1
|
Zhang Z, Ma M. Strategies to enhance the ability of nerve guidance conduits to promote directional nerve growth. Biomed Eng Online 2024; 23:40. [PMID: 38582838 PMCID: PMC10998375 DOI: 10.1186/s12938-024-01233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Severely damaged peripheral nerves will regenerate incompletely due to lack of directionality in their regeneration, leading to loss of nerve function. To address this problem, various nerve guidance conduits (NGCs) have been developed to provide guidance for nerve repair. However, their clinical application is still limited, mainly because its effect in promoting nerve repair is not as good as autologous nerve transplantation. Therefore, it is necessary to enhance the ability of NGCs to promote directional nerve growth. Strategies include preparing various directional structures on NGCs to provide contact guidance, and loading various substances on them to provide electrical stimulation or neurotrophic factor concentration gradient to provide directional physical or biological signals.
Collapse
Affiliation(s)
- Ziyue Zhang
- South China University of Technology School of Medicine, Guangzhou, China.
| | - Muyuan Ma
- South China University of Technology School of Medicine, Guangzhou, China
| |
Collapse
|
2
|
Pei B, Hu M, Wu X, Lu D, Zhang S, Zhang L, Wu S. Investigations into the effects of scaffold microstructure on slow-release system with bioactive factors for bone repair. Front Bioeng Biotechnol 2023; 11:1230682. [PMID: 37781533 PMCID: PMC10537235 DOI: 10.3389/fbioe.2023.1230682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
In recent years, bone tissue engineering (BTE) has played an essential role in the repair of bone tissue defects. Although bioactive factors as one component of BTE have great potential to effectively promote cell differentiation and bone regeneration, they are usually not used alone due to their short effective half-lives, high concentrations, etc. The release rate of bioactive factors could be controlled by loading them into scaffolds, and the scaffold microstructure has been shown to significantly influence release rates of bioactive factors. Therefore, this review attempted to investigate how the scaffold microstructure affected the release rate of bioactive factors, in which the variables included pore size, pore shape and porosity. The loading nature and the releasing mechanism of bioactive factors were also summarized. The main conclusions were achieved as follows: i) The pore shapes in the scaffold may have had no apparent effect on the release of bioactive factors but significantly affected mechanical properties of the scaffolds; ii) The pore size of about 400 μm in the scaffold may be more conducive to controlling the release of bioactive factors to promote bone formation; iii) The porosity of scaffolds may be positively correlated with the release rate, and the porosity of 70%-80% may be better to control the release rate. This review indicates that a slow-release system with proper scaffold microstructure control could be a tremendous inspiration for developing new treatment strategies for bone disease. It is anticipated to eventually be developed into clinical applications to tackle treatment-related issues effectively.
Collapse
Affiliation(s)
- Baoqing Pei
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Mengyuan Hu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xueqing Wu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Da Lu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shijia Zhang
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Le Zhang
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shuqin Wu
- School of Big Data and Information, Shanxi College of Technology, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Guo L, Zhao Q, Wu Y, Xu G. Small-world spiking neural network with anti-interference ability based on speech recognition under interference. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Guo J, Hai H, Ma Y. Application of extracorporeal shock wave therapy in nervous system diseases: A review. Front Neurol 2022; 13:963849. [PMID: 36062022 PMCID: PMC9428455 DOI: 10.3389/fneur.2022.963849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Neurological disorders are one of the leading causes of morbidity and mortality worldwide, and their therapeutic options remain limited. Recent animal and clinical studies have shown the potential of extracorporeal shock wave therapy (ESWT) as an innovative, safe, and cost-effective option to treat neurological disorders. Moreover, the cellular and molecular mechanism of ESWT has been proposed to better understand the regeneration and repairment of neurological disorders by ESWT. In this review, we discuss the principles of ESWT, the animal and clinical studies involving the use of ESWT to treat central and peripheral nervous system diseases, and the proposed cellular and molecular mechanism of ESWT. We also discuss the challenges encountered when applying ESWT to the human brain and spinal cord and the new potential applications of ESWT in treating neurological disorders.
Collapse
|
5
|
Anti-interference of a small-world spiking neural network against pulse noise. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Hamrangsekachaee M, Baumann HJ, Pukale DD, Shriver LP, Leipzig ND. Investigating Mechanisms of Subcutaneous Preconditioning Incubation for Neural Stem Cell Embedded Hydrogels. ACS APPLIED BIO MATERIALS 2022; 5:2176-2184. [PMID: 35412793 DOI: 10.1021/acsabm.2c00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cells are a vital component of regenerative medicine therapies, however, only a fraction of stem cells delivered to the central nervous system following injury survive the inflammatory environment. Previously, we showed that subcutaneous preconditioning of neural stem cell (NSC) embedded hydrogels for 28 days improved spinal cord injury (SCI) functional outcomes over controls. Here, we investigated the mechanism of subcutaneous preconditioning of NSC-embedded hydrogels, with and without the known neurogenic cue, interferon gamma (IFN-γ), for 3, 14, or 28 days to refine and identify subcutaneous preconditioning conditions by measurement of neurogenic markers and cytokines. Studying the preconditioning mechanism, we found that subcutaneous foreign body response (FBR) associated cytokines infiltrated the scaffold in groups with and without NSCs, with time point effects. A pro-inflammatory environment with upregulated interleukin (IL)-6, IL-10, macrophage inflammatory protein (MIP)-1, MIP-2, IFN-γ-inducible protein 10 (IP-10), tumor necrosis factor-α (TNF-α), and IL-12p70 was observed on day 3. By 14 and 28 days, there was an increase in pro-regenerative cytokines (IL-13, IL-4) along with pro-inflammatory markers IL-1β, IP-10, and RANTES (regulated on activation, normal T cell expressed, and secreted) potentially part of the mechanism that had an increased functional outcome in SCI. Coinciding with changes in cytokines, the macrophage population increased over time from 3 to 28 days, whereas neutrophils peaked at 3 days with a significant decrease at later time points. Expression of the neuronal marker βIII tubulin in differentiating NSCs was supported at 3 days in the presence of soluble and immobilized IFN-γ and at 14 days by immobilized IFN-γ only, but it was greatly attenuated in all conditions at 28 days, partially because of dilution via host cell infiltration. We conclude that subcutaneously incubating NSC seeded scaffolds for 3 or 14 days could act as host specific preconditioning through exposure to FBR while retaining βIII tubulin expression of NSCs to further improve the SCI functional outcome observed with 28 day subcutaneous incubation.
