1
|
Vijayaraghavan R, Loganathan S, Valapa RB. Fabrication of GelMA - Agarose Based 3D Bioprinted Photocurable Hydrogel with In Vitro Cytocompatibility and Cells Mirroring Natural Keratocytes for Corneal Stromal Regeneration. Macromol Biosci 2024; 24:e2400136. [PMID: 39096155 DOI: 10.1002/mabi.202400136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Indexed: 08/05/2024]
Abstract
The complex anatomy of the cornea and the subsequent keratocyte-fibroblast transition have always made corneal stromal regeneration difficult. Recently, 3D printing has received considerable attention in terms of fabrication of scaffolds with precise dimension and pattern. In the current work, 3D printable polymer hydrogels made of GelMA/agarose are formulated and its rheological properties are evaluated. Despite the variation in agarose content, both the hydrogels exhibited G'>G'' modulus. A prototype for 3D stromal model is created using Solid Works software, mimicking the anatomy of an adult cornea. The fabrication of 3D-printed hydrogels is performed using pneumatic extrusion. The FTIR analysis speculated that the hydrogel is well crosslinked and established strong hydrogen bonding with each other, thus contributing to improved thermal and structural stability. The MTT analysis revealed a higher rate of cell proliferation on the hydrogels. The optical analysis carried out on the 14th day of incubation revealed that the hydrogels exhibit transparency matching with natural corneal stromal tissue. Specific protein marker expression confirmed the keratocyte phenotype and showed that the cells do not undergo terminal differentiation into stromal fibroblasts. The findings of this work point to the potential of GelMA/A hydrogels as a novel biomaterial for corneal stromal tissue engineering.
Collapse
Affiliation(s)
- Renuka Vijayaraghavan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sravanthi Loganathan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Babu Valapa
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Yao Q, Wu H, Ren H, Cao J, Shao Y, Liu G, Lu P. Inhibition of Experimental Corneal Neovascularization by the Tight Junction Protein ZO-1. J Ocul Pharmacol Ther 2024; 40:379-388. [PMID: 39172123 DOI: 10.1089/jop.2023.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Purpose: To explore the effects of the tight junction protein zonula occludens 1 (ZO-1) on experimental corneal neovascularization (CNV). Methods: CNV models were established in the left eyes of BALB/c mice using NaOH. Anti-ZO-1 neutralizing antibody was topically applied to the burnt corneas after modeling thrice a day for 1 week. CD31 expression was analyzed to calculate the ratio of CNV number to area using a corneal whole-mount fluorescent immunohistochemical assay. Messenger ribonucleic acid (mRNA) and protein expression levels of ZO-1, vascular endothelial growth factor (VEGF), interleukin (IL)-1β, IL-6, IL-8, IL-18, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α), phosphorylated protein kinase C (pPKC), and clusterin in burned corneas were detected by reverse transcriptase polymerase chain reaction (PCR) and western blot analyses. Infiltration of neutrophils, macrophages, and progenitor cells was examined by flow cytometry. Results: CNV was obviously greater in 45 s than in 15 s alkali injury group. In another experiment, CNV was obviously greater in the ZO-1 antibody group than in the vehicle-treated group. Corneal mRNA and protein expression levels of VEGF, IL-1β, IL-6, IL-8, IL-18, and MCP-1 were significantly higher in the ZO-1 antibody group than in the control group. Infiltration of neutrophils, macrophages, and progenitor cells was significantly greater in the ZO-1 antibody group than in the control group. TNF-α expression was much higher in 45 s than in 15 s alkali injury group. However, protein expression of pPKC and clusterin was much lower in 45 s than in 15 s alkali injury group. Conclusions: Anti-ZO-1 neutralizing antibody-treated mice exhibited enhanced alkali-induced CNV through enhanced intracorneal infiltration of progenitor and inflammatory cells.
Collapse
Affiliation(s)
- Qingying Yao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongya Wu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hang Ren
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiufa Cao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Shao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Pal P, Sambhakar S, Paliwal S, Kumar S, Kalsi V. Biofabrication paradigms in corneal regeneration: bridging bioprinting techniques, natural bioinks, and stem cell therapeutics. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:717-755. [PMID: 38214998 DOI: 10.1080/09205063.2024.2301817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Corneal diseases are a major cause of vision loss worldwide. Traditional methods like corneal transplants from donors are effective but face challenges like limited donor availability and the risk of graft rejection. Therefore, new treatment methods are essential. This review examines the growing field of bioprinting and biofabrication in corneal tissue engineering. We begin by discussing various bioprinting methods such as stereolithography, inkjet, and extrusion printing, highlighting their strengths and weaknesses for eye-related uses. We also explore how biological tissues are made suitable for bioprinting through a process called decellularization, which can be achieved using chemical, physical, or biological methods. The review then looks at natural materials, known as bioinks, used in bioprinting. We focus on materials like gelatin, collagen, fibrin, chitin, chitosan, silk fibroin, and alginate, examining their mechanical and biological properties. The importance of hydrogel scaffolds, particularly those based on collagen and other materials, is also discussed in the context of repairing corneal tissue. Another key area we cover is the use of stem cells in corneal regeneration. We pay special attention to limbal epithelial stem cells and mesenchymal stromal cells, highlighting their roles in this process. The review concludes with an overview of the latest advancements in corneal tissue bioprinting, from early techniques to advanced methods of delivering stem cells using bioengineered materials. In summary, this review presents the current state and future potential of bioprinting and biofabrication in creating functional corneal tissues, highlighting new developments and ongoing challenges with a view towards restoring vision.
Collapse
Affiliation(s)
- Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Radha Kishnpura, Rajasthan, India
| | - Sharda Sambhakar
- Department of Pharmacy, Banasthali Vidyapith, Radha Kishnpura, Rajasthan, India
| | - Shailendra Paliwal
- Department of Pharmacy, L.L.R.M Medical College, Meerut, Uttar Pradesh, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Vandna Kalsi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
4
|
Han GY, Kwack HW, Kim YH, Je YH, Kim HJ, Cho CS. Progress of polysaccharide-based tissue adhesives. Carbohydr Polym 2024; 327:121634. [PMID: 38171653 DOI: 10.1016/j.carbpol.2023.121634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Recently, polymer-based tissue adhesives (TAs) have gained the attention of scientists and industries as alternatives to sutures for sealing and closing wounds or incisions because of their ease of use, low cost, minimal tissue damage, and short application time. However, poor mechanical properties and weak adhesion strength limit the application of TAs, although numerous studies have attempted to develop new TAs with enhanced performance. Therefore, next-generation TAs with improved multifunctional properties are required. In this review, we address the requirements of polymeric TAs, adhesive characteristics, adhesion strength assessment methods, adhesion mechanisms, applications, advantages and disadvantages, and commercial products of polysaccharide (PS)-based TAs, including chitosan (CS), alginate (AL), dextran (DE), and hyaluronic acid (HA). Additionally, future perspectives are discussed.
Collapse
Affiliation(s)
- Gi-Yeon Han
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Wook Kwack
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Yo-Han Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Joong Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Mishra D, Gade S, Pathak V, Vora LK, Mcloughlin K, Medina R, Donnelly RF, Raghu Raj Singh T. Ocular application of electrospun materials for drug delivery and cellular therapies. Drug Discov Today 2023; 28:103676. [PMID: 37343817 DOI: 10.1016/j.drudis.2023.103676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
The constraints of delivering conventional drugs, biologics and cell-based therapeutics to target ocular sites necessitate the fabrication of novel drug delivery systems to treat diverse ocular diseases. Conventional ocular drug delivery approaches are prone to low bioavailability, poor penetration and degradation of therapeutics, including cell-based therapies, leading to the need for frequent topical applications or intraocular injections. However, owing to their exceptional structural properties, nanofibrous and microfibrous electrospun materials have gained significant interest in ocular drug delivery and biomaterial applications. This review covers the recent developments of electrospun fibers for the delivery of drugs, biologics, cells, growth factors and tissue regeneration in treating ocular diseases. The insights from this review can provide a thorough understanding of the selection of materials for the fabrication of nano- and/or micro-fibrous systems for ocular applications, with a particular interest in achieving controlled drug release and cell therapy. A detailed modality for fabricating different types of nano- and micro-fibers produced from electrospinning and factors influencing generation are also discussed.
