1
|
Pho T, Janecka MA, Pustulka SM, Champion JA. Nanoetched Stainless Steel Architecture Enhances Cell Uptake of Biomacromolecules and Alters Protein Corona Abundancy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58427-58438. [PMID: 39417567 PMCID: PMC11533172 DOI: 10.1021/acsami.4c14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Nanotexture on biocompatible surfaces promotes cell adhesion and proliferation. High aspect ratio nanoachitecture serves as an ideal interface between implant materials and host cells that is well-suited for localized therapeutic delivery. Despite this potential, nanotextured surfaces have not been widely applied for biomacromolecule delivery. Here, we employed a low-cost, industrially relevant nanoetching process to modify the surface of biocompatible stainless steel 316 (SS316L), creating nanotextured SS316L (NT-SS316L) as a material for intracellular biomacromolecule delivery. As biomacromolecule cargoes are adsorbed to the steel and ultimately would be used in protein-rich environments, we performed serum protein corona analysis on unmodified SS316L and NT-SS316L using tandem mass spectrometry. We observed an increase in proteins associated with cell adhesion on the surface of NT-SS316L compared to that of SS316L, supporting literature reports of enhanced adhesion on nanotextured materials. For delivery to adherent cells, a "hard corona" of model biomacromolecule cargoes including superfolder green fluorescent protein (sfGFP) charge variants, cytochrome c, and siRNA was adsorbed on NT-SS316L to assess delivery. Nanotextured surfaces enhanced cellular biomacromolecule uptake and delivered cytosolic-functional proteins and nucleic acids through energy-dependent endocytosis. Collectively, these findings indicate that NT-SS316L holds potential as a surface modification for implants to achieve localized drug delivery for a variety of biomedical applications.
Collapse
Affiliation(s)
- Thomas Pho
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
- BioEngineering
Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Maeve A. Janecka
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
| | - Samantha M. Pustulka
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
| | - Julie A. Champion
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
- BioEngineering
Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Di Caprio N, Davidson MD, Daly AC, Burdick JA. Injectable MSC Spheroid and Microgel Granular Composites for Engineering Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312226. [PMID: 38178647 PMCID: PMC10994732 DOI: 10.1002/adma.202312226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Many cell types require direct cell-cell interactions for differentiation and function; yet, this can be challenging to incorporate into 3-dimensional (3D) structures for the engineering of tissues. Here, a new approach is introduced that combines aggregates of cells (spheroids) with similarly-sized hydrogel particles (microgels) to form granular composites that are injectable, undergo interparticle crosslinking via light for initial stabilization, permit cell-cell contacts for cell signaling, and allow spheroid fusion and growth. One area where this is important is in cartilage tissue engineering, as cell-cell contacts are crucial to chondrogenesis and are missing in many tissue engineering approaches. To address this, granular composites are developed from adult porcine mesenchymal stromal cell (MSC) spheroids and hyaluronic acid microgels and simulations and experimental analyses are used to establish the importance of initial MSC spheroid to microgel volume ratios to balance mechanical support with tissue growth. Long-term chondrogenic cultures of granular composites produce engineered cartilage tissue with extensive matrix deposition and mechanical properties within the range of cartilage, as well as integration with native tissue. Altogether, a new strategy of injectable granular composites is developed that leverages the benefits of cell-cell interactions through spheroids with the mechanical stabilization afforded with engineered hydrogels.
Collapse
Affiliation(s)
- Nikolas Di Caprio
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Matthew D. Davidson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Andrew C. Daly
- Biomedical Engineering, University of Galway, Galway, Ireland
- CURAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
3
|
Zheng W, Cai MX, Peng H, Liu M, Liu X. Effect of glycosaminoglycans with different degrees of sulfation on chondrogenesis. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2023; 41:395-404. [PMID: 37474471 PMCID: PMC10372526 DOI: 10.7518/hxkq.2023.2023055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/15/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVES This study aims to investigate the effects and mechanisms of chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (HEP) on chondrogenesis of murine chondrogenic cell line (ATDC5) cells and the maintenance of murine articular cartilage in vitro. METHODS ATDC5 and articular cartilage tissue explant were cultured in the medium containing different sulfated glycosaminoglycans. Cell proliferation, differentiation, cartilage formation, and mechanism were observed using cell proliferation assay, Alcian blue staining, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot, respectively. RESULTS Results showed that HEP and DS primarily activated the bone morphogenetic protein (BMP) signal pathway, while CS primarily activated the protein kinase B (AKT) signal pathway, further promoted ATDC5 cell proliferation and matrix production, and increased Sox9, Col2a1, and Aggrecan expression. CONCLUSIONS This study investigated the differences and mechanisms of different sulfated glycosaminoglycans in chondrogenesis and cartilage homeostasis maintenance. HEP promotes cartilage formation and maintains the normal state of cartilage tissue in vitro, while CS plays a more effective role in the regeneration of damaged cartilage tissue.
