1
|
de Carvalho ABG, Rahimnejad M, Oliveira RLMS, Sikder P, Saavedra GSFA, Bhaduri SB, Gawlitta D, Malda J, Kaigler D, Trichês ES, Bottino MC. Personalized bioceramic grafts for craniomaxillofacial bone regeneration. Int J Oral Sci 2024; 16:62. [PMID: 39482290 PMCID: PMC11528123 DOI: 10.1038/s41368-024-00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
The reconstruction of craniomaxillofacial bone defects remains clinically challenging. To date, autogenous grafts are considered the gold standard but present critical drawbacks. These shortcomings have driven recent research on craniomaxillofacial bone reconstruction to focus on synthetic grafts with distinct materials and fabrication techniques. Among the various fabrication methods, additive manufacturing (AM) has shown significant clinical potential. AM technologies build three-dimensional (3D) objects with personalized geometry customizable from a computer-aided design. These layer-by-layer 3D biomaterial structures can support bone formation by guiding cell migration/proliferation, osteogenesis, and angiogenesis. Additionally, these structures can be engineered to degrade concomitantly with the new bone tissue formation, making them ideal as synthetic grafts. This review delves into the key advances of bioceramic grafts/scaffolds obtained by 3D printing for personalized craniomaxillofacial bone reconstruction. In this regard, clinically relevant topics such as ceramic-based biomaterials, graft/scaffold characteristics (macro/micro-features), material extrusion-based 3D printing, and the step-by-step workflow to engineer personalized bioceramic grafts are discussed. Importantly, in vitro models are highlighted in conjunction with a thorough examination of the signaling pathways reported when investigating these bioceramics and their effect on cellular response/behavior. Lastly, we summarize the clinical potential and translation opportunities of personalized bioceramics for craniomaxillofacial bone regeneration.
Collapse
Affiliation(s)
- Ana Beatriz G de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rodrigo L M S Oliveira
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Guilherme S F A Saavedra
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, USA
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Jos Malda
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eliandra S Trichês
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Dattaray D, L R, Roy P, Chakraborty J, Mandal TK. Evaluation of acute and subacute dermal toxicity of antibacterial bioactive glass-infused surgical cotton gauze in Wistar rats. Drug Chem Toxicol 2024:1-12. [PMID: 39428399 DOI: 10.1080/01480545.2024.2412778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/12/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Mesoporous bioactive glass, with its versatile characteristics and morphology, holds significant potential as an ideal hemostatic material. However, limited data is available regarding its toxicity levels. Consequently, this research intends to assess the acute and repeated dose dermal toxicity of Mesoporous antibacterial bioactive glass microsphere impregnated nonwoven surgical cotton gauze (MABGmscg) dressing in albino Wistar rats, following the standards set by the Organization for Economic Cooperation and Development. In the acute dermal toxicity study, the impact of MABG (@2000mg/kg BW) mscg dressing was assessed following a single dermal application in both male and female Wistar rats (n = 10). Mortality, clinical signs, body weight fluctuations and gross observations were consistently monitored over a14 day period following the single dose. The results indicated that, MABG (@2000mg/kg BW) mscg dressing upon dermal exposure did not cause any adverse effect in acute dermal toxicity study in Wistar rats compared to control group. Given that 2000 mg/kg BW of MABG was deemed a nontoxic dose, a repeated dose dermal toxicity study of MABGmscg dressing was subsequently conducted at three dose levels (@200, 500, 1000 mg/kg BW) over 28 consecutive days in Wistar rats. During the study period, no unscheduled deaths occurred, and there were no clinical signs associated with treatment, body weight variations or abnormal gross findings at necropsy in any groups. The analysis concluded that, MABGmscg dressing is safe to be considered as a hemostatic dressing at the various tested dose levels in Wistar rats.
Collapse
Affiliation(s)
- Debolina Dattaray
- Department of Veterinary Pharmacology and Toxicology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Raja L
- Department of Veterinary Pharmacology and Toxicology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Payal Roy
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute (CSIR- CGCRI), Kolkata, India
| | - Jui Chakraborty
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute (CSIR- CGCRI), Kolkata, India
| | - Tapan Kumar Mandal
- Department of Veterinary Pharmacology and Toxicology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| |
Collapse
|
3
|
Fabian M, Krzystyniak M, Khanna A, Kovacs Z. Structural and Dynamical Effects of the CaO/SrO Substitution in Bioactive Glasses. Molecules 2024; 29:4720. [PMID: 39407648 PMCID: PMC11478278 DOI: 10.3390/molecules29194720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Silicate glasses containing silicon, sodium, phosphorous, and calcium have the ability to promote bone regeneration and biodegrade as new tissue is generated. Recently, it has been suggested that adding SrO can benefit tissue growth and silicate glass dissolution. Motivated by these recent developments, the effect of SrO/CaO-CaO/SrO substitution on the local structure and dynamics of Si-Na-P-Ca-O oxide glasses has been studied in this work. Differential thermal analysis has been performed to determine the thermal stability of the glasses after the addition of strontium. The local structure has been studied by neutron diffraction augmented by Reverse Monte Carlo simulation, and the local dynamics by neutron Compton scattering and Raman spectroscopy. Differential thermal analysis has shown that SrO-containing glasses have lower glass transition, melting, and crystallisation temperatures. Moreover, the addition of the Sr2+ ions decreased the thermal stability of the glass structure. The total neutron diffraction augmented by the RMC simulation revealed that Sr played a similar role as Ca in the glass structure when substituted on a molar basis. The bond length and the coordination number distributions of the network modifiers and network formers did not change when SrO (x = 0.125, 0.25) was substituted for CaO (25-x). However, the network connectivity increased in glass with 12.5 mol% CaO due to the increased length of the Si-O-Si interconnected chain. The analysis of Raman spectra revealed that substituting CaO with SrO in the glass structure dramatically enhances the intensity of the high-frequency band of 1110-2000 cm-1. For all glasses under investigation, the changes in the relative intensities of Raman bands and the distributions of the bond lengths and coordination numbers upon the SrO substitution were correlated with the values of the widths of nuclear momentum distributions of Si, Na, P, Ca, O, and Sr. The widths of nuclear momentum distributions were observed to soften compared to the values observed and simulated in their parent metal-oxide crystals. The widths of nuclear momentum distributions, obtained from fitting the experimental data to neutron Compton spectra, were related to the amount of disorder of effective force constants acting on individual atomic species in the glasses.
Collapse
Affiliation(s)
- Margit Fabian
- HUN-REN Centre for Energy Research, Konkoly Thege Miklos st. 29-33, 1121 Budapest, Hungary;
| | | | - Atul Khanna
- Department of Physics, Guru Nanak Dev University, Amritsar 143005, India;
| | - Zsolt Kovacs
- Department of Materials Physics, Institute of Physics, Eötvös Loránd University, Pázmány Péter st. 1/a, H-1117 Budapest, Hungary;
| |
Collapse
|
4
|
Szczodra A, Houaoui A, Agniel R, Sicard L, Miettinen S, Massera J, Gorin C. Boron substitution in silicate bioactive glass scaffolds to enhance bone differentiation and regeneration. Acta Biomater 2024; 186:489-506. [PMID: 39098444 DOI: 10.1016/j.actbio.2024.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Commercially available bioactive glasses (BAGs) are exclusively used in powder form, due to their tendency to crystallize. Silicate BAG 1393 was developed to allow fiber drawing and scaffold sintering, but its slow degradation limits its potential. To enable scaffold manufacturing while maintaining glass dissolution rate close to that of commercially available BAGs, the borosilicate glass 1393B20 was developed. This study investigates the potential of 1393B20 scaffolds to support bone regeneration and mineralization in vitro and in vivo, in comparison to silicate 1393. Both scaffolds supported human adipose stem cells proliferation, either in direct contact for the 1393, or mainly around for the 1393B20. Similarly, both BAGs induced osteogenesis and angiogenesis in vitro, with a better pro-angiogenic influence of the 1393B20. In addition, these scaffolds supported bone regeneration and osteoclast/osteoblast activity in vivo in critical-sized rat calvarial defect. Nevertheless, mineralization and collagen formation were significantly enhanced for the 1393B20, at 3-months post-implantation, assigned to faster and more complete dissolution of the scaffolds. Thus, 1393B20 demonstrates greater promise for bone tissue engineering certainly due to its time-controlled release of boron and silicon. STATEMENT OF SIGNIFICANCE: Bioactive glasses (BAGs) show great promise in bone tissue engineering as they effectively bond with bone tissue, fostering integration and regeneration. Silicate BAG 1393 was developed to allow fiber drawing and scaffold sintering, but its slow degradation limits its potential. To enable scaffold manufacturing while maintaining glass dissolution rate close to that of commercially available BAGs, the borosilicate glass 1393B20 was developed. Both BAGs induced osteogenesis and angiogenesis in vitro, with a better pro-angiogenic influence of the 1393B20. The presence of boron in the 1393B20 enhanced mineralization and collagen formation in vivo compared to 1393, probably due to its faster dissolution rate. Here, 1393B20 demonstrated greater promise for bone tissue engineering compared to the well-known 1393 BAG.
Collapse
Affiliation(s)
- Agata Szczodra
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Amel Houaoui
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland; CY Cergy Paris Université, Biomaterials for Health group, ERRMECe, Neuville sur Oise, France
| | - Rémy Agniel
- CY Cergy Paris Université, Biomaterials for Health group, ERRMECe, Neuville sur Oise, France
| | - Ludovic Sicard
- Laboratory URP2496 Orofacial Pathologies, Imaging and Biotherapies, Faculty of Odontology, Université Paris Cité, Montrouge, France; Oral Medicine Service, Prosthetics Department, AP-HP/GH Nord, Paris, France
| | - Susanna Miettinen
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland; Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Jonathan Massera
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Caroline Gorin
- Laboratory URP2496 Orofacial Pathologies, Imaging and Biotherapies, Faculty of Odontology, Université Paris Cité, Montrouge, France; Oral Medicine Service, Prosthetics Department, AP-HP/GH Nord, Paris, France.
| |
Collapse
|
5
|
Chen M, Wang Y, Yuan P, Wang L, Li X, Lei B. Multifunctional bioactive glass nanoparticles: surface-interface decoration and biomedical applications. Regen Biomater 2024; 11:rbae110. [PMID: 39323748 PMCID: PMC11422188 DOI: 10.1093/rb/rbae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Developing bioactive materials with multifunctional properties is crucial for enhancing their biomedical applications in regenerative medicine. Bioactive glass nanoparticle (BGN) is a new generation of biomaterials that demonstrate high biocompatibility and tissue-inducing capacity. However, the hard nanoparticle surface and single surface property limited their wide biomedical applications. In recent years, the surface functional strategy has been employed to decorate the BGN and improve its biomedical applications in bone tissue repair, bioimaging, tumor therapy and wound repair. This review summarizes the progress of surface-interface design strategy, customized multifunctional properties and biomedical applications in detail. We also discussed the current challenges and further development of multifunctional BGN to meet the requirements of various biomedical applications.
Collapse
Affiliation(s)
- Mi Chen
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Yidan Wang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Pingyun Yuan
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Lan Wang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Xiaocheng Li
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| |
Collapse
|
6
|
Younus ZM, Ahmed I, Roach P, Forsyth NR. A phosphate glass reinforced composite acrylamide gradient scaffold for osteochondral interface regeneration. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100099. [PMID: 39221155 PMCID: PMC11364006 DOI: 10.1016/j.bbiosy.2024.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
The bone-cartilage interface is defined by a unique arrangement of cells and tissue matrix. Injury to the interface can contribute to the development of arthritic joint disease. Attempts to repair osteochondral damage through clinical trials have generated mixed outcomes. Tissue engineering offers the potential of integrated scaffold design with multiregional architecture to assist in tissue regeneration, such as the bone-cartilage interface. Challenges remain in joining distinct materials in a single scaffold mass while maintaining integrity and avoiding delamination. The aim of the current work is to examine the possibility of joining two closely related acrylamide derivatives such as, poly n-isopropyl acrylamide (pNIPAM) and poly n‑tert‑butyl acrylamide (pNTBAM). The target is to produce a single scaffold unit with distinct architectural regions in the favour of regenerating the osteochondral interface. Longitudinal phosphate glass fibres (PGFs) with the formula 50P2O5.30CaO.20Na2O were incorporated to provide additional bioactivity by degradation to release ions such as calcium and phosphate which are considered valuable to assist the mineralization process. Polymers were prepared via atom transfer radical polymerization (ATRP) and solutions cast to ensure the integration of polymers chains. Scaffold was characterized using scanning electron microscope (SEM) and Fourier transform infra-red (FTIR) techniques. The PGF mass degradation pattern was inspected using micro computed tomography (µCT). Biological assessment of primary human osteoblasts (hOBs) and primary human chondrocytes (hCHs) upon scaffolds was performed using alizarin red and colorimetric calcium assay for mineralization assessment; alcian blue staining and dimethyl-methylene blue (DMMB) assay for glycosaminoglycans (GAGs); immunostaining and enzyme-linked immunosorbent assay (ELISA) to detect functional proteins expression by cells such as collagen I, II, and annexin A2. FTIR analysis revealed an intact unit with gradual transformation from pNIPAM to pNTBAM. SEM images showed three distinct architectural regions with mean pore diameter of 54.5 µm (pNIPAM), 16.5 µm (pNTBAM) and 118 µm at the mixed interface. Osteogenic and mineralization potential by cells was observed upon the entire scaffold's regions. Chondrogenic activity was relevant on the pNTBAM side of the scaffold only with minimal evidence in the pNIPAM region. PGFs increased mineralization potential of both hOBs and hCHs, evidenced by elevated collagens I, X, and annexin A2 with reduction of collagen II in PGFs scaffolds. In conclusion, pNIPAM and pNTBAM integration created a multiregional scaffold with distinct architectural regions. Differential chondrogenic, osteogenic, and mineralized cell performance, in addition to the impact of PGF, suggests a potential role for phosphate glass-incorporated, acrylamide-derivative scaffolds in osteochondral interface regeneration.