Collapse
Affiliation(s)
- Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Shilpkala Gade
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Varun Pathak
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Kiran Mcloughlin
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Reinhold Medina
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | | |
Collapse
|
6
|
Omidian H, Dey Chowdhury S, Babanejad N. Cryogels: Advancing Biomaterials for Transformative Biomedical Applications. Pharmaceutics 2023; 15:1836. [PMID: 37514023 PMCID: PMC10384998 DOI: 10.3390/pharmaceutics15071836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cryogels, composed of synthetic and natural materials, have emerged as versatile biomaterials with applications in tissue engineering, controlled drug delivery, regenerative medicine, and therapeutics. However, optimizing cryogel properties, such as mechanical strength and release profiles, remains challenging. To advance the field, researchers are exploring advanced manufacturing techniques, biomimetic design, and addressing long-term stability. Combination therapies and drug delivery systems using cryogels show promise. In vivo evaluation and clinical trials are crucial for safety and efficacy. Overcoming practical challenges, including scalability, structural integrity, mass transfer constraints, biocompatibility, seamless integration, and cost-effectiveness, is essential. By addressing these challenges, cryogels can transform biomedical applications with innovative biomaterials.
Collapse
Affiliation(s)
- Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
7
|
Pires JRA, Rodrigues C, Coelhoso I, Fernando AL, Souza VGL. Current Applications of Bionanocomposites in Food Processing and Packaging. Polymers (Basel) 2023; 15:polym15102336. [PMID: 37242912 DOI: 10.3390/polym15102336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nanotechnology advances are rapidly spreading through the food science field; however, their major application has been focused on the development of novel packaging materials reinforced with nanoparticles. Bionanocomposites are formed with a bio-based polymeric material incorporated with components at a nanoscale size. These bionanocomposites can also be applied to preparing an encapsulation system aimed at the controlled release of active compounds, which is more related to the development of novel ingredients in the food science and technology field. The fast development of this knowledge is driven by consumer demand for more natural and environmentally friendly products, which explains the preference for biodegradable materials and additives obtained from natural sources. In this review, the latest developments of bionanocomposites for food processing (encapsulation technology) and food packaging applications are gathered.
Collapse
Affiliation(s)
- João Ricardo Afonso Pires
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carolina Rodrigues
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Coelhoso
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Luisa Fernando
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Victor Gomes Lauriano Souza
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
8
|
Karimi-Soflou R, Shabani I, Karkhaneh A. Enhanced neural differentiation by applying electrical stimulation utilizing conductive and antioxidant alginate-polypyrrole/poly-l-lysine hydrogels. Int J Biol Macromol 2023; 237:124063. [PMID: 36933596 DOI: 10.1016/j.ijbiomac.2023.124063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The challenge of restoration from neurodegenerative disorder requires effective solutions. To enhance the healing efficiencies, scaffolds with antioxidant activities, electroconductivity, and versatile features to encourage neuronal differentiation are potentially useful. Herein, polypyrrole-alginate (Alg-PPy) copolymer was used to design antioxidant and electroconductive hydrogels through the chemical oxidation radical polymerization method. The hydrogels have antioxidant effects to combat oxidative stress in nerve damage thanks to the introduction of PPy. Additionally, poly-l-lysine (PLL) provided these hydrogels with a great differentiation ability of stem cells. The morphology, porosity, swelling ratio, antioxidant activity, rheological behavior, and conductive characteristics of these hydrogels were precisely adjusted by altering the amount of PPy. Characterization of hydrogels showed appropriate electrical conductivity and antioxidant activity for neural tissue applications. Cytocompatibility, live/dead assays, and Annexin V/PI staining by flow cytometry using P19 cells confirmed the excellent cytocompatibility and cell protective effect under ROS microenvironment of these hydrogels in both normal and oxidative conditions. The neural marker investigation in the induction of electrical impulses was assessed through RT-PCR and immunofluorescence assay, demonstrating the differentiation of P19 cells to neurons cultured in these scaffolds. In summary, the antioxidant and electroconductive Alg-PPy/PLL hydrogels demonstrated excellent potential as promising scaffolds for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Reza Karimi-Soflou
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| |
Collapse
|
9
|
Alves AL, Carvalho AC, Machado I, Diogo GS, Fernandes EM, Castro VIB, Pires RA, Vázquez JA, Pérez-Martín RI, Alaminos M, Reis RL, Silva TH. Cell-Laden Marine Gelatin Methacryloyl Hydrogels Enriched with Ascorbic Acid for Corneal Stroma Regeneration. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010062. [PMID: 36671634 PMCID: PMC9854711 DOI: 10.3390/bioengineering10010062] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Corneal pathologies from infectious or noninfectious origin have a significant impact on the daily lives of millions of people worldwide. Despite the risk of organ rejection or infection, corneal transplantation is currently the only effective treatment. Finding safe and innovative strategies is the main goal of tissue-engineering-based approaches. In this study, the potential of gelatin methacryloyl (GelMA) hydrogels produced from marine-derived gelatin and loaded with ascorbic acid (as an enhancer of the biological activity of cells) was evaluated for corneal stromal applications. Marine GelMA was synthesized with a methacrylation degree of 75%, enabling effective photocrosslinking, and hydrogels with or without ascorbic acid were produced, encompassing human keratocytes. All the produced formulations exhibited excellent optical and swelling properties with easy handling as well as structural stability and adequate degradation rates that may allow proper extracellular matrix remodeling by corneal stromal cells. Formulations loaded with 0.5 mg/mL of ascorbic acid enhanced the biological performance of keratocytes and induced collagen production. These results suggest that, in addition to marine-derived gelatin being suitable for the synthesis of GelMA, the hydrogels produced are promising biomaterials for corneal regeneration applications.
Collapse
Affiliation(s)
- Ana L. Alves
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ana C. Carvalho
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Inês Machado
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Gabriela S. Diogo
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Vânia I. B. Castro
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ricardo A. Pires
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - José A. Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, CP36208 Vigo, Spain
| | - Ricardo I. Pérez-Martín
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, CP36208 Vigo, Spain
| | - Miguel Alaminos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria (ibs.GRANADA), E18016 Granada, Spain
| | - Rui L. Reis
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, i3B’s—Research Institute on Biomaterials, Bisodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
10
|
Preparation and evaluation of ascorbyl glucoside and ascorbic acid solid in oil nanodispersions for corneal epithelial wound healing. Int J Pharm 2022; 627:122227. [PMID: 36155791 DOI: 10.1016/j.ijpharm.2022.122227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
Abstract
The objective of this study was to develop and evaluate an effective topical formulation to promote corneal epithelial wound healing. Ascorbyl glucoside (AA-2G), a stable prodrug of AA, was formulated in solid in oil (S/O) nanodispersions by emulsifying AA-2G solutions in cyclohexane using Span 85 as an emulsifying agent and freeze-drying emulsions to produce AA-2G - surfactant complex. The complexes were then dispersed in castor oil to produce S/O nanodispersions which were evaluated in terms of their particle size, polydispersity index, encapsulation efficiency, morphology, physical stability as well as the transcorneal permeation and accumulation of AA-2G. The same preparation procedure was used to prepare S/O nanodispersions of AA. S/O nanodispersions of AA and AA-2G were formulated into oily drops that were tested for efficacy in promoting wound healing after corneal epithelial depredation. AA-2G was loaded efficiently in S/O nanodispersions (EE > 99%) in the form of spherical nanoparticles. S/O nanodispersions were physically stable and resulted in improved permeation (18x) and accumulation (7x) of AA-2G in transcorneal diffusion experiments in comparison to AA-2G solutions. Oily eye drops of AA-2G and AA showed no irritation and significant improvement in epithelial healing in vivo in comparison to AA-2G and AA solutions.
Collapse
|
11
|
Recent Trends in Drug Delivery and Emerging Biomedical Applications of Gelatin for Ophthalmic Indications. Macromol Res 2022. [DOI: 10.1007/s13233-022-0078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Teng L, Xia K, Qian T, Hu Z, Hong L, Liao Y, Peng G, Yuan Z, Chen Y, Zeng Z. Shape-Recoverable Macroporous Nanocomposite Hydrogels Created via Ice Templating Polymerization for Noncompressible Wound Hemorrhage. ACS Biomater Sci Eng 2022; 8:2076-2087. [PMID: 35426307 DOI: 10.1021/acsbiomaterials.2c00115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Uncontrolled hemorrhage resulting from severe trauma or surgical operations remains a challenge. It is highly important to develop functional materials to treat noncompressible wound bleeding. In this work, a shape-recoverable macroporous nanocomposite hydrogel was facilely created through ice templating polymerization. The covalently cross-linked gelatin networks provide a robust framework, while the Laponite nanoclay disperses into the three-dimensional matrix, enabling mechanical reinforcement and hemostatic functions. The resultant macroporous nanocomposite hydrogel possesses an inherent interconnected macroporous structure and rapid deformation recovery. In vitro assessments indicate that the hydrogel displays good cytocompatibility and a low hemolysis ratio. The hydrogel shows a higher coagulation potential and more erythrocyte adhesion compared to the commercial gauze and gelatin sponge. The noncompressible liver hemorrhage models also confirm its promising hemostasis performance. This strategy of combining a nano-enabled solution with ice templating polymerization displays great potential to develop appealing absorbable macroporous biomaterials for rapid hemostasis.