Collapse
Affiliation(s)
- Wen Zheng
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| | - Ming-Xiang Cai
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| | - Huizhen Peng
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| | - Minyi Liu
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| |
Collapse
|
4
|
Caprio ND, Burdick JA. Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs. Acta Biomater 2023; 165:4-18. [PMID: 36167240 PMCID: PMC10928646 DOI: 10.1016/j.actbio.2022.09.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
Cellular spheroids are aggregates of cells that are being explored to address fundamental biological questions and as building blocks for engineered tissues. Spheroids possess distinct advantages over cellular monolayers or cell encapsulation in 3D natural and synthetic hydrogels, including direct cell-cell interactions and high cell densities, which better mimic aspects of many tissues. Despite these advantages, spheroid cultures often exhibit uncontrollable growth and may be too simplistic to mimic complex tissue structures. To address this, biomaterials are being leveraged to further expand the use of cellular spheroids for biomedical applications. In this review, we provide an overview of recent studies that utilize engineered biomaterials to guide spheroid formation and function, as well as their fabrication into tissues for use as tissue models and for therapeutic applications. First, we describe biomaterial strategies that allow the high-throughput fabrication of homogeneously-sized spheroids. Next, we summarize how engineered biomaterials are introduced into spheroid cultures either internally as microparticles or externally as hydrogel microenvironments to influence spheroid behavior (e.g., differentiation, fusion). Lastly, we discuss a variety of biofabrication strategies (e.g., 3D bioprinting, melt electrowriting) that have been used to develop macroscale tissue models and implantable constructs through the guided assembly of spheroids. Overall, the goal of this review is to provide a summary of how biomaterials are currently being engineered and leveraged to support spheroids in biomedical applications, as well as to provide a future outlook of the field. STATEMENT OF SIGNIFICANCE: Cellular spheroids are becoming increasingly used as in vitro tissue models or as 'building blocks' for tissue engineering and repair strategies. Engineered biomaterials and their processing through biofabrication approaches are being leveraged to structurally support and guide spheroid processes. This review summarizes current approaches where such biomaterials are being used to guide spheroid formation, function, and fabrication into tissue constructs. As the field is rapidly expanding, we also provide an outlook on future directions and how new engineered biomaterials can be implemented to further the development of biofabricated spheroid-based tissue constructs.
Collapse
Affiliation(s)
- Nikolas Di Caprio
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
5
|
Cao P, Fleming D, Moustafa DA, Dolan SK, Szymanik KH, Redman WK, Ramos A, Diggle FL, Sullivan CS, Goldberg JB, Rumbaugh KP, Whiteley M. A Pseudomonas aeruginosa small RNA regulates chronic and acute infection. Nature 2023; 618:358-364. [PMID: 37225987 PMCID: PMC10247376 DOI: 10.1038/s41586-023-06111-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
The ability to switch between different lifestyles allows bacterial pathogens to thrive in diverse ecological niches1,2. However, a molecular understanding of their lifestyle changes within the human host is lacking. Here, by directly examining bacterial gene expression in human-derived samples, we discover a gene that orchestrates the transition between chronic and acute infection in the opportunistic pathogen Pseudomonas aeruginosa. The expression level of this gene, here named sicX, is the highest of the P. aeruginosa genes expressed in human chronic wound and cystic fibrosis infections, but it is expressed at extremely low levels during standard laboratory growth. We show that sicX encodes a small RNA that is strongly induced by low-oxygen conditions and post-transcriptionally regulates anaerobic ubiquinone biosynthesis. Deletion of sicX causes P. aeruginosa to switch from a chronic to an acute lifestyle in multiple mammalian models of infection. Notably, sicX is also a biomarker for this chronic-to-acute transition, as it is the most downregulated gene when a chronic infection is dispersed to cause acute septicaemia. This work solves a decades-old question regarding the molecular basis underlying the chronic-to-acute switch in P. aeruginosa and suggests oxygen as a primary environmental driver of acute lethality.
