1
|
Malkani S, Prado O, Stevens KR. Sacrificial Templating for Accelerating Clinical Translation of Engineered Organs. ACS Biomater Sci Eng 2024. [PMID: 39701582 DOI: 10.1021/acsbiomaterials.4c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Transplantable engineered organs could one day be used to treat patients suffering from end-stage organ failure. Yet, producing hierarchical vascular networks that sustain the viability and function of cells within human-scale organs remains a major challenge. Sacrificial templating has emerged as a promising biofabrication method that could overcome this challenge. Here, we explore and evaluate various strategies and materials that have been used for sacrificial templating. First, we emphasize fabrication approaches that use highly biocompatible sacrificial reagents and minimize the duration that cells spend in fabrication conditions without oxygen and nutrients. We then discuss strategies to create continuous, hierarchical vascular networks, both using biofabrication alone and using hybrid methods that integrate biologically driven vascular self-assembly into sacrificial templating workflows. Finally, we address the importance of structurally reinforcing engineered vessel walls to achieve stable blood flow in vivo, so that engineered organs remain perfused and functional long after implantation. Together, these sacrificial templating strategies have the potential to overcome many current limitations in biofabrication and accelerate clinical translation of transplantable, fully functional engineered organs to rescue patients from organ failure.
Collapse
Affiliation(s)
- Sherina Malkani
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Olivia Prado
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Kelly R Stevens
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, United States
- Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Nwokoye PN, Abilez OJ. Blood vessels in a dish: the evolution, challenges, and potential of vascularized tissues and organoids. Front Cardiovasc Med 2024; 11:1336910. [PMID: 38938652 PMCID: PMC11210405 DOI: 10.3389/fcvm.2024.1336910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024] Open
Abstract
Vascular pathologies are prevalent in a broad spectrum of diseases, necessitating a deeper understanding of vascular biology, particularly in overcoming the oxygen and nutrient diffusion limit in tissue constructs. The evolution of vascularized tissues signifies a convergence of multiple scientific disciplines, encompassing the differentiation of human pluripotent stem cells (hPSCs) into vascular cells, the development of advanced three-dimensional (3D) bioprinting techniques, and the refinement of bioinks. These technologies are instrumental in creating intricate vascular networks essential for tissue viability, especially in thick, complex constructs. This review provides broad perspectives on the past, current state, and advancements in key areas, including the differentiation of hPSCs into specific vascular lineages, the potential and challenges of 3D bioprinting methods, and the role of innovative bioinks mimicking the native extracellular matrix. We also explore the integration of biophysical cues in vascularized tissues in vitro, highlighting their importance in stimulating vessel maturation and functionality. In this review, we aim to synthesize these diverse yet interconnected domains, offering a broad, multidisciplinary perspective on tissue vascularization. Advancements in this field will help address the global organ shortage and transform patient care.
Collapse
Affiliation(s)
- Peter N. Nwokoye
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Oscar J. Abilez
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
- Division of Pediatric CT Surgery, Stanford University, Stanford, CA, United States
- Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, United States
- Bio-X Program, Stanford University, Stanford, CA, United States
| |
Collapse
|
3
|
Bhatt S S, Krishna Kumar J, Laya S, Thakur G, Nune M. Scaffold-mediated liver regeneration: A comprehensive exploration of current advances. J Tissue Eng 2024; 15:20417314241286092. [PMID: 39411269 PMCID: PMC11475092 DOI: 10.1177/20417314241286092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 10/19/2024] Open
Abstract
The liver coordinates over 500 biochemical processes crucial for maintaining homeostasis, detoxification, and metabolism. Its specialized cells, arranged in hexagonal lobules, enable it to function as a highly efficient metabolic engine. However, diseases such as cirrhosis, fatty liver disease, and hepatitis present significant global health challenges. Traditional drug development is expensive and often ineffective at predicting human responses, driving interest in advanced in vitro liver models utilizing 3D bioprinting and microfluidics. These models strive to mimic the liver's complex microenvironment, improving drug screening and disease research. Despite its resilience, the liver is vulnerable to chronic illnesses, injuries, and cancers, leading to millions of deaths annually. Organ shortages hinder liver transplantation, highlighting the need for alternative treatments. Tissue engineering, employing polymer-based scaffolds and 3D bioprinting, shows promise. This review examines these innovative strategies, including liver organoids and liver tissue-on-chip technologies, to address the challenges of liver diseases.
Collapse
Affiliation(s)
- Supriya Bhatt S
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jayanthi Krishna Kumar
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shurthi Laya
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
4
|
Pien N, Di Francesco D, Copes F, Bartolf-Kopp M, Chausse V, Meeremans M, Pegueroles M, Jüngst T, De Schauwer C, Boccafoschi F, Dubruel P, Van Vlierberghe S, Mantovani D. Polymeric reinforcements for cellularized collagen-based vascular wall models: influence of the scaffold architecture on the mechanical and biological properties. Front Bioeng Biotechnol 2023; 11:1285565. [PMID: 38053846 PMCID: PMC10694796 DOI: 10.3389/fbioe.2023.1285565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
A previously developed cellularized collagen-based vascular wall model showed promising results in mimicking the biological properties of a native vessel but lacked appropriate mechanical properties. In this work, we aim to improve this collagen-based model by reinforcing it using a tubular polymeric (reinforcement) scaffold. The polymeric reinforcements were fabricated exploiting commercial poly (ε-caprolactone) (PCL), a polymer already used to fabricate other FDA-approved and commercially available devices serving medical applications, through 1) solution electrospinning (SES), 2) 3D printing (3DP) and 3) melt electrowriting (MEW). The non-reinforced cellularized collagen-based model was used as a reference (COL). The effect of the scaffold's architecture on the resulting mechanical and biological properties of the reinforced collagen-based model were evaluated. SEM imaging showed the differences in scaffolds' architecture (fiber alignment, fiber diameter and pore size) at both the micro- and the macrolevel. The polymeric scaffold led to significantly improved mechanical properties for the reinforced collagen-based model (initial elastic moduli of 382.05 ± 132.01 kPa, 100.59 ± 31.15 kPa and 245.78 ± 33.54 kPa, respectively for SES, 3DP and MEW at day 7 of maturation) compared to the non-reinforced collagen-based model (16.63 ± 5.69 kPa). Moreover, on day 7, the developed collagen gels showed stresses (for strains between 20% and 55%) in the range of [5-15] kPa for COL, [80-350] kPa for SES, [20-70] kPa for 3DP and [100-190] kPa for MEW. In addition to the effect on the resulting mechanical properties, the polymeric tubes' architecture influenced cell behavior, in terms of proliferation and attachment, along with collagen gel compaction and extracellular matrix protein expression. The MEW reinforcement resulted in a collagen gel compaction similar to the COL reference, whereas 3DP and SES led to thinner and longer collagen gels. Overall, it can be concluded that 1) the selected processing technique influences the scaffolds' architecture, which in turn influences the resulting mechanical and biological properties, and 2) the incorporation of a polymeric reinforcement leads to mechanical properties closely matching those of native arteries.