Collapse
Affiliation(s)
- Lijing Teng
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Kaide Xia
- School of Basic Medical Sciences, Guizhou Medical University, Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang 550025, China
| | - Tianbao Qian
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Zuquan Hu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Liang Hong
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Ying Liao
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Guorui Peng
- School of Anesthesiology, Guizhou Medical University, Guiyang 550025, China
| | - Zhongrun Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
13
|
Deng J, Lin D, Ding X, Wang Y, Hu Y, Shi H, Chen L, Chu B, Lei L, Wen C, Wang J, Qian Z, Li X. Multifunctional Supramolecular Filament Hydrogel Boosts Anti‐Inflammatory Efficacy In Vitro and In Vivo. ADVANCED FUNCTIONAL MATERIALS 2022. [DOI: 10.1002/adfm.202109173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jie Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang Province the First Affiliated Hospital Wenzhou Medical University Wenzhou 325027 China
| | - Deqing Lin
- Institute of Biomedical Engineering School of Ophthalmology & Optometry and Eye Hospital Wenzhou Medical University 270 Xueyuan Road Wenzhou 325027 China
| | - Xiangyu Ding
- Institute of Biomedical Engineering School of Ophthalmology & Optometry and Eye Hospital Wenzhou Medical University 270 Xueyuan Road Wenzhou 325027 China
| | - Yuan Wang
- Institute of Biomedical Engineering School of Ophthalmology & Optometry and Eye Hospital Wenzhou Medical University 270 Xueyuan Road Wenzhou 325027 China
| | - YuHan Hu
- Institute of Biomedical Engineering School of Ophthalmology & Optometry and Eye Hospital Wenzhou Medical University 270 Xueyuan Road Wenzhou 325027 China
| | - Hui Shi
- Institute of Biomedical Engineering School of Ophthalmology & Optometry and Eye Hospital Wenzhou Medical University 270 Xueyuan Road Wenzhou 325027 China
| | - Lin Chen
- Institute of Biomedical Engineering School of Ophthalmology & Optometry and Eye Hospital Wenzhou Medical University 270 Xueyuan Road Wenzhou 325027 China
| | - Bingyang Chu
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Lei Lei
- Institute of Biomedical Engineering School of Ophthalmology & Optometry and Eye Hospital Wenzhou Medical University 270 Xueyuan Road Wenzhou 325027 China
| | - Chunmei Wen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang Province the First Affiliated Hospital Wenzhou Medical University Wenzhou 325027 China
| | - Jiaqing Wang
- Institute of Biomedical Engineering School of Ophthalmology & Optometry and Eye Hospital Wenzhou Medical University 270 Xueyuan Road Wenzhou 325027 China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xingyi Li
- Institute of Biomedical Engineering School of Ophthalmology & Optometry and Eye Hospital Wenzhou Medical University 270 Xueyuan Road Wenzhou 325027 China
| |
Collapse
|
14
|
Ari B, Sahiner M, Demirci S, Sahiner N. Poly(vinyl alcohol)-tannic Acid Cryogel Matrix as Antioxidant and Antibacterial Material. Polymers (Basel) 2021; 14:70. [PMID: 35012093 PMCID: PMC8747331 DOI: 10.3390/polym14010070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
The biocompatible, viscoelastic properties of poly(vinyl alcohol) (PVA) in combination with the antimicrobial and antioxidant natural polyphenolic, tannic acid (TA), and the natural flavonoid and antioxidant curcumin (Cur), were used in the preparation of PVA:TA and PVA:TA:Cur cryogel composites using cryotropic gelation to combine the individually beneficial properties. The effect of TA content on the antioxidant and antimicrobial activities of PVA:TA cryogel composites and the antioxidant activities of PVA:TA:Cur cryogel composites was determined using Trolox equivalent antioxidant capacity (TEAC) and total phenol content (TPC) assays, and were compared. The PVA:TA:Cur cryogel composite showed the highest antioxidant activity, with a TEAC value of 2.10 ± 0.24 and a TPC value of 293 ± 12.00. The antibacterial capacity of the PVA:TA and PVA:TA:Cur 1:1:0.1 cryogel composites was examined against two different species of bacteria, E. coli and S. aureus. It was found that the minimum inhibition concentration (MIC) value of the PVA:TA:Cur 1:1:0.1 cryogel composites varied between 5 and 10 mg/mL based on the type of microorganism, and the minimum bactericidal concentration (MBC) value was 20 mg/mL irrespective of the type of microorganism. Furthermore, the hemocompatibility of the PVA:TA cryogel composites was evaluated by examining their hemolytic and coagulation behaviors. PVA:TA 1:1 cryogels with a value of 95.7% revealed the highest blood clotting index value amongst all of the synthesized cryogels, signifying the potential for blood contacting applications. The release of TA and Cur from the cryogel composites was quantified at different pH conditions, i.e., 1.0, 7.4, and 9.0, and additionally in ethanol (EtOH) and an ethanol-water (EtOH:Wat) mixture. The solution released from the PVA:TA cryogels in PBS was tested for inhibition capability against α-glucosidase (E.C. 3.2.1.20). Concentration-dependent enzyme inhibition was observed, and 70 µL of 83 µg/mL PVA:TA (1:1) cryogel in PBS inhibited α-glucosidase enzyme solution of 0.03 unit/mL in 70 µL by 81.75 ± 0.96%.
Collapse
Affiliation(s)
- Betul Ari
- Department of Chemistry, Faculty of Science & Arts, Terzioglu Campus, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey; (B.A.); (S.D.)
| | - Mehtap Sahiner
- Faculty of Canakkale School of Applied Science, Terzioglu Campus, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey;
| | - Sahin Demirci
- Department of Chemistry, Faculty of Science & Arts, Terzioglu Campus, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey; (B.A.); (S.D.)
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Science & Arts, Terzioglu Campus, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey; (B.A.); (S.D.)
- Nanoscience and Technology Research and Application Center, Terzioglu Campus, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
- Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL 33620, USA
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv., MDC 21, Tampa, FL 33612, USA
| |
Collapse
|
15
|
Jameson JF, Pacheco MO, Nguyen HH, Phelps EA, Stoppel WL. Recent Advances in Natural Materials for Corneal Tissue Engineering. Bioengineering (Basel) 2021; 8:161. [PMID: 34821727 PMCID: PMC8615221 DOI: 10.3390/bioengineering8110161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Given the incidence of corneal dysfunctions and diseases worldwide and the limited availability of healthy, human donors, investigators are working to generate engineered cellular and acellular therapeutic approaches as alternatives to corneal transplants from human cadavers. These engineered strategies aim to address existing complications with human corneal transplants, including graft rejection, infection, and complications resulting from surgical methodologies. The main goals of these research endeavors are to (1) determine ideal mechanical properties, (2) devise methodologies to improve the efficacy of engineered corneal grafts and cell-based therapies, and (3) optimize transplantation of engineered tissue structures in the eye. Thus, recent innovations have sought to address these challenges through both in vitro and in vivo studies. This review covers recent work aimed at evaluating engineered materials, potential therapeutic cells, and the resulting cell-material interactions that lead to optimal corneal graft properties. Furthermore, we discuss promising strategies in corneal tissue engineering techniques and in vivo studies in animal models.
Collapse
Affiliation(s)
- Julie F. Jameson
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| | - Marisa O. Pacheco
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| | - Henry H. Nguyen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Whitney L. Stoppel
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| |
Collapse
|
16
|
Preparation and In Vitro Characterization of Gelatin Methacrylate for Corneal Tissue Engineering. Tissue Eng Regen Med 2021; 19:59-72. [PMID: 34665455 DOI: 10.1007/s13770-021-00393-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Corneal disease is second only to cataract considered as the leading cause of blindness in the world, with high morbidity. Construction of corneal substitutes in vitro by tissue engineering technology to achieve corneal regeneration has become a research hotspot in recent years. We conducted in-depth research on the biocompatibility, physicochemical and mechanical properties of rat bone marrow mesenchymal stem cells (rBM-MSCs)-seeded gelatin methacrylate (GelMA) as a bioengineered cornea. METHODS Four kinds of GelMA with different concentrations (7, 10, 15 and 30%) were prepared, and their physic-chemical, optical properties, and biocompatibility with rBM-MSCs were characterized. MTT, live/dead staining, cell morphology, immunofluorescence staining and gene expression of keratocyte markers were performed. RESULTS 7%GelMA hydrogel had higher equilibrium water content and porosity, better optical properties and hydrophilicity. In addition, it is more beneficial to the growth and proliferation of rBM-MSCs. However, the 30%GelMA hydrogel had the best mechanical properties, and could be more conducive to promote the differentiation of rBM-MSCs into keratocyte-like cells. CONCLUSION As a natural biological scaffold, GelMA hydrogel has good biocompatibility. And it has the ability to promote the differentiation of rBM-MSCs into keratocyte-like cells, which laid a theoretical and experimental foundation for further tissue-engineered corneal stromal transplantation, and provided a new idea for the source of seeded cells in corneal tissue engineering.