Collapse
Affiliation(s)
| | - Hannah J Baumann
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Dipak D Pukale
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Leah P Shriver
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Nic D Leipzig
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States.,Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
7
|
Lu X, Sun C, Chen L, Feng Z, Gao H, Hu S, Dong M, Wang J, Zhou W, Ren N, Zhou H, Liu H. Stemness Maintenance and Massproduction of Neural Stem Cells on Poly L-Lactic Acid Nanofibrous Membrane Based on Piezoelectriceffect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107236. [PMID: 35166031 DOI: 10.1002/smll.202107236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Neural stem cells (NSCs) therapy is promising for treating neurodegenerative disorders and neural injuries. However, the limited in vitro expansion, spontaneous differentiation, and decrease in stemness obstruct the acquisition of high quantities of NSCs, restricting the clinical application of cell-based therapies and tissue engineering. This article reports a facile method of promoting NSCs expansion and maintaining stemness using wireless electrical stimulation triggered by piezoelectric nanomaterials. A nanofibrous membrane of poly L-lactic acid (PLLA) is prepared by electrostatic spinning, and the favorable piezoelectric property of PLLA facilitates the freeing of electrons after transformation. These self-powered electric signals generated by PLLA significantly enhance NSCs proliferation. Further, an undifferentiated cellular state is maintained in the NSCs cultured on the surfaces of PLLA nanofibers exposed to ultrasonic vibration. In addition, the neural differentiation potencies and functions of NSCs expanded by piezoelectric-driven localized electricity are not attenuated. Moreover, cell stemness can be maintained by wireless electric stimulation. Taken together, the electronic signals mediated by PLLA nanofibers facilitate NSCs proliferation. This efficient and simple strategy can maintain the stemness of NSCs during proliferation, which is essential for their clinical application, and opens up opportunities for the mass production of NSCs for use in cell therapy.
Collapse
Affiliation(s)
- Xiheng Lu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Lu Chen
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhichao Feng
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Haoyang Gao
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Shuang Hu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Mengwei Dong
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Jingang Wang
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Na Ren
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Hengxing Zhou
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
8
|
Li W, Lei X, Feng H, Li B, Kong J, Xing M. Layer-by-Layer Cell Encapsulation for Drug Delivery: The History, Technique Basis, and Applications. Pharmaceutics 2022; 14:pharmaceutics14020297. [PMID: 35214030 PMCID: PMC8874529 DOI: 10.3390/pharmaceutics14020297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
The encapsulation of cells with various polyelectrolytes through layer-by-layer (LbL) has become a popular strategy in cellular function engineering. The technique sprang up in 1990s and obtained tremendous advances in multi-functionalized encapsulation of cells in recent years. This review comprehensively summarized the basis and applications in drug delivery by means of LbL cell encapsulation. To begin with, the concept and brief history of LbL and LbL cell encapsulation were introduced. Next, diverse types of materials, including naturally extracted and chemically synthesized, were exhibited, followed by a complicated basis of LbL assembly, such as interactions within multilayers, charge distribution, and films morphology. Furthermore, the review focused on the protective effects against adverse factors, and bioactive payloads incorporation could be realized via LbL cell encapsulation. Additionally, the payload delivery from cell encapsulation system could be adjusted by environment, redox, biological processes, and functional linkers to release payloads in controlled manners. In short, drug delivery via LbL cell encapsulation, which takes advantage of both cell grafts and drug activities, will be of great importance in basic research of cell science and biotherapy for various diseases.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Xuejiao Lei
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Hua Feng
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
- Correspondence: (J.K.); (M.X.)
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada
- Correspondence: (J.K.); (M.X.)
| |
Collapse
|
9
|
Chapla R, Hammer JA, West JL. Adding Dynamic Biomolecule Signaling to Hydrogel Systems via Tethered Photolabile Cell-Adhesive Proteins. ACS Biomater Sci Eng 2021; 8:208-217. [PMID: 34870965 DOI: 10.1021/acsbiomaterials.1c01181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sequential biochemical signaling events direct key native tissue processes including disease progression, wound healing and angiogenesis, and tissue regeneration. While in vitro modeling of these processes is critical to understanding endogenous tissue behavior and improving therapeutic outcomes, current models inadequately recapitulate the dynamism of these signaling events. Even the most advanced current synthetic tissue culture constructs are restricted in their capability to sequentially add and remove the same molecule to model transient signaling. Here, we developed a genetically encoded method for reversible biochemical signaling within poly(ethylene glycol) (PEG)-based hydrogels for greater accuracy of modeling tissue regeneration within a reductionist environment. We designed and implemented a recombinant protein with a SpyCatcher domain connected to a cell-adhesive RGDS peptide domain by a light-cleavable domain known as PhoCl. This protein was shown to bind to SpyTag-functionalized PEG-matrices via SpyTag-SpyCatcher isopeptide bonding to present RGDS adhesive ligands to cells. Upon 405 nm light exposure, the PhoCl domain was cleaved to subsequently release the RGDS peptide, which diffused out of the matrix. This system was implemented to confer reversible adhesion of 3T3 fibroblasts to the PEG-based hydrogel surface in 2D culture (73.36 ± 21.47% cell removal upon cell-compatible light exposure) and temporal control over cell spreading over time in 3D culture within cell-degradable PEG-based hydrogels, demonstrating the capability of this system to present dynamic signaling events to cells toward modeling native tissue processes within in a controlled, ECM-mimetic matrix.
Collapse
Affiliation(s)
- Rachel Chapla
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, North Carolina 27708-0281, United States
| | - Joshua A Hammer
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, North Carolina 27708-0281, United States
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, North Carolina 27708-0281, United States
| |
Collapse
|
10
|
Jin G, Floy ME, Simmons AD, Arthur MM, Palecek SP. Spatial Stem Cell Fate Engineering via Facile Morphogen Localization. Adv Healthc Mater 2021; 10:e2100995. [PMID: 34459150 PMCID: PMC8568665 DOI: 10.1002/adhm.202100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Indexed: 12/21/2022]
Abstract
Spatiotemporally controlled presentation of morphogens and elaborate modulation of signaling pathways elicit pattern formation during development. Though this process is critical for proper organogenesis, unraveling the mechanisms of developmental biology have been restricted by challenges associated with studying human embryos. Human pluripotent stem cells (hPSCs) have been used to model development in vitro, however difficulties in precise spatiotemporal control of the cellular microenvironment have limited the utility of this model in exploring mechanisms of pattern formation. Here, a simple and versatile method is presented to spatially pattern hPSC differentiation in 2-dimensional culture via localized morphogen adsorption on substrates. Morphogens including bone morphogenetic protein 4 (BMP4), activin A, and WNT3a are patterned to induce localized mesendoderm, endoderm, cardiomyocyte (CM), and epicardial cell (EpiC) differentiation from hPSCs and hPSC-derived progenitors. Patterned CM and EpiC co-differentiation allows investigation of intercellular interactions in a spatially controlled manner and demonstrate improved alignment of CMs in proximity to EpiCs. This approach provides a platform for the controlled and systematic study of early pattern formation. Moreover, this study provides a facile approach to generate 2D patterned hPSC-derived tissue structures for modeling disease and drug interactions.