Collapse
Affiliation(s)
- Nele Pien
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Dalila Di Francesco
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
| | - Michael Bartolf-Kopp
- Department of Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Victor Chausse
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Marguerite Meeremans
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Marta Pegueroles
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Tomasz Jüngst
- Department of Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Catharina De Schauwer
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Francesca Boccafoschi
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
| |
Collapse
|
5
|
Syed Mohamed SMD, Welsh GI, Roy I. Renal tissue engineering for regenerative medicine using polymers and hydrogels. Biomater Sci 2023; 11:5706-5726. [PMID: 37401545 DOI: 10.1039/d3bm00255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Chronic Kidney Disease (CKD) is a growing worldwide problem, leading to end-stage renal disease (ESRD). Current treatments for ESRD include haemodialysis and kidney transplantation, but both are deemed inadequate since haemodialysis does not address all other kidney functions, and there is a shortage of suitable donor organs for transplantation. Research in kidney tissue engineering has been initiated to take a regenerative medicine approach as a potential treatment alternative, either to develop effective cell therapy for reconstruction or engineer a functioning bioartificial kidney. Currently, renal tissue engineering encompasses various materials, mainly polymers and hydrogels, which have been chosen to recreate the sophisticated kidney architecture. It is essential to address the chemical and mechanical aspects of the materials to ensure they can support cell development to restore functionality and feasibility. This paper reviews the types of polymers and hydrogels that have been used in kidney tissue engineering applications, both natural and synthetic, focusing on the processing and formulation used in creating bioactive substrates and how these biomaterials affect the cell biology of the kidney cells used.
Collapse
Affiliation(s)
| | - Gavin I Welsh
- Renal Bristol, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S37HQ, UK.
| |
Collapse
|
6
|
Mir A, Lee E, Shih W, Koljaka S, Wang A, Jorgensen C, Hurr R, Dave A, Sudheendra K, Hibino N. 3D Bioprinting for Vascularization. Bioengineering (Basel) 2023; 10:bioengineering10050606. [PMID: 37237676 DOI: 10.3390/bioengineering10050606] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
In the world of clinic treatments, 3D-printed tissue constructs have emerged as a less invasive treatment method for various ailments. Printing processes, scaffold and scaffold free materials, cells used, and imaging for analysis are all factors that must be observed in order to develop successful 3D tissue constructs for clinical applications. However, current research in 3D bioprinting model development lacks diverse methods of successful vascularization as a result of issues with scaling, size, and variations in printing method. This study analyzes the methods of printing, bioinks used, and analysis techniques in 3D bioprinting for vascularization. These methods are discussed and evaluated to determine the most optimal strategies of 3D bioprinting for successful vascularization. Integrating stem and endothelial cells in prints, selecting the type of bioink according to its physical properties, and choosing a printing method according to physical properties of the desired printed tissue are steps that will aid in the successful development of a bioprinted tissue and its vascularization.
Collapse
Affiliation(s)
- Amatullah Mir
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - Eugenia Lee
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - Wesley Shih
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - Sarah Koljaka
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - Anya Wang
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - Caitlin Jorgensen
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - Riley Hurr
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - Amartya Dave
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - Krupa Sudheendra
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - Narutoshi Hibino
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
- Pediatric Cardiac Surgery, Advocate Children's Hospital, 4440 W 95th St. Oak Lawn, IL 60453, USA
| |
Collapse
|
7
|
Ni R, Luo C, Ci H, Sun D, An R, Wang Z, Yang J, Li Y, Sun J. Construction of vascularized tissue-engineered breast with dual angiogenic and adipogenic micro-tissues. Mater Today Bio 2022; 18:100539. [PMID: 36686035 PMCID: PMC9850046 DOI: 10.1016/j.mtbio.2022.100539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogel-based micro-tissue engineering technique, a bottom-up approach, is promising in constructing soft tissue of large size with homogeneous spatial distribution and superior regeneration capacity compared to the top-down approach. However, most of the studies employed micro-tissues with simple mesenchymal stem cells, which could hardly meet the growth of matrix and vessels. Therefore, we recommend a dual micro-tissues assembly strategy to construct vascularized tissue-engineered breast grafts (TEBGs). Adipose micro-tissues (AMs) and vessel micro-tissues (VMs) were fabricated by seeding adipose-derived stem cells (ADSCs) and human umbilical vein endothelial cells (HUVECs) on collagen microgels (COLs) with a uniform diameter of ∼250 μm, respectively. TEBGs were constructed by injecting the dual micro-tissues into 3D printed breast-like Thermoplastic Urethane (TPU) scaffolds, then implanted into the subcutaneous pockets on the back of nude mice. After 3 months of implantation, TEBGs based on dual micro-tissues performed larger volume of adipose tissue regeneration and neo-vessel formation compared to TEBGs based on single AMs. This study extends the application of micro-tissue engineering technique for the construction of soft grafts, and is expected to be useful for creating heterogeneous tissue constructs in the future.
Collapse
Affiliation(s)
- Ruopiao Ni
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Luo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Hai Ci
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Di Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Corresponding author. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Corresponding author.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Corresponding author. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
8
|
Grazioli E, Romani A, Marrone G, Di Lauro M, Cerulli C, Urciuoli S, Murri A, Guerriero C, Tranchita E, Tesauro M, Parisi A, Di Daniele N, Noce A. Impact of Physical Activity and Natural Bioactive Compounds on Endothelial Dysfunction in Chronic Kidney Disease. Life (Basel) 2021; 11:life11080841. [PMID: 34440585 PMCID: PMC8402113 DOI: 10.3390/life11080841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) represents a world-wide public health problem. Inflammation, endothelial dysfunction (ED) and vascular calcifications are clinical features of CKD patients that increase cardiovascular (CV) mortality. CKD-related CV disease pathogenic mechanisms are not only associated with traditional factors such as arterial hypertension and dyslipidemia, but also with ED, oxidative stress and low-grade inflammation. The typical comorbidities of CKD contribute to reduce the performance and the levels of the physical activity in nephropathic patients compared to healthy subjects. Currently, the effective role of physical activity on ED is still debated, but the available few literature data suggest its positive contribution. Another possible adjuvant treatment of ED in CKD patients is represented by natural bioactive compounds (NBCs). Among these, minor polar compounds of extra virgin olive oil (hydroxytyrosol, tyrosol and oleocanthal), polyphenols, and vitamin D seem to exert a beneficial role on ED in CKD patients. The objective of the review is to evaluate the effectiveness of physical exercise protocols and/or NBCs on ED in CKD patients.
