1
|
Cai H, Yan J, Zhao W, Ma S, Wu J, Zhao Z, Deng H. Injectable interface-bonded fiber-reinforced thiolated chitosan hydrogels for enhanced cellular activities and cartilage regeneration. Carbohydr Polym 2025; 347:122643. [PMID: 39486918 DOI: 10.1016/j.carbpol.2024.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 11/04/2024]
Abstract
Injectable hydrogels with heterogeneous fibrous structures possessing good mechanical and biological characteristics are attracting increasing research interest in cartilage repair. The integration of nanofibers into hydrogel would largely enhance mechanical property, but impedes the gelation process and formation of hydrogel structures. Construction of biocompatible and mechanical supporting hydrogel with low fiber content remains a challenge. In this study, we developed a chemical cross-linked fibrous hydrogel, namely Thiol chitosan-Poly (lactic-co-glycolic acid)-Polydopamine (CSSH-PP), for facilitating cell proliferation and promoting cartilage tissues regeneration. Compared to conventional CSSH hydrogels, the compressive strength of CSSH-PP scaffolds exhibited a significant increase percentage of 100 %. Incorporation of CSSH-PP upgraded the cell migration with a four-fold increase. Besides, the infiltration of host cells and the formation of new blood vessels were observed in rat models when implanted with CSSH-PP, enhancing the native tissue microenvironmental reconstruction and leading a sustained repair in articular cartilage.
Collapse
Affiliation(s)
- Haoxin Cai
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jiaojiao Yan
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Weiguang Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shuai Ma
- Department of Orthopedic Surgery, Affiliated Renhe Hospital of China Three Gorges University, College of Basic Medical Science, China Three Gorges University, Yichang 443000, China
| | - Jun Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Ze Zhao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers, China
| | - Hongbing Deng
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China; Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers, China.
| |
Collapse
|
2
|
Mazetyte-Godiene A, Vailionyte A, Jelinskas T, Denkovskij J, Usas A. Promotion of hMDSC differentiation by combined action of scaffold material and TGF-β superfamily growth factors. Regen Ther 2024; 27:307-318. [PMID: 38633416 PMCID: PMC11021853 DOI: 10.1016/j.reth.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/08/2024] [Accepted: 03/17/2024] [Indexed: 04/19/2024] Open
Abstract
Objective Herein we propose a combined action of collagen type I (CA) or synthetic collagen-like-peptide functionalized with the cell adhesive RGD motif (PEG-CLP-RGD) hydrogels and selected growth factors to promote chondrogenic differentiation of human muscle-derived stem cells (hMDSCs) under normal and reduced oxygen conditions. Methods hMDSCs were set for differentiation towards chondrogenic lineage using BMP-7 and TGF-β3. Cells were seeded onto hydrogels loaded with growth factors (75ng/scaffold) and cultured for 28 days under normal (21%) and severe hypoxic (1%) conditions. Chondrogenesis was evaluated by monitoring collagen type II and GAG deposition, and quantification of ACAN expression by RT-PCR. Results Sustained release of TGFβ3 from the hydrogels was observed, 8.7 ± 0.5% of the initially loaded amount diffused out after 24 h from both substrates. For the BMP-7 growth factor, 14.8 ± 0.3% and 18.2 ± 0.6% of the initially loaded amount diffused out after 24 h from CA and CLP-RGD, respectively. The key findings of this study are: i) the self-supporting hydrogels themselves can stimulate hMDSC chondrogenesis by inducing gene expression of cartilage-specific proteoglycan aggrecan and ECM production; ii) the effect of dual BMP-7 and TGF-β3 loading was more pronounced on CA hydrogel under normal oxygen conditions; iii) dual loading on PEG-CLP-RGD hydrogels did not have the synergistic effect, TGF-β3 was more effective under both oxygen conditions; iv) BMP-7 can improve chondrogenic effect of TGF-β3 on CA scaffolds, and hydrogels loaded with both growth factors can induce cartilage formation in hMDSC cultures. Conclusion Our results support the potential strategy of combining implantable hydrogels functionalized with differentiation factors toward improving cartilaginous repair.
Collapse
Affiliation(s)
- Airina Mazetyte-Godiene
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- UAB Ferentis, Savanoriu ave. 235, Vilnius, Lithuania
- Department of Nanoengineering, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | | | - Tadas Jelinskas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Jaroslav Denkovskij
- Department of Regenerative Medicine, Centre for Innovative Medicine, Vilnius, Lithuania
| | - Arvydas Usas
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
3
|
Torabi Rahvar P, Abdekhodaie MJ, Jooybar E, Gantenbein B. An enzymatically crosslinked collagen type II/hyaluronic acid hybrid hydrogel: A biomimetic cell delivery system for cartilage tissue engineering. Int J Biol Macromol 2024; 279:134614. [PMID: 39127277 DOI: 10.1016/j.ijbiomac.2024.134614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
This study presents new injectable hydrogels based on hyaluronic acid and collagen type II that mimic the polysaccharide-protein structure of natural cartilage. After collagen isolation from chicken sternal cartilage, tyramine-grafted hyaluronic acid and collagen type II (HA-Tyr and COL-II-Tyr) were synthesized. Hybrid hydrogels were prepared with different ratios of HA-Tyr/COL-II-Tyr using horseradish peroxidase and noncytotoxic concentrations of hydrogen peroxide to encapsulate human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). The findings showed that a higher HA-Tyr content resulted in a higher storage modulus and a lower hydrogel shrinkage, resulting in hydrogel swelling. Incorporating COL-II-Tyr into HA-Tyr hydrogels induced a more favorable microenvironment for hBM-MSCs chondrogenic differentiation. Compared to HA-Tyr alone, the hybrid HA-Tyr/COL-II-Tyr hydrogel promoted enhanced chondrocyte adhesion, spreading, proliferation, and upregulation of cartilage-related gene expression. These results highlight the promising potential of injectable HA-Tyr/COL-II-Tyr hybrid hydrogels to deliver cells for cartilage regeneration.
Collapse
Affiliation(s)
- Parisa Torabi Rahvar
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran; Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Mohammad J Abdekhodaie
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran; Environmental and Applied Science Management, Yeates School of Graduate Studies, Toronto Metropolitan University, Toronto, Canada.
| | - Elaheh Jooybar
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland; Inselspital, Bern University Hospital, Department of Orthopedic Surgery & Traumatology, Bern, Switzerland
| |
Collapse
|
4
|
Xiong Y, Mi BB, Shahbazi MA, Xia T, Xiao J. Microenvironment-responsive nanomedicines: a promising direction for tissue regeneration. Mil Med Res 2024; 11:69. [PMID: 39434177 PMCID: PMC11492517 DOI: 10.1186/s40779-024-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Severe tissue defects present formidable challenges to human health, persisting as major contributors to mortality rates. The complex pathological microenvironment, particularly the disrupted immune landscape within these defects, poses substantial hurdles to existing tissue regeneration strategies. However, the emergence of nanobiotechnology has opened a new direction in immunomodulatory nanomedicine, providing encouraging prospects for tissue regeneration and restoration. This review aims to gather recent advances in immunomodulatory nanomedicine to foster tissue regeneration. We begin by elucidating the distinctive features of the local immune microenvironment within defective tissues and its crucial role in tissue regeneration. Subsequently, we explore the design and functional properties of immunomodulatory nanosystems. Finally, we address the challenges and prospects of clinical translation in nanomedicine development, aiming to propose a potent approach to enhance tissue regeneration through synergistic immune modulation and nanomedicine integration.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
| | - Tian Xia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Yilmaz H, Abdulazez IF, Gursoy S, Kazancioglu Y, Ustundag CB. Cartilage Tissue Engineering in Multilayer Tissue Regeneration. Ann Biomed Eng 2024:10.1007/s10439-024-03626-6. [PMID: 39400772 DOI: 10.1007/s10439-024-03626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The functional and structural integrity of the tissue/organ can be compromised in multilayer reconstructive applications involving cartilage tissue. Therefore, multilayer structures are needed for cartilage applications. In this review, we have examined multilayer scaffolds for use in the treatment of damage to organs such as the trachea, joint, nose, and ear, including the multilayer cartilage structure, but we have generally seen that they have potential applications in trachea and joint regeneration. In conclusion, when the existing studies are examined, the results are promising for the trachea and joint connections, but are still limited for the nasal and ear. It may have promising implications in the future in terms of reducing the invasiveness of existing grafting techniques used in the reconstruction of tissues with multilayered layers.
Collapse
Affiliation(s)
- Hilal Yilmaz
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey.
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey.
| | - Israa F Abdulazez
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
- University of Baghdad Al-Khwarizmi College of Engineering Biomedical Engineering Departments, Baghdad, Iraq
| | - Sevda Gursoy
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Yagmur Kazancioglu
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Cem Bulent Ustundag
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
6
|
Tong Z, Ma Y, Liang Q, Lei T, Wu H, Zhang X, Chen Y, Pan X, Wang X, Li H, Lin J, Wei W, Teng C. An in situ forming cartilage matrix mimetic hydrogel scavenges ROS and ameliorates osteoarthritis after superficial cartilage injury. Acta Biomater 2024; 187:82-97. [PMID: 39178925 DOI: 10.1016/j.actbio.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Superficial cartilage defects represent the most prevalent type of cartilage injury encountered in clinical settings, posing significant treatment challenges. Here, we fabricated a cartilage extracellular matrix mimic hydrogel (GHC, consisting of Gelatin, Hyaluronic acid, and Chondroitin sulfate) to avoid the exacerbation of cartilage deterioration, which is often driven by the accumulation of reactive oxygen species (ROS) and a pro-inflammatory microenvironment. The GHC hydrogel exhibited multifunctional properties, including in situ formation, tissue adhesiveness, anti-ROS capabilities, and the promotion of chondrogenesis. The enhancement of tissue adhesion was achieved by chemically modifying hyaluronic acid and chondroitin sulfate with o-nitrobenzene, enabling a covalent connection to the cartilage surface upon light irradiation. In vitro characterization revealed that GHC hydrogel facilitated chondrocyte adhesion, migration, and differentiation into cartilage. Additionally, GHC hydrogels demonstrated the ability to scavenge ROS in vitro and inhibit the production of inflammatory factors by chondrocytes. In the animal model of superficial cartilage injury, the hydrogel effectively promoted cartilage ECM regeneration and facilitated the interface integration between the host tissue and the material. These findings suggest that the multifunctional GHC hydrogels hold considerable promise as a strategy for cartilage defect repair. STATEMENT OF SIGNIFICANCE: Superficial cartilage defects represent the most prevalent type of cartilage injury encountered in the clinic. Previous cartilage tissue engineering materials are only suitable for full-thickness cartilage defects or osteochondral defects. Here, we developed a multifunctional GHC hydrogel composed of gelatin, hyaluronic acid, and chondroitin sulfate, which are natural cartilage extracellular matrix components. The drug-free and cell-free hydrogel not only avoids immune rejection and drug toxicity, but also shows good mechanical properties and biocompatibility. More importantly, the GHC hydrogel could adhere tightly to the superficial cartilage defects and promote cartilage regeneration while protecting against oxidation. This natural ingredients and multifunctional hydrogel is a potential material for repairing superficial cartilage defects.