Collapse
Affiliation(s)
- Zaid M. Younus
- School of Pharmacy and Bioengineering, Keele University, Keele, UK
- College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ifty Ahmed
- Faculty of Engineering, Advanced Materials Research Group, University of Nottingham, Nottingham, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Keele, UK
- Vice principals’ office, King's College, University of Aberdeen, Aberdeen, AB24 3FX, UK
| |
Collapse
|
7
|
Zhao X, Li N, Zhang Z, Hong J, Zhang X, Hao Y, Wang J, Xie Q, Zhang Y, Li H, Liu M, Zhang P, Ren X, Wang X. Beyond hype: unveiling the Real challenges in clinical translation of 3D printed bone scaffolds and the fresh prospects of bioprinted organoids. J Nanobiotechnology 2024; 22:500. [PMID: 39169401 PMCID: PMC11337604 DOI: 10.1186/s12951-024-02759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Bone defects pose significant challenges in healthcare, with over 2 million bone repair surgeries performed globally each year. As a burgeoning force in the field of bone tissue engineering, 3D printing offers novel solutions to traditional bone transplantation procedures. However, current 3D-printed bone scaffolds still face three critical challenges in material selection, printing methods, cellular self-organization and co-culture, significantly impeding their clinical application. In this comprehensive review, we delve into the performance criteria that ideal bone scaffolds should possess, with a particular focus on the three core challenges faced by 3D printing technology during clinical translation. We summarize the latest advancements in non-traditional materials and advanced printing techniques, emphasizing the importance of integrating organ-like technologies with bioprinting. This combined approach enables more precise simulation of natural tissue structure and function. Our aim in writing this review is to propose effective strategies to address these challenges and promote the clinical translation of 3D-printed scaffolds for bone defect treatment.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Ziqi Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jinjia Hong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Meixian Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiuyun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| |
Collapse
|
8
|
Chakraborty A, Bodhak S, Tah I, Kant S, Saha D, Dey KK, Gupta N, Ghosh M, Tripathy S, Allu AR, Biswas K. Tailored Bioactive Glass Coating: Navigating Devitrification Toward a Superior Implant Performance. ACS Biomater Sci Eng 2024; 10:5300-5312. [PMID: 39087496 DOI: 10.1021/acsbiomaterials.4c01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The development of well-adherent, amorphous, and bioactive glass coatings for metallic implants remains a critical challenge in biomedical engineering. Traditional bioactive glasses are susceptible to crystallization and exhibit a thermal expansion mismatch with implant materials. This study introduces a novel approach to overcome these limitations by employing systematic Na2O substitution with CaO in borosilicate glasses. In-depth structural analysis (MD simulations, Raman spectroscopy, and NMR) reveals a denser network with smaller silicate rings, enhancing thermal stability, reducing thermal expansion, and influencing dissolution kinetics. This tailored composition exhibited optimal bioactivity (in vitro formation of bone-like apatite within 3 days) and a coefficient of thermal expansion closely matching Ti-6Al-4V, a widely used implant material. Furthermore, a consolidation process, meticulously designed with insights from crystallization kinetics and the viscosity-temperature relationship, yielded a crack-free, amorphous coating on Ti-6Al-4V substrates. This novel coating demonstrates excellent cytocompatibility and strong antibacterial action, suggesting superior clinical potential compared with existing technologies.
Collapse
Affiliation(s)
- Anustup Chakraborty
- Specialty Glass Division, CSIR-Central Glass & Ceramic Research Institute, 196, Raja S C Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Subhadip Bodhak
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
- Bioceramics and Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196, Raja S C Mullick Road, Kolkata 700032, India
| | - Indrajit Tah
- Specialty Glass Division, CSIR-Central Glass & Ceramic Research Institute, 196, Raja S C Mullick Road, Kolkata 700032, India
| | - Shashi Kant
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Debolina Saha
- Bioceramics and Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196, Raja S C Mullick Road, Kolkata 700032, India
| | - Krishna K Dey
- Department of Physics, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Neelima Gupta
- Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Manasi Ghosh
- Physics Section, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sucheta Tripathy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Amarnath R Allu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
- Energy Materials and Devices Division, CSIR-Central Glass & Ceramic Research Institute, 196, Raja S C Mullick Road, Kolkata 700032, India
| | - Kaushik Biswas
- Specialty Glass Division, CSIR-Central Glass & Ceramic Research Institute, 196, Raja S C Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
9
|
Fred EJ, Minardi S, Goodwin AM, Nandurkar TS, Plantz MA, Lyons JG, Paul JT, Foley JP, Wintring AJ, Furman AA, Jeong S, Yun C, Stock SR, Hsu WK, Hsu EL. A Mechanistic and Preclinical Assessment of BioRestore Bioactive Glass as a Synthetic Bone Graft Extender and Substitute for Osteoinduction and Spine Fusion. Clin Spine Surg 2024; 37:315-321. [PMID: 38531819 DOI: 10.1097/bsd.0000000000001597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/29/2023] [Indexed: 03/28/2024]
Abstract
STUDY DESIGN Preclinical animal study. OBJECTIVE Evaluate the osteoinductivity and bone regenerative capacity of BioRestore bioactive glass. SUMMARY OF BACKGROUND DATA BioRestore is a Food and Drug Administration (FDA)-approved bone void filler that has not yet been evaluated as a bone graft extender or substitute for spine fusion. METHODS In vitro and in vivo methods were used to compare BioRestore with other biomaterials for the capacity to promote osteodifferentiation and spinal fusion. The materials evaluated (1) absorbable collagen sponge (ACS), (2) allograft, (3) BioRestore, (4) Human Demineralized Bone Matrix (DBM), and (5) MasterGraft. For in vitro studies, rat bone marrow-derived stem cells (BMSC) were cultured on the materials in either standard or osteogenic media (SM, OM), followed by quantification of osteogenic marker genes ( Runx2, Osx, Alpl, Bglap, Spp1 ) and alkaline phosphatase (ALP) activity. Sixty female Fischer rats underwent L4-5 posterolateral fusion (PLF) with placement of 1 of 5 implants: (1) ICBG from syngeneic rats; (2) ICBG+BioRestore; (3) BioRestore alone; (4) ICBG+Allograft; or (5) ICBG+MasterGraft. Spines were harvested 8 weeks postoperatively and evaluated for bone formation and fusion via radiography, blinded manual palpation, microCT, and histology. RESULTS After culture for 1 week, BioRestore promoted similar expression levels of Runx2 and Osx to cells grown on DBM. At the 2-week timepoint, the relative ALP activity for BioRestore-OM was significantly higher ( P <0.001) than that of ACS-OM and DBM-OM ( P <0.01) and statistically equivalent to cells grown on allograft-OM. In vivo, radiographic and microCT evaluation showed some degree of bridging bone formation in all groups tested, with the exception of BioRestore alone, which did not produce successful fusions. CONCLUSIONS This study demonstrates the capacity of BioRestore to promote osteoinductivity in vitro. In vivo, BioRestore performed similarly to commercially available bone graft extender materials but was incapable of producing fusion as a bone graft substitute. LEVEL OF EVIDENCE Level V.
Collapse
Affiliation(s)
- Elianna J Fred
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
| | - Silvia Minardi
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
| | - Alyssa M Goodwin
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
| | - Tejas S Nandurkar
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
| | - Mark A Plantz
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
| | - Joseph G Lyons
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
| | - Jonathan T Paul
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
| | - James P Foley
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
| | - Allison J Wintring
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
| | - Andrew A Furman
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
| | - Soyeon Jeong
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
| | - Chawon Yun
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
| | - Stuart R Stock
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL
| | - Wellington K Hsu
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
| | - Erin L Hsu
- Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
| |
Collapse
|
10
|
Zhu Y, Zhang X, Chang G, Deng S, Chan HF. Bioactive Glass in Tissue Regeneration: Unveiling Recent Advances in Regenerative Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312964. [PMID: 39014919 DOI: 10.1002/adma.202312964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/18/2024] [Indexed: 07/18/2024]
Abstract
Bioactive glass (BG) is a class of biocompatible, biodegradable, multifunctional inorganic glass materials, which is successfully used for orthopedic and dental applications, with several products already approved for clinical use. Apart from exhibiting osteogenic properties, BG is also known to be angiogenic and antibacterial. Recently, BG's role in immunomodulation has been gradually revealed. While the therapeutic effect of BG is mostly reported in the context of bone and skin-related regeneration, its application in regenerating other tissues/organs, such as muscle, cartilage, and gastrointestinal tissue, has also been explored recently. The strategies of applying BG have also expanded from powder or cement form to more advanced strategies such as fabrication of composite polymer-BG scaffold, 3D printing of BG-loaded scaffold, and BG-induced extracellular vesicle production. This review presents a concise overview of the recent applications of BG in regenerative medicine. Various regenerative strategies of BG will be first introduced. Next, the applications of BG in regenerating various tissues/organs, such as bone, cartilage, muscle, tendon, skin, and gastrointestinal tissue, will be discussed. Finally, summarizing clinical applications of BG for tissue regeneration will conclude, and outline future challenges and directions for the clinical translation of BG.
Collapse
Affiliation(s)
- Yanlun Zhu
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xuerao Zhang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
| | - Guozhu Chang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, P. R. China
| | - Shuai Deng
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Hon Fai Chan
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, P. R. China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Hong Kong SAR, P. R. China
| |
Collapse
|
11
|
Aguiar VCPF, Bezerra RDN, Dos Santos KW, Gonçalves IDS, Costa KJSG, Lauda DP, Campos TMB, do Prado RF, de Vasconcellos LMR, de Oliveira IR. Development and characterization of ceramic-polymeric hybrid scaffolds for bone regeneration: incorporating of bioactive glass BG-58S into PDLLA matrix. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1493-1510. [PMID: 38569077 DOI: 10.1080/09205063.2024.2334981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
In recent years, there has been a notable surge of interest in hybrid materials within the biomedical field, particularly for applications in bone repair and regeneration. Ceramic-polymeric hybrid scaffolds have shown promising outcomes. This study aimed to synthesize bioactive glass (BG-58S) for integration into a bioresorbable polymeric matrix based on PDLLA, aiming to create a bioactive scaffold featuring stable pH levels. The synthesis involved a thermally induced phase separation process followed by lyophilization to ensure an appropriate porous structure. BG-58S characterization revealed vitreous, bioactive, and mesoporous structural properties. The scaffolds were analyzed for morphology, interconnectivity, chemical groups, porosity and pore size distribution, zeta potential, pH, in vitro degradation, as well as cell viability tests, total protein content and mineralization nodule production. The PDLLA scaffold displayed a homogeneous morphology with interconnected macropores, while the hybrid scaffold exhibited a heterogeneous morphology with smaller diameter pores due to BG-58S filling. The hybrid scaffold also demonstrated a pH buffering effect on the polymer surface. In addition to structural characteristics, degradation tests indicated that by incorporating BG-58S modified the acidic degradation of the polymer, allowing for increased total protein production and the formation of mineralization nodules, indicating a positive influence on cell culture.
