Center "E. Piaggio", Faculty of Engineering, University of Pisa, Pisa, Italy
| | - J De Boer
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - L Moroni
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
42
|
Hulshof FFB, Papenburg B, Vasilevich A, Hulsman M, Zhao Y, Levers M, Fekete N, de Boer M, Yuan H, Singh S, Beijer N, Bray MA, Logan DJ, Reinders M, Carpenter AE, van Blitterswijk C, Stamatialis D, de Boer J. Mining for osteogenic surface topographies: In silico design to in vivo osseo-integration. Biomaterials 2017; 137:49-60. [PMID: 28535442 DOI: 10.1016/j.biomaterials.2017.05.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/24/2023]
Abstract
Stem cells respond to the physicochemical parameters of the substrate on which they grow. Quantitative material activity relationships - the relationships between substrate parameters and the phenotypes they induce - have so far poorly predicted the success of bioactive implant surfaces. In this report, we screened a library of randomly selected designed surface topographies for those inducing osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell shape features, surface design parameters, and osteogenic marker expression were strongly correlated in vitro. Furthermore, the surfaces with the highest osteogenic potential in vitro also demonstrated their osteogenic effect in vivo: these indeed strongly enhanced bone bonding in a rabbit femur model. Our work shows that by giving stem cells specific physicochemical parameters through designed surface topographies, differentiation of these cells can be dictated.
Collapse
Affiliation(s)
- Frits F B Hulshof
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands; MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology -Inspired Tissue Engineering, Maastricht, The Netherlands
| | | | - Aliaksei Vasilevich
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology -Inspired Tissue Engineering, Maastricht, The Netherlands
| | - Marc Hulsman
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | | | | | | | - Meint de Boer
- MESA+Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Huipin Yuan
- Xpand Biotechnology BV, Bilthoven, The Netherlands
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nick Beijer
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology -Inspired Tissue Engineering, Maastricht, The Netherlands
| | - Mark-Anthony Bray
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David J Logan
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marcel Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clemens van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, University of Maastricht, Maastricht, The Netherlands
| | - Dimitrios Stamatialis
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Jan de Boer
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology -Inspired Tissue Engineering, Maastricht, The Netherlands.
| |
Collapse
|
43
|
Le BQ, Vasilevich A, Vermeulen S, Hulshof F, Stamatialis DF, van Blitterswijk CA, de Boer J. Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line. Tissue Eng Part A 2017; 23:458-469. [DOI: 10.1089/ten.tea.2016.0421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Bach Q. Le
- Department of Tissue Regeneration, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Aliaksei Vasilevich
- Laboratory for Cell Biology-inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Steven Vermeulen
- Laboratory for Cell Biology-inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Frits Hulshof
- Department of Tissue Regeneration, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Dimitrios F. Stamatialis
- Department of Biomaterials Science and Technology, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Clemens A. van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute, University of Twente, Enschede, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Jan de Boer
- Laboratory for Cell Biology-inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
44
|
Beijer NRM, Vasilevich AS, Pilavci B, Truckenmüller RK, Zhao Y, Singh S, Papenburg BJ, de Boer J. TopoWellPlate: A Well-Plate-Based Screening Platform to Study Cell-Surface Topography Interactions. ACTA ACUST UNITED AC 2017; 1:e1700002. [DOI: 10.1002/adbi.201700002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/08/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Nick R. M. Beijer
- Department of Cell Biology Inspired Tissue Engineering; MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; Universiteitssingel 40, Maastricht 6229 ER The Netherlands
| | - Aliaksei S. Vasilevich
- Department of Cell Biology Inspired Tissue Engineering; MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; Universiteitssingel 40, Maastricht 6229 ER The Netherlands
| | - Bayram Pilavci
- Department of Cell Biology Inspired Tissue Engineering; MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; Universiteitssingel 40, Maastricht 6229 ER The Netherlands
| | - Roman K. Truckenmüller
- Department of Complex Tissue Regeneration; MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; Universiteitssingel 40, Maastricht 6229 ER The Netherlands
| | - Yiping Zhao
- Materiomics BV; Oxfordlaan 70, Maastricht 6229 EV The Netherlands
| | - Shantanu Singh
- Imaging Platform; Broad institute of MIT and Harvard; 415 Main street, Cambridge MA 02142 USA
| | | | - Jan de Boer
- Department of Cell Biology Inspired Tissue Engineering; MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; Universiteitssingel 40, Maastricht 6229 ER The Netherlands
| |
Collapse
|
45
|
Vas WJ, Shah M, Al Hosni R, Owen HC, Roberts SJ. Biomimetic strategies for fracture repair: Engineering the cell microenvironment for directed tissue formation. J Tissue Eng 2017; 8:2041731417704791. [PMID: 28491274 PMCID: PMC5406151 DOI: 10.1177/2041731417704791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Complications resulting from impaired fracture healing have major clinical implications on fracture management strategies. Novel concepts taken from developmental biology have driven research strategies towards the elaboration of regenerative approaches that can truly harness the complex cellular events involved in tissue formation and repair. Advances in polymer technology and a better understanding of naturally derived scaffolds have given rise to novel biomaterials with an increasing ability to recapitulate native tissue environments. This coupled with advances in the understanding of stem cell biology and technology has opened new avenues for regenerative strategies with true clinical translatability. These advances have provided the impetus to develop alternative approaches to enhance the fracture repair process. We provide an update on these advances, with a focus on the development of novel biomimetic approaches for bone regeneration and their translational potential.
