1
|
Chi A, Yang C, Liu J, Zhai Z, Shi X. Reconstructing the Stem Leydig Cell Niche via the Testicular Extracellular Matrix for the Treatment of Testicular Leydig Cell Dysfunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410808. [PMID: 39555675 DOI: 10.1002/advs.202410808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Therapies involving the use of stem Leydig cells (SLCs), as testicular mesenchymal stromal cells, have shown great promise in the treatment of Leydig cell (LC) dysfunction in aging males. However, the outcomes of these therapies are not satisfactory. In this study, it is demonstrated that the aging microenvironment of the testicular interstitium impairs the function of SLCs, leading to poor regeneration of LCs and, consequently, inefficient functional restoration. The study develops a decellularized testicular extracellular matrix (dTECM) hydrogel from young pigs and evaluates its safety and feasibility as a supportive niche for the expansion and differentiation of SLCs. dTECM hydrogel facilitates the steroidogenic differentiation of SLCs into LCs, the primary producers of testosterone. The combination of SLCs with a dTECM hydrogel leads to a significant and sustained increase in testosterone levels, which promotes the restoration of spermatogenesis and fertility in an LC-deficient and aged mouse model. Mechanistically, collagen 1 within the dTECM is identified as a key factor contributing to these effects. Notably, symptoms associated with testosterone deficiency syndrome are significantly alleviated in aged mice. These findings may aid the design of therapeutic interventions for patients with testosterone deficiency in the clinic.
Collapse
Affiliation(s)
- Ani Chi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chao Yang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jie Liu
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhichen Zhai
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
2
|
Watanabe T, Hatayama N, Guo M, Yuhara S, Shinoka T. Bridging the Gap: Advances and Challenges in Heart Regeneration from In Vitro to In Vivo Applications. Bioengineering (Basel) 2024; 11:954. [PMID: 39451329 PMCID: PMC11505552 DOI: 10.3390/bioengineering11100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiovascular diseases, particularly ischemic heart disease, area leading cause of morbidity and mortality worldwide. Myocardial infarction (MI) results in extensive cardiomyocyte loss, inflammation, extracellular matrix (ECM) degradation, fibrosis, and ultimately, adverse ventricular remodeling associated with impaired heart function. While heart transplantation is the only definitive treatment for end-stage heart failure, donor organ scarcity necessitates the development of alternative therapies. In such cases, methods to promote endogenous tissue regeneration by stimulating growth factor secretion and vascular formation alone are insufficient. Techniques for the creation and transplantation of viable tissues are therefore highly sought after. Approaches to cardiac regeneration range from stem cell injections to epicardial patches and interposition grafts. While numerous preclinical trials have demonstrated the positive effects of tissue transplantation on vasculogenesis and functional recovery, long-term graft survival in large animal models is rare. Adequate vascularization is essential for the survival of transplanted tissues, yet pre-formed microvasculature often fails to achieve sufficient engraftment. Recent studies report success in enhancing cell survival rates in vitro via tissue perfusion. However, the transition of these techniques to in vivo models remains challenging, especially in large animals. This review aims to highlight the evolution of cardiac patch and stem cell therapies for the treatment of cardiovascular disease, identify discrepancies between in vitro and in vivo studies, and discuss critical factors for establishing effective myocardial tissue regeneration in vivo.
Collapse
Affiliation(s)
- Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Naoyuki Hatayama
- Department of Anatomy, Aichi Medical University, Nagakute 480-1195, Japan;
| | - Marissa Guo
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Satoshi Yuhara
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Toshiharu Shinoka
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
3
|
Maeso L, Eufrásio-da-Silva T, Deveci E, Dolatshahi-Pirouz A, Orive G. Latest progress of self-healing hydrogels in cardiac tissue engineering. Biomed Microdevices 2024; 26:36. [PMID: 39150571 DOI: 10.1007/s10544-024-00716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Cardiovascular diseases represent a significant public health challenge and are responsible for more than 4 million deaths annually in Europe alone (45% of all deaths). Among these, coronary-related heart diseases are a leading cause of mortality, accounting for 20% of all deaths. Cardiac tissue engineering has emerged as a promising strategy to address the limitations encountered after myocardial infarction. This approach aims to improve regulation of the inflammatory and cell proliferation phases, thereby reducing scar tissue formation and restoring cardiac function. In cardiac tissue engineering, biomaterials serve as hosts for cells and therapeutics, supporting cardiac restoration by mimicking the native cardiac environment. Various bioengineered systems, such as 3D scaffolds, injectable hydrogels, and patches play crucial roles in cardiac tissue repair. In this context, self-healing hydrogels are particularly suitable substitutes, as they can restore structural integrity when damaged. This structural healing represents a paradigm shift in therapeutic interventions, offering a more native-like environment compared to static, non-healable hydrogels. Herein, we sharply review the most recent advances in self-healing hydrogels in cardiac tissue engineering and their potential to transform cardiovascular healthcare.
Collapse
Affiliation(s)
- Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | | | - Enes Deveci
- Faculty of Pharmacy, Lokman Hekim University, Ankara, Turkey
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, 01007, Spain.
| |
Collapse
|
4
|
Liu T, Hao Y, Zhang Z, Zhou H, Peng S, Zhang D, Li K, Chen Y, Chen M. Advanced Cardiac Patches for the Treatment of Myocardial Infarction. Circulation 2024; 149:2002-2020. [PMID: 38885303 PMCID: PMC11191561 DOI: 10.1161/circulationaha.123.067097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Myocardial infarction is a cardiovascular disease characterized by a high incidence rate and mortality. It leads to various cardiac pathophysiological changes, including ischemia/reperfusion injury, inflammation, fibrosis, and ventricular remodeling, which ultimately result in heart failure and pose a significant threat to global health. Although clinical reperfusion therapies and conventional pharmacological interventions improve emergency survival rates and short-term prognoses, they are still limited in providing long-lasting improvements in cardiac function or reversing pathological progression. Recently, cardiac patches have gained considerable attention as a promising therapy for myocardial infarction. These patches consist of scaffolds or loaded therapeutic agents that provide mechanical reinforcement, synchronous electrical conduction, and localized delivery within the infarct zone to promote cardiac restoration. This review elucidates the pathophysiological progression from myocardial infarction to heart failure, highlighting therapeutic targets and various cardiac patches. The review considers the primary scaffold materials, including synthetic, natural, and conductive materials, and the prevalent fabrication techniques and optimal properties of the patch, as well as advanced delivery strategies. Last, the current limitations and prospects of cardiac patch research are considered, with the goal of shedding light on innovative products poised for clinical application.
Collapse
Affiliation(s)
- Tailuo Liu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Ying Hao
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Zixuan Zhang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, PR China (Z.Z.)
| | - Hao Zhou
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Shiqin Peng
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Dingyi Zhang
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Mao Chen
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
5
|
Farzamfar S, Garcia LM, Rahmani M, Bolduc S. Navigating the Immunological Crossroads: Mesenchymal Stem/Stromal Cells as Architects of Inflammatory Harmony in Tissue-Engineered Constructs. Bioengineering (Basel) 2024; 11:494. [PMID: 38790361 PMCID: PMC11118848 DOI: 10.3390/bioengineering11050494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In the dynamic landscape of tissue engineering, the integration of tissue-engineered constructs (TECs) faces a dual challenge-initiating beneficial inflammation for regeneration while avoiding the perils of prolonged immune activation. As TECs encounter the immediate reaction of the immune system upon implantation, the unique immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) emerge as key navigators. Harnessing the paracrine effects of MSCs, researchers aim to craft a localized microenvironment that not only enhances TEC integration but also holds therapeutic promise for inflammatory-driven pathologies. This review unravels the latest advancements, applications, obstacles, and future prospects surrounding the strategic alliance between MSCs and TECs, shedding light on the immunological symphony that guides the course of regenerative medicine.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
| | - Luciana Melo Garcia
- Department of Medicine, Université Laval, Québec, QC G1V 0A6, Canada;
- Hematology-Oncology Service, CHU de Québec—Université Laval, Québec, QC G1V 0A6, Canada
| | - Mahya Rahmani
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
| | - Stephane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
6
|
Hamsho K, Broadwin M, Stone CR, Sellke FW, Abid MR. The Current State of Extracellular Matrix Therapy for Ischemic Heart Disease. Med Sci (Basel) 2024; 12:8. [PMID: 38390858 PMCID: PMC10885030 DOI: 10.3390/medsci12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The extracellular matrix (ECM) is a three-dimensional, acellular network of diverse structural and nonstructural proteins embedded within a gel-like ground substance composed of glycosaminoglycans and proteoglycans. The ECM serves numerous roles that vary according to the tissue in which it is situated. In the myocardium, the ECM acts as a collagen-based scaffold that mediates the transmission of contractile signals, provides means for paracrine signaling, and maintains nutritional and immunologic homeostasis. Given this spectrum, it is unsurprising that both the composition and role of the ECM has been found to be modulated in the context of cardiac pathology. Myocardial infarction (MI) provides a familiar example of this; the ECM changes in a way that is characteristic of the progressive phases of post-infarction healing. In recent years, this involvement in infarct pathophysiology has prompted a search for therapeutic targets: if ECM components facilitate healing, then their manipulation may accelerate recovery, or even reverse pre-existing damage. This possibility has been the subject of numerous efforts involving the integration of ECM-based therapies, either derived directly from biologic sources or bioengineered sources, into models of myocardial disease. In this paper, we provide a thorough review of the published literature on the use of the ECM as a novel therapy for ischemic heart disease, with a focus on biologically derived models, of both the whole ECM and the components thereof.