Collapse
Affiliation(s)
- Veronica Cristina Pêgo Fiebig Aguiar
- Characterization and Processing Laboratory of Advanced Materials, Institute for Research and Development, University of Vale do Paraíba, São Paulo, Brazil
| | | | - Kennedy Wallace Dos Santos
- Characterization and Processing Laboratory of Advanced Materials, Institute for Research and Development, University of Vale do Paraíba, São Paulo, Brazil
- Selaz - Industry and Commercialization of Biomechanical Devices, São Paulo, Brazil
| | - Isabela Dos Santos Gonçalves
- Characterization and Processing Laboratory of Advanced Materials, Institute for Research and Development, University of Vale do Paraíba, São Paulo, Brazil
| | | | - Diogo Ponte Lauda
- Selaz - Industry and Commercialization of Biomechanical Devices, São Paulo, Brazil
| | - Tiago Moreira Bastos Campos
- Laboratório de Plasma e Processos, Instituto Tecnológico de Aeronáutica. Laboratório, São José dos Campos. Praça Marechal Eduardo Gomes, CEP, Brasil
| | - Renata Falchete do Prado
- Institute of Science and Technology, Paulista State University, Francisco José Longo, São José dos Campos, SP, CEP, Brazil
| | | | - Ivone Regina de Oliveira
- Characterization and Processing Laboratory of Advanced Materials, Institute for Research and Development, University of Vale do Paraíba, São Paulo, Brazil
| |
Collapse
|
12
|
Odatsu T, Valanezhad A, Shinohara A, Takase K, Naito M, Sawase T. Bioactivity and antibacterial effects of zinc-containing bioactive glass on the surface of zirconia abutments. J Dent 2024; 145:105033. [PMID: 38697505 DOI: 10.1016/j.jdent.2024.105033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVES This study aimed to enhance gingival fibroblast function and to achieve antibacterial activity around the implant abutment by using a zinc (Zn)-containing bioactive glass (BG) coating. METHODS 45S5 BG containing 0, 5, and 10 wt.% Zn were coated on zirconia disks. The release of silica and Zn ions in physiological saline and their antibacterial effects were measured. The effects of BG coatings on human gingival fibroblasts (hGFs) were assessed using cytotoxicity assays and by analyzing the gene expression of various genes related to antioxidant enzymes, wound healing, and fibrosis. RESULTS BG coatings are capable of continuous degradation and simultaneous ion release. The antibacterial effect of BG coatings increased with the addition of Zn, while the cytotoxicity remained unchanged compared to the group without coatings. BG coating enhances the expression of angiogenesis genes, while the Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CONCLUSIONS The antibacterial effect of BG improved with the increase in Zn concentration, without inducing cytotoxicity. BG coating enhances the expression of angiogenesis genes, and Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CLINICAL SIGNIFICANCE Adding 10 wt% Zn to BG could enhance the environment around implant abutments by providing antibacterial, antioxidant, and anti-fibrotic effects, having potential for clinical use.
Collapse
Affiliation(s)
- Tetsurou Odatsu
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan.
| | - Alireza Valanezhad
- Department of Dental and Biomaterials Science, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Ayano Shinohara
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Kazuma Takase
- Department of Prosthetic Dentistry, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
13
|
Chen X, Ran X, Wei X, Zhu L, Chen S, Liao Z, Xu K, Xia W. Bioactive glass 1393 promotes angiogenesis and accelerates wound healing through ROS/P53/MMP9 signaling pathway. Regen Ther 2024; 26:132-144. [PMID: 38872979 PMCID: PMC11169082 DOI: 10.1016/j.reth.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
Compared to bioactive glass 45S5, bioactive glass 1393 has shown greater potential in activating tissue cells and promoting angiogenesis for bone repair. Nevertheless, the effect of bioactive glass 1393 in the context of wound healing remains extensively unexplored, and its mechanism in wound healing remains unclear. Considering that angiogenesis is a critical stage in wound healing, we hypothesize that bioactive glass 1393 may facilitate wound healing through the stimulation of angiogenesis. To validate this hypothesis and further explore the mechanisms underlying its pro-angiogenic effects, we investigated the impact of bioactive glass 1393 on wound healing angiogenesis through both in vivo and in vitro studies. The research demonstrated that bioactive glass 1393 accelerated wound healing by promoting the formation of granulation, deposition of collagen, and angiogenesis. The results of Western blot analysis and immunofluorescence staining revealed that bioactive glass 1393 up-regulated the expression of angiogenesis-related factors. Additionally, bioactive glass 1393 inhibited the expression of ROS and P53 to promote angiogenesis. Furthermore, bioactive glass 1393 stimulated angiogenesis through the P53 signaling pathway, as evidenced by P53 activation assays. Collectively, these findings indicate that bioactive glass 1393 accelerates wound healing by promoting angiogenesis via the ROS/P53/MMP9 signaling pathway.
Collapse
Affiliation(s)
- Xuenan Chen
- National Key Clinical Specialty(Wound Healing), Burn and Wound Healing Center, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, China
- College of Life and Environmental Sciences, Wenzhou University, Zhejiang, China
| | - Xinyu Ran
- National Key Clinical Specialty(Wound Healing), Burn and Wound Healing Center, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuebo Wei
- National Key Clinical Specialty(Wound Healing), Burn and Wound Healing Center, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifei Zhu
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Shaodong Chen
- Department of Orthopaedics, Lishui People's Hospital, Zhejiang, China
| | - Zhiyong Liao
- College of Life and Environmental Sciences, Wenzhou University, Zhejiang, China
| | - Ke Xu
- National Key Clinical Specialty(Wound Healing), Burn and Wound Healing Center, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, China
- College of Life and Environmental Sciences, Wenzhou University, Zhejiang, China
| | - Weidong Xia
- National Key Clinical Specialty(Wound Healing), Burn and Wound Healing Center, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Hadem H, Mitra A, Ojha AK, Rajasekaran R, Satpathy B, Das D, Mukherjee S, Dhara S, Das S, Das K. Electrophoretic Deposition of 58S Bioactive Glass- Polymer Composite Coatings on 316L Stainless Steel: An Optimization for Corrosion, Bioactivity, and Cytocompatibility. ACS APPLIED BIO MATERIALS 2024; 7:2966-2981. [PMID: 38652577 DOI: 10.1021/acsabm.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This study presents a facile fabrication of 58S bioactive glass (BG)-polymer composite coatings on a 316L stainless steel (SS) substrate using the electrophoretic deposition technique. The suspension characteristics and deposition kinetics of BG, along with three different polymers, namely ethylcellulose (EC), poly(acrylic acid) (PAA), and polyvinylpyrrolidone (PVP), have been utilized to fabricate the coatings. Among all coatings, 58S BG and EC polymers are selected as the final composite coating (EC6) owing to their homogeneity and good adhesion. EC6 coating exhibits a thickness of ∼18 μm and an average roughness of ∼2.5 μm. Herein, EC6 demonstrates better hydroxyapatite formation compared to PAA and PVP coatings in simulated body fluid-based mineralization studies for a period of 28 days. Corrosion studies of EC6 in phosphate-buffered saline further confirm the higher corrosion resistance properties after 14 days. In vitro cytocompatibility studies using human placental mesenchymal stem cells demonstrate an increase in cellular viability, attachment, and higher proliferation compared to the bare SS substrate. EC6 coatings promote osteogenic differentiation, which is confirmed via the upregulation of the OPN and OCN genes. Moreover, the EC6 sample exhibits improved antibacterial properties against Escherichia coli and Staphylococcus aureus compared to the uncoated ones. The findings of this work emphasize the potential of electrophoretically fabricated BG-EC composite coatings on SS substrates for orthopedic applications.
Collapse
Affiliation(s)
- Hushnaara Hadem
- Structural Characterization of Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Arijit Mitra
- Structural Characterization of Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Atul Kumar Ojha
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Ragavi Rajasekaran
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
- Rajendra Mishra School of Engineering and Entrepreneurship, Indian Institute of Technology, Kharagpur 721302, India
| | - Bangmaya Satpathy
- Structural Characterization of Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Debasish Das
- School of Nano Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Sayan Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Siddhartha Das
- Structural Characterization of Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Karabi Das
- Structural Characterization of Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
15
|
Cohn N, Bradtmüller H, Zanotto E, von Marttens A, Covarrubias C. Novel Organic-Inorganic Nanocomposite Hybrids Based on Bioactive Glass Nanoparticles and Their Enhanced Osteoinductive Properties. Biomolecules 2024; 14:482. [PMID: 38672498 PMCID: PMC11047882 DOI: 10.3390/biom14040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Inorganic-organic hybrid biomaterials have been proposed for bone tissue repair, with improved mechanical flexibility compared with scaffolds fabricated from bioceramics. However, obtaining hybrids with osteoinductive properties equivalent to those of bioceramics is still a challenge. In this work, we present for the first time the synthesis of a class II hybrid modified with bioactive glass nanoparticles (nBGs) with osteoinductive properties. The nanocomposite hybrids were produced by incorporating nBGs in situ into a polytetrahydrofuran (PTHF) and silica (SiO2) hybrid synthesis mixture using a combined sol-gel and cationic polymerization method. nBGs ~80 nm in size were synthesized using the sol-gel technique. The structure, composition, morphology, and mechanical properties of the resulting materials were characterized using ATR-FTIR, 29Si MAS NMR, SEM-EDX, AFM, TGA, DSC, mechanical, and DMA testing. The in vitro bioactivity and degradability of the hybrids were assessed in simulated body fluid (SBF) and PBS, respectively. Cytocompatibility with mesenchymal stem cells was assessed using MTS and cell adhesion assays. Osteogenic differentiation was determined using the alkaline phosphatase activity (ALP), as well as the gene expression of Runx2 and Osterix markers. Hybrids loaded with 5, 10, and 15% of nBGs retained the mechanical flexibility of the PTHF-SiO2 matrix and improved its ability to promote the formation of bone-like apatite in SBF. The nBGs did not impair cell viability, increased the ALP activity, and upregulated the expression of Runx2 and Osterix. These results demonstrate that nBGs are an effective osteoinductive nanoadditive for the production of class II hybrid materials with enhanced properties for bone tissue regeneration.
Collapse
Affiliation(s)
- Nicolás Cohn
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
| | - Henrik Bradtmüller
- Center of Research, Technology and Education in Vitreous Materials, Department of Materials Engineering, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil; (H.B.); (E.Z.)
| | - Edgar Zanotto
- Center of Research, Technology and Education in Vitreous Materials, Department of Materials Engineering, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil; (H.B.); (E.Z.)
| | - Alfredo von Marttens
- Oral and Maxillofacial Implantology Program, Graduate School, Faculty of Dentistry, University of Chile, Santiago 7520355, Chile
| | - Cristian Covarrubias
- Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago 8380544, Chile
| |
Collapse
|
16
|
Kazem NE, El-Refai DA, Alian G. Assessment of physical properties of bioactive glass-modified universal multimode adhesive and its bonding potential to artificially induced caries affected dentin. BMC Oral Health 2024; 24:423. [PMID: 38580948 PMCID: PMC10998361 DOI: 10.1186/s12903-024-04175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/22/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND To evaluate the physical properties of bioactive glass-modified universal multimode adhesive and its micro-tensile bond strength (µTBS) to artificially induced caries-affected dentin. METHODS All bond universal adhesive was used in the study. Specimens were divided into 2 main groups: control unmodified adhesive and 5 wt% BAG modified adhesive. The degree of conversion, pH, bioactivity, and viscosity of the adhesives were tested with n = 5 for each test. Micro-tensile bond strength evaluation was done in etch & rinse (ER) and selective-etch (SE) modes, where 24 human molar teeth were used (n = 3), 12 teeth for immediate bond strength, and the other 12 were tested after 6 months of storage in simulated body fluid (SBF). RESULTS No significant difference was found between the control and the 5wt% BAG groups regarding the degree of conversion (61.01 ± 0.43 and 60.44 ± 0.61 respectively) and the viscosity (109.77 ± 22.3 and 124.3 ± 9.92 respectively). The control group revealed significantly lower pH values than the 5wt% BAG group (3.16 ± 0.5 and 4.26 ± 0.09 respectively). Immediate bond strength results revealed that the 5wt% BAG in the ER mode had the highest bond strength followed by the control group in the ER mode (44.16 ± 7.53 and 44.00 ± 7.96 respectively). SE groups showed that the immediate strength of the 5wt% BAG group was higher than the control group (42.09 ± 6.02 and 39.29 ± 6.64 respectively). After 6 months of storage, bond strength results revealed a decrease in bond strength values for the control groups but not for the 5wt% BAG in both application modes. CONCLUSIONS The incorporation of BAG (5wt%) improved the universal adhesive micro-tensile bond strength and bond durability for both adhesive application modes without affecting its degree of conversion or viscosity.
Collapse
Affiliation(s)
- Nada E Kazem
- Dental Biomaterials Department, Faculty of Dentistry, Ain Shams University, African Union Organization Street, Abbasia, Cairo, 11566, Egypt.
| | - Dina A El-Refai
- Dental Biomaterials Department, Faculty of Dentistry, Ain Shams University, African Union Organization Street, Abbasia, Cairo, 11566, Egypt
| | - Ghada Alian
- Dental Biomaterials Department, Faculty of Dentistry, Ain Shams University, African Union Organization Street, Abbasia, Cairo, 11566, Egypt
| |
Collapse
|
17
|
Akhtar M, Nazneen A, Awais M, Hussain R, Khan A, Irfan M, Avcu E, Ur Rehman MA, Boccaccini AR. Oxidized alginate-gelatin (ADA-GEL)/silk fibroin/Cu-Ag doped mesoporous bioactive glass nanoparticle-based hydrogels for potential wound care treatments. Biomed Mater 2024; 19:035016. [PMID: 38417147 DOI: 10.1088/1748-605x/ad2e0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
The present work focuses on developing 5% w/v oxidized alginate (alginate di aldehyde, ADA)-7.5% w/v gelatin (GEL) hydrogels incorporating 0.25% w/v silk fibroin (SF) and loaded with 0.3% w/v Cu-Ag doped mesoporous bioactive glass nanoparticles (Cu-Ag MBGNs). The microstructural, mechanical, and biological properties of the composite hydrogels were characterized in detail. The porous microstructure of the developed ADA-GEL based hydrogels was confirmed by scanning electron microscopy, while the presence of Cu-Ag MBGNs in the synthesized hydrogels was determined using energy dispersive x-ray spectroscopy. The incorporation of 0.3% w/v Cu-Ag MBGNs reduced the mechanical properties of the synthesized hydrogels, as investigated using micro-tensile testing. The synthesized ADA-GEL loaded with 0.25% w/v SF and 0.3% w/v Cu-Ag MBGNs showed a potent antibacterial effect againstEscherichia coliandStaphylococcus aureus. Cellular studies using the NIH3T3-E1 fibroblast cell line confirmed that ADA-GEL films incorporated with 0.3% w/v Cu-Ag MBGNs exhibited promising cellular viability as compared to pure ADA-GEL (determined by WST-8 assay). The addition of SF improved the biocompatibility, degradation rate, moisturizing effects, and stretchability of the developed hydrogels, as determinedin vitro. Such multimaterial hydrogels can stimulate angiogenesis and exhibit desirable antibacterial properties. Therefore further (in vivo) tests are justified to assess the hydrogels' potential for wound dressing and skin tissue healing applications.