Collapse
Affiliation(s)
- Elisa Grazioli
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; (A.R.); (S.U.)
| | - Giulia Marrone
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
| | - Manuela Di Lauro
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
| | - Claudia Cerulli
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Silvia Urciuoli
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; (A.R.); (S.U.)
| | - Arianna Murri
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Cristina Guerriero
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
| | - Eliana Tranchita
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Manfredi Tesauro
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
- Correspondence: (M.T.); (A.N.); Tel.: +39-06-2090-2982 (M.T.); +39-06-2090-2194 (A.N.)
| | - Attilio Parisi
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Nicola Di Daniele
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
| | - Annalisa Noce
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
- Correspondence: (M.T.); (A.N.); Tel.: +39-06-2090-2982 (M.T.); +39-06-2090-2194 (A.N.)
| |
Collapse
|
9
|
Enhancing Kidney Vasculature in Tissue Engineering-Current Trends and Approaches: A Review. Biomimetics (Basel) 2021; 6:biomimetics6020040. [PMID: 34208664 PMCID: PMC8293130 DOI: 10.3390/biomimetics6020040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic kidney diseases are a leading cause of fatalities around the world. As the most sought-after organ for transplantation, the kidney is of immense importance in the field of tissue engineering. The primary obstacle to the development of clinically relevant tissue engineered kidneys is precise vascularization due to the organ's large size and complexity. Current attempts at whole-kidney tissue engineering include the repopulation of decellularized kidney extracellular matrices or vascular corrosion casts, but these approaches do not eliminate the need for a donor organ. Stem cell-based approaches, such as kidney organoids vascularized in microphysiological systems, aim to construct a kidney without the need for organ donation. These organ-on-a-chip models show complex, functioning kidney structures, albeit at a small scale. Novel methodologies for developing engineered scaffolds will allow for improved differentiation of kidney stem cells and organoids into larger kidney grafts with clinical applications. While currently, kidney tissue engineering remains mostly limited to individual renal structures or small organoids, further developments in vascularization techniques, with technologies such as organoids in microfluidic systems, could potentially open doors for a large-scale growth of whole engineered kidneys for transplantation.
Collapse
|
10
|
Wang P, Sun Y, Shi X, Shen H, Ning H, Liu H. Bioscaffolds embedded with regulatory modules for cell growth and tissue formation: A review. Bioact Mater 2021; 6:1283-1307. [PMID: 33251379 PMCID: PMC7662879 DOI: 10.1016/j.bioactmat.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
The demand for artificial organs has greatly increased because of various aging-associated diseases and the wide need for organ transplants. A recent trend in tissue engineering is the precise reconstruction of tissues by the growth of cells adhering to bioscaffolds, which are three-dimensional (3D) structures that guide tissue and organ formation. Bioscaffolds used to fabricate bionic tissues should be able to not only guide cell growth but also regulate cell behaviors. Common regulation methods include biophysical and biochemical stimulations. Biophysical stimulation cues include matrix hardness, external stress and strain, surface topology, and electromagnetic field and concentration, whereas biochemical stimulation cues include growth factors, proteins, kinases, and magnetic nanoparticles. This review discusses bioink preparation, 3D bioprinting (including extrusion-based, inkjet, and ultraviolet-assisted 3D bioprinting), and regulation of cell behaviors. In particular, it provides an overview of state-of-the-art methods and devices for regulating cell growth and tissue formation and the effects of biophysical and biochemical stimulations on cell behaviors. In addition, the fabrication of bioscaffolds embedded with regulatory modules for biomimetic tissue preparation is explained. Finally, challenges in cell growth regulation and future research directions are presented.
Collapse
Affiliation(s)
- Pengju Wang
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yazhou Sun
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoquan Shi
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Huixing Shen
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haohao Ning
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haitao Liu
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
11
|
Min S, Cleveland D, Ko IK, Kim JH, Yang HJ, Atala A, Yoo JJ. Accelerating neovascularization and kidney tissue formation with a 3D vascular scaffold capturing native vascular structure. Acta Biomater 2021; 124:233-243. [PMID: 33524561 DOI: 10.1016/j.actbio.2021.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
Establishing an adequate vascularization of three-dimensional (3D) bioengineered tissues remains a critical challenge. We previously fabricated a vascular scaffold using the vascular corrosion casting technique, which provides a similar 3D geometry of native kidney vasculature. In this study, we functionalized the collagen vascular scaffold with a controlled release of vascular endothelial growth factor (VEGF vascular scaffold) to further promote vascularization. The VEGF vascular scaffold showed improved angiogenic capability in 2-dimensional (2D) and 3D in vitro settings. Implantation of the VEGF vascular scaffold seeded with human renal cells into a rat kidney demonstrated enhanced implant vascularization and reduced apoptosis of implanted human renal cells. Hybrid renal tubule-like structures composed of implanted human and migrated host renal cells were formed. This work highlights the critical role of early vascularization of the geometrically mimetic vascular scaffold using the VEGF incorporated vascular scaffold in reducing apoptosis of implanted cells as well as the formation of renal tissue structures.