Collapse
Affiliation(s)
- Pengbo Cao
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Derek Fleming
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dina A Moustafa
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephen K Dolan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kayla H Szymanik
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Whitni K Redman
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Anayancy Ramos
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Frances L Diggle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Joanna B Goldberg
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Kent RN, Said M, Busch ME, Poupard ER, Tsai A, Xia J, Matera DL, Wang WY, DePalma SJ, Hiraki HL, Killian ML, Abraham AC, Shin JW, Huang AH, Shikanov A, Baker BM. Physical and Soluble Cues Enhance Tendon Progenitor Cell Invasion into Injectable Synthetic Hydrogels. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2207556. [PMID: 39257859 PMCID: PMC11382351 DOI: 10.1002/adfm.202207556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Indexed: 09/12/2024]
Abstract
Synthetic hydrogels represent an exciting avenue in the field of regenerative biomaterials given their injectability, orthogonally tunable mechanical properties, and potential for modular inclusion of cellular cues. Separately, recent advances in soluble factor release technology have facilitated control over the soluble milieu in cell microenvironments via tunable microparticles. A composite hydrogel incorporating both of these components can robustly mediate tendon healing following a single injection. Here, a synthetic hydrogel system with encapsulated electrospun fiber segments and a novel microgel-based soluble factor delivery system achieves precise control over topographical and soluble features of an engineered microenvironment, respectively. It is demonstrated that three-dimensional migration of tendon progenitor cells can be enhanced via combined mechanical, topographical, and microparticle-delivered soluble cues in both a tendon progenitor cell spheroid model and an ex vivo murine Achilles tendon model. These results indicate that fiber reinforced hydrogels can drive the recruitment of endogenous progenitor cells relevant to the regeneration of tendon and, likely, a broad range of connective tissues.
Collapse
Affiliation(s)
- Robert N Kent
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Mohamed Said
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Megan E Busch
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Ethan R Poupard
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Ariane Tsai
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Jingyi Xia
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Daniel L Matera
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - William Y Wang
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Samuel J DePalma
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Harrison L Hiraki
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Megan L Killian
- Department of Orthopedic Surgery University of Michigan Ann Arbor MI 48109 USA
| | - Adam C Abraham
- Department of Orthopedic Surgery University of Michigan Ann Arbor MI 48109 USA
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, Department of Biomedical Engineering University of Illinois Chicago Chicago IL 60607 USA
| | - Alice H Huang
- Department of Orthopedic Surgery Columbia University New York NY 10032 USA
| | - Ariella Shikanov
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Brendon M Baker
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
7
|
Li Y, Li Y, Li L, Wang H, Wang B, Feng L, Lin S, Li G. The emerging translational potential of GDF11 in chronic wound healing. J Orthop Translat 2022; 34:113-120. [PMID: 35891714 PMCID: PMC9283991 DOI: 10.1016/j.jot.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic skin wounds impose immense suffers and economic burdens. Current research mainly focuses on acute wound management which exhibits less effective in chronic wound healing. Growth differentiation factor 11 (GDF11) has profound effects on several important physiological processes related to chronic wound healing, such as inflammation, cell proliferation, migration, angiogenesis, and neurogenesis. This review summarizes recent advances in biology of chronic wounds and the potential role of GDF11 on wound healing with its regenerative effects, as well as the potential delivery methods of GDF11. The challenges and future perspectives of GDF11-based therapy for chronic wound care are also discussed. The Translational Potential of this Article: This review summarized the significance of GDF11 in the modulation of inflammation, vascularization, cell proliferation, and remodeling, which are important physiological processes of chronic wound healing. The potential delivery methods of GDF11 in the management of chronic wound healing is also summarized. This review may provide potential therapeutic approaches based on GDF11 for chronic wound healing.