Collapse
Affiliation(s)
- Khaled Hamsho
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - Christopher R. Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| |
Collapse
|
7
|
Vazana-Netzarim R, Elmalem Y, Sofer S, Bruck H, Danino N, Sarig U. Distinct HAND2/HAND2-AS1 Expression Levels May Fine-Tune Mesenchymal and Epithelial Cell Plasticity of Human Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:16546. [PMID: 38003736 PMCID: PMC10672054 DOI: 10.3390/ijms242216546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
We previously developed several successful decellularization strategies that yielded porcine cardiac extracellular matrices (pcECMs) exhibiting tissue-specific bioactivity and bioinductive capacity when cultured with various pluripotent and multipotent stem cells. Here, we study the tissue-specific effects of the pcECM on seeded human mesenchymal stem cell (hMSC) phenotypes using reverse transcribed quantitative polymerase chain reaction (RT-qPCR) arrays for cardiovascular related gene expression. We further corroborated interesting findings at the protein level (flow cytometry and immunological stains) as well as bioinformatically using several mRNA sequencing and protein databases of normal and pathologic adult and embryonic (organogenesis stage) tissue expression. We discovered that upon the seeding of hMSCs on the pcECM, they displayed a partial mesenchymal-to-epithelial transition (MET) toward endothelial phenotypes (CD31+) and morphologies, which were preceded by an early spike (~Day 3 onward after seeding) in HAND2 expression at both the mRNA and protein levels compared to that in plate controls. The CRISPR-Cas9 knockout (KO) of HAND2 and its associated antisense long non-coding RNA (HAND2-AS1) regulatory region resulted in proliferation arrest, hypertrophy, and senescent-like morphology. Bioinformatic analyses revealed that HAND2 and HAND2-AS1 are highly correlated in expression and are expressed in many different tissue types albeit at distinct yet tightly regulated expression levels. Deviation (downregulation or upregulation) from these basal tissue expression levels is associated with a long list of pathologies. We thus suggest that HAND2 expression levels may possibly fine-tune hMSCs' plasticity through affecting senescence and mesenchymal-to-epithelial transition states, through yet unknown mechanisms. Targeting this pathway may open up a promising new therapeutic approach for a wide range of diseases, including cancer, degenerative disorders, and aging. Nevertheless, further investigation is required to validate these findings and better understand the molecular players involved, potential inducers and inhibitors of this pathway, and eventually potential therapeutic applications.
Collapse
Affiliation(s)
- Rachel Vazana-Netzarim
- The Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 4070000, Israel; (R.V.-N.); (N.D.)
| | - Yishay Elmalem
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| | - Shachar Sofer
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| | - Hod Bruck
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| | - Naama Danino
- The Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 4070000, Israel; (R.V.-N.); (N.D.)
| | - Udi Sarig
- The Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 4070000, Israel; (R.V.-N.); (N.D.)
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| |
Collapse
|
8
|
El-Husseiny HM, Mady EA, Usui T, Ishihara Y, Yoshida T, Kobayashi M, Sasaki K, Ma D, Yairo A, Mandour AS, Hendawy H, Doghish AS, Mohammed OA, Takahashi K, Tanaka R. Adipose Stem Cell-Seeded Decellularized Porcine Pericardium: A Promising Functional Biomaterial to Synergistically Restore the Cardiac Functions Post-Myocardial Infarction. Vet Sci 2023; 10:660. [PMID: 37999483 PMCID: PMC10675230 DOI: 10.3390/vetsci10110660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Myocardial infarction (MI) is a serious cardiovascular disease as the leading cause of death globally. Hence, reconstruction of the cardiac tissue comes at the forefront of strategies adopted to restore heart functions following MI. In this investigation, we studied the capacity of rat adipose-derived mesenchymal stem cells (r-AdMSCs) and decellularized porcine pericardium (DPP) to restore heart functions in MI animals. MI was induced in four different groups, three of which were treated either using DPP (MI-DPP group), stem cells (MI-SC group), or both (MI-SC/DPP group). Cardiac functions of these groups and the Sham group were evaluated using echocardiography, the intraventricular pressure gradient (IVPG) on weeks 2 and 4, and intraventricular hemodynamics on week 4. On day 31, the animals were euthanized for histological analysis. Echocardiographic, IVPG and hemodynamic findings indicated that the three treatment strategies shared effectively in the regeneration process. However, the MI-SC/DPP group had a unique synergistic ability to restore heart functions superior to the other treatment protocols. Histology showed that the MI-SC/DPP group presented the lowest (p < 0.05) degeneration score and fibrosis % compared to the other groups. Conclusively, stem cell-seeded DPP is a promising platform for the delivery of stem cells and restoration of heart functions post-MI.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (K.S.); (D.M.); (A.Y.); (A.S.M.); (H.H.)
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan;
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (T.U.); (Y.I.)
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (T.U.); (Y.I.)
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan; (T.Y.); (M.K.)
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan; (T.Y.); (M.K.)
| | - Kenta Sasaki
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (K.S.); (D.M.); (A.Y.); (A.S.M.); (H.H.)
| | - Danfu Ma
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (K.S.); (D.M.); (A.Y.); (A.S.M.); (H.H.)
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Wei-Gang, Xuanwu District, Nanjing 210095, China
| | - Akira Yairo
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (K.S.); (D.M.); (A.Y.); (A.S.M.); (H.H.)
| | - Ahmed S. Mandour
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (K.S.); (D.M.); (A.Y.); (A.S.M.); (H.H.)
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Ismailia, Egypt
| | - Hanan Hendawy
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (K.S.); (D.M.); (A.Y.); (A.S.M.); (H.H.)
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Ismailia, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt;
- Department of Biochemistry, and Molecular Biology Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11651, Cairo, Egypt
| | - Osama A. Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Ken Takahashi
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Bunkyo 113-8421, Tokyo, Japan;
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (K.S.); (D.M.); (A.Y.); (A.S.M.); (H.H.)
| |
Collapse
|
9
|
Kafili G, Kabir H, Jalali Kandeloos A, Golafshan E, Ghasemi S, Mashayekhan S, Taebnia N. Recent advances in soluble decellularized extracellular matrix for heart tissue engineering and organ modeling. J Biomater Appl 2023; 38:577-604. [PMID: 38006224 PMCID: PMC10676626 DOI: 10.1177/08853282231207216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Despite the advent of tissue engineering (TE) for the remodeling, restoring, and replacing damaged cardiovascular tissues, the progress is hindered by the optimal mechanical and chemical properties required to induce cardiac tissue-specific cellular behaviors including migration, adhesion, proliferation, and differentiation. Cardiac extracellular matrix (ECM) consists of numerous structural and functional molecules and tissue-specific cells, therefore it plays an important role in stimulating cell proliferation and differentiation, guiding cell migration, and activating regulatory signaling pathways. With the improvement and modification of cell removal methods, decellularized ECM (dECM) preserves biochemical complexity, and bio-inductive properties of the native matrix and improves the process of generating functional tissue. In this review, we first provide an overview of the latest advancements in the utilization of dECM in in vitro model systems for disease and tissue modeling, as well as drug screening. Then, we explore the role of dECM-based biomaterials in cardiovascular regenerative medicine (RM), including both invasive and non-invasive methods. In the next step, we elucidate the engineering and material considerations in the preparation of dECM-based biomaterials, namely various decellularization techniques, dECM sources, modulation, characterizations, and fabrication approaches. Finally, we discuss the limitations and future directions in fabrication of dECM-based biomaterials for cardiovascular modeling, RM, and clinical translation.
Collapse
Affiliation(s)
- Golara Kafili
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Hannaneh Kabir
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, USA
| | | | - Elham Golafshan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Sara Ghasemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Nayere Taebnia
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
10
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Sommerfeld SD, Zhou X, Mejías JC, Oh BC, Maestas DR, Furtmüller GJ, Laffont PA, Elisseeff JH, Brandacher G. Biomaterials-based immunomodulation enhances survival of murine vascularized composite allografts. Biomater Sci 2023; 11:4022-4031. [PMID: 37129566 DOI: 10.1039/d2bm01845d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Vascularized composite allotransplantation (VCA) is a restorative option for patients suffering from severe tissue defects not amenable to conventional reconstruction. However, the toxicities associated with life-long multidrug immunosuppression to enable allograft survival and induce immune tolerance largely limit the broader application of VCA. Here, we investigate the potential of targeted immunomodulation using CTLA4-Ig combined with a biological porcine-derived extracellular matrix (ECM) scaffold that elicits a pro-regenerative Th2 response to promote allograft survival and regulate the inflammatory microenvironment in a stringent mouse orthotopic hind limb transplantation model (BALB/c to C57BL/6). The median allograft survival time (MST) increased significantly from 15.0 to 24.5 days (P = 0.0037; Mantel-Cox test) after adding ECM to the CTLA4-Ig regimen. Characterization of the immune infiltration shows a pro-regenerative phenotype prevails over those associated with inflammation and rejection including macrophages (F4/80hi+CD206hi+MHCIIlow), eosinophils (F4/80lowSiglec-F+), and T helper 2 (Th2) T cells (CD4+IL-4+). This was accompanied by an increased expression of genes associated with a Type 2 polarized immune state such as Il4, Ccl24, Arg1 and Ym1 within the graft. Furthermore, when ECM was applied along with a clinically relevant combination of CTLA4-Ig and Rapamycin, allograft survival was prolonged from 33.0 to 72.5 days (P = 0.0067; Mantel-Cox test). These studies implicate the clinical exploration of combined regimens involving local application of pro-regenerative, immunomodulatory biomaterials in surgical wound sites with targeted co-stimulatory blockade to reduce adverse effects of immunosuppression and enhance graft survival in VCA.