Collapse
Affiliation(s)
- Memoona Akhtar
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, Erlangen 91058, Germany
| | - Arooba Nazneen
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Muhammad Awais
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Rabia Hussain
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Ahmad Khan
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Muhammad Irfan
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) H-12, Islamabad 44000, Pakistan
| | - Egemen Avcu
- Department of Mechanical Engineering, Kocaeli University, Kocaeli 41001, Turkey
- Ford Otosan Ihsaniye Automotive Vocational School, Kocaeli University, Kocaeli 41650, Turkey
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, Erlangen 91058, Germany
| |
Collapse
|
18
|
Szczodra A, Houaoui A, Salminen T, Hannula M, Gobbo VA, Ghanavati S, Miettinen S, Massera J. Pore graded borosilicate bioactive glass scaffolds: in vitro dissolution and cytocompatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:17. [PMID: 38507150 PMCID: PMC10954867 DOI: 10.1007/s10856-024-06791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
3D borosilicate bioactive glass (1393B20 and B12.5MgSr) scaffolds were prepared by robocasting, with and without a dense layer at the top. Pore graded scaffolds are promising as they allow for membrane deposition and could limit the risk of soft tissue infiltration. In vitro dissolution was studied in tris(hydroxymethyl)aminomethane (TRIS) and Simulated Body Fluid (SBF). 1393B20 scaffolds dissolved faster than B12.5MgSr in TRIS whereas they dissolved slower in SBF. The difference in dissolution profiles, as a function of the medium used, is assigned to the different rates of precipitation of hydroxyapatite (HA). While the precipitation of calcium phosphate (CaP) in the form of HA, first sign of bioactivity, was confirmed by ICP, FTIR-ATR and SEM-EDX analysis for both compositions, 1393B20 was found to precipitate HA at a faster rate. The presence of a dense top layer did not significantly impact the dissolution rate and CaP precipitation. In vitro cell culture was performed using human adipose-derived stem cells (hADSCs). Prior to cell plating, a preincubation of 3 days was found optimum to prevent burst ion release. In direct contact, cells proliferate and spread on the scaffolds while maintaining characteristic spindle morphology. Cell plated on 1393B20 scaffolds showed increased viability when compared to cell plated on B12.5MgSr. The lower cell viability, when testing B12.5MgSr, was assigned to the depletion of Ca2+ ions from culture medium and higher pH. Static cell culture leads to believe that the scaffold produced from the 1393B20 glass composition are promising in bone regeneration applications.
Collapse
Affiliation(s)
- Agata Szczodra
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Amel Houaoui
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Turkka Salminen
- Tampere University, Faculty of Engineering and Natural Sciences, Tampere, Finland
| | - Markus Hannula
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | | | - Sonya Ghanavati
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Susanna Miettinen
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
- Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Jonathan Massera
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| |
Collapse
|
19
|
Nogueira DMB, Rosso MPDO, Buchaim DV, Zangrando MSR, Buchaim RL. Update on the use of 45S5 bioactive glass in the treatment of bone defects in regenerative medicine. World J Orthop 2024; 15:204-214. [PMID: 38596193 PMCID: PMC10999964 DOI: 10.5312/wjo.v15.i3.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/15/2024] Open
Abstract
Bone regeneration is a critical area in regenerative medicine, particularly in orthopedics, demanding effective biomedical materials for treating bone defects. 45S5 bioactive glass (45S5 BG) is a promising material because of its osteoconductive and bioactive properties. As research in this field continues to advance, keeping up-to-date on the latest and most successful applications of this material is imperative. To achieve this, we conducted a comprehensive search on PubMed/MEDLINE, focusing on English articles published in the last decade. Our search used the keywords "bioglass 45S5 AND bone defect" in combination. We found 27 articles, and after applying the inclusion criteria, we selected 15 studies for detailed examination. Most of these studies compared 45S5 BG with other cement or scaffold materials. These comparisons demonstrate that the addition of various composites enhances cellular biocompatibility, as evidenced by the cells and their osteogenic potential. Moreover, the use of 45S5 BG is enhanced by its antimicrobial properties, opening avenues for additional investigations and applications of this biomaterial.
Collapse
Affiliation(s)
- Dayane Maria Braz Nogueira
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | | | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina, Adamantina 17800-000, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília, Marília 17525-902, Brazil
| | | | - Rogério Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| |
Collapse
|
20
|
Abd El-Hamid HK, Farag MM, Abdelraof M, Elwan RL. Regulation of the antibiotic elution profile from tricalcium phosphate bone cement by addition of bioactive glass. Sci Rep 2024; 14:2804. [PMID: 38307930 PMCID: PMC10837204 DOI: 10.1038/s41598-024-53319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
This work aimed at tailoring of different properties of antibacterial drug delivery Ca-phosphate cements by incorporation of bioactive glass (BG). The cements were prepared from beta-tricalcium phosphate cement (β-TCP) and BG based on 50 SiO2-20 CaO-15 Na2O-7 B2O3-4 P2O5-4 Al2O3 wt% with different percentages of BG [5, 10, 15, and 20% (w/w)]. The composite cements were characterized by XRD, FTIR, and TEM. Moreover, in vitro bioactivity and biodegradation were evaluated in the simulated body fluid (SBF) at 37 °C. In addition, physical properties and mechanical strength were determined. Also, the effect of glass addition on the drug release profile was examined using gentamicin. Finally, the antimicrobial activity was studied against Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumonia bacteria, one unicellular fungal strain (Candida albicans), and one multicellular fungal strain (Mucor racemosus). The results showed that after soaking in SBF, the compression strength values ranged from 14 to 36 MPa, the bulk densities and porosities were within 1.35 to 1.49 g/cm3 and 51.3 to 44.71%, respectively. Furthermore, gentamicin was released in a sustained manner, and BG decreased the released drug amount from ~ 80% (in pure β-TCP) to 47-53% in the composite cements. A drug release profile that is sustained by all samples was achieved. The antimicrobial test showed good activity of gentamicin-conjugated cements against bacteria and fungi used in this study. Additionally, cytotoxicity results proved that all samples were safe on MG-63 cells up to 50 µg/mL with no more than 7-12% dead cells. From the view of the physico-mechanical properties, bioactivity, biodegradation, and drug release rate, 20BG/β-TCP sample was nominated for practical bone grafting material, where it showed appropriate setting time and a relatively high mechanical strength suitable for cancellous bone.
Collapse
Affiliation(s)
- H K Abd El-Hamid
- Refractories, Ceramics and Building Materials Department, National Research Centre (NRC), El-Buhouth St., Dokki, 12622, Cairo, Egypt.
| | - Mohammad M Farag
- Glass Research Department, National Research Centre (NRC), El-Buhouth St., Dokki, 12622, Cairo, Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre (NRC), El-Buhouth St., Dokki, 12622, Cairo, Egypt
| | - R L Elwan
- Glass Research Department, National Research Centre (NRC), El-Buhouth St., Dokki, 12622, Cairo, Egypt.
| |
Collapse
|
21
|
Shah KN, Kamal RN. Bone Graft Substitutes-What Are My Options? Hand Clin 2024; 40:13-23. [PMID: 37979985 DOI: 10.1016/j.hcl.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
We examine the range of available bone graft substitutes often used in nonunion and malunion surgery of the upper extremity. Synthetic materials such as calcium sulfate, beta-calcium phosphate ceramics, hydroxyapatite, bioactive glass, and 3D printed materials are discussed. We delve into the advantages, disadvantages, and clinical applications for each, considering factors such as biocompatibility, osteoconductivity, mechanical strength, and resorption rates. This review provides upper extremity surgeons with insights into the available array of bone graft substitutes. We hope that the reviews helps in the decision-making process to achieve optimal outcomes when treating nonunion and malunion of the upper extremity.
Collapse
Affiliation(s)
- Kalpit N Shah
- Department of Orthopedic Surgery, Scripps Clinic, San Diego, CA, USA.
| | - Robin N Kamal
- Department of Orthopedic Surgery, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
22
|
Hu Z, Lv X, Zhang H, Zhuang S, Zheng K, Zhou T, Cen L. An injectable gel based on photo-cross-linkable hyaluronic acid and mesoporous bioactive glass nanoparticles for periodontitis treatment. Int J Biol Macromol 2024; 257:128596. [PMID: 38052282 DOI: 10.1016/j.ijbiomac.2023.128596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/07/2023]
Abstract
Guided bone regeneration (GBR) is an effective strategy to promote periodontal tissue repair. The current study aimed to develop an injectable gel for GBR, composed of photo-cross-linkable hyaluronic acid and mesoporous bioactive glass nanoparticles (MBGNs) loaded with antibacterial minocycline hydrochloride (MNCl). Hyaluronic acid modified with methacrylic anhydride (MHA) that could be cross-linked under UV irradiation was first synthesized. Dynamic rheological evaluation of MHA under UV was carried out to determine its in-situ gelling feasibility and stability. Morphological and mechanical characterization was performed to determine the optimal concentration of MHA gels. Sol-gel derived MBGNs loaded with MNCl were further incorporated into MHA gels to obtain the injectable drug-loaded MBGN-MNCl/MHA gels. In vitro antibacterial, anti-inflammatory and osteogenic effects of this gel were evaluated. It was shown that the MHA gel obtained from 3 % MHA under UV treatment of 30s exhibited a suitable porous structure with a compressive strength of 100 kPa. MBGNs with particle size of ∼120 nm and mesopores were confirmed by TEM and SEM. MBGNs had a loading capacity of ∼120 mg/g for MNCl, exhibiting a sustained release behavior. The MBGN-MNCl/MHA gel was shown to effectively inhibit the proliferation of Streptococcus mutans and the expression of pro-inflammatory factors IL-6 and TNF-α by macrophages. It could on the other hand significantly promote the expression of osteogenic-related genes ALP, Runx2, OPN, and osterix of MC3T3-E1 cells. In conclusion, the current design using photo-crosslinkable MHA gel embedded with MNCl loaded MBGNs can serve as a promising injectable formulation for GBR treatment of irregular periodontal defects.
Collapse
Affiliation(s)
- Zhihuan Hu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Xiaolei Lv
- Department of Oral and Maxillo-facial Implantology, Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Stomatology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huan Zhang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Shiya Zhuang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translation Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Tian Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Center of Head and Neck Oncology Clinical and Translational Science, China.
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China.
| |
Collapse
|
23
|
Salehi Abar E, Vandghanooni S, Torab A, Jaymand M, Eskandani M. A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering. Int J Biol Macromol 2024; 254:127556. [PMID: 37884249 DOI: 10.1016/j.ijbiomac.2023.127556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The creation of a suitable scaffold is a crucial step in the process of bone tissue engineering (BTE). The scaffold, acting as an artificial extracellular matrix, plays a significant role in determining the fate of cells by affecting their proliferation and differentiation in BTE. Therefore, careful consideration should be given to the fabrication approach and materials used for scaffold preparation. Natural polypeptides such as gelatin and collagen have been widely used for this purpose. The unique properties of nanoparticles, which vary depending on their size, charge, and physicochemical properties, have demonstrated potential in solving various challenges encountered in BTE. Therefore, nanocomposite biomaterials consisting of polymers and nanoparticles have been extensively used for BTE. Gelatin has also been utilized in combination with other nanomaterials to apply for this purpose. Composites of gelatin with various types of nanoparticles are particularly promising for creating scaffolds with superior biological and physicochemical properties. This review explores the use of nanocomposite biomaterials based on gelatin and various types of nanoparticles together for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Elaheh Salehi Abar
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Torab
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Dey N, Mohny FP, Betsy Reshma G, Rao D, Ganguli M, Santhiya D. Bioinspired synthesis of bioactive glass nanocomposites for hyaluronic acid delivery to bone and skin. Int J Biol Macromol 2023; 253:127262. [PMID: 37813216 DOI: 10.1016/j.ijbiomac.2023.127262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
In this study, we present nanocomposites of bioactive glass (BG) and hyaluronic acid (HA) (nano-BGHA) for effective delivery of HA to skin and bone. The synthesis of the nanocomposites has been carried out through the bio-inspired method, which is a modification of the traditional Stober's synthesis as it avoids using ethanol, ammonia, synthetic surfactants, or high-temperature calcination. This environmentally friendly, bio-inspired route allowed the synthesis of mesoporous nanocomposites with an average hydrodynamic radius of ∼190 nm and an average net surface charge of ∼-21 mV. Most nanocomposites are amorphous and bioactive in nature with over 70 % cellular viability for skin and bone cell lines even at high concentrations, along with high cellular uptake (90-100 %). Furthermore, the nanocomposites could penetrate skin cells in a transwell set-up and artificial human skin membrane (StratM®), thus depicting an attractive strategy for the delivery of HA to the skin. The purpose of the study is to develop nanocomposites of HA and BG that can have potential applications in non-invasive treatments that require the delivery of high molecular weight HA such as in the case of osteoarthritis, sports injury treatments, eye drops, wound healing, and some anticancer treatments, if further investigated. The presence of BG further enhances the range to bone-related applications. Additionally, the nanocomposites can have potential cosmeceutical applications where HA is abundantly used, for instance in moisturizers, dermal fillers, shampoos, anti-wrinkle creams, etc.