Collapse
Affiliation(s)
- Sangil Min
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC, USA; Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - David Cleveland
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC, USA
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC, USA
| | - Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC, USA
| | - Hee Jo Yang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC, USA; Department of Urology, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC, USA.
| |
Collapse
|
12
|
Abstract
Since their initial description in 2005, biomaterials that are patterned to contain microfluidic networks ("microfluidic biomaterials") have emerged as promising scaffolds for a variety of tissue engineering and related applications. This class of materials is characterized by the ability to be readily perfused. Transport and exchange of solutes within microfluidic biomaterials is governed by convection within channels and diffusion between channels and the biomaterial bulk. Numerous strategies have been developed for creating microfluidic biomaterials, including micromolding, photopatterning, and 3D printing. In turn, these materials have been used in many applications that benefit from the ability to perfuse a scaffold, including the engineering of blood and lymphatic microvessels, epithelial tubes, and cell-laden tissues. This article reviews the current state of the field and suggests new areas of exploration for this unique class of materials.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts, USA
| | - Yoseph W. Dance
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
13
|
3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Biodes Manuf 2021; 4:344-378. [PMID: 33425460 PMCID: PMC7779248 DOI: 10.1007/s42242-020-00109-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/24/2020] [Indexed: 01/31/2023]
Abstract
Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine. Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels. Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues. The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering. Recent advances in 3D printing have facilitated fabrication of vascular scaffolds, contributing to broad prospects for tissue vascularization. This review presents state of the art on modeling methods, print materials and preparation processes for fabrication of vascular scaffolds, and discusses the advantages and application fields of each method. Specially, significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized. Print materials and preparation processes are discussed in detail. And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting, electrospinning, and Lego-like construction. And related studies are exemplified. Transformation of vascular scaffolds to clinical application is discussed. Also, four trends of 3D printing of tissue engineering vascular scaffolds are presented, including machine learning, near-infrared photopolymerization, 4D printing, and combination of self-assembly and 3D printing-based methods.
Collapse
|
14
|
Weng T, Zhang W, Xia Y, Wu P, Yang M, Jin R, Xia S, Wang J, You C, Han C, Wang X. 3D bioprinting for skin tissue engineering: Current status and perspectives. J Tissue Eng 2021; 12:20417314211028574. [PMID: 34345398 PMCID: PMC8283073 DOI: 10.1177/20417314211028574] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
Skin and skin appendages are vulnerable to injury, requiring rapidly reliable regeneration methods. In recent years, 3D bioprinting has shown potential for wound repair and regeneration. 3D bioprinting can be customized for skin shape with cells and other materials distributed precisely, achieving rapid and reliable production of bionic skin substitutes, therefore, meeting clinical and industrial requirements. Additionally, it has excellent performance with high resolution, flexibility, reproducibility, and high throughput, showing great potential for the fabrication of tissue-engineered skin. This review introduces the common techniques of 3D bioprinting and their application in skin tissue engineering, focusing on the latest research progress in skin appendages (hair follicles and sweat glands) and vascularization, and summarizes current challenges and future development of 3D skin printing.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yilan Xia
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Wu
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Yang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Ronghua Jin
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Sizhan Xia
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jialiang Wang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuangang You
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunmao Han
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingang Wang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Quantifying Oxygen Levels in 3D Bioprinted Cell-Laden Thick Constructs with Perfusable Microchannel Networks. Polymers (Basel) 2020; 12:polym12061260. [PMID: 32486307 PMCID: PMC7361700 DOI: 10.3390/polym12061260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 11/28/2022] Open
Abstract
The survival and function of thick tissue engineered implanted constructs depends on pre-existing, embedded, functional, vascular-like structures that are able to integrate with the host vasculature. Bioprinting was employed to build perfusable vascular-like networks within thick constructs. However, the improvement of oxygen transportation facilitated by these vascular-like networks was directly quantified. Using an optical fiber oxygen sensor, we measured the oxygen content at different positions within 3D bioprinted constructs with and without perfusable microchannel networks. Perfusion was found to play an essential role in maintaining relatively high oxygen content in cell-laden constructs and, consequently, high cell viability. The concentration of oxygen changes following switching on and off the perfusion. Oxygen concentration depletes quickly after pausing perfusion but recovers rapidly after resuming the perfusion. The quantification of oxygen levels within cell-laden hydrogel constructs could provide insight into channel network design and cellular responses.
Collapse
|
16
|
Pradhan S, Banda OA, Farino CJ, Sperduto JL, Keller KA, Taitano R, Slater JH. Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology. Adv Healthc Mater 2020; 9:e1901255. [PMID: 32100473 PMCID: PMC8579513 DOI: 10.1002/adhm.201901255] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/24/2020] [Indexed: 12/17/2022]
Abstract
The vascular system is integral for maintaining organ-specific functions and homeostasis. Dysregulation in vascular architecture and function can lead to various chronic or acute disorders. Investigation of the role of the vascular system in health and disease has been accelerated through the development of tissue-engineered constructs and microphysiological on-chip platforms. These in vitro systems permit studies of biochemical regulation of vascular networks and parenchymal tissue and provide mechanistic insights into the biophysical and hemodynamic forces acting in organ-specific niches. Detailed understanding of these forces and the mechanotransductory pathways involved is necessary to develop preventative and therapeutic strategies targeting the vascular system. This review describes vascular structure and function, the role of hemodynamic forces in maintaining vascular homeostasis, and measurement approaches for cell and tissue level mechanical properties influencing vascular phenomena. State-of-the-art techniques for fabricating in vitro microvascular systems, with varying degrees of biological and engineering complexity, are summarized. Finally, the role of vascular mechanobiology in organ-specific niches and pathophysiological states, and efforts to recapitulate these events using in vitro microphysiological systems, are explored. It is hoped that this review will help readers appreciate the important, but understudied, role of vascular-parenchymal mechanotransduction in health and disease toward developing mechanotherapeutics for treatment strategies.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Omar A. Banda
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Cindy J. Farino
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Keely A. Keller
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Ryan Taitano
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
17
|
Ebrahimi Sadrabadi A, Baei P, Hosseini S, Baghaban Eslaminejad M. Decellularized Extracellular Matrix as a Potent Natural Biomaterial for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1341:27-43. [PMID: 32166633 DOI: 10.1007/5584_2020_504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Decellularization technique is a favorable method used to fabricate natural and tissue-like scaffolds. This technique is important because of its remarkable ability to perfectly mimic the natural extracellular matrix (ECM). ECM-based scaffolds/hydrogels provide structural support for cell differentiation and maturation. Therefore, novel natural-based bioinks, ECM-based hydrogels, and particulate forms of the ECM provide promising strategies for whole organ regeneration. Despite its efficacious characteristics, removal of residual detergent and the presence of various protocols make this technique challenging for scientists and regenerative medicine-related programs. This chapter reviews the most effective physical, chemical, and enzymatic protocols used to remove the cellular components and their challenges. We discuss the applications of decellularized ECM (dECM) in tissue engineering and regenerative medicine with an emphasis on hard tissues.