Collapse
Affiliation(s)
- Sven D Sommerfeld
- Translational Tissue Engineering Center, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Xianyu Zhou
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Joscelyn C Mejías
- Translational Tissue Engineering Center, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Byoung Chol Oh
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - David R Maestas
- Translational Tissue Engineering Center, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Georg J Furtmüller
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Philippe A Laffont
- Translational Tissue Engineering Center, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Sigaroodi F, Rahmani M, Parandakh A, Boroumand S, Rabbani S, Khani MM. Designing cardiac patches for myocardial regeneration–a review. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2180510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azim Parandakh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Whole-Heart Tissue Engineering and Cardiac Patches: Challenges and Promises. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010106. [PMID: 36671678 PMCID: PMC9855348 DOI: 10.3390/bioengineering10010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Despite all the advances in preventing, diagnosing, and treating cardiovascular disorders, they still account for a significant part of mortality and morbidity worldwide. The advent of tissue engineering and regenerative medicine has provided novel therapeutic approaches for the treatment of various diseases. Tissue engineering relies on three pillars: scaffolds, stem cells, and growth factors. Gene and cell therapy methods have been introduced as primary approaches to cardiac tissue engineering. Although the application of gene and cell therapy has resulted in improved regeneration of damaged cardiac tissue, further studies are needed to resolve their limitations, enhance their effectiveness, and translate them into the clinical setting. Scaffolds from synthetic, natural, or decellularized sources have provided desirable characteristics for the repair of cardiac tissue. Decellularized scaffolds are widely studied in heart regeneration, either as cell-free constructs or cell-seeded platforms. The application of human- or animal-derived decellularized heart patches has promoted the regeneration of heart tissue through in vivo and in vitro studies. Due to the complexity of cardiac tissue engineering, there is still a long way to go before cardiac patches or decellularized whole-heart scaffolds can be routinely used in clinical practice. This paper aims to review the decellularized whole-heart scaffolds and cardiac patches utilized in the regeneration of damaged cardiac tissue. Moreover, various decellularization methods related to these scaffolds will be discussed.
Collapse
|
14
|
Barbulescu GI, Bojin FM, Ordodi VL, Goje ID, Barbulescu AS, Paunescu V. Decellularized Extracellular Matrix Scaffolds for Cardiovascular Tissue Engineering: Current Techniques and Challenges. Int J Mol Sci 2022; 23:13040. [PMID: 36361824 PMCID: PMC9658138 DOI: 10.3390/ijms232113040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global mortality. Over the past two decades, researchers have tried to provide novel solutions for end-stage heart failure to address cardiac transplantation hurdles such as donor organ shortage, chronic rejection, and life-long immunosuppression. Cardiac decellularized extracellular matrix (dECM) has been widely explored as a promising approach in tissue-regenerative medicine because of its remarkable similarity to the original tissue. Optimized decellularization protocols combining physical, chemical, and enzymatic agents have been developed to obtain the perfect balance between cell removal, ECM composition, and function maintenance. However, proper assessment of decellularized tissue composition is still needed before clinical translation. Recellularizing the acellular scaffold with organ-specific cells and evaluating the extent of cardiomyocyte repopulation is also challenging. This review aims to discuss the existing literature on decellularized cardiac scaffolds, especially on the advantages and methods of preparation, pointing out areas for improvement. Finally, an overview of the state of research regarding the application of cardiac dECM and future challenges in bioengineering a human heart suitable for transplantation is provided.
Collapse
Affiliation(s)
- Greta Ionela Barbulescu
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Department of Clinical Practical Skills, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Florina Maria Bojin
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Valentin Laurentiu Ordodi
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
- Faculty of Industrial Chemistry and Environmental Engineering, “Politehnica” University Timisoara, No 2 Victoriei Square, 300006 Timisoara, Romania
| | - Iacob Daniel Goje
- Department of Medical Semiology I, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Advanced Cardiology and Hemostaseology Research Center, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Andreea Severina Barbulescu
- Center for Advanced Research in Gastroenterology and Hepatology, Department of Internal Medicine II, Division of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Virgil Paunescu
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
| |
Collapse
|
15
|
Yue T, Xiong S, Zheng D, Wang Y, Long P, Yang J, Danzeng D, Gao H, Wen X, Li X, Hou J. Multifunctional biomaterial platforms for blocking the fibrosis process and promoting cellular restoring effects in myocardial fibrosis therapy. Front Bioeng Biotechnol 2022; 10:988683. [PMID: 36185428 PMCID: PMC9520723 DOI: 10.3389/fbioe.2022.988683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Myocardial fibrosis is the result of abnormal healing after acute and chronic myocardial damage and is a direct cause of heart failure and cardiac insufficiency. The clinical approach is to preserve cardiac function and inhibit fibrosis through surgery aimed at dredging blood vessels. However, this strategy does not adequately address the deterioration of fibrosis and cardiac function recovery. Therefore, numerous biomaterial platforms have been developed to address the above issues. In this review, we summarize the existing biomaterial delivery and restoring platforms, In addition, we also clarify the therapeutic strategies based on biomaterial platforms, including general strategies to block the fibrosis process and new strategies to promote cellular restoring effects. The development of structures with the ability to block further fibrosis progression as well as to promote cardiomyocytes viability should be the main research interests in myocardial fibrosis, and the reestablishment of structures necessary for normal cardiac function is central to the treatment of myocardial fibrosis. Finally, the future application of biomaterials for myocardial fibrosis is also highlighted.
Collapse
Affiliation(s)
- Tian Yue
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shiqiang Xiong
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Dezhi Zheng
- Department of Cardiovascular Surgery, The 960th Hospital of the PLA Joint Logistic Support Force, Jinan, China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Pan Long
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jiali Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Dunzhu Danzeng
- Department of Basic Medicine, Medical College, Tibet University, Lhasa, China
| | - Han Gao
- Department of Basic Medicine, Medical College, Tibet University, Lhasa, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People’s Hospital, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| | - Xin Li
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| | - Jun Hou
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| |
Collapse
|
16
|
Hayam R, Ertracht O, Zahran S, Baruch L, Atar S, Machluf M. Electrospun extracellular matrix scaffold improves cardiac structure and function post‐myocardial infarction. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rotem Hayam
- Faculty of Biotechnology & Food Engineering Israel Institute of Technology (IIT) Technion Haifa Israel
| | - Offir Ertracht
- The Cardiovascular Research Laboratory, Research institute Galilee Medical Center Nahariya Israel
| | - Sharbel Zahran
- Faculty of Biotechnology & Food Engineering Israel Institute of Technology (IIT) Technion Haifa Israel
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering Israel Institute of Technology (IIT) Technion Haifa Israel
| | - Shaul Atar
- The Cardiovascular Research Laboratory, Research institute Galilee Medical Center Nahariya Israel
- The Cardiology Department Galilee Medical Center Nahariya Israel
- The Azrieli Faculty of Medicine Bar‐Ilan University Safed Israel
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering Israel Institute of Technology (IIT) Technion Haifa Israel
| |
Collapse
|
17
|
Li M, Wu H, Yuan Y, Hu B, Gu N. Recent fabrications and applications of cardiac patch in myocardial infarction treatment. VIEW 2022. [DOI: 10.1002/viw.20200153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Mei Li
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
- The Laboratory Center for Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Hao Wu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Yuehui Yuan
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Ning Gu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences and Medical Engineering Southeast University Nanjing China
| |
Collapse
|
18
|
Tan YH, Helms HR, Nakayama KH. Decellularization Strategies for Regenerating Cardiac and Skeletal Muscle Tissues. Front Bioeng Biotechnol 2022; 10:831300. [PMID: 35295645 PMCID: PMC8918733 DOI: 10.3389/fbioe.2022.831300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and is associated with approximately 17.9 million deaths each year. Musculoskeletal conditions affect more than 1.71 billion people globally and are the leading cause of disability. These two areas represent a massive global health burden that is perpetuated by a lack of functionally restorative treatment options. The fields of regenerative medicine and tissue engineering offer great promise for the development of therapies to repair damaged or diseased tissues. Decellularized tissues and extracellular matrices are cornerstones of regenerative biomaterials and have been used clinically for decades and many have received FDA approval. In this review, we first discuss and compare methods used to produce decellularized tissues and ECMs from cardiac and skeletal muscle. We take a focused look at how different biophysical properties such as spatial topography, extracellular matrix composition, and mechanical characteristics influence cell behavior and function in the context of regenerative medicine. Lastly, we describe emerging research and forecast the future high impact applications of decellularized cardiac and skeletal muscle that will drive novel and effective regenerative therapies.
Collapse
Affiliation(s)
| | | | - Karina H. Nakayama
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
19
|
Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells 2021; 10:cells10102538. [PMID: 34685518 PMCID: PMC8533887 DOI: 10.3390/cells10102538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Myocardium Infarction (MI) is one of the foremost cardiovascular diseases (CVDs) causing death worldwide, and its case numbers are expected to continuously increase in the coming years. Pharmacological interventions have not been at the forefront in ameliorating MI-related morbidity and mortality. Stem cell-based tissue engineering approaches have been extensively explored for their regenerative potential in the infarcted myocardium. Recent studies on microfluidic devices employing stem cells under laboratory set-up have revealed meticulous events pertaining to the pathophysiology of MI occurring at the infarcted site. This discovery also underpins the appropriate conditions in the niche for differentiating stem cells into mature cardiomyocyte-like cells and leads to engineering of the scaffold via mimicking of native cardiac physiological conditions. However, the mode of stem cell-loaded engineered scaffolds delivered to the site of infarction is still a challenging mission, and yet to be translated to the clinical setting. In this review, we have elucidated the various strategies developed using a hydrogel-based system both as encapsulated stem cells and as biocompatible patches loaded with cells and applied at the site of infarction.