Collapse
|
8
|
Shafiq M, Ali O, Han SB, Kim DH. Mechanobiological Strategies to Enhance Stem Cell Functionality for Regenerative Medicine and Tissue Engineering. Front Cell Dev Biol 2021; 9:747398. [PMID: 34926444 PMCID: PMC8678455 DOI: 10.3389/fcell.2021.747398] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Stem cells have been extensively used in regenerative medicine and tissue engineering; however, they often lose their functionality because of the inflammatory microenvironment. This leads to their poor survival, retention, and engraftment at transplantation sites. Considering the rapid loss of transplanted cells due to poor cell-cell and cell-extracellular matrix (ECM) interactions during transplantation, it has been reasoned that stem cells mainly mediate reparative responses via paracrine mechanisms, including the secretion of extracellular vesicles (EVs). Ameliorating poor cell-cell and cell-ECM interactions may obviate the limitations associated with the poor retention and engraftment of transplanted cells and enable them to mediate tissue repair through the sustained and localized presentation of secreted bioactive cues. Biomaterial-mediated strategies may be leveraged to confer stem cells enhanced immunomodulatory properties, as well as better engraftment and retention at the target site. In these approaches, biomaterials have been exploited to spatiotemporally present bioactive cues to stem cell-laden platforms (e.g., aggregates, microtissues, and tissue-engineered constructs). An array of biomaterials, such as nanoparticles, hydrogels, and scaffolds, has been exploited to facilitate stem cells function at the target site. Additionally, biomaterials can be harnessed to suppress the inflammatory microenvironment to induce enhanced tissue repair. In this review, we summarize biomaterial-based platforms that impact stem cell function for better tissue repair that may have broader implications for the treatment of various diseases as well as tissue regeneration.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Onaza Ali
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, China
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
9
|
Maciel MM, Correia TR, Henriques M, Mano JF. Microparticles orchestrating cell fate in bottom-up approaches. Curr Opin Biotechnol 2021; 73:276-281. [PMID: 34597880 DOI: 10.1016/j.copbio.2021.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/30/2022]
Abstract
The modulation of cells in tissue formation is still one of the hardest tasks to achieve in Tissue Engineering. To control the cell response when undergoing their normal functions such as adhesion, differentiation, assembly, or maturation is vital the development of more successful solutions. Herein, we discuss how microparticles are being overlooked in their potential for controlling the cellular response. Until now, their role was quite often restricted to a reservoir of chemical compounds or as carriers for cell expansion. Nevertheless, microparticles design with the introduction of biophysical and biochemical cues can effectively modulate cell response.
Collapse
Affiliation(s)
- Marta M Maciel
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Tiago R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana Henriques
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Lee AKX, Lin YH, Tsai CH, Chang WT, Lin TL, Shie MY. Digital Light Processing Bioprinted Human Chondrocyte-Laden Poly (γ-Glutamic Acid)/Hyaluronic Acid Bio-Ink towards Cartilage Tissue Engineering. Biomedicines 2021; 9:biomedicines9070714. [PMID: 34201600 PMCID: PMC8301387 DOI: 10.3390/biomedicines9070714] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cartilage injury is the main cause of disability in the United States, and it has been projected that cartilage injury caused by osteoarthritis will affect 30% of the entire United States population by the year 2030. In this study, we modified hyaluronic acid (HA) with γ-poly(glutamic) acid (γ-PGA), both of which are common biomaterials used in cartilage engineering, in an attempt to evaluate them for their potential in promoting cartilage regeneration. As seen from the results, γ-PGA-GMA and HA, with glycidyl methacrylate (GMA) as the photo-crosslinker, could be successfully fabricated while retaining the structural characteristics of γ-PGA and HA. In addition, the storage moduli and loss moduli of the hydrogels were consistent throughout the curing durations. However, it was noted that the modification enhanced the mechanical properties, the swelling equilibrium rate, and cellular proliferation, and significantly improved secretion of cartilage regeneration-related proteins such as glycosaminoglycan (GAG) and type II collagen (Col II). The cartilage tissue proof with Alcian blue further demonstrated that the modification of γ-PGA with HA exhibited suitability for cartilage tissue regeneration and displayed potential for future cartilage tissue engineering applications. This study built on the previous works involving HA and further showed that there are unlimited ways to modify various biomaterials in order to further bring cartilage tissue engineering to the next level.
Collapse
Affiliation(s)
- Alvin Kai-Xing Lee
- School of Medicine, China Medical University, Taichung 406040, Taiwan; (A.K.-X.L.); (C.-H.T.)