Collapse
Affiliation(s)
- Namit Dey
- Delhi Technological University, Shahbad Daulatpur, Delhi, India
| | - Franklin Pulikkottil Mohny
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road Campus, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - G Betsy Reshma
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road Campus, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Rao
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road Campus, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Munia Ganguli
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road Campus, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Deenan Santhiya
- Delhi Technological University, Shahbad Daulatpur, Delhi, India.
| |
Collapse
|
25
|
Harrop ACF, Tupally KR, Pandey P, Parekh HS. Opportunities for Bioactive Glass in Gastrointestinal Conditions: A Review of Production Methodologies, Morphology, Composition, and Performance. Mol Pharm 2023; 20:5954-5980. [PMID: 37962352 DOI: 10.1021/acs.molpharmaceut.3c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Bioactive glasses (BGs) are widely used in orthopedic and dental applications for their ability to stimulate endogenous bone formation and regeneration. BG applications more recently broadened to include soft tissue conditions, based on their ability to stimulate angiogenesis, soft tissue regeneration, and wound healing. Sol-gel synthesis has helped facilitate this expansion, allowing formulators to tailor the morphological characteristics of the BG matrix. The effectiveness of BGs in skin wound healing is viewed as a gateway for their use as both a therapeutic and drug delivery platform in other soft tissue applications, notably gastrointestinal (GI) applications, which form the focus of this review. Recent changes in international guidelines for GI conditions shifted clinical objectives from symptom management to mucosal wound healing. The additional scrutiny of proton pump inhibitor (PPI) safety, increasing burden of disease, and financial costs associated with gastroesophageal reflux disease (GERD), peptic ulcer disease (PUD), and inflammatory bowel disease (IBD) open new clinical possibilities for BG. This narrative literature review intersects materials engineering, formulation science, and clinical practice, setting it apart from prior literature. Broadly, current evidence for BG applications in GI conditions is sparse and under-developed, which this review directly addresses. It explores and synthesizes evidence that supports the potential use of sol-gel-derived BG for the efficacious treatment of soft tissue applications, with specific reference to GI conditions. An overview with comparative analysis of current BG synthesis techniques and associated challenges is presented, and influences of composition, biologically active ions, and morphological characteristics in soft tissue applications are explored. To contextualize this, sol-gel-derived BGs are proposed as a dual, tailorable therapeutic and drug delivery platform for upper and lower GI conditions. Future directions for this largely untapped area of translational research are also proposed, based on extant literature.
Collapse
Affiliation(s)
- Angus C F Harrop
- The University of Queensland, School of Pharmacy, The Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, Queensland 4102, Australia
| | - Karnaker R Tupally
- The University of Queensland, School of Pharmacy, The Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, Queensland 4102, Australia
| | - Preeti Pandey
- The University of Queensland, School of Pharmacy, The Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, Queensland 4102, Australia
| | - Harendra S Parekh
- The University of Queensland, School of Pharmacy, The Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
26
|
Wang D, Zhou X, Cao H, Zhang H, Wang D, Guo J, Wang J. Barrier membranes for periodontal guided bone regeneration: a potential therapeutic strategy. FRONTIERS IN MATERIALS 2023; 10. [DOI: 10.3389/fmats.2023.1220420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Periodontal disease is one of the most common oral diseases with the highest incidence world-wide. In particular, the treatment of periodontal bone defects caused by periodontitis has attracted extensive attention. Guided bone regeneration (GBR) has been recognized as advanced treatment techniques for periodontal bone defects. GBR technique relies on the application of barrier membranes to protect the bone defects. The commonly used GBR membranes are resorbable and non-resorbable. Resorbable GBR membranes are divided into natural polymer resorbable membranes and synthetic polymer resorbable membranes. Each has its advantages and disadvantages. The current research focuses on exploring and improving its preparation and application. This review summarizes the recent literature on the application of GBR membranes to promote the regeneration of periodontal bone defects, elaborates on GBR development strategies, specific applications, and the progress of inducing periodontal bone regeneration to provide a theoretical basis and ideas for the future application of GBR membranes to promote the repair of periodontal bone defects.
Collapse
|
27
|
Zheng K, Bider F, Monavari M, Xu Z, Janko C, Alexiou C, Beltrán AM, Boccaccini AR. Sol-gel derived B 2O 3-CaO borate bioactive glasses with hemostatic, antibacterial and pro-angiogenic activities. Regen Biomater 2023; 11:rbad105. [PMID: 38173772 PMCID: PMC10761205 DOI: 10.1093/rb/rbad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024] Open
Abstract
Sol-gel borate bioactive glasses (BGs) are promising ion-releasing biomaterials for wound healing applications. Here, we report the synthesis of a series of binary B2O3-CaO borate BGs (CaO ranging from 50 to 90 mol%) using a sol-gel-based method. The influence of CaO content in B2O3-CaO borate BG on morphology, structure and ion release behavior was investigated in detail. Reduced dissolution (ion release) and crystallization could be observed in borate BGs when CaO content increased, while the morphology was not significantly altered by increasing CaO content. Our results evidenced that the ion release behavior of borate BGs could be tailored by tuning the B2O3/CaO molar ratio. We also evaluated the in vitro cytotoxicity, hemostatic, antibacterial and angiogenic activities of borate BGs. Cytocompatibility was validated for all borate BGs. However, borate BGs exhibited composition-dependent hemostatic, antibacterial and angiogenic activities. Generally, higher contents of Ca in borate BGs facilitated hemostatic activity, while higher contents of B2O3 were beneficial for pro-angiogenic activity. The synthesized sol-gel-derived borate BGs are promising materials for developing advanced wound healing dressings, given their fast ion release behavior and favorable hemostatic, antibacterial and angiogenic activities.
Collapse
Affiliation(s)
- Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, College of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Faina Bider
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Mahshid Monavari
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Zhiyan Xu
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Christina Janko
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung Professorship,Universitaetsklinikum Erlangen, 91058 Erlangen, Germany
| | - Christoph Alexiou
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung Professorship,Universitaetsklinikum Erlangen, 91058 Erlangen, Germany
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
28
|
Pajares-Chamorro N, Hernández-Escobar S, Wagley Y, Acevedo P, Cramer M, Badylak S, Hammer ND, Hardy J, Hankenson K, Chatzistavrou X. Silver-releasing bioactive glass nanoparticles for infected tissue regeneration. BIOMATERIALS ADVANCES 2023; 154:213656. [PMID: 37844416 DOI: 10.1016/j.bioadv.2023.213656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Bacterial infections represent a formidable challenge, often leaving behind significant bone defects post-debridement and necessitating prolonged antibiotic treatments. The rise of antibiotic-resistant bacterial strains further complicates infection management. Bioactive glass nanoparticles have been presented as a promising substitute for bone defects and as carriers for therapeutic agents against microorganisms. Achieving consistent incorporation of ions into BGNs has proven challenging and restricted to a maximum ion concentration, especially when reducing the particle size. This study presents a notable achievement in the synthesis of 10 nm-sized Ag-doped bioactive glass nanoparticles (Ag-BGNs) using a modified yet straightforward Stöber method. The successful incorporation of essential elements, including P, Ca, Al, and Ag, into the glass structure at the intended concentrations (i.e., CaO wt% above 20 %) was confirmed by EDS, signifying a significant advancement in nanoscale biomaterial engineering. While exhibiting a spherical morphology and moderate dispersity, these nanoparticles tend to form submicron-sized aggregates outside of a solution state. The antibacterial effectiveness against MRSA was established across various experimental conditions, with Ag-BGNs effectively sterilizing planktonic bacteria without the need for antibiotics. Remarkably, when combined with oxacillin or fosfomycin, Ag-BGNs demonstrated a potent synergistic effect, restoring antibacterial capabilities against MRSA strains resistant to these antibiotics when used alone. Ag-BGNs exhibited potential in promoting human mesenchymal stromal cell proliferation, inducing the upregulation of osteoblast gene markers, and significantly contributing to bone regeneration in mice. This innovative synthesis protocol holds substantial promise for the development of biomaterials dedicated to the regeneration of infected tissue.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sandra Hernández-Escobar
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Parker Acevedo
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Madeline Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Jonathan Hardy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA
| | - Kurt Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
29
|
Ray S, Thormann U, Kramer I, Sommer U, Budak M, Schumacher M, Bernhardt A, Lode A, Kern C, Rohnke M, Heiss C, Lips KS, Gelinsky M, Alt V. Mesoporous Bioactive Glass-Incorporated Injectable Strontium-Containing Calcium Phosphate Cement Enhanced Osteoconductivity in a Critical-Sized Metaphyseal Defect in Osteoporotic Rats. Bioengineering (Basel) 2023; 10:1203. [PMID: 37892933 PMCID: PMC10604136 DOI: 10.3390/bioengineering10101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, the in vitro and in vivo bone formation behavior of mesoporous bioactive glass (MBG) particles incorporated in a pasty strontium-containing calcium phosphate bone cement (pS100G10) was studied in a metaphyseal fracture-defect model in ovariectomized rats and compared to a plain pasty strontium-containing calcium phosphate bone cement (pS100) and control (empty defect) group, respectively. In vitro testing showed good cytocompatibility on human preosteoblasts and ongoing dissolution of the MBG component. Neither the released strontium nor the BMG particles from the pS100G10 had a negative influence on cell viability. Forty-five female Sprague-Dawley rats were randomly assigned to three different treatment groups: (1) pS100 (n = 15), (2) pS100G10 (n = 15), and (3) empty defect (n = 15). Twelve weeks after bilateral ovariectomy and multi-deficient diet, a 4 mm wedge-shaped fracture-defect was created at the metaphyseal area of the left femur in all animals. The originated fracture-defect was substituted with pS100 or pS100G10 or left empty. After six weeks, histomorphometrical analysis revealed a statistically significant higher bone volume/tissue volume ratio in the pS100G10 group compared to the pS100 (p = 0.03) and empty defect groups (p = 0.0001), indicating enhanced osteoconductivity with the incorporation of MBG. Immunohistochemistry revealed a significant decrease in the RANKL/OPG ratio for pS100 (p = 0.004) and pS100G10 (p = 0.003) compared to the empty defect group. pS100G10 showed a statistically higher expression of BMP-2. In addition, a statistically significant higher gene expression of alkaline phosphatase, osteoprotegerin, collagen1a1, collagen10a1 with a simultaneous decrease in RANKL, and carbonic anhydrase was seen in the pS100 and pS100G10 groups compared to the empty defect group. Mass spectrometric imaging by time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed the release of Sr2+ ions from both pS100 and pS100G10, with a gradient into the interface region. ToF-SIMS imaging also revealed that resorption of the MBG particles allowed for new bone formation in cement pores. In summary, the current work shows better bone formation of the injectable pasty strontium-containing calcium phosphate bone cement with incorporated mesoporous bioactive glass compared to the bioactive-free bone cement and empty defects and can be considered for clinical application for osteopenic fracture defects in the future.
Collapse
Affiliation(s)
- Seemun Ray
- Laboratory of Experimental Trauma Surgery, Justus Liebig University, 35390 Giessen, Germany; (S.R.); (U.T.); (I.K.); (U.S.); (M.B.); (C.H.); (K.S.L.)
| | - Ulrich Thormann
- Laboratory of Experimental Trauma Surgery, Justus Liebig University, 35390 Giessen, Germany; (S.R.); (U.T.); (I.K.); (U.S.); (M.B.); (C.H.); (K.S.L.)
- Department of Trauma Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, 35390 Giessen, Germany
| | - Inga Kramer
- Laboratory of Experimental Trauma Surgery, Justus Liebig University, 35390 Giessen, Germany; (S.R.); (U.T.); (I.K.); (U.S.); (M.B.); (C.H.); (K.S.L.)
| | - Ursula Sommer
- Laboratory of Experimental Trauma Surgery, Justus Liebig University, 35390 Giessen, Germany; (S.R.); (U.T.); (I.K.); (U.S.); (M.B.); (C.H.); (K.S.L.)
| | - Matthäus Budak
- Laboratory of Experimental Trauma Surgery, Justus Liebig University, 35390 Giessen, Germany; (S.R.); (U.T.); (I.K.); (U.S.); (M.B.); (C.H.); (K.S.L.)