Collapse
|
20
|
Hemalatha T, Aarthy M, Pandurangan S, Kamini NR, Ayyadurai N. A deep dive into the darning effects of biomaterials in infarct myocardium: current advances and future perspectives. Heart Fail Rev 2021; 27:1443-1467. [PMID: 34342769 DOI: 10.1007/s10741-021-10144-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) occurs due to the obstruction of coronary arteries, a major crux that restricts blood flow and thereby oxygen to the distal part of the myocardium, leading to loss of cardiomyocytes and eventually, if left untreated, leads to heart failure. MI, a potent cardiovascular disorder, requires intense therapeutic interventions and thereby presents towering challenges. Despite the concerted efforts, the treatment strategies for MI are still demanding, which has paved the way for the genesis of biomaterial applications. Biomaterials exhibit immense potentials for cardiac repair and regeneration, wherein they act as extracellular matrix replacing scaffolds or as delivery vehicles for stem cells, protein, plasmids, etc. This review concentrates on natural, synthetic, and hybrid biomaterials; their function; and interaction with the body, mechanisms of repair by which they are able to improve cardiac function in a MI milieu. We also provide focus on future perspectives that need attention. The cognizance provided by the research results certainly indicates that biomaterials could revolutionize the treatment paradigms for MI with a positive impact on clinical translation.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Suryalakshmi Pandurangan
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India.
| |
Collapse
|
21
|
Vasanthan V, Biglioli M, Hassanabad AF, Dundas J, Matheny RG, Fedak PW. CorMatrix Cor™ PATCH for epicardial infarct repair. Future Cardiol 2021; 17:1297-1305. [PMID: 34008420 DOI: 10.2217/fca-2021-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Contemporary management of ischemic heart disease lacks strategies to directly access the heart and promote reparative cellular mechanisms to improve postinfarct cardiac remodeling. Epicardial infarct repair (EIR) is an emerging technique whereby bioactive materials are sewn over ischemic areas of the heart at the time of surgical revascularization to promote adaptive cardiac repair. The CorMatrix Cor™ PATCH (CorMatrix Cardiovascular Inc., GA, USA) is an acellular bioactive material compatible with EIR. Herein, we review current preclinical and clinical data for the CorMatrix Cor PATCH and its use in EIR.
Collapse
Affiliation(s)
- Vishnu Vasanthan
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| | - Matteo Biglioli
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| | - Ali Fatehi Hassanabad
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| | - Jameson Dundas
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| | | | - Paul Wm Fedak
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
22
|
Silveira-Filho LM, Coyan GN, Adamo A, Luketich SK, Menallo G, D'Amore A, Wagner WR. Can a Biohybrid Patch Salvage Ventricular Function at a Late Time Point in the Post-Infarction Remodeling Process? ACTA ACUST UNITED AC 2021; 6:447-463. [PMID: 34095634 PMCID: PMC8165254 DOI: 10.1016/j.jacbts.2021.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/15/2023]
Abstract
A simple, biohybrid patch made of polymer (PECUU) and ECM, without cellular components, was able to induce positive remodeling features when applied over chronic infarcts with severely dilated hearts and high cardiac function impairment in rats. The remodeling benefit was particularly notable in a subgroup of the sickest rats with very low initial ejection fraction in which the echocardiographic endpoints were found to improve after treatment. This technological approach may hold promise for future translation to patients in a chronic scenario.
A biohybrid patch without cellular components was implanted over large infarcted areas in severely dilated hearts. Nonpatched animals were assigned to control or losartan therapy. Patch-implanted animals responded with better morphological and functional echocardiographic endpoints, which were more evident in a subgroup of animals with very low pre-treatment ejection fraction (<35%). Patched animals also had smaller infarcts than both nonpatched groups. This simple approach could hold promise for clinical translation and be applied using minimally invasive procedures over the epicardium in a large set of patients to induce better ventricular remodeling, especially among those who are especially frail.
Collapse
Key Words
- AT1R, angiotensin 1 receptor
- ECM, extracellular matrix
- EDA, end-diastolic area
- EF, ejection fraction
- ESA, end-systolic area
- FS, fractional shortening
- HF, heart failure
- LV, left ventricle
- LVEF, left ventricular ejection fraction
- LVFW, left ventricular free wall
- LVdd, left ventricular end-diastolic diameter
- LVsd, left ventricular end-systolic diameter
- M1, macrophage type 1
- M2, macrophage type 2
- MI, myocardial infarction
- MT, Masson trichrome
- PBS, phosphate-buffered saline
- PECUU, poly(ester carbonate urethane) urea
- PEUU, poly(ester urethane) urea
- SMA, smooth muscle actin
- biomaterial
- cardiac patch
- left ventricular remodeling
- myocardial infarction
Collapse
Affiliation(s)
- Lindemberg M Silveira-Filho
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Campinas, Sao Paulo, Brazil
| | - Garrett N Coyan
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Arianna Adamo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Samuel K Luketich
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Giorgio Menallo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,RiMED Foundation, Palermo, Italy
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Mousavi A, Mashayekhan S, Baheiraei N, Pourjavadi A. Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering. Int J Biol Macromol 2021; 180:692-708. [PMID: 33753199 DOI: 10.1016/j.ijbiomac.2021.03.097] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Injectable hydrogels which mimic the physicochemical and electromechanical properties of cardiac tissue is advantageous for cardiac tissue engineering. Here, a newly-developed in situ forming double-network hydrogel derived from biological macromolecules (oxidized alginate (OA) and myocardial extracellular matrix (ECM)) with improved mechanical properties and electrical conductivity was optimized. 3-(2-aminoethyl amino) propyltrimethoxysilane (APTMS)-functionalized reduced graphene oxide (Amine-rGO) was added to this system with varied concentrations to promote electromechanical properties of the hydrogel. Alginate was partially oxidized with an oxidation degree of 5% and the resulting OA was cross-linked via calcium ions which was reacted with amine groups of ECM and Amine-rGO through Schiff-base reaction. In situ forming hydrogels composed of 4% w/v OA and 0.8% w/v ECM showed appropriate gelation time and tensile Young's modulus. The electroactive hydrogels showed electrical conductivity in the range of semi-conductors and a suitable biodegradation profile for cardiac tissue engineering. Cytocompatibility analysis was performed by MTT assay against human umbilical vein endothelial cells (HUVECs), and the optimal hydrogel with 25 μg/ml concentration of Amine-rGO showed higher cell viability than that for other samples. The results of this study present the potential of OA/myocardial ECM-based hydrogel incorporated with Amine-rGO to provide a desirable platform for cardiac tissue engineering.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Pourjavadi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
24
|
Allen KB, Adams JD, Badylak SF, Garrett HE, Mouawad NJ, Oweida SW, Parikshak M, Sultan PK. Extracellular Matrix Patches for Endarterectomy Repair. Front Cardiovasc Med 2021; 8:631750. [PMID: 33644135 PMCID: PMC7904872 DOI: 10.3389/fcvm.2021.631750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Patch repair is the preferred method for arteriotomy closure following femoral or carotid endarterectomy. Choosing among available patch options remains a clinical challenge, as current evidence suggests roughly comparable outcomes between autologous grafts and synthetic and biologic materials. Biologic patches have potential advantages over other materials, including reduced risk for infection, mitigation of an excessive foreign body response, and the potential to remodel into healthy, vascularized tissue. Here we review the use of decellularized extracellular matrix (ECM) for cardiovascular applications, particularly endarterectomy repair, and the capacity of these materials to remodel into native, site-appropriate tissues. Also presented are data from two post-market observational studies of patients undergoing iliofemoral and carotid endarterectomy patch repair as well as one histologic case report in a challenging iliofemoral endarterectomy repair, all with the use of small intestine submucosa (SIS)-ECM. In alignment with previously reported studies, high patency was maintained, and adverse event rates were comparable to previously reported rates of patch angioplasty. Histologic analysis from one case identified constructive remodeling of the SIS-ECM, consistent with the histologic characteristics of the endarterectomized vessel. These clinical and histologic results align with the biologic potential described in the academic ECM literature. To our knowledge, this is the first histologic demonstration of SIS-ECM remodeling into site-appropriate vascular tissues following endarterectomy. Together, these findings support the safety and efficacy of SIS-ECM for patch repair of femoral and carotid arteriotomy.
Collapse
Affiliation(s)
- Keith B Allen
- St. Luke's Hospital of Kansas City, St. Luke's Mid America Heart Institute, Kansas City, MO, United States
| | - Joshua D Adams
- Carilion Clinic Aortic and Endovascular Surgery, Roanoke, VA, United States
| | - Stephen F Badylak
- Department of Bioengineering, Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - H Edward Garrett
- Cardiovascular Surgery Clinic, University of Tennessee, Memphis, Memphis, TN, United States
| | | | | | | | | |
Collapse
|
25
|
Silva AC, Pereira C, Fonseca ACRG, Pinto-do-Ó P, Nascimento DS. Bearing My Heart: The Role of Extracellular Matrix on Cardiac Development, Homeostasis, and Injury Response. Front Cell Dev Biol 2021; 8:621644. [PMID: 33511134 PMCID: PMC7835513 DOI: 10.3389/fcell.2020.621644] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is an essential component of the heart that imparts fundamental cellular processes during organ development and homeostasis. Most cardiovascular diseases involve severe remodeling of the ECM, culminating in the formation of fibrotic tissue that is deleterious to organ function. Treatment schemes effective at managing fibrosis and promoting physiological ECM repair are not yet in reach. Of note, the composition of the cardiac ECM changes significantly in a short period after birth, concurrent with the loss of the regenerative capacity of the heart. This highlights the importance of understanding ECM composition and function headed for the development of more efficient therapies. In this review, we explore the impact of ECM alterations, throughout heart ontogeny and disease, on cardiac cells and debate available approaches to deeper insights on cell–ECM interactions, toward the design of new regenerative therapies.