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan; (Y.-H.L.); (W.-T.C.)
| | - Yen-Hong Lin
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan; (Y.-H.L.); (W.-T.C.)
- The Ph.D. Program for Medical Engineering and Rehabilitation Science, China Medical University, Taichung 406040, Taiwan
| | - Chun-Hao Tsai
- School of Medicine, China Medical University, Taichung 406040, Taiwan; (A.K.-X.L.); (C.-H.T.)
- Department of Orthopedics, China Medical University Hospital, Taichung 406040, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 406040, Taiwan
| | - Wan-Ting Chang
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan; (Y.-H.L.); (W.-T.C.)
| | - Tsung-Li Lin
- Department of Orthopedics, China Medical University Hospital, Taichung 406040, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 406040, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Correspondence: (T.-L.L.); (M.-Y.S.); Tel.: +886-4-22967979 (ext. 3700) (T.-L.L.)
| | - Ming-You Shie
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan; (Y.-H.L.); (W.-T.C.)
- School of Dentistry, China Medical University, Taichung City 40447, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan
- Correspondence: (T.-L.L.); (M.-Y.S.); Tel.: +886-4-22967979 (ext. 3700) (T.-L.L.)
| |
Collapse
|
11
|
Dorogin J, Townsend JM, Hettiaratchi MH. Biomaterials for protein delivery for complex tissue healing responses. Biomater Sci 2021; 9:2339-2361. [PMID: 33432960 DOI: 10.1039/d0bm01804j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue repair requires a complex cascade of events mediated by a variety of cells, proteins, and matrix molecules; however, the healing cascade can be easily disrupted by numerous factors, resulting in impaired tissue regeneration. Recent advances in biomaterials for tissue regeneration have increased the ability to tailor the delivery of proteins and other biomolecules to injury sites to restore normal healing cascades and stimulate robust tissue repair. In this review, we discuss the evolution of the field toward creating biomaterials that precisely control protein delivery to stimulate tissue regeneration, with a focus on addressing complex and dynamic injury environments. We highlight biomaterials that leverage different mechanisms to deliver and present proteins involved in healing cascades, tissue targeting and mimicking strategies, materials that can be triggered by environmental cues, and integrated strategies that combine multiple biomaterial properties to improve protein delivery. Improvements in biomaterial design to address complex injury environments will expand our understanding of both normal and aberrant tissue repair processes and ultimately provide a better standard of patient care.
Collapse
Affiliation(s)
- Jonathan Dorogin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, 6321 University of Oregon, Eugene, OR 97401, USA.
| | | | | |
Collapse
|
12
|
Bizeau J, Mertz D. Design and applications of protein delivery systems in nanomedicine and tissue engineering. Adv Colloid Interface Sci 2021; 287:102334. [PMID: 33341459 DOI: 10.1016/j.cis.2020.102334] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Proteins are biological macromolecules involved in a wide range of biological functions, which makes them very appealing as therapeutics agents. Indeed, compared to small molecule drugs, their endogenous nature ensures their biocompatibility and biodegradability, they can be used in a large range of applications and present a higher specificity and activity. However, they suffer from unfolding, enzymatic degradation, short half-life and poor membrane permeability. To overcome such drawbacks, the development of protein delivery systems to protect, carry and deliver them in a controlled way have emerged importantly these last years. In this review, the formulation of a wide panel of protein delivery systems either in the form of polymer or inorganic nanoengineered colloids and scaffolds are presented and the protein loading and release mechanisms are addressed. A section is also dedicated to the detection of proteins and the characterization methods of their release. Then, the main protein delivery systems developed these last three years for anticancer, tissue engineering or diabetes applications are presented, as well as the major in vivo models used to test them. The last part of this review aims at presenting the perspectives of the field such as the use of protein-rich material or the sequestration of proteins. This part will also deal with less common applications and gene therapy as an indirect method to deliver protein.