Collapse
Affiliation(s)
- Gyuhyung Jin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| | - Martha E Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| | - Aaron D Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| | - Madeline M Arthur
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| |
Collapse
|
11
|
Choi J, Choi W, Joo Y, Chung H, Kim D, Oh SJ, Kim SH. FGF2-primed 3D spheroids producing IL-8 promote therapeutic angiogenesis in murine hindlimb ischemia. NPJ Regen Med 2021; 6:48. [PMID: 34408157 PMCID: PMC8373896 DOI: 10.1038/s41536-021-00159-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Peripheral artery disease is a progressive, devastating disease that leads to critical limb ischemia (CLI). Therapeutic angiogenesis using stem cell therapy has emerged as a promising approach for its treatment; however, adapting cell-based therapy has been limited by poor cell survival and low treatment efficiency. To overcome unmet clinical needs, we developed a fibroblast growth factor 2 (FGF2)-immobilized matrix that enabled control of cell adhesion to the surface and exerted a priming effect on the cell. Human adipose-derived stem cells (hASCs) grown in this matrix formed a functionally enhanced cells spheroid (FECS-Ad) that secreted various angiogenic factors including interleukin-8 (IL-8). We demonstrated that IL-8 was upregulated by the FGF2-mediated priming effect during FECS-Ad formation. Immobilized FGF2 substrate induced stronger IL-8 expression than soluble FGF2 ligands, presumably through the FGFR1/JNK/NF-κB signaling cascade. In IL-8-silenced FECS-Ad, vascular endothelial growth factor (VEGF) expression was decreased and angiogenic potential was reduced. Intramuscular injection of FECS-Ad promoted angiogenesis and muscle regeneration in mouse ischemic tissue, while IL-8 silencing in FECS-Ad inhibited these effects. Taken together, our data demonstrate that IL-8 contributes to therapeutic angiogenesis and suggest that FECS-Ad generated using the MBP-FGF2 matrix might provide a reliable platform for developing therapeutic agents to treat CLI.
Collapse
Affiliation(s)
- Jungkyun Choi
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Wooshik Choi
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yunji Joo
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Haeun Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Dokyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Seung Ja Oh
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Carvalho IC, Mansur HS, Leonel AG, Mansur AAP, Lobato ZIP. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. Int J Biol Macromol 2021; 182:1091-1111. [PMID: 33892028 DOI: 10.1016/j.ijbiomac.2021.04.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR). Besides carrying rich biological information, polysaccharides can interact and communicate with biomolecules, including glycosaminoglycans present in cell membranes and many signaling moieties, growth factors, chemokines, and axon guidance molecules. This review includes a comprehensive investigation of the current progress on designing and developing polysaccharide-based soft matter biomaterials for BTRR. Although few interesting reviews concerning BTRR have been reported, this is the first report specifically focusing on covering multiple polysaccharides and polysaccharide-based functionalized biomacromolecules in this emerging and intriguing field of multidisciplinary knowledge. This review aims to cover the state of art challenges and prospects of this fascinating field while presenting the richness of possibilities of using these natural biomacromolecules for advanced biomaterials in prospective neural tissue engineering applications.
Collapse
Affiliation(s)
- Isadora C Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil.
| | - Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Zelia I P Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| |
Collapse
|
13
|
Mehrban N, Cardinale D, Gallo SC, Lee DDH, Arne Scott D, Dong H, Bowen J, Woolfson DN, Birchall MA, O'Callaghan C. α-Helical peptides on plasma-treated polymers promote ciliation of airway epithelial cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111935. [PMID: 33641925 DOI: 10.1016/j.msec.2021.111935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/30/2021] [Indexed: 11/30/2022]
Abstract
Airway respiratory epithelium forms a physical barrier through intercellular tight junctions, which prevents debris from passing through to the internal environment while ciliated epithelial cells expel particulate-trapping mucus up the airway. Polymeric solutions to loss of airway structure and integrity have been unable to fully restore functional epithelium. We hypothesised that plasma treatment of polymers would permit adsorption of α-helical peptides and that this would promote functional differentiation of airway epithelial cells. Five candidate plasma compositions are compared; Air, N2, H2, H2:N2 and Air:N2. X-ray photoelectron spectroscopy shows changes in at% N and C 1s peaks after plasma treatment while electron microscopy indicates successful adsorption of hydrogelating self-assembling fibres (hSAF) on all samples. Subsequently, adsorbed hSAFs support human nasal epithelial cell attachment and proliferation and induce differentiation at an air-liquid interface. Transepithelial measurements show that the cells form tight junctions and produce cilia beating at the normal expected frequency of 10-11 Hz after 28 days in culture. The synthetic peptide system described in this study offers potential superiority as an epithelial regeneration substrate over present "gold-standard" materials, such as collagen, as they are controllable and can be chemically functionalised to support a variety of in vivo environments. Using the hSAF peptides described here in combination with plasma-treated polymeric surfaces could offer a way of improving the functionality and integration of implantable polymers for aerodigestive tract reconstruction and regeneration.
Collapse
Affiliation(s)
- Nazia Mehrban
- UCL Ear Institute, University College London, 332 Grays Inn Rd, London WC1X 8EE, UK.