Collapse
Affiliation(s)
- Zhicheng Tong
- Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Yuanzhu Ma
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Qiushi Liang
- Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Tao Lei
- Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Hongwei Wu
- Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Xianzhu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yishan Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang 314400, China
| | - Xihao Pan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang 314400, China
| | - Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang 314400, China
| | - Huimin Li
- Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Junxin Lin
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China.
| | - Wei Wei
- Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Chong Teng
- Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
7
|
Arash A, Dehgan F, Zamanlui Benisi S, Jafari-Nodoushan M, Pezeshki-Modaress M. Polysaccharide base electrospun nanofibrous scaffolds for cartilage tissue engineering: Challenges and opportunities. Int J Biol Macromol 2024; 277:134054. [PMID: 39038580 DOI: 10.1016/j.ijbiomac.2024.134054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Polysaccharides, known as naturally abundant macromolecular materials which can be easily modified chemically, have always attracted scientists' interest due to their outstanding properties in tissue engineering. Moreover, their intrinsic similarity to cartilage ECM components, biocompatibility, and non-harsh processing conditions make polysaccharides an excellent option for cartilage tissue engineering. Imitating the natural ECM structure to form a fibrous scaffold at the nanometer scale in order to recreate the optimal environment for cartilage regeneration has always been attractive for researchers in the past few years. However, there are some challenges for polysaccharides electrospun nanofibers preparation, such as poor solubility (Alginate, cellulose, chitin), high viscosity (alginate, chitosan, and Hyaluronic acid), high surface tension, etc. Several methods are reported in the literature for facing polysaccharide electrospinning issues, such as using carrier polymers, modification of polysaccharides, and using different solvent systems. In this review, considering the importance of polysaccharide-based electrospun nanofibers in cartilage tissue engineering applications, the main achievements in the past few years, and challenges for their electrospinning process are discussed. After careful investigation of reported studies in the last few years, alginate, chitosan, hyaluronic acid, chondroitin sulfate, and cellulose were chosen as the main polysaccharide base electrospun nanofibers used for cartilage regeneration.
Collapse
Affiliation(s)
- Atefeh Arash
- Department of Biomedical Engineering, Faculty of Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Fatemeh Dehgan
- Department of Biomedical Engineering, Faculty of Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran; Stem cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Milad Jafari-Nodoushan
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran; Hard Tissue Engineering Resarch Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mohamad Pezeshki-Modaress
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Wang C, Gong S, Liu H, Cui L, Ye Y, Liu D, Liu T, Xie S, Li S. Angiogenesis unveiled: Insights into its role and mechanisms in cartilage injury. Exp Gerontol 2024; 195:112537. [PMID: 39111547 DOI: 10.1016/j.exger.2024.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024]
Abstract
Osteoarthritis (OA) commonly results in compromised mobility and disability, thereby imposing a significant burden on healthcare systems. Cartilage injury is a prevalent pathological manifestation in OA and constitutes a central focus for the development of treatment strategies. Despite the considerable number of studies aimed at delaying this degenerative process, their outcomes remain unvalidated in preclinical settings. Recently, therapeutic strategies focused on angiogenesis have attracted the growing interest from researchers. Thus, we conducted a comprehensive literature review to elucidate the current progress in research and pinpoint research gaps in this domain. Additionally, it provides theoretical guidance for future research endeavors and the development of treatment strategies.
Collapse
Affiliation(s)
- Chenglong Wang
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Shuangquan Gong
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Hongjun Liu
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Liqiang Cui
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Yu Ye
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Dengshang Liu
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Tianzhu Liu
- Neurological Disease Center, Zigong Fourth People's Hospital, Zigong, 643000, Sichuan, China
| | - Shiming Xie
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China.
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210003, China.
| |
Collapse
|
9
|
Wang H, Gao B. Research Progress on the Application of Injectable Hydrogel in Oral Tissue Regeneration. J Oral Pathol Med 2024. [PMID: 39327673 DOI: 10.1111/jop.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Oral and maxillofacial tissue defects resulting from factors such as trauma or infection, can significantly impact both facial function and aesthetics. Additionally, the complex anatomical structure of the face often increases the difficulty of treatment. With the advantages of controlled release, targeted delivery, and enhanced mechanical properties, injectable hydrogels have been investigated for the treatment of oral and maxillofacial diseases. In the field of regeneration, injectable hydrogels have a structure similar to the extracellular matrix (ECM) and are biocompatible, which can be used as scaffolds for tissue regeneration. OBJECTIVE This review aims to summarize the literature on the current status and limitations of injectable hydrogels in the field of oral tissue regeneration. METHODS We searched Pubmed and Web of Science databases to find and summarize the articles on the application of injectable hydrogels in tissue regeneration. CONCLUSIONS This review focuses on the current status and limitations of injectable hydrogels in the field of tissue regeneration (periodontal tissue, dentin-pulp complex, bone and cartilage, salivary gland regeneration, and mucosal repair). Although fully studied in animal models, there are still challenges in clinical transformation of injectable hydrogels in promoting tissue regeneration.
Collapse
Affiliation(s)
- Hairong Wang
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China
| | - Biyun Gao
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China
- Department of Stomatology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Pan P, Yu X, Chen T, Liu W. SOX9 functionalized scaffolds as a barrier to against cartilage fibrosis. Colloids Surf B Biointerfaces 2024; 241:114011. [PMID: 38838445 DOI: 10.1016/j.colsurfb.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Hyaline cartilage regeneration will bring evangel to millions of people suffered from cartilage diseases. However, uncontrollable cartilage fibrosis and matrix mineralization are the primary causes of cartilage regeneration failure in many tissue engineering scaffolds. This study presents a new attempt to avoid endochondral ossification or fibrosis in cartilage regeneration therapy by establishing biochemical regulatory area. Here, SOX9 expression plasmids are assembled in cellulose gels by chitosan gene vectors to fabricate SOX9+ functionalized scaffolds. RT-qPCR, western blot and biochemical analysis all show that the SOX9 reinforcement strategy can enhance chondrogenic specific proteins expression and promote GAG production. Notably, the interference from SOX9 has resisted osteogenic inducing significantly, showing an inhibition of COL1, OPN and OC production, and the inhibition efficiency was about 58.4 %, 22.8 % and 76.9 % respectively. In vivo study, implantation of these scaffolds with BMSCs can induce chondrogenic differentiation and resist endochondral ossification effectively. Moreover, specific SOX9+ functionalized area of the gel exhibited the resistance to matrix mineralization, indicating the special biochemical functional area for cartilage regeneration. These results indicate that this strategy is effective for promoting the hyaline cartilage regeneration and avoiding cartilage fibrosis, which provides a new insight to the future development of cartilage regeneration scaffolds.
Collapse
Affiliation(s)
- Peng Pan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Xinding Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Tiantian Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Wentao Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
11
|
Younus ZM, Ahmed I, Roach P, Forsyth NR. A phosphate glass reinforced composite acrylamide gradient scaffold for osteochondral interface regeneration. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100099. [PMID: 39221155 PMCID: PMC11364006 DOI: 10.1016/j.bbiosy.2024.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
The bone-cartilage interface is defined by a unique arrangement of cells and tissue matrix. Injury to the interface can contribute to the development of arthritic joint disease. Attempts to repair osteochondral damage through clinical trials have generated mixed outcomes. Tissue engineering offers the potential of integrated scaffold design with multiregional architecture to assist in tissue regeneration, such as the bone-cartilage interface. Challenges remain in joining distinct materials in a single scaffold mass while maintaining integrity and avoiding delamination. The aim of the current work is to examine the possibility of joining two closely related acrylamide derivatives such as, poly n-isopropyl acrylamide (pNIPAM) and poly n‑tert‑butyl acrylamide (pNTBAM). The target is to produce a single scaffold unit with distinct architectural regions in the favour of regenerating the osteochondral interface. Longitudinal phosphate glass fibres (PGFs) with the formula 50P2O5.30CaO.20Na2O were incorporated to provide additional bioactivity by degradation to release ions such as calcium and phosphate which are considered valuable to assist the mineralization process. Polymers were prepared via atom transfer radical polymerization (ATRP) and solutions cast to ensure the integration of polymers chains. Scaffold was characterized using scanning electron microscope (SEM) and Fourier transform infra-red (FTIR) techniques. The PGF mass degradation pattern was inspected using micro computed tomography (µCT). Biological assessment of primary human osteoblasts (hOBs) and primary human chondrocytes (hCHs) upon scaffolds was performed using alizarin red and colorimetric calcium assay for mineralization assessment; alcian blue staining and dimethyl-methylene blue (DMMB) assay for glycosaminoglycans (GAGs); immunostaining and enzyme-linked immunosorbent assay (ELISA) to detect functional proteins expression by cells such as collagen I, II, and annexin A2. FTIR analysis revealed an intact unit with gradual transformation from pNIPAM to pNTBAM. SEM images showed three distinct architectural regions with mean pore diameter of 54.5 µm (pNIPAM), 16.5 µm (pNTBAM) and 118 µm at the mixed interface. Osteogenic and mineralization potential by cells was observed upon the entire scaffold's regions. Chondrogenic activity was relevant on the pNTBAM side of the scaffold only with minimal evidence in the pNIPAM region. PGFs increased mineralization potential of both hOBs and hCHs, evidenced by elevated collagens I, X, and annexin A2 with reduction of collagen II in PGFs scaffolds. In conclusion, pNIPAM and pNTBAM integration created a multiregional scaffold with distinct architectural regions. Differential chondrogenic, osteogenic, and mineralized cell performance, in addition to the impact of PGF, suggests a potential role for phosphate glass-incorporated, acrylamide-derivative scaffolds in osteochondral interface regeneration.
Collapse
Affiliation(s)
- Zaid M. Younus
- School of Pharmacy and Bioengineering, Keele University, Keele, UK
- College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ifty Ahmed
- Faculty of Engineering, Advanced Materials Research Group, University of Nottingham, Nottingham, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Keele, UK
- Vice principals’ office, King's College, University of Aberdeen, Aberdeen, AB24 3FX, UK
| |
Collapse
|
12
|
Wu R, Li W, Yang P, Shen N, Yang A, Liu X, Ju Y, Lei L, Fang B. DNA hydrogels and their derivatives in biomedical engineering applications. J Nanobiotechnology 2024; 22:518. [PMID: 39210464 PMCID: PMC11360341 DOI: 10.1186/s12951-024-02791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Deoxyribonucleotide (DNA) is uniquely programmable and biocompatible, and exhibits unique appeal as a biomaterial as it can be precisely designed and programmed to construct arbitrary shapes. DNA hydrogels are polymer networks comprising cross-linked DNA strands. As DNA hydrogels present programmability, biocompatibility, and stimulus responsiveness, they are extensively explored in the field of biomedicine. In this study, we provide an overview of recent advancements in DNA hydrogel technology. We outline the different design philosophies and methods of DNA hydrogel preparation, discuss its special physicochemical characteristics, and highlight the various uses of DNA hydrogels in biomedical domains, such as drug delivery, biosensing, tissue engineering, and cell culture. Finally, we discuss the current difficulties facing DNA hydrogels and their potential future development.