Collapse
Affiliation(s)
- Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Payam Baei
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
18
|
Chermansky C, Mitsogiannis I, Abrams P, Apostolidis A. Stem cells and lower urinary tract dysfunction: Has its potential finally reached clinical maturity? ICI‐RS2018. Neurourol Urodyn 2019; 38 Suppl 5:S134-S141. [DOI: 10.1002/nau.24069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
Affiliation(s)
| | - Iraklis Mitsogiannis
- 2nd Department of UrologySismanogleio General HospitalNational and Kapodistrian University of AthensAthens Greece
| | - Paul Abrams
- Bristol Urological InstituteUniversity of BristolBristol UK
| | - Apostolos Apostolidis
- 2nd Department of Urology, Papageorgiou General HospitalAristotle University of ThessalonikiThessaloniki Greece
| |
Collapse
|
19
|
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
|
20
|
Huling J, Min SI, Kim DS, Ko IK, Atala A, Yoo JJ. Kidney regeneration with biomimetic vascular scaffolds based on vascular corrosion casts. Acta Biomater 2019; 95:328-336. [PMID: 30953799 DOI: 10.1016/j.actbio.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
We have developed a biomimetic renal vascular scaffold based on a vascular corrosion casting technique. This study evaluated the feasibility of using this novel biomimetic scaffold for kidney regeneration in a rat kidney cortical defect model. Vascular corrosion casts were prepared from normal rat kidneys by perfusion with 10% polycaprolactone (PCL) solution, followed by tissue digestion. The corrosion PCL cast was coated with collagen, and PCL was removed from within the collagen coating, leaving only a hollow collagen-based biomimetic vascular scaffold. The fabricated scaffolds were pre-vascularized with MS1 endothelial cell coating, incorporated into 3D renal constructs, and subsequently implanted either with or without human renal cells in the renal cortex of nude rats. The implanted collagen-based vascular scaffold was easily identified and integrated into native kidney tissue. The biomimetic vascular scaffold coated with endothelial cells (MS1) showed significantly enhanced vascularization, as compared to the uncoated scaffold and hydrogel only groups (P < 0.001). Along with the improved vascularization effects, the MS1-coated scaffolds showed a significant renal cell infiltration from the neighboring host tissue, as compared to the other groups (P < 0.05). Moreover, addition of human renal cells to the MS1-coated scaffold resulted in further enhancement of vascularization and tubular structure regeneration within the implanted constructs. The biomimetic collagen vascular scaffolds coated with endothelial cells are able to enhance vascularization and facilitate the formation of renal tubules after 14 days when combined with human renal cells. This study shows the feasibility of bioengineering vascularized functional renal tissues for kidney regeneration. STATEMENT OF SIGNIFICANCE: Vascularization is one of the major hurdles affecting the survival and integration of implanted three-dimensional tissue constructs in vivo. A novel, biomimetic, collagen-based vascular scaffold that is structurally identical to native kidney tissue was developed and tested. This biomimetic vascularized scaffold system facilitates the development of new vessels and renal cell viability in vivo when implanted in a partial renal defect. The use of this scaffold system could address the challenges associated with vascularization, and may be an ideal treatment strategy for partial augmentation of renal function in patients with chronic kidney disease.
Collapse
|
21
|
Li S, Wang K, Hu Q, Zhang C, Wang B. Direct-write and sacrifice-based techniques for vasculatures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109936. [PMID: 31500055 DOI: 10.1016/j.msec.2019.109936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/22/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022]
Abstract
Fabricating biomimetic vasculatures is considered one of the greatest challenges in tissue regeneration due to their complex structures across various length scales. Many strategies have been investigated on how to fabricate tissue-engineering vasculatures (TEVs), including vascular-like and vascularized structures that can replace their native counterparts. The advancement of additive manufacturing (AM) technologies has enabled a wide range of fabrication techniques that can directly-write TEVs with complex and delicate structures. Meanwhile, sacrifice-based techniques, which rely on the removal of encapsulated sacrificial templates to form desired cavity-like structures, have also been widely studied. This review will specifically focus on the two most promising methods in these recently developed technologies, which are the direct-write method and the sacrifice-based method. The performance, advantages, and shortcomings of each technique are analyzed and compared. In the discussion, we list current challenges in this field and present our vision of next-generation TEVs technologies. Perspectives on future research in this field are given at the end.
Collapse
Affiliation(s)
- Shuai Li
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA; Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Kan Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China; National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, China.
| | - Chuck Zhang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA; H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ben Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA; H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
22
|
Min S, Ko IK, Yoo JJ. State-of-the-Art Strategies for the Vascularization of Three-Dimensional Engineered Organs. Vasc Specialist Int 2019; 35:77-89. [PMID: 31297357 PMCID: PMC6609020 DOI: 10.5758/vsi.2019.35.2.77] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
Engineering three-dimensional (3D) implantable tissue constructs is a promising strategy for replacing damaged or diseased tissues and organs with functional replacements. However, the efficient vascularization of new 3D organs is a major scientific and technical challenge since large tissue constructs or organs require a constant blood supply to survive in vivo. Current approaches to solving this problem generally fall into the following three major categories: (a) cell-based, (b) angiogenic factor-based, and (c) scaffold-based. In this review, we summarize state-of-the-art technologies that are used to develop complex, stable, and functional vasculature for engineered 3D tissue constructs and organs; additionally, we have suggested directions for future research.