| | - Daniela Cardinale
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford St, London WC1N 1EH, UK
| | - Santiago C Gallo
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Victoria, VIC 3216, Australia
| | - Dani D H Lee
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford St, London WC1N 1EH, UK
| | - D Arne Scott
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Hanshan Dong
- School of Metallurgy and Materials, University of Birmingham, Elms Rd, Birmingham B15 2SE, UK
| | - James Bowen
- School of Engineering & Innovation, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin A Birchall
- UCL Ear Institute, University College London, 332 Grays Inn Rd, London WC1X 8EE, UK
| | - Christopher O'Callaghan
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford St, London WC1N 1EH, UK
| |
Collapse
|
14
|
Baumann HJ, Mahajan G, Ham TR, Betonio P, Kothapalli CR, Shriver LP, Leipzig ND. Softening of the chronic hemi-section spinal cord injury scar parallels dysregulation of cellular and extracellular matrix content. J Mech Behav Biomed Mater 2020; 110:103953. [PMID: 32957245 PMCID: PMC7509206 DOI: 10.1016/j.jmbbm.2020.103953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/18/2022]
Abstract
Regeneration following spinal cord injury (SCI) is challenging in part due to the modified tissue composition and organization of the resulting glial and fibrotic scar regions. Inhibitory cell types and biochemical cues present in the scar have received attention as therapeutic targets to promote regeneration. However, altered Young's modulus of the scar as a readout for potential impeding factors for regeneration are not as well-defined, especially in vivo. Although the decreased Young's modulus of surrounding tissue at acute stages post-injury is known, the causation and outcomes at chronic time points remain largely understudied and controversial, which motivates this work. This study assessed the glial and fibrotic scar tissue's Young's modulus and composition (scar morphometry, cell identity, extracellular matrix (ECM) makeup) that contribute to the tissue's stiffness. The spatial Young's modulus of a chronic (~18-wks, post-injury) hemi-section, including the glial and fibrotic regions, were significantly less than naïve tissue (~200 Pa; p < 0.0001). The chronic scar contained cystic cavities dispersed in areas of dense nuclei packing. Abundant CNS cell types such as astrocytes, oligodendrocytes, and neurons were dysregulated in the scar, while epithelial markers such as vimentin were upregulated. The key ECM components in the CNS, namely sulfated proteoglycans (sPGs), were significantly downregulated following injury with concomitant upregulation of unsulfated glycosaminoglycans (GAGs) and hyaluronic acid (HA), likely altering the foundational ECM network that contributes to tissue stiffness. Our results reveal the Young's modulus of the chronic SCI scar as well as quantification of contributing elastic components that can provide a foundation for future study into their role in tissue repair and regeneration.
Collapse
Affiliation(s)
- Hannah J Baumann
- Department of Chemistry, The University of Akron, Akron, OH, 44325, USA
| | - Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Trevor R Ham
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Patricia Betonio
- School of Nursing, The University of Akron, Akron, OH, 44325, USA
| | - Chandrasekhar R Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Leah P Shriver
- Department of Chemistry, The University of Akron, Akron, OH, 44325, USA; Department of Biology, The University of Akron, Akron, OH, 44325, USA
| | - Nic D Leipzig
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA; Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
15
|
Yuan X, He F, Zheng F, Xu Y, Zou J. Interferon-gamma Facilitates Neurogenesis by Activating Wnt/β-catenin Cell Signaling Pathway via Promotion of STAT1 Regulation of the β-Catenin Promoter. Neuroscience 2020; 448:219-233. [PMID: 32860934 DOI: 10.1016/j.neuroscience.2020.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/27/2023]
Abstract
Interferon-gamma (IFN-γ) is critical for central nervous system (CNS) functions and it may be a promising treatment to stimulate CNS regeneration. However, previous studies reported inconsistent results, and the molecular mechanisms remain controversial. Here we show that IFN-γ-treated mice via intraperitoneal injection have elevated IFN-γ level in central hippocampus and superior cognitive behaviors IFN-γ could activates the level of protein expression of Wnt7a, β-catenin, and CyclinD1 in Wnt/β-catenin signaling pathway of mice hippocampus. Functional and mechanism analysis in vitro revealed that IFN-γ promoted the proliferation and differentiation in primary cultured neural stem cells (NSCs). STAT1 was accountable for IFN-γ-induced activation of the β-catenin promoter, and IFN-γ increased the binding affinity of STAT1 to β-catenin promoter based on luciferase activity and chromatin immunoprecipitation. Our results suggest that IFN-γ exerts many effects ranging from cognitive function in vivo to NSC proliferation, self-renewal, and differentiation in vitro. It does so by recruiting STAT1 to the β-catenin promoter, enhancing cis-regulation by STAT1, and ultimately activating Wnt/β-catenin signaling. In this study, we first found that STAT1 was recruited into the promoter of β-catenin to activate β-catenin expression, and this effect was regulated by IFN-γ. It is also discovered firstly that Wnt/β-catenin and JAK/STAT pathways form cross-links through STAT1. Promoting neurogenesis through immune stimulation might be a promising strategy for repairing the diseased/injured CNS. This study provides a scientific basis for immunomodulation to promote nerve regeneration and offer a new therapeutic direction for central nervous system regeneration.
Collapse
Affiliation(s)
- Xianlin Yuan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Fen He
- Department of Radiation Oncology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Fuxiang Zheng
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yunlong Xu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Juntao Zou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Baumann HJ, Betonio P, Abeywickrama CS, Shriver LP, Leipzig ND. Metabolomic and Signaling Programs Induced by Immobilized versus Soluble IFN γ in Neural Stem Cells. Bioconjug Chem 2020; 31:2125-2135. [PMID: 32820900 DOI: 10.1021/acs.bioconjchem.0c00338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neural stem cells (NSCs) provide a strategy to replace damaged neurons following traumatic central nervous system injuries. A major hurdle to translation of this therapy is that direct application of NSCs to CNS injury does not support sufficient neurogenesis due to lack of proper cues. To provide prolonged spatial cues to NSCs IFN-γ was immobilized to biomimetic hydrogel substrate to supply physical and biochemical signals to instruct the encapsulated NSCs to be neurogenic. However, the immobilization of factors, including IFN-γ, versus soluble delivery of the same factor, has been incompletely characterized especially with respect to activation of signaling and metabolism in cells over longer time points. In this study, protein and metabolite changes in NSCs induced by immobilized versus soluble IFN-γ at 7 days were evaluated. Soluble IFN-γ, refreshed daily over 7 days, elicited stronger responses in NSCs compared to immobilized IFN-γ, indicating that immobilization may not sustain signaling or has altered ligand/receptor interaction and integrity. However, both IFN-γ delivery types supported increased βIII tubulin expression in parallel with canonical and noncanonical receptor-signaling compared to no IFN-γ. Global metabolomics and pathway analysis revealed that soluble and immobilized IFN-γ altered metabolic pathway activities including energy, lipid, and amino acid synthesis, with soluble IFN-γ having the greatest metabolic impact overall. Finally, soluble and immobilized IFN-γ support mitochondrial voltage-dependent anion channel (VDAC) expression that correlates to differentiated NSCs. This work utilizes new methods to evaluate cell responses to protein delivery and provides insight into mode of action that can be harnessed to improve regenerative medicine-based strategies.