Collapse
|
17
|
Formisano N, van der Putten C, Grant R, Sahin G, Truckenmüller RK, Bouten CVC, Kurniawan NA, Giselbrecht S. Mechanical Properties of Bioengineered Corneal Stroma. Adv Healthc Mater 2021; 10:e2100972. [PMID: 34369098 PMCID: PMC11468718 DOI: 10.1002/adhm.202100972] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Indexed: 12/26/2022]
Abstract
For the majority of patients with severe corneal injury or disease, corneal transplantation is the only suitable treatment option. Unfortunately, the demand for donor corneas greatly exceeds the availability. To overcome shortage issues, a myriad of bioengineered constructs have been developed as mimetics of the corneal stroma over the last few decades. Despite the sheer number of bioengineered stromas developed , these implants fail clinical trials exhibiting poor tissue integration and adverse effects in vivo. Such shortcomings can partially be ascribed to poor biomechanical performance. In this review, existing approaches for bioengineering corneal stromal constructs and their mechanical properties are described. The information collected in this review can be used to critically analyze the biomechanical properties of future stromal constructs, which are often overlooked, but can determine the failure or success of corresponding implants.
Collapse
Affiliation(s)
- Nello Formisano
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Cas van der Putten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Rhiannon Grant
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Gozde Sahin
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
18
|
Demirci S, Sahiner M, Ari B, Sunol AK, Sahiner N. Chondroitin Sulfate-Based Cryogels for Biomedical Applications. Gels 2021; 7:127. [PMID: 34462411 PMCID: PMC8406096 DOI: 10.3390/gels7030127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022] Open
Abstract
Cryogels attained from natural materials offer exceptional properties in applications such as tissue engineering. Moreover, Halloysite Nanotubes (HNT) at 1:0.5 weight ratio were embedded into CS cryogels to render additional biomedical properties. The hemolysis index of CS cryogel and CS:HNT cryogels was calculated as 0.77 ± 0.41 and 0.81 ± 0.24 and defined as non-hemolytic materials. However, the blood coagulation indices of CS cryogel and CS:HNT cryogels were determined as 76 ± 2% and 68 ± 3%, suggesting a mild blood clotting capability. The maximum% swelling capacity of CS cryogel was measured as 3587 ± 186%, 4014 ± 184%, and 3984 ± 113%, at pH 1.0, pH 7.4 and pH 9.0, respectively, which were reduced to 1961 ± 288%, 2816 ± 192, 2405 ± 73%, respectively, for CS:HNT cryogel. It was found that CS cryogels can hydrolytically be degraded 41 ± 1% (by wt) in 16-day incubation, whereas the CS:HNT cryogels degraded by 30 ± 1 wt %. There is no chelation for HNT and 67.5 ± 1% Cu(II) chelation for linear CS was measured. On the other hand, the CS cryogel and CS:HNT cryogel revealed Cu(II) chelating capabilities of 60.1 ± 12.5%, and 43.2 ± 17.5%, respectively, from 0.1 mg/mL Cu(II) ion stock solution. Additionally, at 0.5 mg/mL CS, CS:HNT, and HNT, the Fe(II) chelation capacity of 99.7 ± 0.6, 86.2 ± 4.7% and only 11.9 ± 4.5% were measured, respectively, while no Fe(II) was chelated by linear CS chelated Fe(II). As the adjustable and controllable swelling properties of cryogels are important parameters in biomedical applications, the swelling properties of CS cryogels, at different solution pHs, e.g., at the solution pHs of 1.0, 7.4 and 9.0, were measured as 3587 ± 186%, 4014 ± 184%, and 3984 ± 113%, respectively, and the maximum selling% values of CS:HNT cryogels were determined as 1961 ± 288%, 2816 ± 192, 2405 ± 73%, respectively, at the same conditions. Alpha glucosidase enzyme interactions were investigated and found that CS-based cryogels can stimulate this enzyme at any CS formulation.
Collapse
Affiliation(s)
- Sahin Demirci
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey; (S.D.); (B.A.)
| | - Mehtap Sahiner
- Faculty of Canakkale School of Applied Science, Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey;
| | - Betul Ari
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey; (S.D.); (B.A.)
| | - Aydin K. Sunol
- Department of Chemical & Biomedical Engineering, and Materials Science and Engineering, University of South Florida, Tampa, FL 33620, USA;
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey; (S.D.); (B.A.)
- Department of Chemical & Biomedical Engineering, and Materials Science and Engineering, University of South Florida, Tampa, FL 33620, USA;
- Department of Ophthalmology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
19
|
He Y, Wang C, Wang C, Xiao Y, Lin W. An Overview on Collagen and Gelatin-Based Cryogels: Fabrication, Classification, Properties and Biomedical Applications. Polymers (Basel) 2021; 13:2299. [PMID: 34301056 PMCID: PMC8309424 DOI: 10.3390/polym13142299] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/20/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Decades of research into cryogels have resulted in the development of many types of cryogels for various applications. Collagen and gelatin possess nontoxicity, intrinsic gel-forming ability and physicochemical properties, and excellent biocompatibility and biodegradability, making them very desirable candidates for the fabrication of cryogels. Collagen-based cryogels (CBCs) and gelatin-based cryogels (GBCs) have been successfully applied as three-dimensional substrates for cell culture and have shown promise for biomedical use. A key point in the development of CBCs and GBCs is the quantitative and precise characterization of their properties and their correlation with preparation process and parameters, enabling these cryogels to be tuned to match engineering requirements. Great efforts have been devoted to fabricating these types of cryogels and exploring their potential biomedical application. However, to the best of our knowledge, no comprehensive overviews focused on CBCs and GBCs have been reported currently. In this review, we attempt to provide insight into the recent advances on such kinds of cryogels, including their fabrication methods and structural properties, as well as potential biomedical applications.
Collapse
Affiliation(s)
- Yujing He
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
| | - Chunhua Wang
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Chenzhi Wang
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
| | - Yuanhang Xiao
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
| | - Wei Lin
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Savina IN, Zoughaib M, Yergeshov AA. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Gels 2021; 7:79. [PMID: 34203439 PMCID: PMC8293244 DOI: 10.3390/gels7030079] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cryogels obtained by the cryotropic gelation process are macroporous hydrogels with a well-developed system of interconnected pores and shape memory. There have been significant recent advancements in our understanding of the cryotropic gelation process, and in the relationship between components, their structure and the application of the cryogels obtained. As cryogels are one of the most promising hydrogel-based biomaterials, and this field has been advancing rapidly, this review focuses on the design of biodegradable cryogels as advanced biomaterials for drug delivery and tissue engineering. The selection of a biodegradable polymer is key to the development of modern biomaterials that mimic the biological environment and the properties of artificial tissue, and are at the same time capable of being safely degraded/metabolized without any side effects. The range of biodegradable polymers utilized for cryogel formation is overviewed, including biopolymers, synthetic polymers, polymer blends, and composites. The paper discusses a cryotropic gelation method as a tool for synthesis of hydrogel materials with large, interconnected pores and mechanical, physical, chemical and biological properties, adapted for targeted biomedical applications. The effect of the composition, cross-linker, freezing conditions, and the nature of the polymer on the morphology, mechanical properties and biodegradation of cryogels is discussed. The biodegradation of cryogels and its dependence on their production and composition is overviewed. Selected representative biomedical applications demonstrate how cryogel-based materials have been used in drug delivery, tissue engineering, regenerative medicine, cancer research, and sensing.
Collapse
Affiliation(s)
- Irina N. Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| | - Abdulla A. Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| |
Collapse
|
21
|
Hao D, Nourbakhsh M. Recent Advances in Experimental Burn Models. BIOLOGY 2021; 10:526. [PMID: 34204763 PMCID: PMC8231482 DOI: 10.3390/biology10060526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Experimental burn models are essential tools for simulating human burn injuries and exploring the consequences of burns or new treatment strategies. Unlike clinical studies, experimental models allow a direct comparison of different aspects of burns under controlled conditions and thereby provide relevant information on the molecular mechanisms of tissue damage and wound healing, as well as potential therapeutic targets. While most comparative burn studies are performed in animal models, a few human or humanized models have been successfully employed to study local events at the injury site. However, the consensus between animal and human studies regarding the cellular and molecular nature of systemic inflammatory response syndrome (SIRS), scarring, and neovascularization is limited. The many interspecies differences prohibit the outcomes of animal model studies from being fully translated into the human system. Thus, the development of more targeted, individualized treatments for burn injuries remains a major challenge in this field. This review focuses on the latest progress in experimental burn models achieved since 2016, and summarizes the outcomes regarding potential methodological improvements, assessments of molecular responses to injury, and therapeutic advances.