- Department of Trauma Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, 35390 Giessen, Germany
| | - Matthias Schumacher
- Centre for Translational Bone, Joint, and Soft Tissue Research, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (A.B.); (A.L.); (M.G.)
| | - Anne Bernhardt
- Centre for Translational Bone, Joint, and Soft Tissue Research, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (A.B.); (A.L.); (M.G.)
| | - Anja Lode
- Centre for Translational Bone, Joint, and Soft Tissue Research, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (A.B.); (A.L.); (M.G.)
| | - Christine Kern
- Institute of Physical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.K.); (M.R.)
| | - Marcus Rohnke
- Institute of Physical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.K.); (M.R.)
| | - Christian Heiss
- Laboratory of Experimental Trauma Surgery, Justus Liebig University, 35390 Giessen, Germany; (S.R.); (U.T.); (I.K.); (U.S.); (M.B.); (C.H.); (K.S.L.)
- Department of Trauma Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, 35390 Giessen, Germany
| | - Katrin S. Lips
- Laboratory of Experimental Trauma Surgery, Justus Liebig University, 35390 Giessen, Germany; (S.R.); (U.T.); (I.K.); (U.S.); (M.B.); (C.H.); (K.S.L.)
| | - Michael Gelinsky
- Centre for Translational Bone, Joint, and Soft Tissue Research, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (A.B.); (A.L.); (M.G.)
| | - Volker Alt
- Laboratory of Experimental Trauma Surgery, Justus Liebig University, 35390 Giessen, Germany; (S.R.); (U.T.); (I.K.); (U.S.); (M.B.); (C.H.); (K.S.L.)
- Department of Trauma Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, 35390 Giessen, Germany
- Department of Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
30
|
Gavinho SR, Pádua AS, Holz LIV, Sá-Nogueira I, Silva JC, Borges JP, Valente MA, Graça MPF. Bioactive Glasses Containing Strontium or Magnesium Ions to Enhance the Biological Response in Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2717. [PMID: 37836358 PMCID: PMC10574208 DOI: 10.3390/nano13192717] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 10/15/2023]
Abstract
The non-surgical treatments are being required to reconstruct damaged tissue, prioritizing our body's natural healing process. Thus, the use of bioactive materials such as bioactive glass has been studied to support the repair and restoration of hard and soft tissue. Thus, in this work Bioglass 45S5 was developed, adding 1 and 2%mol of SrO or MgO and the physical and biological properties were evaluated. The addition of MgO and SrO at the studied concentrations promoted the slight increase in non-bridging oxygens number, observed through the temperature shift in phase transitions to lower values compared to Bioglass 45S5. The insertion of the ions also showed a positive effect on Saos-2 cell viability, decreasing the cytotoxic of Bioglass 45S5. Besides the Ca/P ratio on the pellets surface demonstrating no evidence of higher reactivity between Bioglass 45S5 and Bioglass with Sr and Mg, micrographs show that at 24 h the Ca/P rich layer is denser than in Bioglass 45S5 after the contact with simulated body fluid. The samples with Sr and Mg show a higher antibacterial effect compared to Bioglass 45S5. The addition of the studied ions may benefit the biological response of Bioglass 45S5 in dental applications as scaffolds or coatings.
Collapse
Affiliation(s)
| | - Ana Sofia Pádua
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal; (A.S.P.); (J.C.S.)
| | | | - Isabel Sá-Nogueira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge Carvalho Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal; (A.S.P.); (J.C.S.)
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Manuel Almeida Valente
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (S.R.G.); (M.P.F.G.)
| | | |
Collapse
|
31
|
Kaou MH, Furkó M, Balázsi K, Balázsi C. Advanced Bioactive Glasses: The Newest Achievements and Breakthroughs in the Area. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2287. [PMID: 37630871 PMCID: PMC10459405 DOI: 10.3390/nano13162287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Bioactive glasses (BGs) are especially useful materials in soft and bone tissue engineering and even in dentistry. They can be the solution to many medical problems, and they have a huge role in the healing processes of bone fractures. Interestingly, they can also promote skin regeneration and wound healing. Bioactive glasses are able to attach to the bone tissues and form an apatite layer which further initiates the biomineralization process. The formed intermediate apatite layer makes a connection between the hard tissue and the bioactive glass material which results in faster healing without any complications or side effects. This review paper summarizes the most recent advancement in the preparation of diverse types of BGs, such as silicate-, borate- and phosphate-based bioactive glasses. We discuss their physical, chemical, and mechanical properties detailing how they affect their biological performances. In order to get a deeper insight into the state-of-the-art in this area, we also consider their medical applications, such as bone regeneration, wound care, and dental/bone implant coatings.
Collapse
Affiliation(s)
- Maroua H. Kaou
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
- Doctoral School of Materials Science and Technologies, Óbuda University, Bécsi Str. 96/B, 1030 Budapest, Hungary
| | - Mónika Furkó
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| | - Katalin Balázsi
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| | - Csaba Balázsi
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| |
Collapse
|
32
|
Anesi A, Ferretti M, Salvatori R, Bellucci D, Cavani F, Di Bartolomeo M, Palumbo C, Cannillo V. In-vivo evaluations of bone regenerative potential of two novel bioactive glasses. J Biomed Mater Res A 2023; 111:1264-1278. [PMID: 36876550 DOI: 10.1002/jbm.a.37526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Due to the aging of population, materials able to repair damaged tissues are needed. Among others, bioactive glasses (BGs) have attracted a lot of interest due to their outstanding properties both for hard and soft tissues. Here, for the first time, two new BGs, which gave very promising results in preliminary in vitro-tests, were implanted in animals in order to evaluate their regenerative potential. The new BGs, named BGMS10 and Bio_MS and containing specific therapeutic ions, were produced in granules and implanted in rabbits' femurs for up to 60 days, to test their biocompatibility and osteoconduction. Additionally, granules of 45S5 Bioglass® were employed and used as a standard reference for comparison. The results showed that, after 30 days, the two novel BGs and 45S5 displayed a similar behavior, in terms of bone amount, thickness of new bone trabeculae and affinity index. On the contrary, after 60 days, 45S5 granules were mainly surrounded by wide and scattered bone trabeculae, separated by large amounts of soft tissue, while in BGMS10 and Bio_MS the trabeculae were thin and uniformly distributed around the BG granules. This latter scenario could be considered as more advantageous, since the features of the two novel BG granules allowed for the neo-formation of a uniformly distributed bony trabeculae, predictive of more favorable mechanical behavior, compared to the less uniform coarse trabeculae, separated by large areas of soft tissue in 45S5 granules. Thus, BGMS10 and Bio_MS could be considered suitable products for tissue regeneration in the orthopedic and dental fields.
Collapse
Affiliation(s)
- A Anesi
- Laboratorio Biomateriali, Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - M Ferretti
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze - Sezione di Morfologia umana (c/o Policlinico), Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - R Salvatori
- Laboratorio Biomateriali, Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - D Bellucci
- Dipartimento di Ingegneria "Enzo Ferrari", Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - F Cavani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze - Sezione di Morfologia umana (c/o Policlinico), Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - M Di Bartolomeo
- Chirurgia Maxillo Facciale e Odontostomatologia, Dipartimento di Scienze Chirurgiche Odontostomatologiche e Materno-Infantili, Università degli Studi di Verona, Verona, Italy
| | - C Palumbo
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze - Sezione di Morfologia umana (c/o Policlinico), Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - V Cannillo
- Dipartimento di Ingegneria "Enzo Ferrari", Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
33
|
Mendoza-Cerezo L, Rodríguez-Rego JM, Soriano-Carrera A, Marcos-Romero AC, Macías-García A. Fabrication and characterisation of bioglass and hydroxyapatite-filled scaffolds. J Mech Behav Biomed Mater 2023; 144:105937. [PMID: 37307642 DOI: 10.1016/j.jmbbm.2023.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Tissue engineering is a continuously evolving field. One of the main lines of research in this field focuses on the replacement of bone defects with materials designed to interact with the cells of a living organism in order to provide the body with a structure on which new tissues can easily grow. Among the most commonly used materials are bioglasses, which are frequently used due to their versatility and good properties. This article discusses the results of the production of an injectable paste of Bioglass® 45S5 and hydroxyapatite on a 3D printed porous structure by additive manufacturing, using a thermoplastic (PLA). The results were evaluated in a specific application of the paste, so the mechanical and bioactive properties were studied to show the multiple possibilities of using this combination for its application in regenerative medicine and more specifically in bone implants.
Collapse
Affiliation(s)
- Laura Mendoza-Cerezo
- Departamento de Expresión Gráfica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España
| | - Jesús M Rodríguez-Rego
- Departamento de Expresión Gráfica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España.
| | - Anabel Soriano-Carrera
- Departamento de Expresión Gráfica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España
| | - Alfonso C Marcos-Romero
- Departamento de Expresión Gráfica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España
| | - Antonio Macías-García
- Departamento de Ingeniería Mecánica, Energética y de Materiales, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España
| |
Collapse
|
34
|
Ranjbar FE, Farzad-Mohajeri S, Samani S, Saremi J, Khademi R, Dehghan MM, Azami M. Kaempferol-loaded bioactive glass-based scaffold for bone tissue engineering: in vitro and in vivo evaluation. Sci Rep 2023; 13:12375. [PMID: 37524784 PMCID: PMC10390521 DOI: 10.1038/s41598-023-39505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Due to the increasing prevalence of bone disorders among people especially in average age, the future of treatments for osseous abnormalities has been illuminated by scaffold-based bone tissue engineering. In this study, in vitro and in vivo properties of 58S bioactive glass-based scaffolds for bone tissue engineering (bare (B.SC), Zein-coated (C.SC), and Zein-coated containing Kaempferol (KC.SC)) were evaluated. This is a follow-up study on our previously published paper, where we synthesized 58S bioactive glass-based scaffolds coated with Kaempferol-loaded Zein biopolymer, and characterized from mostly engineering points of view to find the optimum composition. For this aim, in vitro assessments were done to evaluate the osteogenic capacity and biological features of the scaffolds. In the in vivo section, all types of scaffolds with/without bone marrow-derived stem cells (BMSC) were implanted into rat calvaria bone defects, and potential of bone healing was assessed using imaging, staining, and histomorphometric analyses. It was shown that, Zein-coating covered surface cracks leading to better mechanical properties without negative effect on bioactivity and cell attachment. Also, BMSC differentiation proved that the presence of Kaempferol caused higher calcium deposition, increased alkaline phosphatase activity, bone-specific gene upregulation in vitro. Further, in vivo study confirmed positive effect of BMSC-loaded KC.SC on significant new bone formation resulting in complete bone regeneration. Combining physical properties of coated scaffolds with the osteogenic effect of Kaempferol and BMSCs could represent a new strategy for bone regeneration and provide a more effective approach to repairing critical-sized bone defects.
Collapse
Affiliation(s)
- Faezeh Esmaeili Ranjbar
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Dr. Qarib Street, Azadi Street, Tehran, 1419963111, Iran
| | - Saeed Samani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St., Keshavarz Blv, Tehran, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Rahele Khademi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St., Keshavarz Blv, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Dr. Qarib Street, Azadi Street, Tehran, 1419963111, Iran.
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St., Keshavarz Blv, Tehran, Iran.
| |
Collapse
|
35
|
Petrović D, Galić D, Seifert D, Lešić N, Smolić M. Evaluation of Bioactive Glass Treatment for Dentin Hypersensitivity: A Systematic Review. Biomedicines 2023; 11:1992. [PMID: 37509631 PMCID: PMC10377612 DOI: 10.3390/biomedicines11071992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this systematic review is to compare home and office desensitizers containing bioactive glass with control groups in randomized controlled trials (RCT) conducted between 2018 and 2022. According to PRISMA guidelines, three electronic databases (Scopus, PubMed, and Cochrane Library) were searched for published scientific articles in October 2022. RCT with adult participants with dentin hypersensitivity (DH) diagnosed by evaporative, mechanical, or thermal stimulation, with a follow-up period and quantified pain assessment were included in the study. Studies that reported DH due to tooth restoration, crown preparation, bleaching, or periodontal surgery or used bioactive glass-ceramics were excluded. The quality of the studies was assessed using version 2 of the Cochrane Risk-of-Bias Tool for randomized studies (RoB 2 tool). Articles that were duplicative or unrelated to this study were excluded. Nine articles were selected for full-text evaluation, whereas two articles were rejected. The remaining seven reports were included in this review. The calcium sodium phosphosilicate group (CSPS) was not significantly different from the positive control groups. Compared with the control groups, fluoro calcium phosphosilicate (FCPS) may be the most effective long-term treatment option. In terms of DH symptom reduction, the FCPS group performed better than the CSPS group. CSPS at a concentration of 5-15% and FCPS at a concentration of 5% are effective in treating DH in adult participants.