Collapse
Affiliation(s)
- Sangil Min
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
23
|
De Silva RT, Dissanayake RK, Mantilaka MMMGPG, Wijesinghe WPSL, Kaleel SS, Premachandra TN, Weerasinghe L, Amaratunga GAJ, de Silva KMN. Drug-Loaded Halloysite Nanotube-Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Sustained Antimicrobial Protection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33913-33922. [PMID: 30220194 DOI: 10.1021/acsami.8b11013] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Halloysite nanotube (HNT)-reinforced alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning to mimic the natural extracellular matrix (ECM) structure which is beneficial for tissue regeneration. An antiseptic drug, cephalexin (CEF)-loaded HNT, was incorporated into the alginate-based matrix to obtain sustained antimicrobial protection and robust mechanical properties, the key criteria for tissue engineering applications. Electron microscopic imaging and drug release studies revealed that CEF had penetrated into the lumen space of the HNT and also deposited on the outer walls, with a total loading capacity of 30 wt %. Moreover, the diameter of alginate-based nanofibers of the scaffolds ranged from 40 to 522 nm with well-aligned HNTs, resulting in superior mechanical properties. For instance, the addition of 5% (w/w) HNT improved the tensile strength (σ) and elastic modulus by 3-fold and 2-fold, respectively, compared to those of the alginate-based scaffolds without HNT. The fabricated scaffolds exhibited remarkable antimicrobial properties against both Gram-negative and Gram-positive bacteria, and the cytotoxicity studies confirmed the nontoxicity of the fabricated scaffolds. Drug release kinetics showed that CEF inside HNTs diffuses within 24 h and that the diffusion of the drug is delayed by 7 days once the CEF-loaded HNTs are incorporated into the alginate-based nanofibers. These fabricated alginate-based electrospun scaffolds with enhanced mechanical properties and sustained antimicrobial protection hold great potential to be used as artificial ECM scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Rangika Thilan De Silva
- Sri Lanka Institute of Nanotechnology (SLINTEC) , Nanotechnology and Science Park , Mahenwatte, Pitipana, Homagama 10200 , Sri Lanka
| | - Ranga K Dissanayake
- Sri Lanka Institute of Nanotechnology (SLINTEC) , Nanotechnology and Science Park , Mahenwatte, Pitipana, Homagama 10200 , Sri Lanka
| | | | - W P Sanjeewa Lakmal Wijesinghe
- Sri Lanka Institute of Nanotechnology (SLINTEC) , Nanotechnology and Science Park , Mahenwatte, Pitipana, Homagama 10200 , Sri Lanka
| | - Shehan Shalinda Kaleel
- Sri Lanka Institute of Nanotechnology (SLINTEC) , Nanotechnology and Science Park , Mahenwatte, Pitipana, Homagama 10200 , Sri Lanka
| | - Thejani Nisansala Premachandra
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine , University of Peradeniya , Peradeniya 20400 , Sri Lanka
| | - Laksiri Weerasinghe
- Sri Lanka Institute of Nanotechnology (SLINTEC) , Nanotechnology and Science Park , Mahenwatte, Pitipana, Homagama 10200 , Sri Lanka
| | - Gehan A J Amaratunga
- Sri Lanka Institute of Nanotechnology (SLINTEC) , Nanotechnology and Science Park , Mahenwatte, Pitipana, Homagama 10200 , Sri Lanka
- Electrical Engineering Division, Department of Engineering , University of Cambridge , 9 J. J. Thomson Avenue , Cambridge CB3 0FA , U.K
| | - K M Nalin de Silva
- Sri Lanka Institute of Nanotechnology (SLINTEC) , Nanotechnology and Science Park , Mahenwatte, Pitipana, Homagama 10200 , Sri Lanka
- Department of Chemistry , University of Colombo , Colombo 00300 , Sri Lanka
| |
Collapse
|
24
|
Xu Y, Hu Y, Liu C, Yao H, Liu B, Mi S. A Novel Strategy for Creating Tissue-Engineered Biomimetic Blood Vessels Using 3D Bioprinting Technology. MATERIALS 2018; 11:ma11091581. [PMID: 30200455 PMCID: PMC6163305 DOI: 10.3390/ma11091581] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
In this work, a novel strategy was developed to fabricate prevascularized cell-layer blood vessels in thick tissues and small-diameter blood vessel substitutes using three-dimensional (3D) bioprinting technology. These thick vascularized tissues were comprised of cells, a decellularized extracellular matrix (dECM), and a vasculature of multilevel sizes and multibranch architectures. Pluronic F127 (PF 127) was used as a sacrificial material for the formation of the vasculature through a multi-nozzle 3D bioprinting system. After printing, Pluronic F127 was removed to obtain multilevel hollow channels for the attachment of human umbilical vein endothelial cells (HUVECs). To reconstruct functional small-diameter blood vessel substitutes, a supporting scaffold (SE1700) with a double-layer circular structure was first bioprinted. Human aortic vascular smooth muscle cells (HA-VSMCs), HUVECs, and human dermal fibroblasts–neonatal (HDF-n) were separately used to form the media, intima, and adventitia through perfusion into the corresponding location of the supporting scaffold. In particular, the dECM was used as the matrix of the small-diameter blood vessel substitutes. After culture in vitro for 48 h, fluorescent images revealed that cells maintained their viability and that the samples maintained structural integrity. In addition, we analyzed the mechanical properties of the printed scaffold and found that its elastic modulus approximated that of the natural aorta. These findings demonstrate the feasibility of fabricating different kinds of vessels to imitate the structure and function of the human vascular system using 3D bioprinting technology.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
- Biomanufacturing Engineering Laboratory, Advanced Manufacturing Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Yingying Hu
- Biomanufacturing Engineering Laboratory, Advanced Manufacturing Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Changyong Liu
- Additive Manufacturing Research Institute, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hongyi Yao
- Biomanufacturing Engineering Laboratory, Advanced Manufacturing Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Boxun Liu
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| | - Shengli Mi
- Biomanufacturing Engineering Laboratory, Advanced Manufacturing Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- Open FIESTA Center, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
25
|
Schöneberg J, De Lorenzi F, Theek B, Blaeser A, Rommel D, Kuehne AJC, Kießling F, Fischer H. Engineering biofunctional in vitro vessel models using a multilayer bioprinting technique. Sci Rep 2018; 8:10430. [PMID: 29992981 PMCID: PMC6041340 DOI: 10.1038/s41598-018-28715-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Recent advances in the field of bioprinting have led to the development of perfusable complex structures. However, most of the existing printed vascular channels lack the composition or key structural and physiological features of natural blood vessels or they make use of more easily printable but less biocompatible hydrogels. Here, we use a drop-on-demand bioprinting technique to generate in vitro blood vessel models, consisting of a continuous endothelium imitating the tunica intima, an elastic smooth muscle cell layer mimicking the tunica media, and a surrounding fibrous and collagenous matrix of fibroblasts mimicking the tunica adventitia. These vessel models with a wall thickness of up to 425 µm and a diameter of about 1 mm were dynamically cultivated in fluidic bioreactors for up to three weeks under physiological flow conditions. High cell viability (>83%) after printing and the expression of VE-Cadherin, smooth muscle actin, and collagen IV were observed throughout the cultivation period. It can be concluded that the proposed novel technique is suitable to achieve perfusable vessel models with a biofunctional multilayer wall composition. Such structures hold potential for the creation of more physiologically relevant in vitro disease models suitable especially as platforms for the pre-screening of drugs.