Collapse
Affiliation(s)
| | - Mahtab Nourbakhsh
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
22
|
Erol K, Arslan Akveran G, Köse K, Ali Köse D. Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Lactase, which can cause lactose intolerance in its deficiency, is a vital enzyme concerning digestion. To overcome lactose intolerance for patients with digestion problem depending of this kind of issue, lactose in food should be removed. In this study, lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-l-aspartic acid), poly(HEMA-MAsp), cryogels were synthesized to reduce the amount of lactose content of milk samples. Occurrence of desired bounds, structural integrity, and surface characteristics were analyzed via Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), scanning electron microscope (SEM), micro computed tomography (CT), and confocal microscope methods. Water retention characteristic were tested in solution with different electrolytic nature. Adsorption parameters were optimized in an aqueous medium. The adsorption performance of imprinted cryogels was studied in milk samples obtained from cow, sheep, goat, buffalo, and from human volunteers at different intervals after birth. Amount of lactose adsorbed in aqueous media and milk sample from humans were 322 (56.7%) and 179.5 (5.94%) mg lactose/g polymer, respectively. Selectivity studies revealed an approximately 8-fold increase in adsorption rate of molecularly imprinted cryogels as compared to that of nonimprinted cryogels. In addition, competitive adsorption was conducted using lactose-imprinted cryogels in aqueous media containing lactose, glucose, and galactose molecules resulting in adsorption rates of 220.56, 57.87, and 61.65 mg biomolecule/g polymer, respectively.
Collapse
Affiliation(s)
- Kadir Erol
- Department of Property Protection and Safety , Osmancık Ö. D. Vocational School, Hitit University , Çorum , Turkey
| | - Gönül Arslan Akveran
- Department of Food Processing , Alaca Avni Çelik Vocational School, Hitit University , Çorum , Turkey
| | - Kazım Köse
- Department of Joint Courses , Hitit University , Çorum 19030 , Turkey
| | - Dursun Ali Köse
- Department of Chemistry , Faculty of Science and Arts, Hitit University , Çorum , Turkey
| |
Collapse
|
23
|
Nguyen DD, Lue SJ, Lai JY. Tailoring therapeutic properties of silver nanoparticles for effective bacterial keratitis treatment. Colloids Surf B Biointerfaces 2021; 205:111856. [PMID: 34022702 DOI: 10.1016/j.colsurfb.2021.111856] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/17/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022]
Abstract
The formulation of nanoparticles with intrinsically therapeutic properties in a tailorable and appropriate manner is critical in nanomedicine for effective treatments of infectious diseases. Here, we present a biomedical strategy to formulate silver nanoparticles (AgNPs) as intrinsically therapeutic agents for the treatment of Staphylococcus aureus (S. aureus) keratitis. Specifically, AgNPs are controllably obtained as spheres, wrapped with a biopolymer, and varied in sizes. in vitro and in vivo studies indicate that biological interactions between the AgNPs and corneal keratocytes, S. aureus bacteria, and blood vessels are strongly determined by the particle sizes. As the size increased from 3.3 ± 0.7 to 37.2 ± 5.3 nm, the AgNPs exhibit better ocular biocompatibility and stronger antiangiogenic activity, but poorer bactericidal performance. In a rabbit model of S. Aureus-induced keratitis, intrastromal injection of AgNP formulations (single dose) show substantial influences of particle size on the treatment efficacy. As the trade-off, AgNPs with medium size of 15.0 ± 3.6 nm reveal as the best therapeutic agent that could offer ∼5.6 and ∼9.1-fold greater corneal thickness recovery respectively compared to those with smaller and larger sizes at 3 days post-administration. These findings suggest an important advance in structural design for formulating intrinsically therapeutic nano-agents toward the efficient management of infectious diseases.
Collapse
Affiliation(s)
- Duc Dung Nguyen
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Shingjiang Jessie Lue
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Division of Joint Reconstruction, Department of Orthopedics, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Jui-Yang Lai
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| |
Collapse
|
24
|
Farasatkia A, Kharaziha M. Robust and double-layer micro-patterned bioadhesive based on silk nanofibril/GelMA-alginate for stroma tissue engineering. Int J Biol Macromol 2021; 183:1013-1025. [PMID: 33974922 DOI: 10.1016/j.ijbiomac.2021.05.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
We develop a robust micro-patterned double-layer film that can adhere firmly to the tissue and provide a sustained release of ascorbic acid (AA) for corneal regeneration. This double-layer film consists of a AA reservoir sodium alginate (SA) adhesive and an anisotropic layer made of micro-patterned silk nanofibrils (SNF) incorporated gelatin methacrylate (GelMA) (S/G). The S/G layer facilitates the adhesion and orientation of corneal stroma cells, depending on the pattern sizes (50 μm (P1) and 100 (P2) μm). Results reveal that more than 90% and 80% of the cells are located at angles close to the vertical axis (0-20°) in the sample with the smaller and larger pattern size, respectively. The mechanical robustness and 90% light transmission of this hybrid film originate from the micro-patterned S/G layer. However, the micro-pattern size does not show a significant role in the mechanical properties of hybrid films (tensile strength of S/G-SA, S/G-SA(P1), and S/G-SA(P2) is 3.4 ± 0.1 MPa, 3.6 ± 0.6 MPa and 3.3 ± 0.2 MPa, respectively). In addition, the strong adhesion to the tissue of this double-layer film is related to the alginate layer. AA can release in a controlled manner, which can significantly promote corneal stroma cells' attachment, alignment, and proliferation compared to the control (AA-free micro-patterned film). Our results reveal that this innovative multifunctional S/G-SA + AA film can be a proper candidate for use in stroma tissue engineering of the human cornea.
Collapse
Affiliation(s)
- Asal Farasatkia
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
25
|
Ulag S, Uysal E, Bedir T, Sengor M, Ekren N, Ustundag CB, Midha S, Kalaskar DM, Gunduz O. Recent developments and characterization techniques in
3D
printing of corneal stroma tissue. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Istanbul Turkey
| | - Ebru Uysal
- Department of Bioengineering, Faculty of Chemistry and Metallurgy Yildiz Technical University Istanbul Turkey
| | - Tuba Bedir
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Istanbul Turkey
| | - Mustafa Sengor
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Istanbul Turkey
| | - Nazmi Ekren
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Istanbul Turkey
| | - Cem Bulent Ustundag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Istanbul Turkey
- Department of Bioengineering, Faculty of Chemistry and Metallurgy Yildiz Technical University Istanbul Turkey
| | - Swati Midha
- UCL Division of Surgery & Interventional Science University College London (UCL) London UK
| | - Deepak M. Kalaskar
- UCL Division of Surgery & Interventional Science University College London (UCL) London UK
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Istanbul Turkey
| |
Collapse
|
26
|
The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J Control Release 2021; 332:460-492. [DOI: 10.1016/j.jconrel.2021.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
|
27
|
Hasenzahl M, Müsken M, Mertsch S, Schrader S, Reichl S. Cell sheet technology: Influence of culture conditions on in vitro-cultivated corneal stromal tissue for regenerative therapies of the ocular surface. J Biomed Mater Res B Appl Biomater 2021; 109:1488-1504. [PMID: 33538123 DOI: 10.1002/jbm.b.34808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 11/11/2022]
Abstract
The in vitro reconstruction of stromal tissue by long-term cultivation of corneal fibroblasts is a smart approach for regenerative therapies of ocular surface diseases. However, systematic investigations evaluating optimized cultivation protocols for the realization of a biomaterial are lacking. This study investigated the influence of supplements to the culture media of human corneal fibroblasts on the formation of a cell sheet consisting of cells and extracellular matrix. Among the supplements studied are vitamin C, fetal bovine serum, L-glutamine, components of collagen such as L-proline, L-4-hydroxyproline and glycine, and TGF-β1, bFGF, IGF-2, PDGF-BB and insulin. After long-term cultivation, the proliferation, collagen and glycosaminoglycan content and light transmission of the cell sheets were examined. Biomechanical properties were investigated by tensile tests and the ultrastructure was characterized by electron microscopy, small-angle X-ray scattering, antibody staining and ELISA. The synthesis of extracellular matrix was significantly increased by cultivation with insulin or TGF-β1, each with vitamin C. The sheets exhibited a high transparency and suitable material properties. The production of a transparent, scaffold-free, potentially autologous, in vitro-generated construct by culturing fibroblasts with extracellular matrix synthesis-stimulating supplements represents a promising approach for a biomaterial that can be used for ocular surface reconstruction in slowly progressing diseases.