Collapse
Affiliation(s)
- Dorotea Petrović
- Department of Dental Medicine, Faculty of Dental Medicine and Health, J.J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Dora Galić
- Faculty of Dental Medicine and Health, J.J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Davor Seifert
- Department of Dental Medicine, Faculty of Dental Medicine and Health, J.J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Nikolina Lešić
- Department of Dental Medicine, Faculty of Dental Medicine and Health, J.J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Martina Smolić
- Department of Translational Medicine, Faculty of Dental Medicine and Health, J.J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| |
Collapse
|
36
|
Elshazly N, Saad MM, El Backly RM, Hamdy A, Patruno M, Nouh S, Saha S, Chakraborty J, Marei MK. Nanoscale borosilicate bioactive glass for regenerative therapy of full-thickness skin defects in rabbit animal model. Front Bioeng Biotechnol 2023; 11:1036125. [PMID: 37274157 PMCID: PMC10233017 DOI: 10.3389/fbioe.2023.1036125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Bioactive glass (BG) occupies a significant position in the field of hard and soft tissue regeneration. Different processing techniques and formulas have been introduced to expand their regenerative, angiogenic, and antibacterial properties. In the present study, a new formula of bborosilicate bioactive glass nanofibers was prepared and tested for its wound-healing efficacy in a rabbit animal model. The glass formula ((1-2) mol% of B2O3 (68-69) mol% of SiO2, and (29-30) mol% of CaO) was prepared primarily by the sol-gel technique followed by the electrospinning technique. The material was characterized for its ultrastructure using scanning electron microscopy, chemical composition using FTIR, and its dynamic in vitro biodegradability using ICP-AES. Twelve rabbits were subjected to surgical induction of full-thickness skin defects using a 1 cm2 custom-made stainlessteel skin punch. The bioactive glass nanofibers were used as a grafting material in 6 experimental rabbits, while the defects in the remaining rabbits were considered as the negative control samples. All defects were assessed clinically for the decrease in wound size and clinical signs of healing and histologically for angiogenesis, collagen density, inflammatory response, cell recruitment, epithelial lining, and appendages at 1,2 and 3 weeks following the intervention. Structural analysis of the glass fibers confirmed their nano-size which ranged from 150 to 700 nm. Moreover, the chemical analysis confirmed the presence of SiO2 and B2O3 groups within the structure of the nanofibers. Additionally, dynamic biodegradation analysis confirmed the rapid degradation of the material starting from the first 24 h and rapid leaching of calcium, silicon, and boron ions confirming its bioactivity. The wound healing study of the nanofibrous scaffold confirmed its ability to accelerate wound healing and the closure rate in healthy rabbits. Histological analysis of the defects confirmed the angiogenic, regenerative and antibacterial ability of the material throughout the study period. The results unveil the powerful therapeutic properties of the formed nanofibers and open a new gate for more experimental and clinical applications.
Collapse
Affiliation(s)
- Noha Elshazly
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Manal M. Saad
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Oral Biology, Faculty of Oral and Dental Medicine, Ahram Canadian University, Giza, Egypt
| | - Rania M. El Backly
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ayat Hamdy
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Samir Nouh
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Suman Saha
- Bioceramics and Coating Division, Central Glass and Ceramics Research Institutes, Kolkata, India
| | - Jui Chakraborty
- Bioceramics and Coating Division, Central Glass and Ceramics Research Institutes, Kolkata, India
| | - Mona K. Marei
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Department of Removable Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
37
|
Amaral SS, Lima BSDS, Avelino SOM, Spirandeli BR, Campos TMB, Thim GP, Trichês EDS, Prado RFD, Vasconcellos LMRD. β-TCP/S53P4 Scaffolds Obtained by Gel Casting: Synthesis, Properties, and Biomedical Applications. Bioengineering (Basel) 2023; 10:bioengineering10050597. [PMID: 37237667 DOI: 10.3390/bioengineering10050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The objective of this study was to investigate the osteogenic and antimicrobial effect of bioactive glass S53P4 incorporated into β-tricalcium phosphate (β-TCP) scaffolds in vitro and the bone neoformation in vivo. β-TCP and β-TCP/S53P4 scaffolds were prepared by the gel casting method. Samples were morphologically and physically characterized through X-ray diffraction (XRD) and scanning electron microscope (SEM). In vitro tests were performed using MG63 cells. American Type Culture Collection reference strains were used to determine the scaffold's antimicrobial potential. Defects were created in the tibia of New Zealand rabbits and filled with experimental scaffolds. The incorporation of S53P4 bioglass promotes significant changes in the crystalline phases formed and in the morphology of the surface of the scaffolds. The β-TCP/S53P4 scaffolds did not demonstrate an in vitro cytotoxic effect, presented similar alkaline phosphatase activity, and induced a significantly higher protein amount when compared to β-TCP. The expression of Itg β1 in the β-TCP scaffold was higher than in the β-TCP/S53P4, and there was higher expression of Col-1 in the β-TCP/S53P4 group. Higher bone formation and antimicrobial activity were observed in the β-TCP/S53P4 group. The results confirm the osteogenic capacity of β-TCP ceramics and suggest that, after bioactive glass S53P4 incorporation, it can prevent microbial infections, demonstrating to be an excellent biomaterial for application in bone tissue engineering.
Collapse
Affiliation(s)
- Suelen Simões Amaral
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Beatriz Samara de Sousa Lima
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Sarah Oliveira Marco Avelino
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Bruno Roberto Spirandeli
- Bioceramics Laboratory, Federal University of São Paulo (UNIFESP), 330 Talim St, São José dos Campos 12231-280, SP, Brazil
| | - Tiago Moreira Bastos Campos
- Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), 50 Mal. Eduardo Gomes Plaza, São José dos Campos 12228-900, SP, Brazil
| | - Gilmar Patrocínio Thim
- Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), 50 Mal. Eduardo Gomes Plaza, São José dos Campos 12228-900, SP, Brazil
| | - Eliandra de Sousa Trichês
- Bioceramics Laboratory, Federal University of São Paulo (UNIFESP), 330 Talim St, São José dos Campos 12231-280, SP, Brazil
| | - Renata Falchete do Prado
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| |
Collapse
|
38
|
A Brief Review on Selected Applications of Hybrid Materials Based on Functionalized Cage-like Silsesquioxanes. Polymers (Basel) 2023; 15:polym15061452. [PMID: 36987231 PMCID: PMC10056089 DOI: 10.3390/polym15061452] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Rapid developments in materials engineering are accompanied by the equally rapid development of new technologies, which are now increasingly used in various branches of our life. The current research trend concerns the development of methods for obtaining new materials engineering systems and searching for relationships between the structure and physicochemical properties. A recent increase in the demand for well-defined and thermally stable systems has highlighted the importance of polyhedral oligomeric silsesquioxane (POSS) and double-decker silsesquioxane (DDSQ) architectures. This short review focuses on these two groups of silsesquioxane-based materials and their selected applications. This fascinating field of hybrid species has attracted considerable attention due to their daily applications with unique capabilities and their great potential, among others, in biomaterials as components of hydrogel networks, components in biofabrication techniques, and promising building blocks of DDSQ-based biohybrids. Moreover, they constitute attractive systems applied in materials engineering, including flame retardant nanocomposites and components of the heterogeneous Ziegler-Natta-type catalytic system.
Collapse
|
39
|
Motameni A, Çardaklı İS, Gürbüz R, Alshemary AZ, Razavi M, Farukoğlu ÖC. Bioglass-polymer composite scaffolds for bone tissue regeneration: a review of current trends. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2186864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ali Motameni
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
| | - İsmail Seçkin Çardaklı
- Department of Metallurgical and Materials Engineering, Atatürk University, Erzurum, Turkey
| | - Rıza Gürbüz
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - Ammar Z. Alshemary
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Mehdi Razavi
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL, USA
| | - Ömer Can Farukoğlu
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
- Department of Manufacturing Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
40
|
Zheng A, Wang X, Xin X, Peng L, Su T, Cao L, Jiang X. Promoting lacunar bone regeneration with an injectable hydrogel adaptive to the microenvironment. Bioact Mater 2023; 21:403-421. [PMID: 36185741 PMCID: PMC9483602 DOI: 10.1016/j.bioactmat.2022.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/07/2022] [Accepted: 08/14/2022] [Indexed: 11/25/2022] Open
Abstract
Injectable hydrogel is suitable for the repair of lacunar bone deficiency. This study fabricated an injectable, self-adaptive silk fibroin/mesoporous bioglass/sodium alginate (SMS) composite hydrogel system. With controllable and adjustable physical and chemical properties, the SMS hydrogel could be easily optimized adaptively to different clinical applications. The SMS hydrogel effectively showed great injectability and shapeability, allowing defect filling with no gap. Moreover, the SMS hydrogel displayed self-adaptability in mechanical reinforcement and degradation, responsive to the concentration of Ca2+ and inflammatory-like pH value in the microenvironment of bone deficiency, respectively. In vitro biological studies indicated that SMS hydrogel could promote osteogenic differentiation of bone marrow mesenchymal stem cells by activation of the MAPK signaling pathway. The SMS hydrogel also could improve migration and tube formation of human umbilical vein endothelial cells. Investigations of the crosstalk between osteoblasts and macrophages confirmed that SMS hydrogel could regulate macrophage polarization from M1 to M2, which could create a specific favorable environment to induce new bone formation and angiogenesis. Meanwhile, SMS hydrogel was proved to be antibacterial, especially for gram-negative bacteria. Furthermore, in vivo study indicated that SMS could be easily applied for maxillary sinus elevation, inducing sufficient new bone formation. Thus, it is convincing that SMS hydrogel could be potent in a simple, minimally invasive and efficient treatment for the repair of lacunar bone deficiency. Mesoporous bioglass was used as the crosslinking agent and in-situ porogen to form a porous injectable hydrogel. The composite hydrogel had suitable injectability and self-adaptability for lacunar bone regeneration. The composite hydrogel can simultaneously regulate macrophage polarization and osteogenic differentiation.
Collapse
|
41
|
Novel hybrid composites based on double-decker silsesquioxanes functionalized by methacrylate derivatives and polyvinyl alcohol as potential materials utilized in biomedical applications. BIOMATERIALS ADVANCES 2023; 146:213290. [PMID: 36682203 DOI: 10.1016/j.bioadv.2023.213290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The use of diverse biomaterials for regenerative medicine is constantly evolving. Therefore, looking for easy-to-scale-up materials in terms of preparation, less complex composition, and featuring structural and chemical stability seems justified. In this work, we report the preparation of double-decker silsesquioxane-based (DDSQ-based) composites, which, according to our best knowledge, have never been used as biomaterials. A family of methacrylate-substituted DDSQs was obtained starting from the previously reported hydroxyalkyl double-decker silsesquioxanes. In the resulting hybrids, methacrylate groups are attached to each other's lateral silicon atoms of DDSQ in trans positions, providing an excellent geometry for forming thin layers. In contrast to pure organic methacrylates, the covalent bonding of methacrylate derivatives to inorganic silsesquioxane core improves mechanics, cell adhesion, and migration properties. Furthermore, to increase the hydrophilicity of the resulting DDSQ-based hybrids, polyvinyl alcohol (PVA) was added. The entire system forms an easy-to-obtain two-component (DDSQ-PVA) composite, which was subjected without any upgrading additives to biological tests later in the research. The resulting biomaterials fulfill the requirements for potential medical applications. Human fibroblasts growing on prepared hybrid composites are characterized by proper spindle-shaped morphology, proliferation, and activation status similar to control conditions (cells cultured on PVA), as well as increased adhesion and migration abilities. The obtained results suggest that the prepared biomaterials may be used in regenerative medicine in the future.
Collapse
|
42
|
Different Species of Marine Sponges Diverge in Osteogenic Potential When Therapeutically Applied as Natural Scaffolds for Bone Regeneration in Rats. J Funct Biomater 2023; 14:jfb14030122. [PMID: 36976046 PMCID: PMC10059666 DOI: 10.3390/jfb14030122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
A highly porous structure, and an inorganic (biosilica) and collagen-like organic content (spongin) makes marine sponges potential candidates to be used as natural scaffolds in bone tissue engineering. The aim of this study was to characterize (through SEM, FTIR, EDS, XRD, pH, mass degradation and porosity tests) scaffolds produced from two species of marine sponges, Dragmacidon reticulatum (DR) and Amphimedon viridis (AV), and to evaluate the osteogenic potential of these scaffolds by using a bone defect model in rats. First, it was shown that the same chemical composition and porosity (84 ± 5% for DR and 90 ± 2% for AV) occurs among scaffolds from the two species. Higher material degradation was observed in the scaffolds of the DR group, with a greater loss of organic matter after incubation. Later, scaffolds from both species were surgically introduced in rat tibial defects, and histopathological analysis after 15 days showed the presence of neo-formed bone and osteoid tissue within the bone defect in DR, always around the silica spicules. In turn, AV exhibited a fibrous capsule around the lesion (19.9 ± 17.1%), no formation of bone tissue and only a small amount of osteoid tissue. The results showed that scaffolds manufactured from Dragmacidon reticulatum presented a more suitable structure for stimulation of osteoid tissue formation when compared to Amphimedon viridis marine sponge species.