Collapse
|
13
|
Ogle ME, Doron G, Levy MJ, Temenoff JS. Hydrogel Culture Surface Stiffness Modulates Mesenchymal Stromal Cell Secretome and Alters Senescence. Tissue Eng Part A 2020; 26:1259-1271. [DOI: 10.1089/ten.tea.2020.0030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Molly E. Ogle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gilad Doron
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Matthew J. Levy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Johnna S. Temenoff
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Pustulka SM, Ling K, Pish SL, Champion JA. Protein Nanoparticle Charge and Hydrophobicity Govern Protein Corona and Macrophage Uptake. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48284-48295. [PMID: 33054178 DOI: 10.1021/acsami.0c12341] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein nanoparticles are biomaterials composed entirely of proteins, with the protein sequence and structure determining the nanoparticle physicochemical properties. Upon exposure to physiological or environmental fluids, it is likely that protein nanoparticles, like synthetic nanoparticles, will adsorb proteins and this protein corona will be dependent on the surface properties of the protein nanoparticles. As there is little understanding of this phenomenon for engineered protein nanoparticles, the purpose of this work was to create protein nanoparticles with variable surface hydrophobicity and surface charge and establish the effect of these properties on the mass and composition of the adsorbed corona, using the fetal bovine serum as a model physiological solution. Albumin, cationic albumin, and ovalbumin cross-linked nanoparticles were developed for this investigation and their adsorbed protein coronas were isolated and characterized by gel electrophoresis and nanoliquid chromatography mass spectrometry. Distinct trends in corona mass and composition were identified for protein nanoparticles based on surface charge and surface hydrophobicity. Proteomic analyses revealed unique protein corona patterns and identified distinct proteins that are known to affect nanoparticle clearance in vivo. Further, the protein corona influenced nanoparticle internalization in vitro in a macrophage cell line. Altogether, these results demonstrate the strong effect protein identity and properties have on the corona formed on nanoparticles made from that protein. This work builds the foundation for future study of protein coronas on the wide array of protein nanoparticles used in nanomedicine and environmental applications.
Collapse
Affiliation(s)
- Samantha M Pustulka
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Kevin Ling
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Stephanie L Pish
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Gentile SD, Kourouklis AP, Ryoo H, Underhill GH. Integration of Hydrogel Microparticles With Three-Dimensional Liver Progenitor Cell Spheroids. Front Bioeng Biotechnol 2020; 8:792. [PMID: 32793571 PMCID: PMC7385057 DOI: 10.3389/fbioe.2020.00792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
The study of the liver progenitor cell microenvironment has demonstrated the important roles of both biochemical and biomechanical signals in regulating the progenitor cell functions that underlie liver morphogenesis and regeneration. While controllable two-dimensional in vitro culture systems have provided key insights into the effects of growth factors and extracellular matrix composition and mechanics on liver differentiation, it remains unclear how microenvironmental signals may differentially affect liver progenitor cell responses in a three-dimensional (3D) culture context. In addition, there have only been limited efforts to engineer 3D culture models of liver progenitor cells through the tunable presentation of microenvironmental stimuli. We present an in vitro model of 3D liver progenitor spheroidal cultures with integrated polyethylene glycol hydrogel microparticles for the internal presentation of modular microenvironmental cues and the examination of the combinatorial effects with an exogenous soluble factor. In particular, treatment with the growth factor TGFβ1 directs differentiation of the spheroidal liver progenitor cells toward a biliary phenotype, a behavior which is further enhanced in the presence of hydrogel microparticles. We further demonstrate that surface modification of the hydrogel microparticles with heparin influences the behavior of liver progenitor cells toward biliary differentiation. Taken together, this liver progenitor cell culture system represents an approach for controlling the presentation of microenvironmental cues internalized within 3D spheroidal aggregate cultures. Overall, this strategy could be applied toward the engineering of instructive microenvironments that control stem and progenitor cell differentiation within a 3D context for studies in tissue engineering, drug testing, and cellular metabolism.