Collapse
Affiliation(s)
- Meike Hasenzahl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mathias Müsken
- Helmholtz-Centre for Infection Research, Central Facility for Microscopy, Braunschweig, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
28
|
Li PC, Chen SC, Hsueh YJ, Shen YC, Tsai MY, Hsu LW, Yeh CK, Chen HC, Huang CC. Gelatin scaffold with multifunctional curcumin-loaded lipid-PLGA hybrid microparticles for regenerating corneal endothelium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111753. [DOI: 10.1016/j.msec.2020.111753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/08/2020] [Accepted: 11/21/2020] [Indexed: 01/21/2023]
|
29
|
The potential use of a gyroid structure to represent monolithic matrices for bioseparation purposes: Fluid dynamics and mass transfer analysis via CFD. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold. Int J Biol Macromol 2020; 161:377-388. [DOI: 10.1016/j.ijbiomac.2020.06.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
|
31
|
Tytgat L, Markovic M, Qazi TH, Vagenende M, Bray F, Martins JC, Rolando C, Thienpont H, Ottevaere H, Ovsianikov A, Dubruel P, Van Vlierberghe S. Photo-crosslinkable recombinant collagen mimics for tissue engineering applications. J Mater Chem B 2020; 7:3100-3108. [PMID: 31441462 DOI: 10.1039/c8tb03308k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gelatin is frequently used in various biomedical applications. However, gelatin is generally extracted from an animal source, which can result in issues with reproducibility as well as pathogen transmittance. Therefore, we have investigated the potential of a recombinant peptide based on collagen I (RCPhC1) for tissue engineering applications and more specifically for adipose tissue regeneration. In the current paper, RCPhC1 was functionalized with photo-crosslinkable methacrylamide moieties to enable subsequent UV-induced crosslinking in the presence of a photo-initiator. The resulting biomaterial (RCPhC1-MA) was characterized by evaluating the crosslinking behaviour, the mechanical properties, the gel fraction, the swelling properties and the biocompatibility. The obtained results were compared with the data obtained for methacrylamide-modified gelatin (Gel-MA). The results indicated that the properties of RCPhC1-MA networks are comparable to those of animal-derived Gel-MA. RCPhC1-MA is thus an attractive synthetic alternative for animal-derived Gel-MA and is envisioned to be applicable for a wide range of tissue engineering purposes.
Collapse
Affiliation(s)
- Liesbeth Tytgat
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium and Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.
| | - Marica Markovic
- Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Taimoor H Qazi
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Maxime Vagenende
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium and Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.
| | - Fabrice Bray
- Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, USR 3290 Centre National de la Recherche Scientifique, University of Lille, Villeneuve d'Ascq, France
| | - José C Martins
- NMR and Structure Analysis Unit - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Christian Rolando
- Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, USR 3290 Centre National de la Recherche Scientifique, University of Lille, Villeneuve d'Ascq, France
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Heidi Ottevaere
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aleksandr Ovsianikov
- Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium and Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.
| |
Collapse
|
32
|
Recent developments in regenerative ophthalmology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1450-1490. [PMID: 32621058 DOI: 10.1007/s11427-019-1684-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Regenerative medicine (RM) is one of the most promising disciplines for advancements in modern medicine, and regenerative ophthalmology (RO) is one of the most active fields of regenerative medicine. This review aims to provide an overview of regenerative ophthalmology, including the range of tools and materials being used, and to describe its application in ophthalmologic subspecialties, with the exception of surgical implantation of artificial tissues or organs (e.g., contact lens, artificial cornea, intraocular lens, artificial retina, and bionic eyes) due to space limitations. In addition, current challenges and limitations of regenerative ophthalmology are discussed and future directions are highlighted.
Collapse
|
33
|
Analysis of flow profiles and mass transfer of monolithic chromatographic columns: the geometric influence of channels and tortuosity. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00037-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Ari B, Yetiskin B, Okay O, Sahiner N. Preparation of dextran cryogels for separation processes of binary dye and pesticide mixtures from aqueous solutions. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Betul Ari
- Department of ChemistryCanakkale Onsekiz Mart University Canakkale Turkey
| | - Berkant Yetiskin
- Department of ChemistryIstanbul Technical University Maslak Turkey
| | - Oguz Okay
- Department of ChemistryIstanbul Technical University Maslak Turkey
| | - Nurettin Sahiner
- Department of ChemistryCanakkale Onsekiz Mart University Canakkale Turkey
- Nanoscience and Technology Research and Application Center (NANORAC), Terzioglu Campus Canakkale Turkey
- Department of OphthalmologyUniversity of South Florida Tampa Florida USA
| |
Collapse
|
35
|
Kong B, Chen Y, Liu R, Liu X, Liu C, Shao Z, Xiong L, Liu X, Sun W, Mi S. Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma. Nat Commun 2020; 11:1435. [PMID: 32188843 PMCID: PMC7080797 DOI: 10.1038/s41467-020-14887-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/03/2020] [Indexed: 11/16/2022] Open
Abstract
Regeneration of corneal stroma has always been a challenge due to its sophisticated structure and keratocyte-fibroblast transformation. In this study, we fabricate grid poly (ε-caprolactone)-poly (ethylene glycol) microfibrous scaffold and infuse the scaffold with gelatin methacrylate (GelMA) hydrogel to obtain a 3 D fiber hydrogel construct; the fiber spacing is adjusted to fabricate optimal construct that simulates the stromal structure with properties most similar to the native cornea. The topological structure (3 D fiber hydrogel, 3 D GelMA hydrogel, and 2 D culture dish) and chemical factors (serum, ascorbic acid, insulin, and β-FGF) are examined to study their effects on the differentiation of limbal stromal stem cells to keratocytes or fibroblasts and the phenotype maintenance, in vitro and in vivo tissue regeneration. The results demonstrate that fiber hydrogel and serum-free media synergize to provide an optimal environment for the maintenance of keratocyte phenotype and the regeneration of damaged corneal stroma. Regeneration of corneal stroma has been a challenge due to its sophisticated structure and the easy transformation of the keratocyte. Here, the authors use a hydrogel reinforced with orthogonally aligned fibres and serum free medium to maintain keratocyte phenotype for the in vivo stromal regeneration.
Collapse
Affiliation(s)
- Bin Kong
- Macromolecular Platforms for Translational Medicine and Bio-Manufacturing Laboratory, Tsinghua-Berkeley Shenzhen Institute, 518055, Shenzhen, P.R. China.,Biomanufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, 518055, Shenzhen, P.R. China
| | - Yun Chen
- Open FIESTA Center, Tsinghua Shenzhen International Graduate School, 518055, Shenzhen, P.R. China
| | - Rui Liu
- Biomanufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, 518055, Shenzhen, P.R. China
| | - Xi Liu
- Beijing Children's Hospital, 100045, Beijing, P.R. China
| | - Changyong Liu
- Additive Manufacturing Research Institute, College of Mechatronics and Control Engineering, Shenzhen University, 518060, Shenzhen, P.R. China
| | - Zengwu Shao
- Tongji Medical College, Huazhong University Science & Technology, 430022, Wuhan, P.R. China
| | - Liming Xiong
- Tongji Medical College, Huazhong University Science & Technology, 430022, Wuhan, P.R. China
| | - Xianning Liu
- Shaanxi Institute of Ophthalmology, 710002, Xi'an, P.R. China.,Shaanxi Key Laboratory of Eye, 710002, Xi'an, P.R. China
| | - Wei Sun
- Macromolecular Platforms for Translational Medicine and Bio-Manufacturing Laboratory, Tsinghua-Berkeley Shenzhen Institute, 518055, Shenzhen, P.R. China. .,Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, P.R. China. .,Department of Mechanical Engineering and Mechanics, Drexel University, 19104, Philadelphia, PA, USA.
| | - Shengli Mi
- Biomanufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, 518055, Shenzhen, P.R. China. .,Open FIESTA Center, Tsinghua Shenzhen International Graduate School, 518055, Shenzhen, P.R. China.
| |
Collapse
|
36
|
A review of cryogels synthesis, characterization and applications on the removal of heavy metals from aqueous solutions. Adv Colloid Interface Sci 2020; 276:102088. [PMID: 31887574 DOI: 10.1016/j.cis.2019.102088] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/27/2023]
Abstract
The physical and chemical attributes of cryogels, such as the macroporosity, elasticity, water permeability and ease of chemical modification have attracted strong research interest in a variety of areas, such as water purification, catalysis, regenerative medicine, biotechnology, bioremediation and biosensors. Cryogels have shown high removal efficiency and selectivity for heavy metals, nutrients, and toxic dyes from aqueous solutions but there are challenges when scaling up from lab to commercial scale applications. This paper represents an overview of the most recent advances in the use of cryogels for the removal of heavy metals from water and attempts to fill the gap in the literature by deepening the understanding on the mechanisms involved, which strongly depend on the initial monomer composition and post-modification agent precursors used in synthesis. The review also describes the advantages of cryogels over other adsorbents and covers synthesis and characterization methods such as SEM/EDS, TEM, FTIR, zeta potential measurements, porosimetry, swelling and mechanical properties.