Collapse
|
43
|
de Souza Balbinot G, Leitune VCB, da Cunha Bahlis EA, Ponzoni D, Visioli F, Collares FM. Niobium-containing bioactive glasses modulate alkaline phosphatase activity during bone repair. J Biomed Mater Res B Appl Biomater 2023; 111:1224-1231. [PMID: 36773168 DOI: 10.1002/jbm.b.35227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
This study aimed to evaluate the pre-clinical behavior of niobium-containing bioactive glasses (BAGNb) by their ability to promote bone repair and regulate alkaline phosphatase (ALP) levels in an animal model. BAGNbs were produced as powders and as scaffolds and surgically implanted in the femur of male rats (Wistar lineage n = 10). Glasses without Nb (BAG) were produced and implanted as well. The Autogenous Bone (AB) was used as a control. After 15, 30, and 60 days of surgical implantation, blood serum samples were collected to quantify ALP activity, and femurs were removed to assess bone repair. Bone samples were histologically processed and stained with H&E to quantify the % new bone into defects. No postoperative complications were identified. Early-stage repair (15 days) resulted in increased ALP activity for all groups, with increased values for powdered BAGNb. The maturation of the new bone led to a reduction in serum ALP levels. Histological sections showed the formation of immature bone tissue and vascularization with the progression of bone deposition to mature and functional tissue over time. BAG powder showed less new bone formation in 15 days, while the analysis at 30 and 60 days showed no difference between groups (p > .05). Niobium-containing bioactive glasses safely and successfully induced bone repair in vivo. The modulation of ALP activity may be a pathway to describe the ability of niobium-containing materials to contribute to new bone formation.
Collapse
Affiliation(s)
- Gabriela de Souza Balbinot
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Deise Ponzoni
- Oral and Maxillofacial Surgery Unit, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Visioli
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabrício Mezzomo Collares
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
44
|
Yang Y, Su S, Liu S, Liu W, Yang Q, Tian L, Tan Z, Fan L, Yu B, Wang J, Hu Y. Triple-functional bone adhesive with enhanced internal fixation, bacteriostasis and osteoinductive properties for open fracture repair. Bioact Mater 2023; 25:273-290. [PMID: 36825223 PMCID: PMC9941416 DOI: 10.1016/j.bioactmat.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
At present, effective fixation and anti-infection implant materials represent the mainstay for the treatment of open fractures. However, external fixation can cause nail tract infections and is ineffective for fixing small fracture fragments. Moreover, closed reduction and internal fixation during the early stage of injury can lead to potential bone infection, conducive to bone nonunion and delayed healing. Herein, we designed a bone adhesive with anti-infection, osteogenic and bone adhesion fixation properties to promote reduction and fixation of open fractures and subsequent soft tissue repair. It was prepared by the reaction of gelatin (Gel) and oxidized starch (OS) with vancomycin (VAN)-loaded mesoporous bioactive glass nanoparticles (MBGNs) covalently cross-linked with Schiff bases. Characterization and adhesion experiments were conducted to validate the successful preparation of the Gel-OS/VAN@MBGNs (GOVM-gel) adhesive. Meanwhile, in vitro cell experiments demonstrated its good antibacterial effects with the ability to stimulate bone marrow mesenchymal stem cell (BMSCs) proliferation, upregulate the expression of alkaline phosphatase (ALP) and osteogenic proteins (RunX2 and OPN) and enhance the deposition of calcium nodules. Additionally, we established a rat skull fracture model and a subcutaneous infection model. The histological analysis showed that bone adhesive enhanced osteogenesis, and in vivo experiments demonstrated that the number of inflammatory cells and bacteria was significantly reduced. Overall, the adhesive could promote early reduction of fractures and antibacterial and osteogenic effects, providing the foothold for treatment of this patient population.
Collapse
Affiliation(s)
- Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Shenghui Su
- Department of Orthopaedics, Ningde Municipal Hospital, Ningde Normal University, Ningde, Fujian Province, 352100, China
| | - Shencai Liu
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Weilu Liu
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Qinfeng Yang
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Liangjie Tian
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zilin Tan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Lei Fan
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China,Corresponding author.
| | - Jian Wang
- Division of Orthopaedics Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China,Corresponding author.
| | - Yanjun Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China,Corresponding author.
| |
Collapse
|
45
|
Dey N, Santhiya D, Das A. One‐Pot Synthesis of Doxorubicin‐Bioactive Glass‐Ceramic Hybrid Nanoparticles through a Bio‐Inspired Route for Anti‐Cancer Therapy. ChemistrySelect 2023. [DOI: 10.1002/slct.202203664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Namit Dey
- Department of Biotechnology Delhi Technological University Shahbad Daulatpur Delhi-110042 India
- Department of Biotechnology Delhi Technological University Shahbad Daulatpur Delhi-110042 India
| | - Deenan Santhiya
- Department of Applied Chemistry Delhi Technological University Shahbad Daulatpur Delhi-110042 India
| | - Asmita Das
- Department of Biotechnology Delhi Technological University Shahbad Daulatpur Delhi-110042 India
- Department of Biotechnology Delhi Technological University Shahbad Daulatpur Delhi-110042 India
| |
Collapse
|
46
|
Gavinho SR, Pádua AS, Sá-Nogueira I, Silva JC, Borges JP, Costa LC, Graça MPF. Fabrication, Structural and Biological Characterization of Zinc-Containing Bioactive Glasses and Their Use in Membranes for Guided Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:956. [PMID: 36769963 PMCID: PMC9919611 DOI: 10.3390/ma16030956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Polymeric membranes are widely used in guided bone regeneration (GBR), particularly in dentistry. In addition, bioactive glasses can be added to the polymers in order to develop a matrix that is osteoconductive and osteoinductive, increasing cell adhesion and proliferation. The bioactive glasses allow the insertion into its network of therapeutic ions in order to add specific biological properties. The addition of zinc into bioactive glasses can promote antibacterial activity and induce the differentiation and proliferation of the bone cells. In this study, bioactive glasses containing zinc (0.25, 0.5, 1 and 2 mol%) were developed and structurally and biologically characterized. The biological results show that the Zn-containing bioactive glasses do not present significant antibacterial activity, but the addition of zinc at the highest concentration does not compromise the bioactivity and promotes the viability of Saos-2 cells. The cell culture assays in the membranes (PCL, PCL:BG and PCL:BGZn2) showed that zinc addition promotes cell viability and an increase in alkaline phosphatase (ALP) production.
Collapse
Affiliation(s)
- Sílvia R. Gavinho
- I3N and Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Sofia Pádua
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge C. Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - João P. Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Luis C. Costa
- I3N and Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel Pedro F. Graça
- I3N and Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
47
|
Guneser MB, Ozturk TY, Sahin AND, Uysal BA, Eldeniz AU. Effect of nanosized bioactive glass addition on some physical properties of biodentine. J Appl Biomater Funct Mater 2023; 21:22808000231184059. [PMID: 37680087 DOI: 10.1177/22808000231184059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
The aim of this in vitro study was to investigate some physical properties of Biodentine (BD) (Septodont, France) that has been modified by adding nanosized bioactive glass (nBG) particles to it in different ratios. The cement was modified by adding 1% (7 mg) and 2% (14 mg) nBG powder to BD. BD was used as the control group in its commercial form. A total of 240 cement samples (n = 80) were prepared according to the standard measurements for each test. Subsequently, tests to determine compressive strength, microhardness, initial setting time, and solubility of the samples were performed. The obtained data were statistically analyzed using one-way ANOVA and Tukey's HDS tests, and the significance level was found to be 0.05. The compressive strength values of the samples modified with 1% and 2% nBG were higher than those of the unmodified BD; however, no statistically significant difference was found between them [BD + nBG (2 wt%) ⩾ BD+nBG (1 wt%) ⩾ control BD], (p > 0.05). The microhardness values of the samples modified with 1% and 2% nBG were found to be significantly higher than those of the control group [BD + nBG (2 wt%) > BD+nBG (1 wt%) > control BD], p < 0.05. Initial setting times were determined as 14 min for unmodified BD, 13 min for BD + nBG (1 wt%), and 12 min for BD + nBG (2 wt%). The addition of nBG to BD significantly reduced the initial setting time of BD (p < 0.05). A significant decrease was observed in the solubility of the BD modified with nBG samples compared to that of the control group [control BD > BD+nBG (1 wt%) >BD+nBG (2 wt%)], p < 0.05. Within the limitations of this study, it was found that the addition of certain amounts of nBG to BD positively affected some physical properties of the cement. Future in vitro and in vivo studies should be performed to prove the clinical applicability of the cements used in this study.
Collapse
Affiliation(s)
- Mehmet Burak Guneser
- Department of Endodontics, Faculty of Dentistry, Bezmialem Vakif University, Istanbul, Turkey
| | | | | | - Betul Aycan Uysal
- Department of Endodontics, Faculty of Dentistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Ayce Unverdi Eldeniz
- Department of Endodontics, Faculty of Dentistry, Selcuk University, Konya, Turkey
| |
Collapse
|
48
|
Pajares-Chamorro N, Lensmire JM, Hammer ND, Hardy JW, Chatzistavrou X. Unraveling the mechanisms of inhibition of silver-doped bioactive glass-ceramic particles. J Biomed Mater Res A 2022; 111:975-994. [PMID: 36583930 DOI: 10.1002/jbm.a.37482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Infections are a major concern in orthopedics. Antibacterial agents such as silver ions are of great interest as broad-spectrum biocides and have been incorporated into bioactive glass-ceramic particles to control the release of ions within a therapeutic concentration and provide tissue regenerative properties. In this work, the antibacterial capabilities of silver-doped bioactive glass (Ag-BG) microparticles were explored to reveal the unedited mechanisms of inhibition against methicillin-resistant Staphylococcus aureus (MRSA). The antibacterial properties were not limited to the delivery of silver ions but rather a combination of antibacterial degradation by-products. For example, nano-sized debris punctured holes in bacteria membranes, osmotic effects, and reactive oxygen species causing oxidative stress and almost 40% of the inhibition. Upon successive Ag-BG treatments, MRSA underwent phenotypic and genomic mutations which were not only insufficient to develop resistance but instead, the clones became more sensitive as the treatment was re-delivered. Additionally, the unprecedented restorative functionality of Ag-BG allowed the effective use of antibiotics that MRSA resists. The synergy mechanism was mainly identified for combinations targeting cell-wall activity and their action was proven in biofilm-like and virulent conditions. Unraveling these mechanisms may offer new insights into how to tailor healthcare materials to prevent or debilitate infections and join the fight against antibiotic resistance in clinical cases.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Josh M Lensmire
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jonathan W Hardy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.,Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA.,Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
49
|
Al‐allaq AA, Kashan JS. A review: In vivo studies of bioceramics as bone substitute materials. NANO SELECT 2022. [DOI: 10.1002/nano.202200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ali A. Al‐allaq
- Ministry of Higher Education and Scientific Research Office Reconstruction and Projects Baghdad Iraq
| | - Jenan S. Kashan
- Biomedical Engineering Department University of Technology Baghdad Iraq
| |
Collapse
|
50
|
Gavinho SR, Pádua AS, Sá-Nogueira I, Silva JC, Borges JP, Costa LC, Graça MPF. Biocompatibility, Bioactivity, and Antibacterial Behaviour of Cerium-Containing Bioglass ®. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244479. [PMID: 36558332 PMCID: PMC9783236 DOI: 10.3390/nano12244479] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 05/31/2023]
Abstract
The main reason for the increased use of dental implants in clinical practice is associated with aesthetic parameters. Implants are also presented as the only technique that conserves and stimulates natural bone. However, there are several problems associated with infections, such as peri-implantitis. This disease reveals a progressive inflammatory action that affects the hard and soft tissues surrounding the implant, leading to implant loss. To prevent the onset of this disease, coating the implant with bioactive glasses has been suggested. In addition to its intrinsic function of promoting bone regeneration, it is also possible to insert therapeutic ions, such as cerium. Cerium has several advantages when the aim is to improve osseointegration and prevent infectious problems with dental implant placement. It promotes increased growth and the differentiation of osteoblasts, improves the mechanical properties of bone, and prevents bacterial adhesion and proliferation that may occur on the implant surface. This antibacterial effect is due to its ability to disrupt the cell wall and membrane of bacteria, thus interfering with vital metabolic functions such as respiration. In addition, its antioxidant effect reverses oxidative stress after implantation in bone. In this work, Bioglass 45S5 with CeO2 with different percentages (0.25, 0.5, 1, and 2 mol%) was developed by the melt-quenching method. The materials were analyzed in terms of morphological, structural, and biological (cytotoxicity, bioactivity, and antibacterial activity) properties. The addition of cerium did not promote structural changes to the bioactive glass, which shows no cytotoxicity for the Saos-2 cell line up to 25 mg/mL of extract concentration for all cerium contents. For the maximum cerium concentration (2 mol%) the bioactive glass shows an evident inhibitory effect for Escherichia coli and Streptococcus mutans bacteria. Furthermore, all samples showed the beginning of the deposition of a CaP-rich layer on the surface of the material after 24 h.
Collapse
Affiliation(s)
- Sílvia R. Gavinho
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal
| | - Ana Sofia Pádua
- I3N-CENIMAT, New University of Lisbon, 2825-097 Caparica, Portugal
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge C. Silva
- I3N-CENIMAT, New University of Lisbon, 2825-097 Caparica, Portugal
| | - João P. Borges
- I3N-CENIMAT, New University of Lisbon, 2825-097 Caparica, Portugal
| | - Luis C. Costa
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal
| | | |
Collapse
|