Collapse
Affiliation(s)
- Wollis J Vas
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| | - Mittal Shah
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| | - Rawiya Al Hosni
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| | - Helen C Owen
- Department of Natural Sciences, School of Science & Technology, Middlesex University, London, UK
| | - Scott J Roberts
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| |
Collapse
|
46
|
A high throughput approach for analysis of cell nuclear deformability at single cell level. Sci Rep 2016; 6:36917. [PMID: 27841297 PMCID: PMC5107983 DOI: 10.1038/srep36917] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/12/2016] [Indexed: 01/14/2023] Open
Abstract
Various physiological and pathological processes, such as cell differentiation, migration, attachment, and metastasis are highly dependent on nuclear elasticity. Nuclear morphology directly reflects the elasticity of the nucleus. We propose that quantification of changes in nuclear morphology on surfaces with defined topography will enable us to assess nuclear elasticity and deformability. Here, we used soft lithography techniques to produce 3 dimensional (3-D) cell culture substrates decorated with micron sized pillar structures of variable aspect ratios and dimensions to induce changes in cellular and nuclear morphology. We developed a high content image analysis algorithm to quantify changes in nuclear morphology at the single-cell level in response to physical cues from the 3-D culture substrate. We present that nuclear stiffness can be used as a physical parameter to evaluate cancer cells based on their lineage and in comparison to non-cancerous cells originating from the same tissue type. This methodology can be exploited for systematic study of mechanical characteristics of large cell populations complementing conventional tools such as atomic force microscopy and nanoindentation.
Collapse
|
47
|
Greiner AM, Sales A, Chen H, Biela SA, Kaufmann D, Kemkemer R. Nano- and microstructured materials for in vitro studies of the physiology of vascular cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1620-1641. [PMID: 28144512 PMCID: PMC5238670 DOI: 10.3762/bjnano.7.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 10/04/2016] [Indexed: 05/21/2023]
Abstract
The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials-cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies.
Collapse
Affiliation(s)
- Alexandra M Greiner
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
- now at: Pforzheim University, School of Engineering, Tiefenbronner Strasse 65, 75175 Pforzheim, Germany
| | - Adria Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Hao Chen
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
| | - Sarah A Biela
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Dieter Kaufmann
- Universitätsklinikum Ulm, Institut für Humangenetik, Albert Einstein Allee 11, 89070 Ulm, Germany
| | - Ralf Kemkemer
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Reutlingen University, Faculty of Applied Chemistry, Alteburgstrasse 150, 72762 Reutlingen, Germany
| |
Collapse
|
48
|
Wang PY, Thissen H, Kingshott P. Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review. Acta Biomater 2016; 45:31-59. [PMID: 27596488 DOI: 10.1016/j.actbio.2016.08.054] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/30/2016] [Accepted: 08/30/2016] [Indexed: 02/08/2023]
Abstract
The ability to control the interactions of stem cells with synthetic surfaces is proving to be effective and essential for the quality of passaged stem cells and ultimately the success of regenerative medicine. The stem cell niche is crucial for stem cell self-renewal and differentiation. Thus, mimicking the stem cell niche, and here in particular the extracellular matrix (ECM), in vitro is an important goal for the expansion of stem cells and their applications. Here, surface nanotopographies and surface-immobilised biosignals have been identified as major factors that control stem cell responses. The development of tailored surfaces having an optimum nanotopography and displaying suitable biosignals is proposed to be essential for future stem cell culture, cell therapy and regenerative medicine applications. While early research in the field has been restricted by the limited availability of micro- and nanofabrication techniques, new approaches involving the use of advanced fabrication and surface immobilisation methods are starting to emerge. In addition, new cell types such as induced pluripotent stem cells (iPSCs) have become available in the last decade, but have not been fully understood. This review summarises significant advances in the area and focuses on the approaches that are aimed at controlling the behavior of human stem cells including maintenance of their self-renewal ability and improvement of their lineage commitment using nanotopographies and biosignals. More specifically, we discuss developments in biointerface science that are an important driving force for new biomedical materials and advances in bioengineering aiming at improving stem cell culture protocols and 3D scaffolds for clinical applications. Cellular responses revolve around the interplay between the surface properties of the cell culture substrate and the biomolecular composition of the cell culture medium. Determination of the precise role played by each factor, as well as the synergistic effects amongst the factors, all of which influence stem cell responses is essential for future developments. This review provides an overview of the current state-of-the-art in the design of complex material surfaces aimed at being the next generation of tools tailored for applications in cell culture and regenerative medicine. STATEMENT OF SIGNIFICANCE This review focuses on the effect of surface nanotopographies and surface-bound biosignals on human stem cells. Recently, stem cell research attracts much attention especially the induced pluripotent stem cells (iPSCs) and direct lineage reprogramming. The fast advance of stem cell research benefits disease treatment and cell therapy. On the other hand, surface property of cell adhered materials has been demonstrated very important for in vitro cell culture and regenerative medicine. Modulation of cell behavior using surfaces is costeffective and more defined. Thus, we summarise the recent progress of modulation of human stem cells using surface science. We believe that this review will capture a broad audience interested in topographical and chemical patterning aimed at understanding complex cellular responses to biomaterials.