Collapse
|
37
|
Kilic Bektas C, Hasirci V. Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering. Biomater Sci 2020; 8:438-449. [DOI: 10.1039/c9bm01236b] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue engineering aims to replace missing or damaged tissues and restore their functions.
Collapse
Affiliation(s)
- Cemile Kilic Bektas
- Department of Biological Sciences
- Middle East Technical University (METU)
- Ankara
- Turkey
- Department of Biotechnology
| | - Vasif Hasirci
- Department of Biological Sciences
- Middle East Technical University (METU)
- Ankara
- Turkey
- Department of Biotechnology
| |
Collapse
|
38
|
Nguyen DD, Luo L, Lai J. Dendritic Effects of Injectable Biodegradable Thermogels on Pharmacotherapy of Inflammatory Glaucoma-Associated Degradation of Extracellular Matrix. Adv Healthc Mater 2019; 8:e1900702. [PMID: 31746141 DOI: 10.1002/adhm.201900702] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/25/2019] [Indexed: 01/01/2023]
Abstract
The development of advanced drug delivery systems with extensively sustained release and multiple functions is highly imperative for effective attenuation of the degradation of ocular extracellular matrix that is associated with inflammatory glaucoma. Here, the generation of amine-terminated polyamidoamine dendrimers in an injectable biodegradable thermogel is demonstrated to be important for achieving prolonged drug release profiles and potent anti-inflammatory effects. Among various generations (Gx, x = 0, 1, 3, 5), third-generation G3 is proved as the most effective material for optimizing the synergistic effects of gelatin and poly(N-isopropylacrylamide) and generating a thermogel with the highest biodegradation resistance, the best drug encapsulation/extended-release performance, and the best ability to reduce the elevated expression of inflammatory molecules. A pharmacotherapy based on intracameral injection of thermogels coloaded with pilocarpine and ascorbic acid results in effective alleviation of progressive glaucoma owing to the anti-inflammatory activity and long-acting drug release (above a therapeutic level of 10 µg mL-1 over 80 days) of thermogels, which simultaneously suppress inflammation and stimulate regeneration of stromal collagen and retinal laminin. These findings on the dendritic effects of rationally designed injectable biomaterials with potent anti-inflammatory effects and controlled drug release demonstrate great promise of their use for pharmacological treatment of progressive glaucoma.
Collapse
Affiliation(s)
- Duc Dung Nguyen
- Graduate Institute of Biomedical EngineeringChang Gung University Taoyuan 33302 Taiwan ROC
| | - Li‐Jyuan Luo
- Graduate Institute of Biomedical EngineeringChang Gung University Taoyuan 33302 Taiwan ROC
| | - Jui‐Yang Lai
- Graduate Institute of Biomedical EngineeringChang Gung University Taoyuan 33302 Taiwan ROC
- Department of OphthalmologyChang Gung Memorial Hospital, Linkou Taoyuan 33305 Taiwan ROC
- Department of Materials EngineeringMing Chi University of Technology New Taipei City 24301 Taiwan ROC
| |
Collapse
|
39
|
Thakar H, Sebastian SM, Mandal S, Pople A, Agarwal G, Srivastava A. Biomolecule-Conjugated Macroporous Hydrogels for Biomedical Applications. ACS Biomater Sci Eng 2019; 5:6320-6341. [DOI: 10.1021/acsbiomaterials.9b00778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Moghanizadeh-Ashkezari M, Shokrollahi P, Zandi M, Shokrolahi F, Daliri MJ, Kanavi MR, Balagholi S. Vitamin C Loaded Poly(urethane-urea)/ZnAl-LDH Aligned Scaffolds Increase Proliferation of Corneal Keratocytes and Up-Regulate Vimentin Secretion. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35525-35539. [PMID: 31490646 DOI: 10.1021/acsami.9b07556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel poly(urethane-urea) (PUU) based on poly(glycolide-co-ε-caprolactone) macro-diol with tunable mechanical properties and biodegradation behavior is reported for corneal stromal tissue regeneration. Zn-Al layered double hydroxide (LDH) nanoparticles were synthesized and loaded with vitamin C (VC, VC-LDH) and dispersed in the PUU to control VC release in the cell culturing medium. To mimic the corneal stromal EC, scaffolds of the PUU and its nanocomposites with VC-LDH (PUU-LDH and PUU-VC-LDH) were fabricated via electrospinning. Average diameters of the aligned nanofibers were recorded as 325 ± 168, 343 ± 171, and 414 ± 275 nm for the PUU, PUU-LDH, and PUU-VC-LDH scaffolds, respectively. Results of hydrophilicity and mechanical properties measurements showed increased hydrophobicity and reduced tensile strength and elongation at break upon addition of nanoparticles to the PUU scaffold. VC release studies represented that intercalation of the drug in Zn-Al-LDH controlled the burst release and extended the release period from a few hours to 5 days. Viability and proliferation of stromal keratocyte cells on the scaffolds were investigated via AlamarBlue assay. After 24 h, the cells showed similar viability on the scaffolds and the control. After 1 week, the cells showed some degree of proliferation on the scaffolds, with the highest value recorded for PUU-VC-LDH. SEM images of the scaffolds after 24 h and 1 week confirmed good penetration and attachment of keratocytes on all the scaffolds and the cells oriented with the direction of nanofibers. After 1 week, the PUU-VC-LDH scaffold was fully covered by the cells. Immunocytochemistry assay (ICC) was performed to investigate secretion of vimentin protein, ALDH3A1, and α-SMA by the cells. After 24h and 1 week, remarkably higher levels of vimentin and ALDH3A1 and lower level of α-SMA were secreted by keratocytes on PUU-VC-LDH compared to those on the PUU and PUU-LDH scaffolds and the control. Our results suggest that the aligned PUU-VC-LDH is a promising candidate for corneal stromal tissue engineering due to the presence of zinc and vitamin C.
Collapse
Affiliation(s)
- Mojgan Moghanizadeh-Ashkezari
- Department of Biomaterials, Faculty of Science , Iran Polymer and Petrochemical Institute , 14977-13115 , Tehran , Iran
| | - Parvin Shokrollahi
- Department of Biomaterials, Faculty of Science , Iran Polymer and Petrochemical Institute , 14977-13115 , Tehran , Iran
| | - Mojgan Zandi
- Department of Biomaterials, Faculty of Science , Iran Polymer and Petrochemical Institute , 14977-13115 , Tehran , Iran
| | - Fatemeh Shokrolahi
- Department of Biomaterials, Faculty of Science , Iran Polymer and Petrochemical Institute , 14977-13115 , Tehran , Iran
| | - Morteza J Daliri
- Department of Animal and Marine Biotechnology , National Institute of Genetic Engineering and Biotechnology , 14977-16316 Tehran , Iran
| | - Mozhgan R Kanavi
- Ocular Tissue Engineering Research Center , Shahid Beheshti University of Medical Sciences , 16666-63111 , Tehran , Iran
| | - Sahar Balagholi
- Blood Transfusion Research Center , High Institute for Research and Education in Transfusion Medicine , 14665-1157 , Tehran , Iran
| |
Collapse
|
41
|
Tumor Cell Behavior in Porous Hydrogels: Effect of Application Technique and Doxorubicin Treatment. Bull Exp Biol Med 2019; 167:590-598. [PMID: 31502133 DOI: 10.1007/s10517-019-04577-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 01/27/2023]
Abstract
The effect of porosity on diffusion characteristics of scaffolds and invasive capacity of MCF-7 and PC-3 tumor cells was studied for gelatin hydrogels. According to MTS test results, the efficiency of population of a macroporous cryogel by cells applied by different techniques increased in the following order: migration from the monolayer<surface adhesion<<injection. Tumor cells in the cryogel differed by the migration and aggregation activity; injection route ensured a more uniform and dense population. In the cryogel-based culture, the cytotoxic effect of doxorubicin was 3-lower than in monolayer culture, which can be explained by supporting effect of the scaffold on cell growth and clustering. The results are of interest for the creation of tumor models and grafts with controlled properties.