Collapse
Affiliation(s)
- Rui Wu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wenting Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences School of Basic Medicine, Peking Union Medical College, Beijing, 100000, China
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Naisi Shen
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Anqi Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiangjun Liu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
13
|
Krakowski P, Rejniak A, Sobczyk J, Karpiński R. Cartilage Integrity: A Review of Mechanical and Frictional Properties and Repair Approaches in Osteoarthritis. Healthcare (Basel) 2024; 12:1648. [PMID: 39201206 PMCID: PMC11353818 DOI: 10.3390/healthcare12161648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Osteoarthritis (OA) is one of the most common causes of disability around the globe, especially in aging populations. The main symptoms of OA are pain and loss of motion and function of the affected joint. Hyaline cartilage has limited ability for regeneration due to its avascularity, lack of nerve endings, and very slow metabolism. Total joint replacement (TJR) has to date been used as the treatment of end-stage disease. Various joint-sparing alternatives, including conservative and surgical treatment, have been proposed in the literature; however, no treatment to date has been fully successful in restoring hyaline cartilage. The mechanical and frictional properties of the cartilage are of paramount importance in terms of cartilage resistance to continuous loading. OA causes numerous changes in the macro- and microstructure of cartilage, affecting its mechanical properties. Increased friction and reduced load-bearing capability of the cartilage accelerate further degradation of tissue by exerting increased loads on the healthy surrounding tissues. Cartilage repair techniques aim to restore function and reduce pain in the affected joint. Numerous studies have investigated the biological aspects of OA progression and cartilage repair techniques. However, the mechanical properties of cartilage repair techniques are of vital importance and must be addressed too. This review, therefore, addresses the mechanical and frictional properties of articular cartilage and its changes during OA, and it summarizes the mechanical outcomes of cartilage repair techniques.
Collapse
Affiliation(s)
- Przemysław Krakowski
- Department of Trauma Surgery and Emergency Medicine, Medical University, 20-059 Lublin, Poland
- Orthopaedic and Sports Traumatology Department, Carolina Medical Center, Pory 78, 02-757 Warsaw, Poland; (A.R.); (J.S.)
| | - Adrian Rejniak
- Orthopaedic and Sports Traumatology Department, Carolina Medical Center, Pory 78, 02-757 Warsaw, Poland; (A.R.); (J.S.)
| | - Jakub Sobczyk
- Orthopaedic and Sports Traumatology Department, Carolina Medical Center, Pory 78, 02-757 Warsaw, Poland; (A.R.); (J.S.)
| | - Robert Karpiński
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, University of Technology, 20-618 Lublin, Poland
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University, 20-059 Lublin, Poland
| |
Collapse
|
14
|
Zhang Y, Chen J, Sun Y, Wang M, Liu H, Zhang W. Endogenous Tissue Engineering for Chondral and Osteochondral Regeneration: Strategies and Mechanisms. ACS Biomater Sci Eng 2024; 10:4716-4739. [PMID: 39091217 DOI: 10.1021/acsbiomaterials.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Increasing attention has been paid to the development of effective strategies for articular cartilage (AC) and osteochondral (OC) regeneration due to their limited self-reparative capacities and the shortage of timely and appropriate clinical treatments. Traditional cell-dependent tissue engineering faces various challenges such as restricted cell sources, phenotypic alterations, and immune rejection. In contrast, endogenous tissue engineering represents a promising alternative, leveraging acellular biomaterials to guide endogenous cells to the injury site and stimulate their intrinsic regenerative potential. This review provides a comprehensive overview of recent advancements in endogenous tissue engineering strategies for AC and OC regeneration, with a focus on the tissue engineering triad comprising endogenous stem/progenitor cells (ESPCs), scaffolds, and biomolecules. Multiple types of ESPCs present within the AC and OC microenvironment, including bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AD-MSCs), synovial membrane-derived mesenchymal stem cells (SM-MSCs), and AC-derived stem/progenitor cells (CSPCs), exhibit the ability to migrate toward injury sites and demonstrate pro-regenerative properties. The fabrication and characteristics of scaffolds in various formats including hydrogels, porous sponges, electrospun fibers, particles, films, multilayer scaffolds, bioceramics, and bioglass, highlighting their suitability for AC and OC repair, are systemically summarized. Furthermore, the review emphasizes the pivotal role of biomolecules in facilitating ESPCs migration, adhesion, chondrogenesis, osteogenesis, as well as regulating inflammation, aging, and hypertrophy-critical processes for endogenous AC and OC regeneration. Insights into the applications of endogenous tissue engineering strategies for in vivo AC and OC regeneration are provided along with a discussion on future perspectives to enhance regenerative outcomes.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
15
|
Guo J, Yang Y, Xiang Y, Zhang S, Guo X. Application of smart hydrogel materials in cartilage injury repair: A systematic review and meta-analysis. J Biomater Appl 2024; 39:96-116. [PMID: 38708775 DOI: 10.1177/08853282241248779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
OBJECTIVE Cartilage injury is a common clinical condition, and treatment approaches have evolved over time from traditional conservative and surgical methods to regenerative repair. In this context, hydrogels, as widely used biomaterials in the field of cartilage repair, have garnered significant attention. Particularly, responsive hydrogels (also known as "smart hydrogels") have shown immense potential due to their ability to respond to various physicochemical properties and environmental changes. This paper aims to review the latest research developments of hydrogels in cartilage repair, utilizing a more systematic and comprehensive meta-analysis approach to evaluate the research status and application value of responsive hydrogels. The goal is to determine whether these materials demonstrate favorable therapeutic effects for subsequent clinical applications, thereby offering improved treatment methods for patients with cartilage injuries. METHOD This study employed a systematic literature search method to summarize the research progress of responsive hydrogels by retrieving literature on the subject and review studies. The search terms included "hydrogel" and "cartilage," covering data from database inception up to October 2023. The quality of the literature was independently evaluated using Review Manager v5.4 software. Quantifiable data was statistically analyzed using the R language. RESULTS A total of 7 articles were retrieved for further meta-analysis. In the quality assessment, the studies demonstrated reliability and accuracy. The results of the meta-analysis indicated that responsive hydrogels exhibit unique advantages and effective therapeutic outcomes in the field of cartilage repair. Subgroup analysis revealed potential influences of factors such as different types of hydrogels and animal models on treatment effects. CONCLUSION Responsive hydrogels show significant therapeutic effects and substantial application potential in the field of cartilage repair. This study provides strong scientific evidence for their further clinical applications and research, with the hope of promoting advancements in the treatment of cartilage injuries.
Collapse
Affiliation(s)
- Juncheng Guo
- Central Laboratory of Haikou People's Hospital, Haikou Affiliated Hospital of Xiangya Medical College, Central South University, Haikou, P. R. China
| | - Yijun Yang
- Haikou People's Hospital, Xiangya School of Medicine, Haikou Affiliated Hospital of Central South University, Haikou, P. R. China
| | - Yang Xiang
- Haikou People's Hospital, Xiangya School of Medicine, Haikou Affiliated Hospital of Central South University, Haikou, P. R. China
| | - Shufang Zhang
- Central Laboratory, Haikou People's Hospital, Xiangya School of Medicine, Haikou Affiliated Hospital of Central South University, Haikou, P. R. China
| | - Xueyi Guo
- Central South University, Changsha, P. R. China
| |
Collapse
|
16
|
Brown NE, Ellerbe LR, Hollister SJ, Temenoff JS. Development and Characterization of Heparin-Containing Hydrogel/3D-Printed Scaffold Composites for Craniofacial Reconstruction. Ann Biomed Eng 2024; 52:2287-2307. [PMID: 38734845 DOI: 10.1007/s10439-024-03530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Regeneration of cartilage and bone tissues remains challenging in tissue engineering due to their complex structures, and the need for both mechanical support and delivery of biological repair stimuli. Therefore, the goal of this study was to develop a composite scaffold platform for anatomic chondral and osteochondral repair using heparin-based hydrogels to deliver small molecules within 3D-printed porous scaffolds that provide structure, stiffness, and controlled biologic delivery. We designed a mold-injection system to combine hydrolytically degradable hydrogels and 3D-printed scaffolds that could be employed rapidly (< 30 min) in operating room settings (~23 °C). Micro-CT analysis demonstrated the effectiveness of our injection system through homogeneously distributed hydrogel within the pores of the scaffolds. Hydrogels and composite scaffolds exhibited efficient loading (~94%) of a small positively charged heparin-binding molecule (crystal violet) with sustained release over 14 days and showed high viability of encapsulated porcine chondrocytes over 7 days. Compression testing demonstrated nonlinear viscoelastic behavior where tangent stiffness decreased with scaffold porosity (porous scaffold tangent stiffness: 70%: 4.9 MPa, 80%: 1.5 MPa, and 90%: 0.20 MPa) but relaxation was not affected. Lower-porosity scaffolds (70%) showed stiffness similar to lower ranges of trabecular bone (4-8 MPa) while higher-porosity scaffolds (80% and 90%) showed stiffness similar to auricular cartilage (0.16-2 MPa). Ultimately, this rapid composite scaffold fabrication method may be employed in the operating room and utilized to control biologic delivery within load-bearing scaffolds.
Collapse
Affiliation(s)
- Nettie E Brown
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr, Atlanta, GA, 30332, USA
| | - Lela R Ellerbe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr, Atlanta, GA, 30332, USA
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr, Atlanta, GA, 30332, USA.
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr, Atlanta, GA, 30332, USA.
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30332, USA.
| |
Collapse
|
17
|
Camarero-Espinosa S, Beeren I, Liu H, Gomes DB, Zonderland J, Lourenço AFH, van Beurden D, Peters M, Koper D, Emans P, Kessler P, Rademakers T, Baker MB, Bouvy N, Moroni L. 3D Niche-Inspired Scaffolds as a Stem Cell Delivery System for the Regeneration of the Osteochondral Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310258. [PMID: 38226666 DOI: 10.1002/adma.202310258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/08/2024] [Indexed: 01/17/2024]
Abstract
The regeneration of the osteochondral unit represents a challenge due to the distinct cartilage and bone phases. Current strategies focus on the development of multiphasic scaffolds that recapitulate features of this complex unit and promote the differentiation of implanted bone-marrow derived stem cells (BMSCs). In doing so, challenges remain from the loss of stemness during in vitro expansion of the cells and the low control over stem cell activity at the interface with scaffolds in vitro and in vivo. Here, this work scaffolds inspired by the bone marrow niche that can recapitulate the natural healing process after injury. The construct comprises an internal depot of quiescent BMSCs, mimicking the bone marrow cavity, and an electrospun (ESP) capsule that "activates" the cells to migrate into an outer "differentiation-inducing" 3D printed unit functionalized with TGF-β and BMP-2 peptides. In vitro, niche-inspired scaffolds retained a depot of nonproliferative cells capable of migrating and proliferating through the ESP capsule. Invasion of the 3D printed cavity results in location-specific cell differentiation, mineralization, secretion of alkaline phosphatase (ALP) and glycosaminoglycans (GAGs), and genetic upregulation of collagen II and collagen I. In vivo, niche-inspired scaffolds are biocompatible, promoted tissue formation in rat subcutaneous models, and regeneration of the osteochondral unit in rabbit models.