Collapse
|
49
|
Lambert F, Bacevic M, Layrolle P, Schüpbach P, Drion P, Rompen E. Impact of biomaterial microtopography on bone regeneration: comparison of three hydroxyapatites. Clin Oral Implants Res 2016; 28:e201-e207. [DOI: 10.1111/clr.12986] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- France Lambert
- Department of Periodontology and Oral Surgery; University of Liège; Liège Belgium
| | - Miljana Bacevic
- Dental Biomaterials Research Unit (d-BRU); Faculty of Medicine; University of Liege; Liège Belgium
- Clinic of Oral Surgery; School of Dental Medicine; University of Belgrade; Belgrade Serbia
| | - Pierre Layrolle
- Inserm U957; Laboratory of Physiopathology of Bone Resorption; Faculty of Medicine; University of Nantes; Liège France
| | - Peter Schüpbach
- University of Pennsylvania; Philadelphia PA USA
- Regents University; Augusta GA USA
| | - Pierre Drion
- Central Animal Facility; Giga-R; University of Liege; Liège Belgium
| | - Eric Rompen
- Department of Periodontology and Oral Surgery; University of Liège; Liège Belgium
| |
Collapse
|
50
|
Sun L, Danoux CB, Wang Q, Pereira D, Barata D, Zhang J, LaPointe V, Truckenmüller R, Bao C, Xu X, Habibovic P. Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCs. Acta Biomater 2016; 42:364-377. [PMID: 27318269 DOI: 10.1016/j.actbio.2016.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/06/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Within the general aim of finding affordable and sustainable regenerative solutions for damaged and diseased tissues and organs, significant efforts have been invested in developing synthetic alternatives to natural bone grafts, such as autografts. Calcium phosphate (CaP) ceramics are among widely used synthetic bone graft substitutes, but their mechanical properties and bone regenerative capacity are still outperformed by their natural counterparts. In order to improve the existing synthetic bone graft substitutes, it is imperative to understand the effects of their individual properties on a biological response, and to find a way to combine the desired properties into new, improved functional biomaterials. To this end, we studied the independent effects of the chemical composition and surface microstructure of a poly(lactic acid)/hydroxyapatite (PLA/HA) composite material on the proliferation and osteogenic differentiation of clinically relevant bone marrow-derived human mesenchymal stromal cells (hMSCs). While the molecular weight of the polymer and presence/absence of the ceramic phase were used as the chemical variables, a soft embossing technique was used to pattern the surfaces of all materials with either pits or pillars with identical microscale dimensions. The results indicated that, while cell morphology was affected by both the presence and availability of HA and by the surface microstructure, the effect of the latter parameter on cell proliferation was negligible. The osteogenic differentiation of hMSCs, and in particular the expression of bone morphogenetic protein 2 (BMP-2) and osteopontin (OP) were significantly enhanced when cells were cultured on the composite based on low-molecular-weight PLA, as compared to the high-molecular-weight PLA-based composite and the two pure polymers. The OP expression on the low-molecular-weight PLA-based composite was further enhanced when the surface was patterned with pits. Taken together, within this experimental set up, the individual effect of the chemistry, and in particular of the presence of CaP, was more pronounced than the individual effect of the surface microstructure, although their combined effects were, in some cases, synergistic. The approach presented here opens new routes to study the interactions of biomaterials with the biological environment in greater depths, which can serve as a starting point for developing biomaterials with improved bioactivity. STATEMENT OF SIGNIFICANCE The aim of the this study was to obtain insight into independent effects of the chemical composition and surface microstructure of a poly(lactic acid)/hydroxyapatite (PLA/HA) composite material on the morphology, proliferation and osteogenic differentiation of clinically relevant bone marrow-derived human mesenchymal stromal cells (hMSCs). While the need for synthetic alternatives for natural bone in bone regenerative strategies is rapidly increasing, the clinical performance of synthetic biomaterials needs to be further improved. To do this successfully, we believe that a better understanding of the relationship between a property of a material and a biological response is imperative. This study is a step forward in this direction, and we are therefore convinced that it will be of interest to the readers of Acta Biomaterialia.
Collapse
|