Collapse
Affiliation(s)
- Ana Catarina Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Gladstone Institutes, San Francisco, CA, United States
| | - Cassilda Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Catarina R G Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Krishnamoorthi MK, Sarig U, Baruch L, Ting S, Reuveny S, Oh S, Goldfracht I, Gepstein L, Venkatraman SS, Tan LP, Machluf M. Robust Fabrication of Composite 3D Scaffolds with Tissue-Specific Bioactivity: A Proof-of-Concept Study. ACS APPLIED BIO MATERIALS 2020; 3:4974-4986. [PMID: 35021675 DOI: 10.1021/acsabm.0c00310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The basic requirement of any engineered scaffold is to mimic the native tissue extracellular matrix (ECM). Despite substantial strides in understanding the ECM, scaffold fabrication processes of sufficient product robustness and bioactivity require further investigation, owing to the complexity of the natural ECM. A promising bioacive platform for cardiac tissue engineering is that of decellularized porcine cardiac ECM (pcECM, used here as a soft tissue representative model). However, this platform's complexity and batch-to-batch variability serve as processing limitations in attaining a robust and tunable cardiac tissue-specific bioactive scaffold. To address these issues, we fabricated 3D composite scaffolds (3DCSs) that demonstrate comparable physical and biochemical properties to the natural pcECM using wet electrospinning and functionalization with a pcECM hydrogel. The fabricated 3DCSs are non-immunogenic in vitro and support human mesenchymal stem cells' proliferation. Most importantly, the 3DCSs demonstrate tissue-specific bioactivity in inducing spontaneous cardiac lineage differentiation in human induced pluripotent stem cells (hiPSC) and further support the viability, functionality, and maturation of hiPSC-derived cardiomyocytes. Overall, this work illustrates the technology to fabricate robust yet tunable 3D scaffolds of tissue-specific bioactivity (with a proof of concept provided for cardiac tissues) as a platform for basic materials science studies and possible future R&D application in regenerative medicine.
Collapse
Affiliation(s)
- Muthu Kumar Krishnamoorthi
- School of Materials Science & Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 Singapore.,Faculty of Biotechnology & Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Udi Sarig
- School of Materials Science & Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 Singapore.,Faculty of Biotechnology & Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel.,Biotechnology & Food Engineering, Technion-Israel Institute of Technology (IIT), Guangdong-Technion Israel Institute of Technology (GTIIT), Shantou, Guangdong Province, 515063 P.R. China
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Sherwin Ting
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, 138668 Singapore
| | - Shaul Reuveny
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, 138668 Singapore
| | - Steve Oh
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, 138668 Singapore
| | - Idit Goldfracht
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Efron St 1, Haifa 31096, Israel
| | - Lior Gepstein
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Efron St 1, Haifa 31096, Israel
| | - Subramanian S Venkatraman
- School of Materials Science & Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 Singapore
| | - Lay Poh Tan
- School of Materials Science & Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 Singapore
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| |
Collapse
|
27
|
Maghin E, Garbati P, Quarto R, Piccoli M, Bollini S. Young at Heart: Combining Strategies to Rejuvenate Endogenous Mechanisms of Cardiac Repair. Front Bioeng Biotechnol 2020; 8:447. [PMID: 32478060 PMCID: PMC7237726 DOI: 10.3389/fbioe.2020.00447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
True cardiac regeneration of the injured heart has been broadly described in lower vertebrates by active replacement of lost cardiomyocytes to functionally and structurally restore the myocardial tissue. On the contrary, following severe injury (i.e., myocardial infarction) the adult mammalian heart is endowed with an impaired reparative response by means of meager wound healing program and detrimental remodeling, which can lead over time to cardiomyopathy and heart failure. Lately, a growing body of basic, translational and clinical studies have supported the therapeutic use of stem cells to provide myocardial regeneration, with the working hypothesis that stem cells delivered to the cardiac tissue could result into new cardiovascular cells to replenish the lost ones. Nevertheless, multiple independent evidences have demonstrated that injected stem cells are more likely to modulate the cardiac tissue via beneficial paracrine effects, which can enhance cardiac repair and reinstate the embryonic program and cell cycle activity of endogenous cardiac stromal cells and resident cardiomyocytes. Therefore, increasing interest has been addressed to the therapeutic profiling of the stem cell-derived secretome (namely the total of cell-secreted soluble factors), with specific attention to cell-released extracellular vesicles, including exosomes, carrying cardioprotective and regenerative RNA molecules. In addition, the use of cardiac decellularized extracellular matrix has been recently suggested as promising biomaterial to develop novel therapeutic strategies for myocardial repair, as either source of molecular cues for regeneration, biological scaffold for cardiac tissue engineering or biomaterial platform for the functional release of factors. In this review, we will specifically address the translational relevance of these two approaches with ad hoc interest in their feasibility to rejuvenate endogenous mechanisms of cardiac repair up to functional regeneration.
Collapse
Affiliation(s)
- Edoardo Maghin
- Tissue Engineering Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.,Department of Women's and Children Health, University of Padova, Padua, Italy
| | - Patrizia Garbati
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Rodolfo Quarto
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy.,UOC Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Martina Piccoli
- Tissue Engineering Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| |
Collapse
|
28
|
Davidov T, Efraim Y, Dahan N, Baruch L, Machluf M. Porcine arterial ECM hydrogel: Designing an in vitro angiogenesis model for long-term high-throughput research. FASEB J 2020; 34:7745-7758. [PMID: 32337805 DOI: 10.1096/fj.202000264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Abstract
The field of angiogenesis research provides deep understanding regarding this important process, which plays fundamental roles in tissue development and different abnormalities. In vitro models offer the advantages of low-cost high-throughput research of angiogenesis while sparing animal lives, and enabling the use of human cells. Nevertheless, prevailing in vitro models lack stability and are limited to a few days' assays. This study, therefore, examines the hypothesis that closely mimicking the vascular microenvironment can more reliably support longer angiogenesis processes in vitro. To this end, porcine arterial extracellular matrix (paECM)- a key component of blood vessels-was isolated and processed into a thermally induced hydrogel and characterized in terms of composition, structure, and mechanical properties, thus confirming the preservation of important characteristics of arterial extracellular matrix. This unique hydrogel was further tailored into a three-dimensional model of angiogenesis using endothelial cells and supporting cells, in a configuration that allows high-throughput quantitative analysis of cell viability and proliferation, cell migration, and apoptosis, thus revealing the advantages of paECM over frequently used biomaterials. Markedly, when applied with well-known effectors of angiogenesis, the model measures reflected the expected response, hence validating its efficacy and establishing its potential as a promising tool for the research of angiogenesis.
Collapse
Affiliation(s)
- Tzila Davidov
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yael Efraim
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nitsan Dahan
- Infrastructure Unit, Life Science and Engineering Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
29
|
Huang K, Ozpinar EW, Su T, Tang J, Shen D, Qiao L, Hu S, Li Z, Liang H, Mathews K, Scharf V, Freytes DO, Cheng K. An off-the-shelf artificial cardiac patch improves cardiac repair after myocardial infarction in rats and pigs. Sci Transl Med 2020; 12:eaat9683. [PMID: 32269164 PMCID: PMC7293901 DOI: 10.1126/scitranslmed.aat9683] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 02/26/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Cell therapy has been a promising strategy for cardiac repair after injury or infarction; however, low retention and engraftment of transplanted cells limit potential therapeutic efficacy. Seeding scaffold material with cells to create cardiac patches that are transplanted onto the surface of the heart can overcome these limitations. However, because patches need to be freshly prepared to maintain cell viability, long-term storage is not feasible and limits clinical applicability. Here, we developed an off-the-shelf therapeutic cardiac patch composed of a decellularized porcine myocardial extracellular matrix scaffold and synthetic cardiac stromal cells (synCSCs) generated by encapsulating secreted factors from isolated human cardiac stromal cells. This fully acellular artificial cardiac patch (artCP) maintained its potency after long-term cryopreservation. In a rat model of acute myocardial infarction, transplantation of the artCP supported cardiac recovery by reducing scarring, promoting angiomyogenesis, and boosting cardiac function. The safety and efficacy of the artCP were further confirmed in a porcine model of myocardial infarction. The artCP is a clinically feasible, easy-to-store, and cell-free alternative to myocardial repair using cell-based cardiac patches.
Collapse
Affiliation(s)
- Ke Huang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Emily W Ozpinar
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27607, USA
| | - Teng Su
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27607, USA
| | - Junnan Tang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Deliang Shen
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Li Qiao
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27607, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27607, USA
| | - Hongxia Liang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Kyle Mathews
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Valery Scharf
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Donald O Freytes
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
30
|
Dong Y, Hong M, Dai R, Wu H, Zhu P. Engineered bioactive nanoparticles incorporated biofunctionalized ECM/silk proteins based cardiac patches combined with MSCs for the repair of myocardial infarction: In vitro and in vivo evaluations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135976. [PMID: 31865091 DOI: 10.1016/j.scitotenv.2019.135976] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
The development of cardiac patches by the combination of bioactive nano- and bio-materials with mesenchymal stem cells signifies an auspicious approach for the treatment of cardiac repair in myocardial infarction. In the present investigation, we study about the cardiac function of morphology improved gold nanoparticles combined with extracellular matrix/silk proteins for the cell proliferation and expansion of cardiomyocytes. The physico-chemical and morphological characteristics demonstrated that spherical and homogeneous Au particles are distributed on the matrix porous surface for providing favorable conductivity and biological influences in cardiac repair. The in vitro cell studies of prepared patches have established enhanced cell compatibility and retention of cardiomyocytes survival. The in vivo determinations imply that Au-ESF group decreases infarct size to 65% from 89% in control group. These developed cardiac patches can be highly suitable in the cardiac regeneration and offer new platform in cardiac tissue engineering.