Collapse
Affiliation(s)
- Sandra Camarero-Espinosa
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia / San, Sebastián 20018, Gipuzkoa, Spain
- IKERBASQUE, Basque Foundation for Science, Euskadi Pl., 5, Bilbao, 48009, Spain
| | - Ivo Beeren
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Hong Liu
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
- Department of General Surgery, Maastricht University Medical Center, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - David B Gomes
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Jip Zonderland
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Ana Filipa H Lourenço
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Denis van Beurden
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Marloes Peters
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
- Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - David Koper
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
- Department of Cranio-Maxillofacial Surgery, Maastricht University Medical Center, PO Box 5800, Maastricht, 6202, The Netherlands
| | - Pieter Emans
- Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Peter Kessler
- Department of Cranio-Maxillofacial Surgery, Maastricht University Medical Center, PO Box 5800, Maastricht, 6202, The Netherlands
| | - Timo Rademakers
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Matthew B Baker
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Nicole Bouvy
- Department of General Surgery, Maastricht University Medical Center, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| |
Collapse
|
18
|
Yang J, Dong Y, Hu L, Wang W, Li Y, Wang S, Wang C. Immortalization of Mesenchymal Stem Cell Lines from Sheep Umbilical Cord Tissue. BIOLOGY 2024; 13:551. [PMID: 39056743 PMCID: PMC11274198 DOI: 10.3390/biology13070551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Mesenchymal stem cells (MSCs) possess significant differentiation potential, making them highly promising in medicine and immunotherapy due to their regenerative capabilities and exosome secretion. However, challenges such as limited cell divisions and complex testing hinder large-scale MSC production. In this study, we successfully established an immortalized MSC line by transfecting the human telomerase reverse transcriptase (TERT) gene into MSCs isolated from pregnant sheep umbilical cords. This approach effectively inhibits cell senescence and promotes cell proliferation, enabling the generation of umbilical cord mesenchymal stem cells (UCMSCs) on a larger scale. Our findings demonstrate that these transfected TERT-UCMSCs exhibit enhanced proliferative capacity and a reduced aging rate compared to regular UCMSCs while maintaining their stemness without tumorigenicity concerns. Consequently, they hold great potential for medical applications requiring large quantities of functional MSCs.
Collapse
Affiliation(s)
- Jinwei Yang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yitong Dong
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Lixinyi Hu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Weihai Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yajun Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
19
|
Novotná R, Franková J. Materials Suitable for Osteochondral Regeneration. ACS OMEGA 2024; 9:30097-30108. [PMID: 39035913 PMCID: PMC11256084 DOI: 10.1021/acsomega.4c04789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Osteochondral defects affect articular cartilage, calcified cartilage, and subchondral bone. The main problem that they cause is a different behavior of cell tissue in the osteochondral and bone part. Articular cartilage is composed mainly of collagen II, glycosaminoglycan (GAG), and water, and has a low healing ability due to a lack of vascularization. However, bone tissue is composed of collagen I, proteoglycans, and inorganic composites such as hydroxyapatite. Due to the discrepancy between the characters of these two parts, it is difficult to find materials that will meet all the structural and other requirements for effective regeneration. When designing a scaffold for an osteochondral defect, a variety of materials are available, e.g., polymers (synthetic and natural), inorganic particles, and extracellular matrix (ECM) components. All of them require the accurate characterization of the prepared materials and a number of in vitro and in vivo tests before they are applied to patients. Taken in concert, the final material needs to mimic the structural, morphological, chemical, and cellular demands of the native tissue. In this review, we present an overview of the structure and composition of the osteochondral part, especially synthetic materials with additives appropriate for healing osteochondral defects. Finally, we summarize in vitro and in vivo methods suitable for evaluating materials for restoring osteochondral defects.
Collapse
Affiliation(s)
- Renáta Novotná
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Jana Franková
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic
| |
Collapse
|
20
|
Yi P, Chen S, Zhao Y, Ku W, Lu H, Yu D, Zhao W. An injectable dental pulp-derived decellularized matrix hydrogel promotes dentin repair through modulation of macrophage response. BIOMATERIALS ADVANCES 2024; 161:213883. [PMID: 38762928 DOI: 10.1016/j.bioadv.2024.213883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Maintaining the viability of damaged pulp is critical in clinical dentistry. Pulp capping, by placing dental material over the exposed pulp, is a main approach to promote pulp-dentin healing and mineralized tissue formation. The dental materials are desired to impact on intricate physiological mechanisms in the healing process, including early regulation of inflammation, immunity, and cellular events. In this study, we developed an injectable dental pulp-derived decellularized matrix (DPM) hydrogel to modulate macrophage responses and promote dentin repair. The DPM derived from porcine dental pulp has high collagen retention and low DNA content. The DPM was solubilized by pepsin digestion (named p-DPM) and subsequently injected through a 25G needle to form hydrogel facilely at 37 °C. In vitro results demonstrated that the p-DPM induced the M2-polarization of macrophages and the migration, proliferation, and dentin differentiation of human dental pulp stem cells from deciduous teeth (SHEDs). In a mouse subcutaneous injection test, the p-DPM hydrogel was found to facilitate cell recruitment and M2 polarization during the early phase of implantation. Additionally, the acute pulp restoration in rat models proved that injectable p-DPM hydrogel as a pulp-capping agent had excellent efficacy in dentin regeneration. This study demonstrates that the DPM promotes dentin repair by modulating macrophage responses, and has a potential for pulp-capping applications in dental practice.
Collapse
Affiliation(s)
- Ping Yi
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China
| | - Sixue Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China
| | - Yifan Zhao
- Changsha Medical University, Changsha, Hunan, China
| | - Weili Ku
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China
| | - Hui Lu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China
| | - Dongsheng Yu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China.
| | - Wei Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Zhang W, Hou Y, Yin S, Miao Q, Lee K, Zhou X, Wang Y. Advanced gene nanocarriers/scaffolds in nonviral-mediated delivery system for tissue regeneration and repair. J Nanobiotechnology 2024; 22:376. [PMID: 38926780 PMCID: PMC11200991 DOI: 10.1186/s12951-024-02580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Tissue regeneration technology has been rapidly developed and widely applied in tissue engineering and repair. Compared with traditional approaches like surgical treatment, the rising gene therapy is able to have a durable effect on tissue regeneration, such as impaired bone regeneration, articular cartilage repair and cancer-resected tissue repair. Gene therapy can also facilitate the production of in situ therapeutic factors, thus minimizing the diffusion or loss of gene complexes and enabling spatiotemporally controlled release of gene products for tissue regeneration. Among different gene delivery vectors and supportive gene-activated matrices, advanced gene/drug nanocarriers attract exceptional attraction due to their tunable physiochemical properties, as well as excellent adaptive performance in gene therapy for tissue regeneration, such as bone, cartilage, blood vessel, nerve and cancer-resected tissue repair. This paper reviews the recent advances on nonviral-mediated gene delivery systems with an emphasis on the important role of advanced nanocarriers in gene therapy and tissue regeneration.
Collapse
Affiliation(s)
- Wanheng Zhang
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Hou
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
| | - Shiyi Yin
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi Miao
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kyubae Lee
- Department of Biomedical Materials, Konyang University, Daejeon, 35365, Republic of Korea
| | - Xiaojian Zhou
- Department of Pediatrics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Yongtao Wang
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China.
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
22
|
Couto M, Vasconcelos DP, Pereira CL, Neto E, Sarmento B, Lamghari M. Neuro-Immunomodulatory Potential of Nanoenabled 4D Bioprinted Microtissue for Cartilage Tissue Engineering. Adv Healthc Mater 2024:e2400496. [PMID: 38850170 DOI: 10.1002/adhm.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Cartilage defects trigger post-traumatic inflammation, leading to a catabolic metabolism in chondrocytes and exacerbating cartilage degradation. Current treatments aim to relieve pain but fail to target the inflammatory process underlying osteoarthritis (OA) progression. Here, a human cartilage microtissue (HCM) nanoenabled with ibuprofen-loaded poly(lactic-co-glycolic acid) nanoparticles (ibu-PLGA NPs) is 4D-bioprinted to locally mitigate inflammation and impair nerve sprouting. Under an in vitro inflamed environment, the nanoenabled HCM exhibits chondroprotective potential by decreasing the interleukin (IL)1β and IL6 release, while sustaining extracellular matrix (ECM) production. In vivo, assessments utilizing the air pouch mouse model affirm the nanoenabled HCM non-immunogenicity. Nanoenabled HCM-derived secretomes do not elicit a systemic immune response and decrease locally the recruitment of mature dendritic cells and the secretion of multiple inflammatory mediators and matrix metalloproteinases when compared to inflamed HCM condition. Notably, the nanoenabled HCM secretome has no impact on the innervation profile of the skin above the pouch cavity, suggesting a potential to impede nerve growth. Overall, HCM nanoenabled with ibu-PLGA NPs emerges as a potent strategy to mitigate inflammation and protect ECM without triggering nerve growth, introducing an innovative and promising approach in the cartilage tissue engineering field.
Collapse
Affiliation(s)
- Marina Couto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto - ICBAS, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Daniela Pereira Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
| | - Catarina Leite Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
| | - Estrela Neto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, Porto, 4200-072, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- Instituto Universitário de Ciências da Saúde - IUCS-CESPU, Rua Central de Gandra, 1317, Gandra, 4585-116, Portugal
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
| |
Collapse
|
23
|
Salehiamin M, Ghoraishizadeh S, Habibpour A, Tafreshi S, Abolhasani MM, Shemiranykia Z, Sefat KK, Esmaeili J. Simultaneous usage of sulforaphane nanoemulsion and tannic acid in ternary chitosan/gelatin/PEG hydrogel for knee cartilage tissue engineering: In vitro and in vivo study. Int J Biol Macromol 2024; 271:132692. [PMID: 38806085 DOI: 10.1016/j.ijbiomac.2024.132692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
The therapeutic potential of tissue engineering in addressing articular cartilage defects has been a focal point of research for numerous years. Despite its promising outlook, a persistent challenge within this domain is the lack of sufficient functional integration between engineered and natural tissues. This study introduces a novel approach that employs a combination of sulforaphane (SFN) nanoemulsion and tannic acid to enhance cartilage tissue engineering and promote tissue integration in a rat knee cartilage defect model. To substantiate our hypothesis, we conducted a series of in vitro and in vivo experiments. The SFN nanoemulsion was characterized using DLS, zeta potential, and TEM analyses. Subsequently, it was incorporated into a ternary polymer hydrogel composed of chitosan, gelatin, and polyethylene glycol. We evaluated the hydrogel with (H-SFN) and without (H) the SFN nanoemulsion through a comprehensive set of physicochemical, mechanical, and biological analyses. For the in vivo study, nine male Wistar rats were divided into three groups: no implant (Ctrl), H, and H-SFN. After inducing a cartilage defect, the affected area was treated with tannic acid and subsequently implanted with the hydrogels. Four weeks post-implantation, the harvested cartilage underwent histological examination employing H&E, safranin O/fast green, alcian blue, and immunohistochemistry staining techniques. Our results revealed that the SFN nanodroplets had an average diameter of 75 nm and a surface charge of -11.58 mV. Moreover, degradation, swelling rates, hydrophilicity, and elasticity features of the hydrogel incorporating SFN were improved. Histopathological analysis indicated a higher production of GAGs and collagen in the H-SFN group. Furthermore, the H-SFN group exhibited superior cartilage regeneration and tissue integration compared to the Ctrl and H groups. In conclusion, the findings of this study suggest the importance of considering cell protective properties in the fabrication of scaffolds for knee cartilage defects, emphasizing the potential significance of the proposed SFN nanoemulsion and tannic acid approach in advancing the field of cartilage tissue engineering.