Collapse
Affiliation(s)
- Hannah J Baumann
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Patricia Betonio
- School of Nursing, The University of Akron, Akron, Ohio 44325, United States
| | | | - Leah P Shriver
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Nic D Leipzig
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
17
|
Christie SM, Ham TR, Gilmore GT, Toth PD, Leipzig ND, Smith AW. Covalently Immobilizing Interferon-γ Drives Filopodia Production through Specific Receptor-Ligand Interactions Independently of Canonical Downstream Signaling. Bioconjug Chem 2020; 31:1362-1369. [PMID: 32329609 PMCID: PMC10243121 DOI: 10.1021/acs.bioconjchem.0c00105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immobilizing a signaling protein to guide cell behavior has been employed in a wide variety of studies. This approach draws inspiration from biology, where specific, affinity-based interactions between membrane receptors and immobilized proteins in the extracellular matrix guide many developmental and homeostatic processes. Synthetic immobilization approaches, however, do not necessarily recapitulate the in vivo signaling system and potentially lead to artificial receptor-ligand interactions. To investigate the effects of one example of engineered receptor-ligand interactions, we focus on the immobilization of interferon-γ (IFN-γ), which has been used to drive differentiation of neural stem cells (NSCs). To isolate the effect of ligand immobilization, we transfected Cos-7 cells with only interferon-γ receptor 1 (IFNγR1), not IFNγR2, so that the cells could bind IFN-γ but were incapable of canonical signal transduction. We then exposed the cells to surfaces containing covalently immobilized IFN-γ and studied membrane morphology, receptor-ligand dynamics, and receptor activation. We found that exposing cells to immobilized but not soluble IFN-γ drove the formation of filopodia in both NSCs and Cos-7, showing that covalently immobilizing IFN-γ is enough to affect cell behavior, independently of canonical downstream signaling. Overall, this work suggests that synthetic growth factor immobilization can influence cell morphology beyond enhancing canonical cell responses through the prolonged signaling duration or spatial patterning enabled by protein immobilization. This suggests that differentiation of NSCs could be driven by canonical and non-canonical pathways when IFN-γ is covalently immobilized. This finding has broad implications for bioengineering approaches to guide cell behavior, as one ligand has the potential to impact multiple pathways even when cells lack the canonical signal transduction machinery.
Collapse
Affiliation(s)
- Shaun M. Christie
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio, 44325, United States
| | - Trevor R. Ham
- Department of Biomedical Engineering, The University of Akron, Auburn Science and Engineering Center #275, West Tower, Akron, OH 44325, United States
| | - Grant T. Gilmore
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio, 44325, United States
| | - Paul D. Toth
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio, 44325, United States
| | - Nic D. Leipzig
- Department of Biomedical Engineering, The University of Akron, Auburn Science and Engineering Center #275, West Tower, Akron, OH 44325, United States
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 302 Buchtel Common, Akron, Ohio, 44325, United States
| | - Adam W. Smith
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio, 44325, United States
| |
Collapse
|
18
|
Wang H, Qu X, Zhang Z, Lei M, Tan H, Bao C, Lin S, Zhu L, Kohn J, Liu C. Tag-Free Site-Specific BMP-2 Immobilization with Long-Acting Bioactivities via a Simple Sugar-Lectin Interaction. ACS Biomater Sci Eng 2020; 6:2219-2230. [PMID: 33455345 DOI: 10.1021/acsbiomaterials.9b01730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The construction of a biomaterial matrix with biological properties is of great importance to developing functional materials for clinical use. However, the site-specific immobilization of growth factors to endow materials with bioactivities has been a challenge to date. Considering the wide existence of glycosylation in mammalian proteins or recombinant proteins, we establish a bioaffinity-based protein immobilization strategy (bioanchoring method) utilizing the native sugar-lectin interaction between concanavalin A (Con A) and the oligosaccharide chain on glycosylated bone morphogenetic protein-2 (GBMP-2). The interaction realizes the site-specific immobilization of GBMP-2 to a substrate modified with Con A while preserving its bioactivity in a sustained and highly efficient way, as evidenced by its enhanced ability to induce osteodifferentiation compared with that of the soluble GBMP-2. Moreover, the surface with Con A-bioanchored GBMP-2 can be reused to stimulate multiple batches of C2C12 cells to differentiate almost to the same degree. Even after 4 month storage at 4 °C in phosphate-buffered saline (PBS), the Con A-bioanchored GBMP-2 still maintains the bioactivity to stimulate the differentiation of C2C12 cells. Furthermore, the ectopic ossification test proves the in vivo bioactivity of bioanchored GBMP-2. Overall, our results demonstrate that the tag-free and site (i.e., sugar chain)-specific protein immobilization strategy represents a simple and generic alternative, which is promising to apply for other glycoprotein immobilization and application. It should be noted that although the lectin we utilized can only bind to d-mannose/d-glucose, the diversity of the lectin family assures that a specific lectin could be offered for other sugar types, thus expanding the applicable scope further.
Collapse
Affiliation(s)
| | | | - Zheng Zhang
- Department of Chemistry and Chemical Biology and New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | | | | | | | | | | - Joachim Kohn
- Department of Chemistry and Chemical Biology and New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
19
|
Subcutaneous priming of protein-functionalized chitosan scaffolds improves function following spinal cord injury. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110656. [PMID: 32076364 DOI: 10.1016/j.msec.2020.110656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
Strategies using neural stem cells (NSCs) to aid regeneration following spinal cord injury (SCI) show much promise, but challenges remain regarding implementation and efficacy. In this work, we explored the use of an NSC-seeded scaffold consisting of covalently immobilized interferon-γ and rat NSCs within a hydrogel matrix (methacrylamide chitosan). We placed the scaffolds within the subcutaneous environment of rats, allowing them to incubate for 4 weeks in order to prime them for regeneration prior to being transplanted into a right lateral hemisection SCI model in the same animal. We found that subcutaneous priming reduced the lineage commitment of encapsulated NSCs, as observed by increased nestin expression and decreased NeuN expression. When combined with intracellular σ peptide administration (which reduces inhibition from the glial scar), subcutaneous maturation improved functional outcomes, which were assessed by BBB score and quantitative gait parameters (fore and hind limb duty factor imbalance, right and left paw placement accuracy). Although we did not observe any direct reconnection of the transplanted cells with the host tissue, we did observe neurofilament fibers extending from the host tissue into the scaffold. Importantly, the mechanism for improved functional outcomes is likely an increase in trophic support from subcutaneously maturing the scaffold, which is enhanced by the administration of ISP.