Collapse
Affiliation(s)
- Jan Schöneberg
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Federica De Lorenzi
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Benjamin Theek
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Blaeser
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Dirk Rommel
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen, Germany
| | - Alexander J C Kuehne
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen, Germany
| | - Fabian Kießling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
26
|
Zheng CX, Sui BD, Hu CH, Qiu XY, Zhao P, Jin Y. Reconstruction of structure and function in tissue engineering of solid organs: Toward simulation of natural development based on decellularization. J Tissue Eng Regen Med 2018; 12:1432-1447. [PMID: 29701314 DOI: 10.1002/term.2676] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 10/13/2017] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
Failure of solid organs, such as the heart, liver, and kidney, remains a major cause of the world's mortality due to critical shortage of donor organs. Tissue engineering, which uses elements including cells, scaffolds, and growth factors to fabricate functional organs in vitro, is a promising strategy to mitigate the scarcity of transplantable organs. Within recent years, different construction strategies that guide the combination of tissue engineering elements have been applied in solid organ tissue engineering and have achieved much progress. Most attractively, construction strategy based on whole-organ decellularization has become a popular and promising approach, because the overall structure of extracellular matrix can be well preserved. However, despite the preservation of whole structure, the current constructs derived from decellularization-based strategy still perform partial functions of solid organs, due to several challenges, including preservation of functional extracellular matrix structure, implementation of functional recellularization, formation of functional vascular network, and realization of long-term functional integration. This review overviews the status quo of solid organ tissue engineering, including both advances and challenges. We have also put forward a few techniques with potential to solve the challenges, mainly focusing on decellularization-based construction strategy. We propose that the primary concept for constructing tissue-engineered solid organs is fabricating functional organs based on intact structure via simulating the natural development and regeneration processes.
Collapse
Affiliation(s)
- Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Xin-Yu Qiu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| | - Pan Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| |
Collapse
|
27
|
In Situ Organ-Specific Vascularization in Tissue Engineering. Trends Biotechnol 2018; 36:834-849. [PMID: 29555346 DOI: 10.1016/j.tibtech.2018.02.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Other than a few avascular tissues, almost all human tissues are connected to the systemic circulation via blood vessels that promote metabolism and function. Accordingly, engineered vascularization is a vital goal in tissue engineering for regenerative medicine. Endothelial cells (ECs) play a central role in vascularization with two significant specificities: physical interfaces between vascular stroma and blood, and phenotypic organ-specificity. Biomaterial scaffolding technologies that address these unique properties of ECs have been developed to promote the vascularization of various engineered tissues, and these have advanced from mimicking vascular architectures ex situ towards promoting spontaneous angiogenic remodeling in situ. Simultaneously, endothelial progenitor cells (EPCs) and organ-specific ECs are attracting more and more attention with the increasing awareness of the diversity of ECs in different organs.
Collapse
|
28
|
Turunen S, Kaisto S, Skovorodkin I, Mironov V, Kalpio T, Vainio S, Rak-Raszewska A. 3D bioprinting of the kidney—hype or hope? ACTA ACUST UNITED AC 2018. [DOI: 10.3934/celltissue.2018.3.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Sekiya S, Shimizu T. Introduction of vasculature in engineered three-dimensional tissue. Inflamm Regen 2017; 37:25. [PMID: 29259724 PMCID: PMC5725988 DOI: 10.1186/s41232-017-0055-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022] Open
Abstract
Background With recent developments in tissue engineering technology, various three-dimensional tissues can be generated now. However, as the tissue thickness increases due to three-dimensionalization, it is difficult to increase the tissue scale without introduction of blood vessels. Main text Many methods for vasculature induction have been reported recently. In this review, we introduced several methods which are adjustable vascularization in three-dimensional tissues according to three steps. First, "selection" provides potents for engineered tissues with vascularization ability. Second, "assembly technology" is used to fabricate tissues as three-dimensional structures and simultaneously inner neo-vasculature. Third, a "perfusion" technique is used for maturation of blood vessels in three-dimensional tissues. In "selection", selection of cells and materials gives the ability to promote angiogenesis in three-dimensional tissues. During the cell assembly step, cell sheet engineering, nanofilm coating technology, and three-dimensional printing technology could be used to produce vascularized three-dimensional tissues. Perfusion techniques to perfuse blood or cell culture medium throughout three-dimensional tissues with a unified inlet and outlet could induce functional blood vessels within retransplantable three-dimensional tissues. Combination of each step technology allows simulation of perivascular microenvironments in target tissues and drive vascularization in three-dimensional tissues. Conclusion The biomimetic microenvironment of target tissues will induce adequate cell-cell interaction, distance, cell morphology, and function within tissues. It could be accelerated for vascularization within three-dimensional tissues and give us the functional tissues. Since vascularized three-dimensional tissues are highly functional, they are expected to contribute to the development of regenerative medicine and drug safety tests for drug discovery in the future.
Collapse
Affiliation(s)
- Sachiko Sekiya
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| |
Collapse
|
30
|
Adamowicz J, Pokrywczynska M, Van Breda SV, Kloskowski T, Drewa T. Concise Review: Tissue Engineering of Urinary Bladder; We Still Have a Long Way to Go? Stem Cells Transl Med 2017; 6:2033-2043. [PMID: 29024555 PMCID: PMC6430044 DOI: 10.1002/sctm.17-0101] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/18/2017] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine is a new branch of medicine based on tissue engineering technology. This rapidly developing field of science offers revolutionary treatment strategy aimed at urinary bladder regeneration. Despite many promising announcements of experimental urinary bladder reconstruction, there has been a lack in commercialization of therapies based on current investigations. This is due to numerous obstacles that are slowly being identified and precisely overcome. The goal of this review is to present the current status of research on urinary bladder regeneration and highlight further challenges that need to be gradually addressed. We put an emphasis on expectations of urologists that are awaiting tissue engineering based solutions in clinical practice. This review also presents a detailed characteristic of obstacles on the road to successful urinary bladder regeneration from urological clinician perspective. A defined interdisciplinary approach might help to accelerate planning transitional research tissue engineering focused on urinary tracts. Stem Cells Translational Medicine 2017;6:2033-2043.