Collapse
|
42
|
Jee J, Jeong SY, Kim HK, Choi SY, Jeong S, Lee J, Ko JS, Kim MS, Kwon M, Yoo J. In vivo
evaluation of scaffolds compatible for colonoid engraftments onto injured mouse colon epithelium. FASEB J 2019; 33:10116-10125. [DOI: 10.1096/fj.201802692rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Joohyun Jee
- Department of MicrobiologyCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
- CHA Organoid Research CenterCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
| | - Sang Yun Jeong
- Department of MicrobiologyCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
- CHA Organoid Research CenterCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
| | - Han Kyung Kim
- Department of MicrobiologyCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
- CHA Organoid Research CenterCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
| | - Seon Young Choi
- Department of MicrobiologyCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
- CHA Organoid Research CenterCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
| | - Sukin Jeong
- Department of MicrobiologyCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
- CHA Organoid Research CenterCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
| | - Joongwoon Lee
- Department of MicrobiologyCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
- CHA Organoid Research CenterCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
| | - Ji Su Ko
- Department of MicrobiologyCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
- CHA Organoid Research CenterCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
| | - Mi Sun Kim
- Department of MicrobiologyCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
- CHA Organoid Research CenterCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
| | - Min‐Soo Kwon
- CHA Organoid Research CenterCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
- Department of PharmacologySchool of MedicineCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
| | - Jongman Yoo
- Department of MicrobiologyCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
- CHA Organoid Research CenterCHA University Seongnam‐si Gyeonggi‐do Republic of Korea
| |
Collapse
|
43
|
Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal Repair and Regeneration: Current Concepts and Future Directions. Front Bioeng Biotechnol 2019; 7:135. [PMID: 31245365 PMCID: PMC6579817 DOI: 10.3389/fbioe.2019.00135] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
The cornea is a unique tissue and the most powerful focusing element of the eye, known as a window to the eye. Infectious or non-infectious diseases might cause severe visual impairments that need medical intervention to restore patients' vision. The most prominent characteristics of the cornea are its mechanical strength and transparency, which are indeed the most important criteria considerations when reconstructing the injured cornea. Corneal strength comes from about 200 collagen lamellae which criss-cross the cornea in different directions and comprise nearly 90% of the thickness of the cornea. Regarding corneal transparency, the specific characteristics of the cornea include its immune and angiogenic privilege besides its limbus zone. On the other hand, angiogenic privilege involves several active cascades in which anti-angiogenic factors are produced to compensate for the enhanced production of proangiogenic factors after wound healing. Limbus of the cornea forms a border between the corneal and conjunctival epithelium, and its limbal stem cells (LSCs) are essential in maintenance and repair of the adult cornea through its support of corneal epithelial tissue repair and regeneration. As a result, the main factors which threaten the corneal clarity are inflammatory reactions, neovascularization, and limbal deficiency. In fact, the influx of inflammatory cells causes scar formation and destruction of the limbus zone. Current studies about wound healing treatment focus on corneal characteristics such as the immune response, angiogenesis, and cell signaling. In this review, studied topics related to wound healing and new approaches in cornea regeneration, which are mostly related to the criteria mentioned above, will be discussed.
Collapse
Affiliation(s)
- Mohammadmahdi Mobaraki
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Reza Abbasi
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sajjad Omidian Vandchali
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Maryam Ghaffari
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Amination degree of gelatin is critical for establishing structure-property-function relationships of biodegradable thermogels as intracameral drug delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:897-909. [DOI: 10.1016/j.msec.2019.01.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 01/01/2019] [Accepted: 01/11/2019] [Indexed: 12/17/2022]
|
45
|
Tiwari S, Patil R, Bahadur P. Polysaccharide Based Scaffolds for Soft Tissue Engineering Applications. Polymers (Basel) 2018; 11:E1. [PMID: 30959985 PMCID: PMC6401776 DOI: 10.3390/polym11010001] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
Soft tissue reconstructs require materials that form three-dimensional (3-D) structures supportive to cell proliferation and regenerative processes. Polysaccharides, due to their hydrophilicity, biocompatibility, biodegradability, abundance, and presence of derivatizable functional groups, are distinctive scaffold materials. Superior mechanical properties, physiological signaling, and tunable tissue response have been achieved through chemical modification of polysaccharides. Moreover, an appropriate formulation strategy enables spatial placement of the scaffold to a targeted site. With the advent of newer technologies, these preparations can be tailor-made for responding to alterations in temperature, pH, or other physiological stimuli. In this review, we discuss the developmental and biological aspects of scaffolds prepared from four polysaccharides, viz. alginic acid (ALG), chitosan (CHI), hyaluronic acid (HA), and dextran (DEX). Clinical studies on these scaffolds are also discussed.
Collapse
Affiliation(s)
- Sanjay Tiwari
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat 394350, Gujarat, India.
| | - Rahul Patil
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat 394350, Gujarat, India.
| | - Pratap Bahadur
- Chemistry Department, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India.
| |
Collapse
|
46
|
Goodarzi H, Jadidi K, Pourmotabed S, Sharifi E, Aghamollaei H. Preparation and in vitro characterization of cross-linked collagen-gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int J Biol Macromol 2018; 126:620-632. [PMID: 30562517 DOI: 10.1016/j.ijbiomac.2018.12.125] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 02/02/2023]
Abstract
Corneal disease is considered as the second leading cause of vision loss and keratoplasty is known as an effective treatment for it. However, the tissue engineered corneal substitutes are promising tools in experimental in vivo repair of cornea. Selecting appropriate cell sources and scaffolds are two important concerns in corneal tissue engineering. The object of this study was to investigate biocompatibility and physical properties of the bio-engineered cornea, fabricated from type-I collagen (COL) and gelatin (Gel). Two gelatin based hydrogels cross-linked with EDC/NHS were fabricated, and their physicochemical properties such as equilibrium water content, enzymatic degradation, mechanical properties, rheological, contact angle and optical properties as well as their ability to support human bone-marrow mesenchymal stem cells (hBM-MSCs) survival were characterized. The equilibrium water content and enzymatic degradation of these hydrogels can be easily controlled by adding COL. Our findings suggest that incorporation of COL-I increases optical properties, hydrophilicity, stiffness and Young's modulus. The viability of hBM-MSCs cultured in Gel and Gel: COL was assessed via CCK-8 assay. Also, the morphology of the hBM-MSCs on the top of Gel and Gel: COL hydrogels were characterized by phase-contrast microscopy. This biocompatible hydrogel may promise to be used as artificial corneal substitutes.
Collapse
Affiliation(s)
- Hamid Goodarzi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Khosrow Jadidi
- Department of Ophthalmology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samiramis Pourmotabed
- Department of Emergency Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Esmaeel Sharifi
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran..
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
de la Lastra AA, Hixon KR, Aryan L, Banks AN, Lin AY, Hall AF, Sell SA. Tissue Engineering Scaffolds Fabricated in Dissolvable 3D-Printed Molds for Patient-Specific Craniofacial Bone Regeneration. J Funct Biomater 2018; 9:E46. [PMID: 30042357 PMCID: PMC6165179 DOI: 10.3390/jfb9030046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/29/2022] Open
Abstract
The current gold standard treatment for oral clefts is autologous bone grafting. This treatment, however, presents another wound site for the patient, greater discomfort, and pediatric patients have less bone mass for bone grafting. A potential alternative treatment is the use of tissue engineered scaffolds. Hydrogels are well characterized nanoporous scaffolds and cryogels are mechanically durable, macroporous, sponge-like scaffolds. However, there has been limited research on these scaffolds for cleft craniofacial defects. 3D-printed molds can be combined with cryogel/hydrogel fabrication to create patient-specific tissue engineered scaffolds. By combining 3D-printing technology and scaffold fabrication, we were able to create scaffolds with the geometry of three cleft craniofacial defects. The scaffolds were then characterized to assess the effect of the mold on their physical properties. While the scaffolds were able to completely fill the mold, creating the desired geometry, the overall volumes were smaller than expected. The cryogels possessed porosities ranging from 79.7% to 87.2% and high interconnectivity. Additionally, the cryogels swelled from 400% to almost 1500% of their original dry weight while the hydrogel swelling did not reach 500%, demonstrating the ability to fill a defect site. Overall, despite the complex geometry, the cryogel scaffolds displayed ideal properties for bone reconstruction.
Collapse
Affiliation(s)
| | - Katherine R Hixon
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA.
| | - Lavanya Aryan
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA.
| | - Amanda N Banks
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA.
| | - Alexander Y Lin
- Department of Surgery, Saint Louis University, St. Louis, MO 63104, USA.
| | - Andrew F Hall
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA.
| | - Scott A Sell
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA.
| |
Collapse
|