Collapse
|
20
|
Wang Z, Zheng Y, Zheng M, Zhong J, Ma F, Zhou B, Zhu J. Neurogenic Niche Conversion Strategy Induces Migration and Functional Neuronal Differentiation of Neural Precursor Cells Following Brain Injury. Stem Cells Dev 2020; 29:235-248. [PMID: 31797735 DOI: 10.1089/scd.2019.0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glial scars formed after brain injuries provide permissive cues for endogenous neural precursor/stem cells (eNP/SCs) to undergo astrogenesis rather than neurogenesis. Following brain injury, eNP/SCs from the subventricular zone leave their niche, migrate to the injured cortex, and differentiate into reactive astrocytes that contribute to glial scar formation. In vivo neuronal reprogramming, directly converting non-neuronal cells such as reactive astrocytes or NG2 glia into neurons, has greatly improved brain injury repair strategies. However, reprogramming carries a high risk of future clinical applications such as tumorigenicity, involving virus. In this study, we constructed a neural matrix to alter the adverse niche at the injured cortex, enabling eNP/SCs to differentiate into functional neurons. We found that the neural matrix functioned as a "glial trap" that largely concentrated and limited reactive astrocytes to the core of the lesion area, thus altering the adverse niche. The eNP/SCs migrated toward the injured cortex and differentiated into functional neurons. In addition, regenerated neurites extended across the boundary of the injured cortex. Mice treated with the neural matrix demonstrated significant behavioral recovery. For the first time, we induced eNP/SC-derived functional neurons in the cortex after brain injury without the use of viruses, microRNAs, or small molecules. Our novel strategy of applying this "glial trap" to obtain functional neurons in the injured cortex may provide a safer and more natural therapeutic alternative to reprogramming in future clinical applications.
Collapse
Affiliation(s)
- Zhifu Wang
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongtao Zheng
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingzhe Zheng
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junjie Zhong
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fukai Ma
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgery Department, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Ham TR, Cox DG, Leipzig ND. Concurrent Delivery of Soluble and Immobilized Proteins to Recruit and Differentiate Neural Stem Cells. Biomacromolecules 2019; 20:3445-3452. [PMID: 31460746 DOI: 10.1021/acs.biomac.9b00719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Insufficient endogenous neural stem cell (NSC) migration to injury sites and incomplete replenishment of neurons complicates recovery following central nervous system (CNS) injury. Such insufficient migration can be addressed by delivering soluble chemotactic factors, such as stromal cell-derived factor 1-α (SDF-1α), to sites of injury. However, simply enhancing NSC migration is likely to result in insufficient regeneration, as the cells need to be given additional signals. Immobilized proteins, such as interferon-γ (IFN-γ) can encourage neurogenic differentiation of NSCs. Here, we combined both protein delivery paradigms: soluble SDF-1α delivery to enhance NSC migration alongside covalently tethered IFN-γ to differentiate the recruited NSCs into neurons. To slow the release of soluble SDF-1α, we copolymerized methacrylated heparin with methacrylamide chitosan (MAC), to which we tethered IFN-γ. We found that this hydrogel system could result in soft hydrogels with a ratio of up to 70:30 MAC/heparin by mass, which enabled the continuous release of SDF-1α over a period of 2 weeks. The hydrogels recruited NSCs in vitro over 2 weeks, proportional to their release rate: the 70:30 heparin gels recruited a consistent number of NSCs at each time point, while the formulations with less heparin recruited NSCs at only early time points. After remaining in contact with the hydrogels for 8 days, NSCs successfully differentiated into neurons. CNS regeneration is a complex challenge, and this system provides a foundation to address multiple aspects of that challenge.
Collapse
Affiliation(s)
- Trevor R Ham
- Department of Biomedical Engineering, Auburn Science and Engineering Center 275, West Tower , The University of Akron , Akron , Ohio 44325 , United States
| | - Dakotah G Cox
- Department of Chemical and Biomolecular Engineering, Whitby 211 , The University of Akron , Akron , Ohio 44325 , United States
| | - Nic D Leipzig
- Department of Biomedical Engineering, Auburn Science and Engineering Center 275, West Tower , The University of Akron , Akron , Ohio 44325 , United States.,Department of Chemical and Biomolecular Engineering, Whitby 211 , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
22
|
Perera TH, Howell SM, Smith Callahan LA. Manipulation of Extracellular Matrix Remodeling and Neurite Extension by Mouse Embryonic Stem Cells Using IKVAV and LRE Peptide Tethering in Hyaluronic Acid Matrices. Biomacromolecules 2019; 20:3009-3020. [PMID: 31306008 DOI: 10.1021/acs.biomac.9b00578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cellular remodeling of the matrix has recently emerged as a key factor in promoting neural differentiation. Most strategies to manipulate matrix remodeling focus on proteolytically cleavable cross-linkers, leading to changes in tethered biochemical signaling and matrix properties. Using peptides that are not the direct target of enzymatic degradation will likely reduce changes in the matrix and improve control of biological behavior. In this study, laminin-derived peptides, IKVAV and LRE, tethered to independent sites in hyaluronic acid matrices using Michael addition and strain-promoted azide-alkyne cycloaddition are sufficient to manipulate hyaluronic acid degradation, gelatinase expression, and protease expression, while promoting neurite extension through matrix metalloprotease-dependent mechanisms in mouse embryonic stem cells encapsulated in hyaluronic acid matrices using an oxidation-reduction reaction initiated gelation. This study provides the foundation for a new strategy to stimulate matrix remodeling that is not dependent on enzymatic cleavage targets.
Collapse
Affiliation(s)
- T Hiran Perera
- Vivian L. Smith Department of Neurosurgery , McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School , Houston , Texas 77030 , United States.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine , McGovern Medical School at the University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - Skyler M Howell
- Vivian L. Smith Department of Neurosurgery , McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School , Houston , Texas 77030 , United States.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine , McGovern Medical School at the University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - Laura A Smith Callahan
- Vivian L. Smith Department of Neurosurgery , McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School , Houston , Texas 77030 , United States.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine , McGovern Medical School at the University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States.,Graduate School of Biomedical Sciences , MD Anderson Cancer Center UTHealth , Houston , Texas 77030 , United States
| |
Collapse
|
23
|
Affiliation(s)
- Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
24
|
Farrag M, Leipzig ND. Subcutaneous Maturation of Neural Stem Cell-Loaded Hydrogels Forms Region-Specific Neuroepithelium. Cells 2018; 7:cells7100173. [PMID: 30336590 PMCID: PMC6210402 DOI: 10.3390/cells7100173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 01/14/2023] Open
Abstract
A combinatorial approach integrating stem cells and capable of exploiting available cues is likely needed to regenerate lost neural tissues and ultimately restore neurologic functions. This study investigates the effects of the subcutaneous maturation of adult-derived neural stem cell (aNSCs) seeded into biomaterial constructs on aNSC differentiation and ultimate regional neuronal identity as a first step toward a future spinal cord injury treatment. To achieve this, we encapsulated rat aNSCs in chitosan-based hydrogels functionalized with immobilized azide-tagged interferon-γ inside a chitosan conduit. Then, we implanted these constructs in the subcutaneous tissues in the backs of rats in the cervical, thoracic, and lumbar regions for 4, 6, and 8 weeks. After harvesting the scaffolds, we analyzed cell differentiation qualitatively using immunohistochemical analysis and quantitatively using RT-qPCR. Results revealed that the hydrogels supported aNSC survival and differentiation up to 4 weeks in the subcutaneous environment as marked by the expression of several neurogenesis markers. Most interesting, the aNSCs expressed region-specific Hox genes corresponding to their region of implantation. This study lays the groundwork for further translational work to recapitulate the potentially undiscovered patterning cues in the subcutaneous tissue and provide support for the conceptual premise that our bioengineering approach can form caudalized region-specific neuroepithelium.