Collapse
Affiliation(s)
- Mehdi Salehiamin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Tissue Engineering Center, TISSUEHUB CO., Tehran, Iran
| | | | - Ava Habibpour
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sadaf Tafreshi
- Hygienics Department, Biomedical Engineering, Tehran Medical Sciences Islamic Azad University, Tehran, Iran; Materials Department, Biomedical Engineering, Materials and Energy Research Institute, Karaj, Iran
| | - Mohammad Mahdi Abolhasani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center (MERC), Karaj, Iran
| | | | - Karim Kaveh Sefat
- Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Javad Esmaeili
- Tissue Engineering Center, TISSUEHUB CO., Tehran, Iran; Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.
| |
Collapse
|
24
|
Mashaqbeh H, Al-Ghzawi B, BaniAmer F. Exploring the Formulation and Approaches of Injectable Hydrogels Utilizing Hyaluronic Acid in Biomedical Uses. Adv Pharmacol Pharm Sci 2024; 2024:3869387. [PMID: 38831895 PMCID: PMC11147673 DOI: 10.1155/2024/3869387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 05/11/2024] [Indexed: 06/05/2024] Open
Abstract
The characteristics of injectable hydrogels make them a prime contender for various biomedical applications. Hyaluronic acid is an essential component of the matrix surrounding the cells; moreover, hyaluronic acid's structural and biochemical characteristics entice researchers to develop injectable hydrogels for various applications. However, due to its poor mechanical properties, several strategies are used to produce injectable hyaluronic acid hydrogel. This review summarizes published studies on the production of injectable hydrogels based on hyaluronic acid polysaccharide polymers and the biomedical field's applications for these hydrogel systems. Hyaluronic acid-based hydrogels are divided into two categories based on their injectability mechanisms: in situ-forming injectable hydrogels and shear-thinning injectable hydrogels. Many crosslinking methods are used to create injectable hydrogels; chemical crosslinking techniques are the most frequently investigated technique. Hybrid injectable hydrogel systems are widely investigated by blending hyaluronic acid with other polymers or nanoparticulate systems. Injectable hyaluronic acid hydrogels were thoroughly investigated and proven to demonstrate potential in various medical fields, including delivering drugs and cells, tissue repair, and wound dressings.
Collapse
Affiliation(s)
- Hadeia Mashaqbeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Batool Al-Ghzawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Fatima BaniAmer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
25
|
Puiggalí-Jou A, Rizzo R, Bonato A, Fisch P, Ponta S, Weber DM, Zenobi-Wong M. FLight Biofabrication Supports Maturation of Articular Cartilage with Anisotropic Properties. Adv Healthc Mater 2024; 13:e2302179. [PMID: 37867457 DOI: 10.1002/adhm.202302179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Indexed: 10/24/2023]
Abstract
Tissue engineering approaches that recapitulate cartilage biomechanical properties are emerging as promising methods to restore the function of injured or degenerated tissue. However, despite significant progress in this research area, the generation of engineered cartilage constructs akin to native counterparts still represents an unmet challenge. In particular, the inability to accurately reproduce cartilage zonal architecture with different collagen fibril orientations is a significant limitation. The arrangement of the extracellular matrix (ECM) plays a fundamental role in determining the mechanical and biological functions of the tissue. In this study, it is shown that a novel light-based approach, Filamented Light (FLight) biofabrication, can be used to generate highly porous, 3D cell-instructive anisotropic constructs that lead to directional collagen deposition. Using a photoclick-based photoresin optimized for cartilage tissue engineering, a significantly improved maturation of the cartilaginous tissues with zonal architecture and remarkable native-like mechanical properties is demonstrated.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Angela Bonato
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Philipp Fisch
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Simone Ponta
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Daniel M Weber
- Division of Hand Surgery, University Children's Hospital Zürich, University of Zürich, Zürich, 8032, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| |
Collapse
|
26
|
Wang S, Jia Z, Dai M, Feng X, Tang C, Liu L, Cao L. Advances in natural and synthetic macromolecules with stem cells and extracellular vesicles for orthopedic disease treatment. Int J Biol Macromol 2024; 268:131874. [PMID: 38692547 DOI: 10.1016/j.ijbiomac.2024.131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Serious orthopedic disorders resulting from myriad diseases and impairments continue to pose a considerable challenge to contemporary clinical care. Owing to its limited regenerative capacity, achieving complete bone tissue regeneration and complete functional restoration has proven challenging with existing treatments. By virtue of cellular regenerative and paracrine pathways, stem cells are extensively utilized in the restoration and regeneration of bone tissue; however, low survival and retention after transplantation severely limit their therapeutic effect. Meanwhile, biomolecule materials provide a delivery platform that improves stem cell survival, increases retention, and enhances therapeutic efficacy. In this review, we present the basic concepts of stem cells and extracellular vesicles from different sources, emphasizing the importance of using appropriate expansion methods and modification strategies. We then review different types of biomolecule materials, focusing on their design strategies. Moreover, we summarize several forms of biomaterial preparation and application strategies as well as current research on biomacromolecule materials loaded with stem cells and extracellular vesicles. Finally, we present the challenges currently impeding their clinical application for the treatment of orthopedic diseases. The article aims to provide researchers with new insights for subsequent investigations.
Collapse
Affiliation(s)
- Supeng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China; Ningxia Medical University, Ningxia 750004, China
| | - Zhiqiang Jia
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xujun Feng
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Lingling Cao
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China.
| |
Collapse
|
27
|
Zhao J, Yan Z, Ding Y, Dai Y, Feng Z, Li Z, Ma L, Diao N, Guo A, Yin H. A Hybrid Scaffold Induces Chondrogenic Differentiation and Enhances In Vivo Cartilage Regeneration. Tissue Eng Part A 2024. [PMID: 38562117 DOI: 10.1089/ten.tea.2023.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Extensively researched tissue engineering strategies involve incorporating cells into suitable biomaterials, offering promising alternatives to boost tissue repair. In this study, a hybrid scaffold, Gel-DCM, which integrates a photoreactive gelatin-hyaluronic acid hydrogel (Gel) with an oriented porous decellularized cartilage matrix (DCM), was designed to facilitate chondrogenic differentiation and cartilage repair. The Gel-DCM exhibited excellent biocompatibility in vitro, promoting favorable survival and growth of human adipose-derived stem cells (hADSCs) and articular chondrocytes (hACs). Gene expression analysis indicated that the hACs expanded within the Gel-DCM exhibited enhanced chondrogenic phenotype. In addition, Gel-DCM promoted chondrogenesis of hADSCs without the supplementation of exogenous growth factors. Following this, in vivo experiments were conducted where empty Gel-DCM or Gel-DCM loaded with hACs/hADSCs were used and implanted to repair osteochondral defects in a rat model. In the control group, no implants were delivered to the injury site. Interestingly, macroscopic, histological, and microcomputed tomography scanning results revealed superior cartilage restoration and subchondral bone reconstruction in the empty Gel-DCM group compared with the control group. Moreover, both hACs-loaded and hADSCs-loaded Gel-DCM implants exhibited superior repair of hyaline cartilage and successful reconstruction of subchondral bone, whereas defects in the control groups were predominantly filled with fibrous tissue. These observations suggest that the Gel-DCM can provide an appropriate three-dimensional chondrogenic microenvironment, and its combination with reparative cell sources, ACs or ADSCs, holds great potential for facilitating cartilage regeneration.
Collapse
Affiliation(s)
- Jiaming Zhao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zexing Yan
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yufei Ding
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yike Dai
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ziyang Feng
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhiyao Li
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lifeng Ma
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Naicheng Diao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heyong Yin
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Agten H, Van Hoven I, Van Hoorick J, Van Vlierberghe S, Luyten FP, Bloemen V. In vitro and in vivo evaluation of periosteum-derived cells and iPSC-derived chondrocytes encapsulated in GelMA for osteochondral tissue engineering. Front Bioeng Biotechnol 2024; 12:1386692. [PMID: 38665810 PMCID: PMC11043557 DOI: 10.3389/fbioe.2024.1386692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Osteochondral defects are deep joint surface lesions that affect the articular cartilage and the underlying subchondral bone. In the current study, a tissue engineering approach encompassing individual cells encapsulated in a biocompatible hydrogel is explored in vitro and in vivo. Cell-laden hydrogels containing either human periosteum-derived progenitor cells (PDCs) or human induced pluripotent stem cell (iPSC)-derived chondrocytes encapsulated in gelatin methacryloyl (GelMA) were evaluated for their potential to regenerate the subchondral mineralized bone and the articular cartilage on the joint surface, respectively. PDCs are easily isolated and expanded progenitor cells that are capable of generating mineralized cartilage and bone tissue in vivo via endochondral ossification. iPSC-derived chondrocytes are an unlimited source of stable and highly metabolically active chondrocytes. Cell-laden hydrogel constructs were cultured for up to 28 days in a serum-free chemically defined chondrogenic medium. On day 1 and day 21 of the differentiation period, the cell-laden constructs were implanted subcutaneously in nude mice to evaluate ectopic tissue formation 4 weeks post-implantation. Taken together, the data suggest that iPSC-derived chondrocytes encapsulated in GelMA can generate hyaline cartilage-like tissue constructs with different levels of maturity, while using periosteum-derived cells in the same construct type generates mineralized tissue and cortical bone in vivo. Therefore, the aforementioned cell-laden hydrogels can be an important part of a multi-component strategy for the manufacturing of an osteochondral implant.
Collapse
Affiliation(s)
- Hannah Agten
- Department of Materials Engineering, Surface and Interface Engineered Materials (SIEM), Group T Leuven Campus, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Inge Van Hoven
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | - Sandra Van Vlierberghe
- BIO INX BV, Zwijnaarde, Belgium
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Frank P. Luyten
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Veerle Bloemen
- Department of Materials Engineering, Surface and Interface Engineered Materials (SIEM), Group T Leuven Campus, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Ren H, Zhang L, Zhang X, Yi C, Wu L. Specific lipid magnetic sphere sorted CD146-positive bone marrow mesenchymal stem cells can better promote articular cartilage damage repair. BMC Musculoskelet Disord 2024; 25:253. [PMID: 38561728 PMCID: PMC10983655 DOI: 10.1186/s12891-024-07381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The characteristics and therapeutic potential of subtypes of bone marrow mesenchymal stem cells (BMSCs) are largely unknown. Also, the application of subpopulations of BMSCs in cartilage regeneration remains poorly characterized. The aim of this study was to explore the regenerative capacity of CD146-positive subpopulations of BMSCs for repairing cartilage defects. METHODS CD146-positive BMSCs (CD146 + BMSCs) were sorted by self-developed CD146-specific lipid magnetic spheres (CD146-LMS). Cell surface markers, viability, and proliferation were evaluated in vitro. CD146 + BMSCs were subjected to in vitro chondrogenic induction and evaluated for chondrogenic properties by detecting mRNA and protein expression. The role of the CD146 subpopulation of BMSCs in cartilage damage repair was assessed by injecting CD146 + BMSCs complexed with sodium alginate gel in the joints of a mouse cartilage defect model. RESULTS The prepared CD146-LMS had an average particle size of 193.7 ± 5.24 nm, an average potential of 41.9 ± 6.21 mv, and a saturation magnetization intensity of 27.2 Am2/kg, which showed good stability and low cytotoxicity. The sorted CD146 + BMSCs highly expressed stem cell and pericyte markers with good cellular activity and cellular value-added capacity. Cartilage markers Sox9, Collagen II, and Aggrecan were expressed at both protein and mRNA levels in CD146 + BMSCs cells after chondrogenic induction in vitro. In a mouse cartilage injury model, CD146 + BMSCs showed better function in promoting the repair of articular cartilage injury. CONCLUSION The prepared CD146-LMS was able to sort out CD146 + BMSCs efficiently, and the sorted subpopulation of CD146 + BMSCs had good chondrogenic differentiation potential, which could efficiently promote the repair of articular cartilage injury, suggesting that the sorted CD146 + BMSCs subpopulation is a promising seed cell for cartilage tissue engineering.