Collapse
Affiliation(s)
- Yongda Dong
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Meiman Hong
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Ruozhu Dai
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Haiyun Wu
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China.
| | - Ping Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| |
Collapse
|
31
|
Deutsch O, Bruehl F, Cleuziou J, Prinzing A, Schlitter AM, Krane M, Lange R. Histological examination of explanted tissue-engineered bovine pericardium following heart valve repair. Interact Cardiovasc Thorac Surg 2020; 30:64-73. [PMID: 31605480 DOI: 10.1093/icvts/ivz234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/30/2019] [Accepted: 08/16/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Our goal was to present histopathological findings of human explants of a tissue-engineered bovine pericardium CardioCel (Admedus Regen Pty Ltd, Malaga, WA, Australia) used for heart valve repair in patients with congenital and acquired heart valve disease. METHODS Sixty patients underwent heart valve repair from May 2014 to November 2018 using CardioCel as a substitute for valve tissue. We identified 9 cases in which the CardioCel patch was explanted following valve repair and available for histomorphological analyses. CardioCel explants were evaluated histologically using haematoxylin and oeosin, Elastica van Gieson and immunohistochemical stains. RESULTS The indications for explantation were related to the CardioCel patch in 6 patients. Median time between the implantation and explantation was 242 (range 3-1247) days. We demonstrated a characteristic remodelling pattern with superficial coating of the tissue-engineered bovine pericardium by granulation tissue composed of histiocytes, few lymphocytes and fibrin. We had 2 cases with a multifocal nodular disruption, fragmentation and sclerosis of the decellularized collagen matrix with focal calcification after 795 and 1247 days in situ. CONCLUSIONS Our data suggest that the tissue-engineered CardioCel patch is initially tolerated in the valvular position in the majority of patients. However, we also experienced graft failures that showed degeneration with fragmentation of the collagen matrix and even 2 cases with focal calcification evident from the histopathological analysis. Further analyses of mid- and long-term performance are mandatory.
Collapse
Affiliation(s)
- Oliver Deutsch
- Department of Cardiovascular Surgery, German Heart Centre Munich, Munich, Germany.,INSURE-Institute for Translational Cardiac Surgery, German Heart Centre Munich, Munich, Germany
| | - Frido Bruehl
- Institute for Pathology, Technical University Munich, Munich, Germany
| | - Julie Cleuziou
- INSURE-Institute for Translational Cardiac Surgery, German Heart Centre Munich, Munich, Germany.,Department of Congenital and Pediatric Heart Surgery, German Heart Centre Munich, Munich, Germany
| | - Anatol Prinzing
- Department of Cardiovascular Surgery, German Heart Centre Munich, Munich, Germany.,INSURE-Institute for Translational Cardiac Surgery, German Heart Centre Munich, Munich, Germany
| | | | - Markus Krane
- Department of Cardiovascular Surgery, German Heart Centre Munich, Munich, Germany.,INSURE-Institute for Translational Cardiac Surgery, German Heart Centre Munich, Munich, Germany
| | - Rüdiger Lange
- Department of Cardiovascular Surgery, German Heart Centre Munich, Munich, Germany.,INSURE-Institute for Translational Cardiac Surgery, German Heart Centre Munich, Munich, Germany
| |
Collapse
|
32
|
Synergistic effects of adipose-derived stem cells combined with decellularized myocardial matrix on the treatment of myocardial infarction in rats. Life Sci 2019; 239:116891. [DOI: 10.1016/j.lfs.2019.116891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
|
33
|
Szulc DA, Ahmadipour M, Aoki FG, Waddell TK, Karoubi G, Cheng HLM. MRI method for labeling and imaging decellularized extracellular matrix scaffolds for tissue engineering. Magn Reson Med 2019; 83:2138-2149. [PMID: 31729091 DOI: 10.1002/mrm.28072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/15/2019] [Accepted: 10/20/2019] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a facile method for labeling and imaging decellularized extracellular matrix (dECM) scaffolds intended for regenerating 3D tissues. METHODS A small molecule manganese porphyrin, MnPNH2 , was synthesized and used to label dECM scaffolds made from porcine bladder and trachea and murine whole lungs. The labeling protocol was optimized on bladder dECM, and imaging on a 3T clinical scanner was performed to assess reductions in T1 and T2 relaxation times. In vivo MRI was performed on dECM injected in the rat dorsum to verify sensitivity of detection. Toxicity assays for cell viability, metabolism, and proliferation were performed on human umbilical vein endothelial cells. The incorporation of MnPNH2 and its long-term retention in dECM were assessed on transmission electron microscopy and ultraviolet absorbance of eluted MnPNH2 over time. RESULTS All tissues, including thick whole 3D organs, were uniformly labeled and demonstrated high signal-to-noise on MRI. A nearly 10-fold reduction in T1 was consistently obtained at a labeling dose of 0.4 mM, and even 0.2 mM provided sufficient contrast in vivo and ex vivo. No toxicity was observed up to 0.4 mM, the maximum tested. Binding studies suggested nonspecific association, and retention studies in the labeled whole decellularized lungs revealed less than 20% MnPNH2 loss over 30 days, the majority occurring in the first 3 days after labeling. CONCLUSION The proposed labeling method is the first report for visualizing dECM on MRI and has the potential for long-term monitoring and optimization of dECM-based organ tissue engineering.
Collapse
Affiliation(s)
- Daniel Andrzej Szulc
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Canada.,Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, Toronto, Canada
| | - Mohammadali Ahmadipour
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Canada.,Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Fabio Gava Aoki
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Thomas K Waddell
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Canada.,Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Canada.,Ontario Institute for Regenerative Medicine, Toronto, Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Canada.,Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, Toronto, Canada.,Ontario Institute for Regenerative Medicine, Toronto, Canada.,Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, Toronto, Canada.,The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Canada
| |
Collapse
|
34
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
35
|
Pattar SS, Fatehi Hassanabad A, Fedak PWM. Application of Bioengineered Materials in the Surgical Management of Heart Failure. Front Cardiovasc Med 2019; 6:123. [PMID: 31482096 PMCID: PMC6710326 DOI: 10.3389/fcvm.2019.00123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023] Open
Abstract
The epicardial surface of the heart is readily accessible during cardiac surgery and presents an opportunity for therapeutic intervention for cardiac repair and regeneration. As an important anatomic niche for endogenous mechanisms of repair, targeting the epicardium using decellularized extracellular matrix (ECM) bioscaffold therapy may provide the necessary environmental cues to promote functional recovery. Following ischemic injury to the heart caused by myocardial infarction (MI), epicardium derived progenitor cells (EPDCs) become activated and migrate to the site of injury. EPDC differentiation has been shown to contribute to endothelial cell, cardiac fibroblast, cardiomyocyte, and vascular smooth muscle cell populations. Post-MI, it is largely the activation of cardiac fibroblasts and the resultant dysregulation of ECM turnover which leads to maladaptive structural cardiac remodeling and loss of cardiac function. Decellularized ECM bioscaffolds not only provide structural support, but have also been shown to act as a bioactive reservoir for growth factors, cytokines, and matricellular proteins capable of attenuating maladaptive cardiac remodeling. Targeting the epicardium post-MI using decellularized ECM bioscaffold therapy may provide the necessary bioinductive cues to promote differentiation toward a pro-regenerative phenotype and attenuate cardiac fibroblast activation. There is an opportunity to leverage the clinical benefits of this innovative technology with an aim to improve the prognosis of patients suffering from progressive heart failure. An enhanced understanding of the utility of decellularized ECM bioscaffolds in epicardial repair will facilitate their growth and transition into clinical practice. This review will provide a summary of decellularized ECM bioscaffolds being developed for epicardial infarct repair in coronary artery bypass graft (CABG) surgery.
Collapse
Affiliation(s)
- Simranjit S Pattar
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
KC P, Hong Y, Zhang G. Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. Regen Biomater 2019; 6:185-199. [PMID: 31404421 PMCID: PMC6683951 DOI: 10.1093/rb/rbz017] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/04/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Decellularized extracellular matrix (dECM) derived from myocardium has been widely explored as a nature scaffold for cardiac tissue engineering applications. Cardiac dECM offers many unique advantages such as preservation of organ-specific ECM microstructure and composition, demonstration of tissue-mimetic mechanical properties and retention of biochemical cues in favor of subsequent recellularization. However, current processes of dECM decellularization and recellularization still face many challenges including the need for balance between cell removal and extracellular matrix preservation, efficient recellularization of dECM for obtaining homogenous cell distribution, tailoring material properties of dECM for enhancing bioactivity and prevascularization of thick dECM. This review summarizes the recent progresses of using dECM scaffold for cardiac repair and discusses its major advantages and challenges for producing biomimetic cardiac patch.