Collapse
Affiliation(s)
- Mahmoud Farrag
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA.
| | - Nic D Leipzig
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA.
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
25
|
Lu JY, Zhu QY, Zhang XX, Zhang FR, Huang WT, Ding XZ, Xia LQ, Luo HQ, Li NB. Directly repurposing waste optical discs with prefabricated nanogrooves as a platform for investigation of cell-substrate interactions and guiding neuronal growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:273-281. [PMID: 29852430 DOI: 10.1016/j.ecoenv.2018.05.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Due to rapid change in information technology, many consumer electronics become electronic waste which is the fastest-growing pollution problems worldwide. In fact, many discarded electronics with prefabricated micro/nanostructures may provide a good basis to fulfill special needs of other fields, such as tissue engineering, biosensors, and energy. Herein, to take waste optical discs as an example, we demonstrate that discarded electronics can be directly repurposed as highly anisotropic platforms for in vitro investigation of cell behaviors, such as cell adhesion, cell alignment, and cell-cell interactions. The PC12 cells cultured on biocompatible DVD polycarbonate layers with flat and grooved morphology show a distinct cell morphology, indicating the topographical cue of nanogrooves plays a key role in guidance of neurites growth. By further monitoring cell morphology and alignment of PC12 cells cultured on the DVD nanogrooves at different differentiation times, we find that cell contact interaction with nanotopographies is dynamically adjustable with differentiation time from initial disorder to final order. This study adds a new dimension to not only solving the problems of supply of materials and fabrication of nanopatterns in neural tissue engineering, but may also offering a new promising way of waste minimization or reuse for environmental protection.
Collapse
Affiliation(s)
- Jiao Yang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Qiu Yan Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Xin Xing Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Fu Rui Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China.
| | - Xue Zhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Li Qiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Hong Qun Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
26
|
Abstract
The conjugation of biomolecules can impart materials with the bioactivity necessary to modulate specific cell behaviors. While the biological roles of particular polypeptide, oligonucleotide, and glycan structures have been extensively reviewed, along with the influence of attachment on material structure and function, the key role played by the conjugation strategy in determining activity is often overlooked. In this review, we focus on the chemistry of biomolecule conjugation and provide a comprehensive overview of the key strategies for achieving controlled biomaterial functionalization. No universal method exists to provide optimal attachment, and here we will discuss both the relative advantages and disadvantages of each technique. In doing so, we highlight the importance of carefully considering the impact and suitability of a particular technique during biomaterial design.
Collapse
Affiliation(s)
- Christopher D. Spicer
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
| | - E. Thomas Pashuck
- NJ
Centre for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, New Jersey United States
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London, United Kingdom
| |
Collapse
|
27
|
Abbott A, Oxburgh L, Kaplan DL, Coburn JM. Avidin Adsorption to Silk Fibroin Films as a Facile Method for Functionalization. Biomacromolecules 2018; 19:3705-3713. [PMID: 30041518 DOI: 10.1021/acs.biomac.8b00824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Silk fibroin biomaterials are highly versatile in terms of materials formation and functionalization, with applications in tissue engineering and drug delivery, but necessitate modifications for optimized biological activity. Herein, a facile, avidin-based technique is developed to noncovalently functionalize silk materials with bioactive molecules. The ability to adsorb avidin to silk surfaces and subsequently couple biotinylated macromolecules via avidin-biotin interaction is described. This method better preserved functionality than standard covalent coupling techniques using carbodiimide cross-linking chemistry. The controlled release of avidin from the silk surface was demonstrated by altering the adsorption parameters. Application of this technique to culturing human foreskin fibroblasts (hFFs) and human mesenchymal stem cells (hMSCs) on arginine-glycine-aspartic-acid-modified (RGD-modified) silk showed increased cell growth over a seven-day period. This technique provides a facile method for the versatile functionalization of silk materials for biomedical applications including tissue engineering, drug delivery, and biological sensing.
Collapse
Affiliation(s)
- Alycia Abbott
- Worcester Polytechnic Institute , Worcester , Massachusetts 01605 , United States
| | - Leif Oxburgh
- Maine Medical Center Research Institute , Scarborough , Maine 04074 , United States
| | - David L Kaplan
- Tufts University , Medford , Massachusetts 02155 , United States
| | - Jeannine M Coburn
- Worcester Polytechnic Institute , Worcester , Massachusetts 01605 , United States.,Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
28
|
Magnesium lithospermate B promotes proliferation and differentiation of neural stem cells in vitro and enhances neurogenesis in vivo. Tissue Cell 2018; 53:8-14. [PMID: 30060831 DOI: 10.1016/j.tice.2018.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/22/2022]
Abstract
Multipotent neural stem cells could generate neurons and glial cells. Wide studies have been conducted to disclose the mechanism underlying neural stem cell differentiation and multiple factors have been identified in this field, one of which is bioactive components including natural herbal medicine. In this study, we found that magnesium lithospermate B is able to promote proliferation of neural stem cell in vitro. Besides, magnesium lithospermate B also induces generation of more neuronal cells and less glial cells. The in vivo studies indicates that magnesium lithospermate B enhances local neurogenesis since more Ki67+ and Thy1+ cells are observed in hippocampal region with injection of magnesium lithospermate B. Interestingly, enhancing proliferation and neurogenesis occurs in medial forebrain bundle of Parkinson's Disease model and behavioral studies demonstrates that motor function is significantly improved in magnesium lithospermate B-treated disease models. Furthermore, we also found that effect of MLB on proliferation and differentiation of NSCs was mediated by PI3K/Akt signaling. Collectively, our study shows the important role of magnesium lithospermate B in neural stem cell proliferation and differentiation, accordingly providing a simple and efficient method to induce the neuronal cell generation in neurodegenerative disease model.