Collapse
Affiliation(s)
- Hanru Ren
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Lele Zhang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Xu Zhang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Chengqing Yi
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China.
| | - Lianghao Wu
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China.
| |
Collapse
|
30
|
Li M, Jin M, Yang H. Remodelers of the vascular microenvironment: The effect of biopolymeric hydrogels on vascular diseases. Int J Biol Macromol 2024; 264:130764. [PMID: 38462100 DOI: 10.1016/j.ijbiomac.2024.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Vascular disease is the leading health problem worldwide. Vascular microenvironment encompasses diverse cell types, including those within the vascular wall, blood cells, stromal cells, and immune cells. Initiation of the inflammatory state of the vascular microenvironment and changes in its mechanics can profoundly affect vascular homeostasis. Biomedical materials play a crucial role in modern medicine, hydrogels, characterized by their high-water content, have been increasingly utilized as a three-dimensional interaction network. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular microenvironment have enabled the treatment of vascular diseases. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the various vascular diseases including atherosclerosis, aneurysm, vascular ulcers of the lower limbs and myocardial infarction. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments.
Collapse
Affiliation(s)
- Minhao Li
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
31
|
Arul SS, Balakrishnan B, Handanahal SS, Venkataraman S. Viral nanoparticles: Current advances in design and development. Biochimie 2024; 219:33-50. [PMID: 37573018 DOI: 10.1016/j.biochi.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Viral nanoparticles (VNPs) are self-assembling, adaptable delivery systems for vaccines and other therapeutic agents used in a variety of biomedical applications. The potential of viruses to invade and infect various hosts and cells renders them suitable as potential nanocarriers, possessing distinct functional characteristics, immunogenic properties, and improved biocompatibility and biodegradability. VNPs are frequently produced through precise genetic or chemical engineering, which involves adding diverse sequences or functional payloads to the capsid protein (CP). Several spherical and helical plant viruses, bacteriophages, and animal viruses are currently being used as VNPs, or non-infectious virus-like particles (VLPs). In addition to their broad use in cancer therapy, vaccine technology, diagnostics, and molecular imaging, VNPs have made important strides in the realms of tissue engineering, biosensing, and antimicrobial prophylaxis. They are also being used in energy storage cells due to their binding and piezoelectric properties. The large-scale production of VNPs for research, preclinical testing, and clinical use is fraught with difficulties, such as those relating to cost-effectiveness, scalability, and purity. Consequently, many plants- and microorganism-based platforms are being developed, and newer viruses are being explored. The goal of the current review is to provide an overview of these advances.
Collapse
|
32
|
Xiong C, Yao W, Tao R, Yang S, Jiang W, Xu Y, Zhang J, Han Y. Application of Decellularized Adipose Matrix as a Bioscaffold in Different Tissue Engineering. Aesthetic Plast Surg 2024; 48:1045-1053. [PMID: 37726399 DOI: 10.1007/s00266-023-03608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023]
Abstract
With the development of tissue engineering, the application of decellularized adipose matrix as scaffold material in tissue engineering has been intensively explored due to its wide source and excellent potential in tissue regeneration. Decellularized adipose matrix is a promising candidate for adipose tissue regeneration, while modification of decellularized adipose matrix scaffold can also allow it to transcend the limitations of adipose tissue source properties and applied to other tissue engineering fields, including cartilage and bone tissue engineering, neural tissue engineering, and skin tissue engineering. In this review, we summarized the development of the applications of decellularized adipose matrix in different tissue engineering and present future perspectives.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Chenlu Xiong
- School of Medicine, Nankai University, Tianjin, China
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Wende Yao
- School of Medicine, Nankai University, Tianjin, China
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Ran Tao
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Sihan Yang
- School of Medicine, Nankai University, Tianjin, China
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Weiqian Jiang
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Julei Zhang
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China.
- Department of Burn and Plastic Surgery, The 980st Hospital of the PLA Joint Logistics Support Force, Hebei, China.
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China.
| |
Collapse
|
33
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
34
|
Lee J, Lee E, Huh SJ, Kang JI, Park KM, Byun H, Lee S, Kim E, Shin H. Composite Spheroid-Laden Bilayer Hydrogel for Engineering Three-Dimensional Osteochondral Tissue. Tissue Eng Part A 2024; 30:225-243. [PMID: 38062771 DOI: 10.1089/ten.tea.2023.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
A combination of hydrogels and stem cell spheroids has been used to engineer three-dimensional (3D) osteochondral tissue, but precise zonal control directing cell fate within the hydrogel remains a challenge. In this study, we developed a composite spheroid-laden bilayer hydrogel to imitate osteochondral tissue by spatially controlled differentiation of human adipose-derived stem cells. Meticulous optimization of the spheroid-size and mechanical strength of gelatin methacryloyl (GelMA) hydrogel enables the cells to homogeneously sprout within the hydrogel. Moreover, fibers immobilizing transforming growth factor beta-1 (TGF-β1) or bone morphogenetic protein-2 (BMP-2) were incorporated within the spheroids, which induced chondrogenic or osteogenic differentiation of cells in general media, respectively. The spheroids-filled GelMA solution was crosslinked to create the bilayer hydrogel, which demonstrated a strong interfacial adhesion between the two layers. The cell sprouting enhanced the adhesion of each hydrogel, demonstrated by increase in tensile strength from 4.8 ± 0.4 to 6.9 ± 1.2 MPa after 14 days of culture. Importantly, the spatially confined delivery of BMP-2 within the spheroids increased mineral deposition and more than threefold enhanced osteogenic genes of cells in the bone layer while the cells induced by TGF-β1 signals were apparently differentiated into chondrocytes within the cartilage layer. The results suggest that our composite spheroid-laden hydrogel could be used for the biofabrication of osteochondral tissue, which can be applied to engineer other complex tissues by delivery of appropriate biomolecules.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
| | - Eunjin Lee
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
| | - Seung Jae Huh
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
| | - Jeon Il Kang
- Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Kyung Min Park
- Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, Institute of Nano Science and Technology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Chen J, Zhang X, Cross R, Ahn Y, Huskin G, Evans W, Hwang PT, Kim JA, Brott BC, Jo H, Yoon YS, Jun HW. Atherosclerotic three-layer nanomatrix vascular sheets for high-throughput therapeutic evaluation. Biomaterials 2024; 305:122450. [PMID: 38169190 PMCID: PMC10843643 DOI: 10.1016/j.biomaterials.2023.122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
In vitro atherosclerosis models are essential to evaluate therapeutics before in vivo and clinical studies, but significant limitations remain, such as the lack of three-layer vascular architecture and limited atherosclerotic features. Moreover, no scalable 3D atherosclerosis model is available for making high-throughput assays for therapeutic evaluation. Herein, we report an in vitro 3D three-layer nanomatrix vascular sheet with critical atherosclerosis multi-features (VSA), including endothelial dysfunction, monocyte recruitment, macrophages, extracellular matrix remodeling, smooth muscle cell phenotype transition, inflammatory cytokine secretion, foam cells, and calcification initiation. Notably, we present the creation of high-throughput functional assays with VSAs and the use of these assays for evaluating therapeutics for atherosclerosis treatment. The therapeutics include conventional drugs (statin and sirolimus), candidates for treating atherosclerosis (curcumin and colchicine), and potential gene therapy (miR-146a-loaded liposomes). The high efficiency and flexibility of the scalable VSA functional assays should facilitate drug discovery and development for atherosclerosis.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA; Endomimetics, LLC., Birmingham, AL, USA
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robbie Cross
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yujin Ahn
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gillian Huskin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Will Evans
- Augusta University/University of Georgia Medical Partnership, Athens, GA, USA
| | | | - Jeong-A Kim
- Department of Medicine, Division of Endocrinology and Metabolism, UAB Comprehensive Diabetes Center, Birmingham, AL, USA
| | - Brigitta C Brott
- Endomimetics, LLC., Birmingham, AL, USA; Department of Medicine and Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Young-Sup Yoon
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA; Endomimetics, LLC., Birmingham, AL, USA.
| |
Collapse
|
36
|
Guo W, Liu H, Zhang J, Zhang J, Wang F, Zhang P, Yang Y. Preparation and characterization of a novel composite acellular matrix/hyaluronic acid thermosensitive hydrogel for interstitial cystitis/bladder pain syndrome. J Biomed Mater Res A 2024; 112:449-462. [PMID: 37975156 DOI: 10.1002/jbm.a.37643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Bladder mucosa damage that causes harm to the interstitium is a recognized pathogenesis of interstitial cystitis/bladder pain syndrome (IC/BPS). The intravesical instillation of drugs is an important second-line therapy, but it is often necessary to use drugs repeatedly in the clinic because of their short residence time in the bladder cavity, which alters the therapeutic effect. To overcome this drawback, this study developed a novel composite acellular matrix/hyaluronic acid (HA) thermosensitive hydrogel (HA-Gel) using rabbit small intestinal submucosa extracellular matrix (ECM) as the thermosensitive material and HA as the drug component and examined its composition, microstructure, thermodynamic properties, temperature sensitivity, rheological properties, biocompatibility, drug release, hydrogel residue, and bacteriostatic properties. The study showed HA-Gel was liquid at temperatures of 15-37.5°C and solid at 37.5-50°C, its swelling rate decreased with increasing temperature, and its lower critical solution temperature occurred at approximately 37.5°C. This property made the hydrogel liquid at room temperature convenient for intravesical perfusion and turned into a solid about 1 min after entering the body and rising to body temperature to increase its residence time. Subsequent experiments also proved that the gel residue time of HA-Gel in vivo and the drug release time of HA in vivo could reach more than 5 days, which was significantly higher than that of HA alone, and it had good biocompatibility and antibacterial properties. Therefore, this hydrogel possesses the proper characteristics to possibly make it an ideal dosage form for IC/BPS intravesical instillation therapy.