Collapse
Affiliation(s)
- Jan Adamowicz
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczynska
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Tomasz Kloskowski
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
31
|
Mandrycky C, Phong K, Zheng Y. Tissue engineering toward organ-specific regeneration and disease modeling. MRS COMMUNICATIONS 2017; 7:332-347. [PMID: 29750131 PMCID: PMC5939579 DOI: 10.1557/mrc.2017.58] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/17/2017] [Indexed: 05/17/2023]
Abstract
Tissue engineering has been recognized as a translational approach to replace damaged tissue or whole organs. Engineering tissue, however, faces an outstanding knowledge gap in the challenge to fully recapitulate complex organ-specific features. Major components, such as cells, matrix, and architecture, must each be carefully controlled to engineer tissue-specific structure and function that mimics what is found in vivo. Here we review different methods to engineer tissue, and discuss critical challenges in recapitulating the unique features and functional units in four major organs-the kidney, liver, heart, and lung, which are also the top four candidates for organ transplantation in the USA. We highlight advances in tissue engineering approaches to enable the regeneration of complex tissue and organ substitutes, and provide tissue-specific models for drug testing and disease modeling. We discuss the current challenges and future perspectives toward engineering human tissue models.
Collapse
Affiliation(s)
- Christian Mandrycky
- Departments of Bioengineering, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kiet Phong
- Departments of Bioengineering, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ying Zheng
- Departments of Bioengineering, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
|
33
|
Abstract
Microfluidics is invaluable for studying microvasculature, development of organ-on-chip models and engineering microtissues. Microfluidic design can cleverly control geometry, biochemical gradients and mechanical stimuli, such as shear and interstitial flow, to more closely mimic in vivo conditions. In vitro vascular networks are generated by two distinct approaches: via endothelial-lined patterned channels, or by self-assembled networks. Each system has its own benefits and is amenable to the study of angiogenesis, vasculogenesis and cancer metastasis. Various techniques are employed in order to generate rapid perfusion of these networks within a variety of tissue and organ-mimicking models, some of which have shown recent success following implantation in vivo. Combined with tuneable hydrogels, microfluidics holds great promise for drug screening as well as in the development of prevascularized tissues for regenerative medicine.
Collapse
Affiliation(s)
- Kristina Haase
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Singapore MIT Alliance for Research & Technology, Singapore, Singapore
| |
Collapse
|
34
|
Rijal G, Kim BS, Pati F, Ha DH, Kim SW, Cho DW. Robust tissue growth and angiogenesis in large-sized scaffold by reducing H
2
O
2
-mediated oxidative stress. Biofabrication 2017; 9:015013. [DOI: 10.1088/1758-5090/9/1/015013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Timsit MO, Branchereau J, Thuret R, Kleinclauss F. [Renal transplantation in 2046: Future and perspectives]. Prog Urol 2016; 26:1132-1142. [PMID: 27665406 DOI: 10.1016/j.purol.2016.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To report major findings that may build the future of kidney transplantation. MATERIAL AND METHODS Relevant publications were identified through Medline (http://www.ncbi.nlm.nih.gov) and Embase (http://www.embase.com) database from 1960 to 2016 using the following keywords, in association, "bio-engineering; heterotransplantation; immunomodulation; kidney; regenerative medicine; xenotransplantation". Articles were selected according to methods, language of publication and relevance. A total of 5621 articles were identified including 2264 for xenotransplantation, 1058 for regenerative medicine and 2299 for immunomodulation; after careful selection, 86 publications were eligible for our review. RESULTS Despite genetic constructs, xenotransplantation faces the inevitable obstacle of species barrier. Uncertainty regarding xenograft acceptance by recipients as well as ethical considerations due to the debatable utilization of animal lives, are major limits for its future. Regenerative medicine and tridimensional bioprinting allow successful implantation of organs. Bioengineering, using decellularized tissue matrices or synthetic scaffold, seeded with pluripotent cells and assembled using bioreactors, provide exciting results but remain far for reconstituting renal complexity and vascular patency. Immune tolerance may be achieved through a tough initial T-cell depletion or a combined haplo-identical bone marrow transplant leading to lymphohematopoietic chimerism. CONCLUSION Current researches aim to increase the pool of organs available for transplantation (xenotransplants and bio-artificial kidneys) and to increase allograft survival through the induction of immune tolerance. Reported results suggest the onset of a thrilling new era for renal transplantation providing end-stage renal disease-patients with an improved survival and quality of life.
Collapse
Affiliation(s)
- M-O Timsit
- Service d'urologie, hôpital européen Georges-Pompidou, AP-HP, 20, rue Leblanc, 75015 Paris, France; Université Paris-Descartes, 75006 Paris, France.
| | - J Branchereau
- Service d'urologie et transplantation, CHU de Nantes, 44000 Nantes, France
| | - R Thuret
- Service d'urologie et transplantation rénale, CHU de Montpellier, 34090 Montpellier, France; Université de Montpellier, 34090 Montpellier, France
| | - F Kleinclauss
- Service d'urologie et transplantation rénale, CHRU de Besançon, 25000 Besançon, France; Université de Franche-Comté, 25000 Besançon, France; Inserm UMR 1098, 25000 Besançon, France
| |
Collapse
|
36
|
Malheiro A, Wieringa P, Mota C, Baker M, Moroni L. Patterning Vasculature: The Role of Biofabrication to Achieve an Integrated Multicellular Ecosystem. ACS Biomater Sci Eng 2016; 2:1694-1709. [DOI: 10.1021/acsbiomaterials.6b00269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Afonso Malheiro
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Carlos Mota
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew Baker
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
37
|
Old Myths, New Concerns: the Long-Term Effects of Ascending Aorta Replacement with Dacron Grafts. Not All That Glitters Is Gold. J Cardiovasc Transl Res 2016; 9:334-42. [PMID: 27245785 PMCID: PMC4990605 DOI: 10.1007/s12265-016-9699-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
Synthetic grafts are widely used in cardiac and vascular surgery since the mid-1970s. Despite their general good performance, inability of mimicking the elastomechanical characteristics of the native arterial tissue, and the consequent lack of adequate compliance, leads to a cascade of hemodynamic and biological alterations deeply affecting cardiovascular homeostasis. Those concerns have been reconsidered in more contemporaneous surgical and experimental reports which also triggered some research efforts in the tissue engineering field towards the realization of biomimetic arterial surrogates. The present review focuses on the significance of the “compliance mismatch” phenomenon occurring after aortic root or ascending aorta replacement with prosthetic grafts and discusses the clinical reflexes of this state of tissue incompatibility, as the loss of the native elastomechanical properties of the aorta can translate into detrimental effects on the normal efficiency of the aortic root complex with impact in the long-term results of patients undergoing aortic replacement.
Collapse
|