Collapse
|
29
|
Chaparro Sosa AF, Kienle DF, Falatach RM, Flanagan J, Kaar JL, Schwartz DK. Stabilization of Immobilized Enzymes via the Chaperone-Like Activity of Mixed Lipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19504-19513. [PMID: 29767959 DOI: 10.1021/acsami.8b05523] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biomimetic lipid bilayers represent intriguing materials for enzyme immobilization, which is critical for many biotechnological applications. Here, through the creation of mixed lipid bilayers, the retention of immobilized enzyme structures and catalytic activity are dramatically enhanced. The enhancement in the retention of enzyme structures, which correlated with an increase in enzyme activity, is observed using dynamic single-molecule (SM) fluorescence methods. The results of SM analysis specifically show that lipid bilayers composed of mixtures of 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DOPG) stabilize the folded state of nitroreductase (NfsB), increasing the rate of refolding relative to unfolding of enzyme molecules on the bilayer surface. Remarkably, for optimal compositions with 15-50% DOPG, over 95% of NfsB remains folded while the activity of the enzyme is increased as much as 2 times over that in solution. Within this range of DOPG, the strength of the interaction of folded and unfolded NfsB with the bilayer surface was also significantly altered, which was evident by the change in the diffusion of folded and unfolded NfsB in the bilayer. Ultimately, these findings provide direct evidence for the chaperone-like activity of mixed DOPG/DOPC lipid bilayers, which can be controlled by tuning the fraction of DOPG in the bilayer.
Collapse
Affiliation(s)
- Andres F Chaparro Sosa
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Daniel F Kienle
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Rebecca M Falatach
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Jessica Flanagan
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
30
|
Li H, Zheng J, Wang H, Becker ML, Leipzig ND. Neural stem cell encapsulation and differentiation in strain promoted crosslinked polyethylene glycol-based hydrogels. J Biomater Appl 2018; 32:1222-1230. [PMID: 29392959 PMCID: PMC5898193 DOI: 10.1177/0885328218755711] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Encapsulated cell viability within crosslinked hydrogels is a critical factor to consider in regenerative medicine/cell delivery applications. Herein, a "click" hydrogel system is presented encompassing 4-dibenzocyclooctynol functionalized polyethylene glycol, a four arm polyethylene glycol tetraazide crosslinker, tethered native protein attachment ligands (laminin), and a tethered potent neurogenic differentiation factor (interferon-γ). With this approach, hydrogel formation occurs via strain-promoted, metal-free, azide-alkyne cycloaddition in an aqueous buffer. This system demonstrated safe encapsulation of neural stem cells in biological conditions without chemical initiators/ultraviolet light, achieving high cell viability. Cell viability in click gels was nearly double that of ultraviolet exposed gels after 1 d as well as 14 d of subsequent culture; demonstrating the sensitivity of neural stem cells to ultraviolet light damage, as well as the need to develop safer encapsulation strategies. Finally, protein immobilized click hydrogel neural stem cell in vitro differentiation over 2 weeks demonstrated that the click gels specified primarily neurons without the need for additional protein differentiation factor media supplementation.
Collapse
Affiliation(s)
- Hang Li
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH, USA
| | - Jukuan Zheng
- Department of Polymer Science, University of Akron, Akron, OH, USA
| | - Huifeng Wang
- Department of Polymer Science, University of Akron, Akron, OH, USA
| | | | - Nic D. Leipzig
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH, USA
| |
Collapse
|
31
|
Ham TR, Leipzig ND. Biomaterial strategies for limiting the impact of secondary events following spinal cord injury. Biomed Mater 2018; 13:024105. [PMID: 29155409 PMCID: PMC5824690 DOI: 10.1088/1748-605x/aa9bbb] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nature of traumatic spinal cord injury (SCI) often involves limited recovery and long-term quality of life complications. The initial injury sets off a variety of secondary cascades, which result in an expanded lesion area. Ultimately, the native tissue fails to regenerate. As treatments are developed in the laboratory, the management of this secondary cascade is an important first step in achieving recovery of normal function. Current literature identifies four broad targets for intervention: inflammation, oxidative stress, disruption of the blood-spinal cord barrier, and formation of an inhibitory glial scar. Because of the complex and interconnected nature of these events, strategies that combine multiple therapies together show much promise. Specifically, approaches that rely on biomaterials to perform a variety of functions are generating intense research interest. In this review, we examine each target and discuss how biomaterials are currently used to address them. Overall, we show that there are an impressive amount of biomaterials and combinatorial treatments which show good promise for slowing secondary events and improving outcomes. If more emphasis is placed on growing our understanding of how materials can manage secondary events, treatments for SCI can be designed in an increasingly rational manner, ultimately improving their potential for translation to the clinic.
Collapse
Affiliation(s)
- Trevor R Ham
- Department of Biomedical Engineering, Auburn Science and Engineering Center 275, West Tower, University of Akron, Akron, OH 44325-3908, United States of America
| | | |
Collapse
|
32
|
Preparation and characterization of chitosan/graphene oxide composite hydrogels for nerve tissue Engineering. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2018.04.171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Bjerknes M, Cheng H, McNitt CD, Popik VV. Facile Quenching and Spatial Patterning of Cylooctynes via Strain-Promoted Alkyne-Azide Cycloaddition of Inorganic Azides. Bioconjug Chem 2017; 28:1560-1565. [PMID: 28437092 PMCID: PMC5991799 DOI: 10.1021/acs.bioconjchem.7b00201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Little is known about the reactivity of strain-promoted alkyne-azide cycloaddition (SPAAC) reagents with inorganic azides. We explore the reactions of a variety of popular SPAAC reagents with sodium azide and hydrozoic acid. We find that the reactions proceed in water at rates comparable to those with organic azides, yielding in all cases a triazole adduct. The azide ion's utility as a cyclooctyne quenching reagent is demonstrated by using it to spatially pattern uniformly doped hydrogels. The facile quenching of cyclooctynes demonstrated here should be useful in other bioorthogonal ligation techniques in which cyclooctynes are employed, including SPANC, Diels-Alder, and thiol-yne.
Collapse
Affiliation(s)
- Matthew Bjerknes
- Departments of Medicine and Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hazel Cheng
- Departments of Medicine and Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher D. McNitt
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Vladimir V. Popik
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|