Collapse
Affiliation(s)
- Wei Guo
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Haichao Liu
- Department of Urology, Hebei Yanda Hospital, West of SiPuLan Road, Langfang, China
| | - Jiaxing Zhang
- Department of Urology, Hebei Yanda Hospital, West of SiPuLan Road, Langfang, China
| | - Jianzhong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Fei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Peng Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Yunbo Yang
- Department of Urology, Hebei Yanda Hospital, West of SiPuLan Road, Langfang, China
| |
Collapse
|
37
|
Zhao C, Li X, Han X, Li Z, Bian S, Zeng W, Ding M, Liang J, Jiang Q, Zhou Z, Fan Y, Zhang X, Sun Y. Molecular co-assembled strategy tuning protein conformation for cartilage regeneration. Nat Commun 2024; 15:1488. [PMID: 38374253 PMCID: PMC10876949 DOI: 10.1038/s41467-024-45703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
The assembly of oligopeptide and polypeptide molecules can reconstruct various ordered advanced structures through intermolecular interactions to achieve protein-like biofunction. Here, we develop a "molecular velcro"-inspired peptide and gelatin co-assembly strategy, in which amphiphilic supramolecular tripeptides are attached to the molecular chain of gelatin methacryloyl via intra-/intermolecular interactions. We perform molecular docking and dynamics simulations to demonstrate the feasibility of this strategy and reveal the advanced structural transition of the co-assembled hydrogel, which brings more ordered β-sheet content and 10-fold or more compressive strength improvement. We conduct transcriptome analysis to reveal the role of co-assembled hydrogel in promoting cell proliferation and chondrogenic differentiation. Subcutaneous implantation evaluation confirms considerably reduced inflammatory responses and immunogenicity in comparison with type I collagen. We demonstrate that bone mesenchymal stem cells-laden co-assembled hydrogel can be stably fixed in rabbit knee joint defects by photocuring, which significantly facilitates hyaline cartilage regeneration after three months. This co-assembly strategy provides an approach for developing cartilage regenerative biomaterials.
Collapse
Affiliation(s)
- Chengkun Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Xiaowen Han
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, Sichuan, 621099, P. R. China
| | - Zhulian Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Shaoquan Bian
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Weinan Zeng
- Department of Orthopedic Surgery and Orthopedic Research Institution, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Zongke Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institution, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
| |
Collapse
|
38
|
Chen Z, Zhang S, Duan P, Yin Z, Dong S, Pang R, Tan H. Intra-articular injection of ascorbic acid enhances microfracture-mediated cartilage repair. Sci Rep 2024; 14:3811. [PMID: 38361039 PMCID: PMC10869716 DOI: 10.1038/s41598-024-54514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
Previous studies have confirmed that ascorbic acid (AA) can promote cartilage repair and improve cartilage differentiation in bone marrow mesenchymal stem cells. However, the use of microfracture (MFX) combined with AA to repair cartilage damage has not been studied. This study established a rabbit animal model and treated cartilage injury with different concentrations of AA combined with MFX. Macroscopic observations, histological analysis, immunohistochemical analysis and reverse transcription quantitative polymerase chain reaction analysis of TGF-β, AKT/Nrf2, and VEGF mRNA expression were performed. The results showed that intra-articular injection of AA had a positive effect on cartilage repair mediated by microfractures. Moreover, 10 mg/ml AA was the most effective at promoting cartilage repair mediated by microfractures. Intra-articular injection of AA promoted the synthesis of type II collagen and the formation of glycosaminoglycans by downregulating the mRNA expression of TGF-β and VEGF. In summary, this study confirmed that AA could promote cartilage repair after MFX surgery.
Collapse
Affiliation(s)
- Zhian Chen
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Peiya Duan
- Neurology Department, Longling County People's Hospital, Baoshan City, Yunnan Province, China
| | - Zhengbo Yin
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Shuangbin Dong
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Rongqing Pang
- Basic Medical Laboratory, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China.
| | - Hongbo Tan
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China.
| |
Collapse
|
39
|
Fang Y, Hu J, Zou Y, Wang Z, Ye Y, Zhang C. Neochlorogenic Acid Combined with Bone Marrow Mesenchymal Stem Cells Encapsulated into GelMA Hydrogel for Transplantation to Repair Intervertebral Disk Degeneration. Biomacromolecules 2024; 25:729-740. [PMID: 38263676 PMCID: PMC10865342 DOI: 10.1021/acs.biomac.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Intervertebral disk degeneration is a common disease with an unknown etiology. Currently, tissue engineering is considered to be an important method for intervertebral disk repair. Although transplanted stem cells may disrupt the repair process because of apoptosis caused by the oxidative microenvironment. Herein, bone marrow mesenchymal stem cell (BMSC) and Neochlorogenic acid (Ncg) were encapsulated into a GelMA hydrogel as a carrier to protect transplanted stem cells. Ncg effectively inhibited the oxidative stress process and reduced the apoptosis rate. A 5% GelMA hydrogel had a large pore size and porosity that provided an enhanced survival space for cells. An in vivo assessment showed that treatment with GelMA + BMSC + Ncg produced greater repair of degenerated intervertebral disks than that found in other model groups. Thus, this study may help contribute to improving stem cell transplantation for treating intervertebral disk degeneration.
Collapse
Affiliation(s)
- Yuekun Fang
- The
First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
- Key
Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu 233000, Anhui, China
- Bengbu
Medical College, Bengbu 233000, Anhui, China
| | - Jie Hu
- The
First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
- Key
Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu 233000, Anhui, China
| | - Yang Zou
- The
First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
- Key
Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu 233000, Anhui, China
- Bengbu
Medical College, Bengbu 233000, Anhui, China
| | - Zhichen Wang
- The
First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
- Key
Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu 233000, Anhui, China
- Bengbu
Medical College, Bengbu 233000, Anhui, China
| | - Yuchen Ye
- The
First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
- Bengbu
Medical College, Bengbu 233000, Anhui, China
| | - Changchun Zhang
- The
First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China
- Key
Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu 233000, Anhui, China
- Bengbu
Medical College, Bengbu 233000, Anhui, China
| |
Collapse
|
40
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. The Physiological Inorganic Polymers Biosilica and Polyphosphate as Key Drivers for Biomedical Materials in Regenerative Nanomedicine. Int J Nanomedicine 2024; 19:1303-1337. [PMID: 38348175 PMCID: PMC10860874 DOI: 10.2147/ijn.s446405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
There is a need for novel nanomaterials with properties not yet exploited in regenerative nanomedicine. Based on lessons learned from the oldest metazoan phylum, sponges, it has been recognized that two previously ignored or insufficiently recognized principles play an essential role in tissue regeneration, including biomineral formation/repair and wound healing. Firstly, the dependence on enzymes as a driving force and secondly, the availability of metabolic energy. The discovery of enzymatic synthesis and regenerative activity of amorphous biosilica that builds the mineral skeleton of siliceous sponges formed the basis for the development of successful strategies for the treatment of osteochondral impairments in humans. In addition, the elucidation of the functional significance of a second regeneratively active inorganic material, namely inorganic polyphosphate (polyP) and its amorphous nanoparticles, present from sponges to humans, has pushed forward the development of innovative materials for both soft (skin, cartilage) and hard tissue (bone) repair. This energy-rich molecule exhibits a property not shown by any other biopolymer: the delivery of metabolic energy, even extracellularly, necessary for the ATP-dependent tissue regeneration. This review summarizes the latest developments in nanobiomaterials based on these two evolutionarily old, regeneratively active materials, amorphous silica and amorphous polyP, highlighting their specific, partly unique properties and mode of action, and discussing their possible applications in human therapy. The results of initial proof-of-concept studies on patients demonstrating complete healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
41
|
Cao Y, Zhang H, Qiu M, Zheng Y, Shi X, Yang J. Biomimetic injectable and bilayered hydrogel scaffold based on collagen and chondroitin sulfate for the repair of osteochondral defects. Int J Biol Macromol 2024; 257:128593. [PMID: 38056750 DOI: 10.1016/j.ijbiomac.2023.128593] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
The simultaneous regeneration of articular cartilage and subchondral bone is a major challenge. Bioinspired scaffolds with distinct regions resembling stratified anatomical architecture provide a potential strategy for osteochondral defect repair. Here, we report the development of an injectable and bilayered hydrogel scaffold with a strong interface binding force. In this bilayer hydrogel, composed of carbonyl hydrazide grafted collagen (COL-CDH) and oxidized chondroitin sulfate (OCS), which are derivatives of osteochondral tissue components, in combination with poly (ethylene glycol) diacrylate (PEGDA), functions as a cartilage layer; while zinc-doped hydroxyapatite acts as a subchondral bone layer that is based on the cartilage layer. The strong interface between the two layers involves dynamic amide bonds formed between COL-CDH and OCS, and permanent CC bonds formed by PEGDA radical reactions. This bilayer hydrogel can be used to inoculate adipose mesenchymal stem cells which can then differentiate into chondrocytes and osteoblasts, secreting glycosaminoglycan, and promoting calcium deposition. This accelerates the regeneration of cartilage and subchondral bone. Micro-CT and tissue staining revealed an increase in the amount of bone present in new subchondral bone, and new tissues with a structure similar to normal cartilage. This study therefore demonstrates that injectable bilayer hydrogels are a promising scaffold for repairing osteochondral defects.
Collapse
Affiliation(s)
- Yongjian Cao
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Haijie Zhang
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Mengjie Qiu
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
42
|
Zhou Z, Wang J, Jiang C, Xu K, Xu T, Yu X, Fang J, Yang Y, Dai X. Advances in Hydrogels for Meniscus Tissue Engineering: A Focus on Biomaterials, Crosslinking, Therapeutic Additives. Gels 2024; 10:114. [PMID: 38391445 PMCID: PMC10887778 DOI: 10.3390/gels10020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Meniscus tissue engineering (MTE) has emerged as a promising strategy for meniscus repair and regeneration. As versatile platforms, hydrogels have gained significant attention in this field, as they possess tunable properties that allow them to mimic native extracellular matrices and provide a suitable microenvironment. Additionally, hydrogels can be minimally invasively injected and can be adjusted to match the shape of the implant site. They can conveniently and effectively deliver bioactive additives and demonstrate good compatibility with other functional materials. These inherent qualities have made hydrogel a promising candidate for therapeutic approaches in meniscus repair and regeneration. This article provides a comprehensive review of the advancements made in the research on hydrogel application for meniscus tissue engineering. Firstly, the biomaterials and crosslinking strategies used in the formation of hydrogels are summarized and analyzed. Subsequently, the role of therapeutic additives, including cells, growth factors, and other active products, in facilitating meniscus repair and regeneration is thoroughly discussed. Furthermore, we summarize the key issues for designing hydrogels used in MTE. Finally, we conclude with the current challenges encountered by hydrogel applications and suggest potential solutions for addressing these challenges in the field of MTE. We hope this review provides a resource for researchers and practitioners interested in this field, thereby facilitating the exploration of new design possibilities.
Collapse
Affiliation(s)
- Zhuxing Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Jiajie Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Chaoqian Jiang
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Tengjing Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Xinning Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Jinghua Fang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Yanyu Yang
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xuesong Dai
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| |
Collapse
|
43
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
44
|
Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small Joint Organoids 3D Bioprinting: Construction Strategy and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302506. [PMID: 37814373 DOI: 10.1002/smll.202302506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Osteoarthritis (OA) is a chronic disease that causes pain and disability in adults, affecting ≈300 million people worldwide. It is caused by damage to cartilage, including cellular inflammation and destruction of the extracellular matrix (ECM), leading to limited self-repairing ability due to the lack of blood vessels and nerves in the cartilage tissue. Organoid technology has emerged as a promising approach for cartilage repair, but constructing joint organoids with their complex structures and special mechanisms is still challenging. To overcome these boundaries, 3D bioprinting technology allows for the precise design of physiologically relevant joint organoids, including shape, structure, mechanical properties, cellular arrangement, and biological cues to mimic natural joint tissue. In this review, the authors will introduce the biological structure of joint tissues, summarize key procedures in 3D bioprinting for cartilage repair, and propose strategies for constructing joint organoids using 3D bioprinting. The authors also discuss the challenges of using joint organoids' approaches and perspectives on their future applications, opening opportunities to model joint tissues and response to joint disease treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
45
|
Sun Z, Liu H, Dai D, Lyu H, Huang R, Wang W, Guo C. Injectable cell-laden silk acid hydrogel. Chem Commun (Camb) 2024; 60:316-319. [PMID: 38063025 DOI: 10.1039/d3cc04280d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
This study presents an injectable cell-laden hydrogel system based on silk acid, a carboxylated derivative of natural silk fibroin, which exhibits promising applications in biomedicine. The hydrogel is produced under physiological conditions (37 °C and pH 7.4) via physical crosslinking. Notably, the hydrogel demonstrates remarkable cytocompatibility, enabling efficient cell encapsulation, and exhibits good injectability. These promising results strongly indicate the potential of silk acid hydrogel for transformative applications, including 3D cell culture, targeted cell delivery, and tissue engineering.