Collapse
Affiliation(s)
- Pawan KC
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Room 301L, 260 S Forge Street, Akron, OH, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Room 240, Arlington, TX, USA
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Room 301L, 260 S Forge Street, Akron, OH, USA
| |
Collapse
|
37
|
Shah M, KC P, Zhang G. In Vivo Assessment of Decellularized Porcine Myocardial Slice as an Acellular Cardiac Patch. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23893-23900. [PMID: 31188555 PMCID: PMC6948015 DOI: 10.1021/acsami.9b06453] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Acellular cardiac patches made of various biomaterials have shown to improve heart function after myocardial infarction (MI). Extracellular matrix scaffold derived from a decellularized tissue has unique advantages to serve as an acellular cardiac patch due to its biomimetic nature. In this study, we examined the therapeutic outcomes of using a decellularized porcine myocardium slice (dPMS) as an acellular patch in a rat acute MI model. dPMSs with two different thicknesses (300 and 600 μm) were patched to the infarcted area of the rat myocardium, and their effects on cardiac function and host interactions were assessed. We found that the implanted dPMS firmly attached to host myocardium after implantation and prevented thinning of the left ventricular (LV) wall after an MI. A large number of host cells were identified to infiltrate into the implanted dPMS, and a significant number of vessel structures was observed in the dPMS and infarcted area. We detected a significantly higher density of M2 macrophages in the groups treated with dPMSs as compared to the MI group. Contraction of the LV wall and cardiac functional parameters (left ventricular ejection fraction and fractional shortening) was significantly improved in the treatment groups (300 and 600 μm dPMS) 4 weeks after surgery. Our results proved the therapeutic benefits of using dPMS as an acellular cardiac patch for the treatment of acute myocardial infarction.
Collapse
Affiliation(s)
- Mickey Shah
- Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325-0302, United States
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325-0302, United States
| | - Pawan KC
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325-0302, United States
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325-0302, United States
- Corresponding Author: . Phone: 330-972-5237. Fax: 330-374-8834
| |
Collapse
|
38
|
Huang K, Li Z, Su T, Shen D, Hu S, Cheng K. Bispecific Antibody Therapy for Effective Cardiac Repair through Redirection of Endogenous Stem Cells. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ke Huang
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh NC 27695 USA
| | - Teng Su
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh NC 27695 USA
| | - Deliang Shen
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh NC 27695 USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh NC 27695 USA
- Division of Pharmacoengineering and Molecular Pharmaceutics Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
39
|
A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat Biomed Eng 2019; 3:632-643. [PMID: 30988471 DOI: 10.1038/s41551-019-0380-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/05/2019] [Indexed: 01/10/2023]
Abstract
Acellular epicardial patches that treat myocardial infarction by increasing the mechanical integrity of damaged left ventricular tissues exhibit widely scattered therapeutic efficacy. Here, we introduce a viscoelastic adhesive patch, made of an ionically crosslinked transparent hydrogel, that accommodates the cyclic deformation of the myocardium and outperforms most existing acellular epicardial patches in reversing left ventricular remodelling and restoring heart function after both acute and subacute myocardial infarction in rats. The superior performance of the patch results from its relatively low dynamic modulus, designed at the so-called 'gel point' via finite-element simulations of left ventricular remodelling so as to balance the fluid and solid properties of the material.
Collapse
|
40
|
Efraim Y, Schoen B, Zahran S, Davidov T, Vasilyev G, Baruch L, Zussman E, Machluf M. 3D Structure and Processing Methods Direct the Biological Attributes of ECM-Based Cardiac Scaffolds. Sci Rep 2019; 9:5578. [PMID: 30944384 PMCID: PMC6447624 DOI: 10.1038/s41598-019-41831-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/06/2019] [Indexed: 11/10/2022] Open
Abstract
High hopes are held for cardiac regenerative therapy, driving a vast research effort towards the development of various cardiac scaffolds using diverse technologies and materials. Nevertheless, the role of factors such as fabrication process and structure in determining scaffold's characteristics is yet to be discovered. In the present study, the effects of 3D structure and processing method on cardiac scaffolds are addressed using three distinct scaffolds made through different production technologies from the same biomaterial: decellularized porcine cardiac extracellular matrix (pcECM). pcECM patch, injectable pcECM hydrogel, and electrospun pcECM scaffolds were all proven as viable prospective therapies for MI, thus generally preserving pcECM beneficial properties. Yet, as we demonstrate, minor differences in scaffolds composition and micro-morphology as well as substantial differences in their mechanical properties, which arise from their production process, highly affect the interactions of the scaffold with both proliferating cells and functional cells. Hence, the rates of cell attachment, survival, and proliferation significantly vary between the different scaffolds. Moreover, major differences in cell morphology and alignment as well as in matrix remodeling are obtained. Overall, the effects revealed herein can guide a more rational scaffold design for the improved cellular or acellular treatment of different cardiac disease scenarios.
Collapse
Affiliation(s)
- Yael Efraim
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Beth Schoen
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sharbel Zahran
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Tzila Davidov
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Gleb Vasilyev
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Eyal Zussman
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
41
|
Bejleri D, Davis ME. Decellularized Extracellular Matrix Materials for Cardiac Repair and Regeneration. Adv Healthc Mater 2019; 8:e1801217. [PMID: 30714354 PMCID: PMC7654553 DOI: 10.1002/adhm.201801217] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Indexed: 12/20/2022]
Abstract
Decellularized extracellular matrix (dECM) is a promising biomaterial for repairing cardiovascular tissue, as dECM most effectively captures the complex array of proteins, glycosaminoglycans, proteoglycans, and many other matrix components that are found in native tissue, providing ideal cues for regeneration and repair of damaged myocardium. dECM can be used in a variety of forms, such as solid scaffolds that maintain native matrix structure, or as soluble materials that can form injectable hydrogels for tissue repair. dECM has found recent success in many regeneration and repair therapies, such as for musculoskeletal, neural, and liver tissues. This review focuses on dECM in the context of cardiovascular applications, with variations in tissue and species sourcing, and specifically discusses advances in solid and soluble dECM development, in vitro studies, in vivo implementation, and clinical translation.
Collapse
Affiliation(s)
- Donald Bejleri
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Michael E Davis
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| |
Collapse
|
42
|
Xu JY, Xiong YY, Lu XT, Yang YJ. Regulation of Type 2 Immunity in Myocardial Infarction. Front Immunol 2019; 10:62. [PMID: 30761134 PMCID: PMC6362944 DOI: 10.3389/fimmu.2019.00062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Type 2 immunity participates in the pathogeneses of helminth infection and allergic diseases. Emerging evidence indicates that the components of type 2 immunity are also involved in maintaining metabolic hemostasis and facilitating the healing process after tissue injury. Numerous preclinical studies have suggested regulation of type 2 immunity-related cytokines, such as interleukin-4, -13, and -33, and cell types, such as M2 macrophages, mast cells, and eosinophils, affects cardiac functions after myocardial infarction (MI), providing new insights into the importance of immune modulation in the infarcted heart. This review provides an overview of the functions of these cytokines and cells in the setting of MI as well as their potential to predict the severity and prognosis of MI.
Collapse
Affiliation(s)
- Jun-Yan Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiao-Tong Lu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Huang K, Hu S, Cheng K. A New Era of Cardiac Cell Therapy: Opportunities and Challenges. Adv Healthc Mater 2019; 8:e1801011. [PMID: 30548836 PMCID: PMC6368830 DOI: 10.1002/adhm.201801011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/05/2018] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI), caused by coronary heart disease (CHD), remains one of the most common causes of death in the United States. Over the last few decades, scientists have invested considerable resources on the study and development of cell therapies for myocardial regeneration after MI. However, due to a number of limitations, they are not yet readily available for clinical applications. Mounting evidence supports the theory that paracrine products are the main contributors to the regenerative effects attributed to these cell therapies. The next generation of cell-based MI therapies will identify and isolate cell products and derivatives, integrate them with biocompatible materials and technologies, and use them for the regeneration of damaged myocardial tissue. This review discusses the progress made thus far in pursuit of this new generation of cell therapies. Their fundamental regenerative mechanisms, their potential to combine with other therapeutic products, and their role in shaping new clinical approaches for heart tissue engineering, are addressed.
Collapse
Affiliation(s)
- Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
- Pharmacoengineeirng and Molecular Pharmaceutics Division, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
44
|
A Thin Layer of Decellularized Porcine Myocardium for Cell Delivery. Sci Rep 2018; 8:16206. [PMID: 30385769 PMCID: PMC6212498 DOI: 10.1038/s41598-018-33946-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 10/08/2018] [Indexed: 01/11/2023] Open
Abstract
Decellularized porcine myocardium has shown many benefits as a cell delivery scaffold for cardiac therapy. However, using full thickness decellularized myocardium as cardiac patch may lead to poor viability and inhomogeneous distribution of delivered cells, due to perfusion limitations. In this study, we explored the feasibility of decellularized porcine myocardial slice (dPMS) to construct a vascularized cardiac patch for cell delivery. Decellularized porcine myocardium was sliced into thin layers (thickness~300 µm). Adipose-derived Stem cells (ASCs) obtained from rat and pig were seeded on dPMS. The viability, infiltration, and differentiation of seeded ASCs were examined. The mechanical properties of dPMSs of various thickness and native myocardium were tested. We noticed dPMS supported attachment and growth of rat and pig ASCs. Both rat and pig ASCs showed high viability, similar patterns of proliferation and infiltration within dPMS. Rat ASCs showed expression of early-endothelial markers followed by mature-endothelial marker without any additional inducers on dPMS. Using rat myocardial infarction model, we delivered ASCs using dPMS patched to the infarcted myocardium. After 1 week, a higher number of transplanted cells were present in the infarcted area when cells were delivered using dPMS versus direct injection. Compared with MI group, increased vascular formation was also observed.