Collapse
Affiliation(s)
- Ziyang Sun
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310023, China.
| | - Haoran Liu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310023, China.
| | - Dandan Dai
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310023, China.
| | - Hao Lyu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310023, China.
| | - Ruochuan Huang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310023, China.
| | - Wenzhao Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310023, China.
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310023, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
| |
Collapse
|
46
|
Wang M, Li S, Zhang L, Tian J, Ma J, Lei B, Xu P. Injectable Bioactive Antioxidative One-Component Polycitrate Hydrogel with Anti-Inflammatory Effects for Osteoarthritis Alleviation and Cartilage Protection. Adv Healthc Mater 2024; 13:e2301953. [PMID: 37788390 DOI: 10.1002/adhm.202301953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Chronic inflammation in osteoarthritis (OA) can destroy the cartilage extracellular matrix (ECM), causing cartilage damage and further exacerbating the inflammation. Effective regulation of the inflammatory microenvironment has important clinical significance for OA alleviation and cartilage protection. Polycitrate-based polymers have good antioxidant and anti-inflammatory abilities but cannot self-polymerize to form hydrogels. Herein, a one-component multifunctional polycitrate-based (PCCGA) hydrogel for OA alleviation and cartilage protection is reported. The PCCGA hydrogel is prepared using only the PCCGA polymer by self-polymerization and exhibits multifunctional properties such as injectability, adhesion, controllable pore size and elasticity, self-healing ability, and photoluminescence. Moreover, the PCCGA hydrogel exhibits good biocompatibility, biodegradability, antioxidation by scavenging intracellular reactive oxygen species, and anti-inflammatory ability by downregulating the expression of proinflammatory cytokines and promoting the proliferation and migration of stem cells. In vivo results from an OA rat model show that the PCCGA hydrogel can effectively alleviate OA and protect the cartilage by restoring uniform articular surface and cartilage ECM levels, as well as inhibiting cartilage resorption and matrix metalloproteinase-13 levels. These results indicate that the PCCGA hydrogel, as a novel bioactive material, is an effective strategy for OA treatment and has broad application prospects in inflammation-related biomedicine.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Sihua Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Liuyang Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Jing Tian
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Junping Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
47
|
Han Y, Dal-Fabbro R, Mahmoud AH, Rahimnejad M, Xu J, Castilho M, Dissanayaka WL, Bottino MC. GelMA/TCP nanocomposite scaffold for vital pulp therapy. Acta Biomater 2024; 173:495-508. [PMID: 37939819 PMCID: PMC10964899 DOI: 10.1016/j.actbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Pulp capping is a necessary procedure for preserving the vitality and health of the dental pulp, playing a crucial role in preventing the need for root canal treatment or tooth extraction. Here, we developed an electrospun gelatin methacryloyl (GelMA) fibrous scaffold incorporating beta-tricalcium phosphate (TCP) particles for pulp capping. A comprehensive morphological, physical-chemical, and mechanical characterization of the engineered fibrous scaffolds was performed. In vitro bioactivity, cell compatibility, and odontogenic differentiation potential of the scaffolds in dental pulp stem cells (DPSCs) were also evaluated. A pre-clinical in vivo model was used to determine the therapeutic role of the GelMA/TCP scaffolds in promoting hard tissue formation. Morphological, chemical, and thermal analyses confirmed effective TCP incorporation in the GelMA nanofibers. The GelMA+20%TCP nanofibrous scaffold exhibited bead-free morphology and suitable mechanical and degradation properties. In vitro, GelMA+20%TCP scaffolds supported apatite-like formation, improved cell spreading, and increased deposition of mineralization nodules. Gene expression analysis revealed upregulation of ALPL, RUNX2, COL1A1, and DMP1 in the presence of TCP-laden scaffolds. In vivo, analyses showed mild inflammatory reaction upon scaffolds' contact while supporting mineralized tissue formation. Although the levels of Nestin and DMP1 proteins did not exceed those associated with the clinical reference treatment (i.e., mineral trioxide aggregate), the GelMA+20%TCP scaffold exhibited comparable levels, thus suggesting the emergence of differentiated odontoblast-like cells capable of dentin matrix secretion. Our innovative GelMA/TCP scaffold represents a simplified and efficient alternative to conventional pulp-capping biomaterials. STATEMENT OF SIGNIFICANCE: Vital pulp therapy (VPT) aims to preserve dental pulp vitality and avoid root canal treatment. Biomaterials that bolster mineralized tissue regeneration with ease of use are still lacking. We successfully engineered gelatin methacryloyl (GelMA) electrospun scaffolds incorporated with beta-tricalcium phosphate (TCP) for VPT. Notably, electrospun GelMA-based scaffolds containing 20% (w/v) of TCP exhibited favorable mechanical properties and degradation, cytocompatibility, and mineralization potential indicated by apatite-like structures in vitro and mineralized tissue deposition in vivo, although not surpassing those associated with the standard of care. Collectively, our innovative GelMA/TCP scaffold represents a simplified alternative to conventional pulp capping materials such as MTA and Biodentine™ since it is a ready-to-use biomaterial, requires no setting time, and is therapeutically effective.
Collapse
Affiliation(s)
- Yuanyuan Han
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Abdel H Mahmoud
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Miguel Castilho
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Waruna L Dissanayaka
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
48
|
Lu X, Chen Y, Zhang Y, Cheng J, Teng K, Chen Y, Shi J, Wang D, Wang L, You S, Feng Z, An Q. Piezoionic High Performance Hydrogel Generator and Active Protein Absorber via Microscopic Porosity and Phase Blending. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307875. [PMID: 37983590 DOI: 10.1002/adma.202307875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Generating electricity in hydrogel is very important but remains difficult. Hydrogel with electricity generation capability is more capable in bio-relevant tasks such as tissue engineering, artificial skin, or medical treatment, because electricity is indispensable in regulating physiological activities. Here, a porous and phase blending hydrogel structure for effective piezoionic electricity generation is developed. Dynamic electric field is generated taking advantage of the difference in streaming speeds of sodium and chloride in the material. Microscopic porosity and hydrophilic-hydrophobic phase blending are the two key factors for prominent piezoionic performance. Voltages as high as 600 mV are first realized in hydrogels in response to medical ultrasound stimulation. The hydrogel structure is also subjective to effective substance exchange and can actively enrich proteins from surroundings under mechanical stimuli. Preliminary applications in neural stimulation, constructing complex spatial-temporal chemical and electric field distribution patterns, mimetic tactile sensor, sample pretreatment in fast detection, and enzyme immobilization are demonstrated.
Collapse
Affiliation(s)
- Xi Lu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yao Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yihe Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jiajun Cheng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Kaixuan Teng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yunfan Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jing Shi
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Danlei Wang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Long Wang
- Department of Pain, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Shaohua You
- Department of Pain, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zeguo Feng
- Department of Pain, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Qi An
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
49
|
Kandile NG, Ahmed ME, Mohamed MI, Mohamed HM. Therapeutic applications of sustainable new chitosan derivatives and its nanocomposites: Fabrication and characterization. Int J Biol Macromol 2024; 254:127855. [PMID: 37939771 DOI: 10.1016/j.ijbiomac.2023.127855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Chitosan (CS) is a biologically active biopolymer used in different medical applications due to its biodegradability, biocompatibility, and nontoxicity. Nanotechnology is an exciting and quick developing field in medical applications. Nanoparticles have shown great potential in the treatment of cancer and inflammation. In the present work modification of chitosan and its (Ag, Au, or ZnO) nanocomposites by N-aminophthalimide (NAP) occurred through the reaction with epichlorohydrin (ECH) as a crosslinker in the presence or absence of glutaraldehyde (GA) under different reaction conditions using microwave irradiation to give modified chitosan derivatives CS-2, CS-6, and their nanocomposites. Modified chitosan derivatives were characterized using different tools. CS-2 and CS-6 derivatives displayed enhancement of thermal stability and crystallinity compared to chitosan. Additionally, CS-2, CS-6, and their nanocomposites exhibited improvements in antitumor activity against HeLa cancer cells and enzymatic inhibitory against trypsin and α-chymotrypsin enzymes compared to chitosan. However, CS-2 revealed the highest cell growth inhibition% toward HeLa cells (89.02 ± 1.46 %) and the enzymatic inhibitory toward α-chymotrypsin enzyme (17.13 ± 1.59 %). Furthermore, CS-Au-2 showed the highest enzymatic inhibitory against trypsin enzyme (28.14 ± 1.76 %). These results suggested that the new chitosan derivatives CS-2, CS-6, and their nanocomposites could be a platform for medical applications against HeLa cells, trypsin, and α-chymotrypsin enzymes.
Collapse
Affiliation(s)
- Nadia G Kandile
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Marwa ElS Ahmed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Mansoura I Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Hemat M Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt.
| |
Collapse
|
50
|
Ghosh S, Pati F. Decellularized extracellular matrix and silk fibroin-based hybrid biomaterials: A comprehensive review on fabrication techniques and tissue-specific applications. Int J Biol Macromol 2023; 253:127410. [PMID: 37844823 DOI: 10.1016/j.ijbiomac.2023.127410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Biomaterials play a fundamental role in tissue engineering by providing biochemical and physical cues that influence cellular fate and matrix development. Decellularized extracellular matrix (dECM) as a biomaterial is distinguished by its abundant composition of matrix proteins, such as collagen, elastin, fibronectin, and laminin, as well as glycosaminoglycans and proteoglycans. However, the mechanical properties of only dECM-based constructs may not always meet tissue-specific requirements. Recent advancements address this challenge by utilizing hybrid biomaterials that harness the strengths of silk fibroin (SF), which contributes the necessary mechanical properties, while dECM provides essential cellular cues for in vitro studies and tissue regeneration. This review discusses emerging trends in developing such biopolymer blends, aiming to synergistically combine the advantages of SF and dECM through optimal concentrations and desired cross-linking density. We focus on different fabrication techniques and cross-linking methods that have been utilized to fabricate various tissue-engineered hybrid constructs. Furthermore, we survey recent applications of such biomaterials for the regeneration of various tissues, including bone, cartilage, trachea, bladder, vascular graft, heart, skin, liver, and other soft tissues. Finally, the trajectory and prospects of the constructs derived from this blend in the tissue engineering field have been summarized, highlighting their potential for clinical translation.
Collapse
Affiliation(s)
- Soham Ghosh
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Falguni Pati
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| |
Collapse
|