Collapse
|
45
|
Svystonyuk DA, Mewhort HEM, Fedak PWM. Using Acellular Bioactive Extracellular Matrix Scaffolds to Enhance Endogenous Cardiac Repair. Front Cardiovasc Med 2018; 5:35. [PMID: 29696148 PMCID: PMC5904207 DOI: 10.3389/fcvm.2018.00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/22/2018] [Indexed: 01/16/2023] Open
Abstract
An inability to recover lost cardiac muscle following acute ischemic injury remains the biggest shortcoming of current therapies to prevent heart failure. As compared to standard medical and surgical treatments, tissue engineering strategies offer the promise of improved heart function by inducing regeneration of functional heart muscle. Tissue engineering approaches that use stem cells and genetic manipulation have shown promise in preclinical studies but have also been challenged by numerous critical barriers preventing effective clinical translational. We believe that surgical intervention using acellular bioactive ECM scaffolds may yield similar therapeutic benefits with minimal translational hurdles. In this review, we outline the limitations of cellular-based tissue engineering strategies and the advantages of using acellular biomaterials with bioinductive properties. We highlight key anatomic targets enriched with cellular niches that can be uniquely activated using bioactive scaffold therapy. Finally, we review the evolving cardiovascular tissue engineering landscape and provide critical insights into the potential therapeutic benefits of acellular scaffold therapy.
Collapse
Affiliation(s)
- Daniyil A Svystonyuk
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Holly E M Mewhort
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
46
|
Construction of scaffolds composed of acellular cardiac extracellular matrix for myocardial tissue engineering. Biologicals 2018; 53:10-18. [PMID: 29625872 DOI: 10.1016/j.biologicals.2018.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/14/2018] [Accepted: 03/27/2018] [Indexed: 01/26/2023] Open
Abstract
High rates of mortality and morbidity stemming from cardiovascular diseases unveil extreme limitations in current therapies despite enormous advances in medical and pharmaceutical sciences. Following myocardial infarction (MI), parts of myocardium undergo irreversible remodeling and is substituted by a scar tissue which eventually leads to heart failure (HF). To address this issue, cardiac patches have been utilized to initiate myocardial regeneration. In this study, a porous cardiac patch is fabricated using a mixture of decellularized myocardium extracellular matrix (ECM) and chitosan (CS). Results of rheological measurements, SEM, biodegradation test, and MTT assay showed that the scaffold composed of 3.5% (w/w) CS and 0.5% ECM has the best potential in providing cardiac progenitor cells (CPCs) with a suitable microenvironmental condition for both attachment and growth. This study demonstrates that the fabricated scaffold is capable of transmitting both mechanical and chemical cues that is native to myocardial tissue and supports efficient growth of the CPCs.
Collapse
|
47
|
Chi Ting Au-Yeung G, Sarig U, Sarig H, Bogireddi H, Bronshtein T, Baruch L, Spizzichino A, Bortman J, Freddy BYC, Machluf M, Venkatraman SS. Restoring the biophysical properties of decellularized patches through recellularization. Biomater Sci 2018; 5:1183-1194. [PMID: 28513656 DOI: 10.1039/c7bm00208d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various extracellular matrix (ECM) scaffolds, isolated through decellularization, were suggested as ideal biomimetic materials for 'Functional tissue engineering' (FTE). The decellularization process comprises a compromise between damaging and preserving the ultrastructure and composition of ECM-previously shown to affect cell survival, proliferation, migration, organization, differentiation and maturation. Inversely, the effects of cells on the ECM constructs' biophysical properties, under physiological-like conditions, remain still largely unknown. We hypothesized that by re-cellularizing porcine cardiac ECM (pcECM, as a model scaffold) some of the original biophysical properties of the myocardial tissue can be restored, which are related to the scaffold's surface and the bulk modifications consequent to cellularization. We performed a systematic biophysical assessment of pcECM scaffolds seeded with human mesenchymal stem cells (MSCs), a common multipotent cell source in cardiac regenerative medicine. We report a new type of FTE study in which cell interactions with a composite-scaffold were evaluated from the perspective of their contribution to the biophysical properties of the construct surface (FTIR, WETSEM™) and bulk (DSC, TGA, and mechanical testing). The results obtained were compared with acellular pcECM and native ventricular tissue serving as negative and positive controls, respectively. MSC recellularization resulted in an inter-fiber plasticization effect, increased protein density, masking of acylated glycosaminoglycans (GAGs) and active pcECM remodelling which further stabilized the reseeded construct and increased its denaturation resistance. The systematic approach presented herein, therefore, identifies cells as "biological plasticizers" and yields important methodologies, understanding, and data serving both as a reference as well as possible 'design criteria' for future studies in FTE.
Collapse
Affiliation(s)
- Gigi Chi Ting Au-Yeung
- NTU-Technion Biomedical labs, School of Materials and Science Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Becker M, Maring JA, Schneider M, Herrera Martin AX, Seifert M, Klein O, Braun T, Falk V, Stamm C. Towards a Novel Patch Material for Cardiac Applications: Tissue-Specific Extracellular Matrix Introduces Essential Key Features to Decellularized Amniotic Membrane. Int J Mol Sci 2018; 19:E1032. [PMID: 29596384 PMCID: PMC5979550 DOI: 10.3390/ijms19041032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022] Open
Abstract
There is a growing need for scaffold material with tissue-specific bioactivity for use in regenerative medicine, tissue engineering, and for surgical repair of structural defects. We developed a novel composite biomaterial by processing human cardiac extracellular matrix (ECM) into a hydrogel and combining it with cell-free amniotic membrane via a dry-coating procedure. Cardiac biocompatibility and immunogenicity were tested in vitro using human cardiac fibroblasts, epicardial progenitor cells, murine HL-1 cells, and human immune cells derived from buffy coat. Processing of the ECM preserved important matrix proteins as demonstrated by mass spectrometry. ECM coating did not alter the mechanical characteristics of decellularized amniotic membrane but did cause a clear increase in adhesion capacity, cell proliferation and viability. Activated monocytes secreted less pro-inflammatory cytokines, and both macrophage polarization towards the pro-inflammatory M1 type and T cell proliferation were prevented. We conclude that the incorporation of human cardiac ECM hydrogel shifts and enhances the bioactivity of decellularized amniotic membrane, facilitating its use in future cardiac applications.
Collapse
Affiliation(s)
- Matthias Becker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Janita A Maring
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Maria Schneider
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Aarón X Herrera Martin
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, 13353 Berlin, Germany.
| | - Martina Seifert
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Oliver Klein
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Thorsten Braun
- Department of Obstetrics and Gynecology, Charite Medical University, 13353 Berlin, Germany.
| | - Volkmar Falk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13316 Berlin, Germany.
- Deutsches Herzzentrum Berlin (DHZB), Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Christof Stamm
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13316 Berlin, Germany.
- Deutsches Herzzentrum Berlin (DHZB), Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
49
|
Tan SH, Ye L. Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes: a Critical Step for Drug Development and Cell Therapy. J Cardiovasc Transl Res 2018; 11:375-392. [PMID: 29557052 DOI: 10.1007/s12265-018-9801-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022]
Abstract
Cardiomyocytes derived from human pluripotent stem cells (hPSCs) are emerging as an invaluable alternative to primarily sourced cardiomyocytes. The potentially unlimited number of hPSC-derived cardiomyocytes (hPSC-CMs) that may be obtained in vitro facilitates high-throughput applications like cell transplantation for myocardial repair, cardiotoxicity testing during drug development, and patient-specific disease modeling. Despite promising progress in these areas, a major disadvantage that limits the use of hPSC-CMs is their immaturity. Improvements to the maturity of hPSC-CMs are necessary to capture physiologically relevant responses. Herein, we review and discuss the different maturation strategies undertaken by others to improve the morphology, contractility, electrophysiology, and metabolism of these derived cardiomyocytes.
Collapse
Affiliation(s)
- Shi Hua Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore.
| |
Collapse
|
50
|
Biological and mechanical interplay at the Macro- and Microscales Modulates the Cell-Niche Fate. Sci Rep 2018; 8:3937. [PMID: 29500447 PMCID: PMC5834609 DOI: 10.1038/s41598-018-21860-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/12/2018] [Indexed: 01/03/2023] Open
Abstract
Tissue development, regeneration, or de-novo tissue engineering in-vitro, are based on reciprocal cell-niche interactions. Early tissue formation mechanisms, however, remain largely unknown given complex in-vivo multifactoriality, and limited tools to effectively characterize and correlate specific micro-scaled bio-mechanical interplay. We developed a unique model system, based on decellularized porcine cardiac extracellular matrices (pcECMs)-as representative natural soft-tissue biomaterial-to study a spectrum of common cell-niche interactions. Model monocultures and 1:1 co-cultures on the pcECM of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) were mechano-biologically characterized using macro- (Instron), and micro- (AFM) mechanical testing, histology, SEM and molecular biology aspects using RT-PCR arrays. The obtained data was analyzed using developed statistics, principal component and gene-set analyses tools. Our results indicated biomechanical cell-type dependency, bi-modal elasticity distributions at the micron cell-ECM interaction level, and corresponding differing gene expression profiles. We further show that hMSCs remodel the ECM, HUVECs enable ECM tissue-specific recognition, and their co-cultures synergistically contribute to tissue integration-mimicking conserved developmental pathways. We also suggest novel quantifiable measures as indicators of tissue assembly and integration. This work may benefit basic and translational research in materials science, developmental biology, tissue engineering, regenerative medicine and cancer biomechanics.
Collapse
|