Collapse
Affiliation(s)
- Stefan D Gentile
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Andreas P Kourouklis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Hyeon Ryoo
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
16
|
Liu A, Yu T, Young K, Stone N, Hanasoge S, Kirby TJ, Varadarajan V, Colonna N, Liu J, Raj A, Lammerding J, Alexeev A, Sulchek T. Cell Mechanical and Physiological Behavior in the Regime of Rapid Mechanical Compressions that Lead to Cell Volume Change. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903857. [PMID: 31782912 PMCID: PMC7012384 DOI: 10.1002/smll.201903857] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/05/2019] [Indexed: 04/14/2023]
Abstract
Cells respond to mechanical forces by deforming in accordance with viscoelastic solid behavior. Studies of microscale cell deformation observed by high speed video microscopy have elucidated a new cell behavior in which sufficiently rapid mechanical compression of cells can lead to transient cell volume loss and then recovery. This work has discovered that the resulting volume exchange between the cell interior and the surrounding fluid can be utilized for efficient, convective delivery of large macromolecules (2000 kDa) to the cell interior. However, many fundamental questions remain about this cell behavior, including the range of deformation time scales that result in cell volume loss and the physiological effects experienced by the cell. In this study, a relationship is established between cell viscoelastic properties and the inertial forces imposed on the cell that serves as a predictor of cell volume loss across human cell types. It is determined that cells maintain nuclear envelope integrity and demonstrate low protein loss after the volume exchange process. These results define a highly controlled cell volume exchange mechanism for intracellular delivery of large macromolecules that maintains cell viability and function for invaluable downstream research and clinical applications.
Collapse
Affiliation(s)
- Anna Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | - Tong Yu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | - Katherine Young
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | - Nicholas Stone
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | - Srinivas Hanasoge
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | - Tyler J. Kirby
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Vikram Varadarajan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | - Nicholas Colonna
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | - Janet Liu
- Aragon High School, 900 Alameda de las Pulgas, San Mateo, CA, 94402, USA
| | - Abhishek Raj
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | - Jan Lammerding
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander Alexeev
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | - Todd Sulchek
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332-0405, USA
| |
Collapse
|
17
|
Pearce HA, Kim YS, Diaz-Gomez L, Mikos AG. Tissue Engineering Scaffolds. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|
19
|
Newsom JP, Payne KA, Krebs MD. Microgels: Modular, tunable constructs for tissue regeneration. Acta Biomater 2019; 88:32-41. [PMID: 30769137 PMCID: PMC6441611 DOI: 10.1016/j.actbio.2019.02.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 01/02/2023]
Abstract
Biopolymer microgels are emerging as a versatile tool for aiding in the regeneration of damaged tissues due to their biocompatible nature, tunable microporous structure, ability to encapsulate bioactive factors, and tailorable properties such as stiffness and composition. These properties of microgels, along with their injectability, have allowed for their utilization in a multitude of different tissue engineering applications. Controlled release of growth factors, antibodies, and other bioactive factors from microgels have demonstrated their capabilities as transporters for essential bioactive molecules necessary for guiding tissue reconstruction. Additionally, recent in vitro studies of cellular interaction and proliferation within microgel structures have laid the initial groundwork for regenerative tissue engineering using these materials. Microgels have even been crosslinked together in various ways or 3D printed to form three-dimensional scaffolds to support cell growth. In vivo studies of microgels have pioneered the clinical relevance of these novel and innovative materials for regenerative tissue engineering. This review will cover recent developments and research of microgels as they pertain to bioactive factor release, cellular interaction and proliferation in vitro, and tissue regeneration in vivo. STATEMENT OF SIGNIFICANCE: This review is focused on state-of-the-art microgel technology and innovations within the tissue engineering field, focusing on the use of microgels in bioactive factor delivery and as cell-interactive scaffolds, both in vitro and in vivo. Microgels are hydrogel microparticles that can be tuned based on the biopolymer from which they are derived, the crosslinking chemistry used, and the fabrication method. The emergence of microgels for tissue regeneration applications in recent years illuminates their versatility and applicability in clinical settings.
Collapse
Affiliation(s)
- Jake P Newsom
- Chemical & Biological Engineering, Colorado School of Mines, Golden, CO, United States
| | - Karin A Payne
- Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Melissa D Krebs
- Chemical & Biological Engineering, Colorado School of Mines, Golden, CO, United States.
| |
Collapse
|
20
|
DeLey Cox VE, Cole MF, Gaucher EA. Incorporation of Modified Amino Acids by Engineered Elongation Factors with Expanded Substrate Capabilities. ACS Synth Biol 2019; 8:287-296. [PMID: 30609889 PMCID: PMC6379855 DOI: 10.1021/acssynbio.8b00305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Noncanonical
amino acid (ncAA) incorporation has led to significant
advances in protein science and engineering. Traditionally, in vivo incorporation of ncAAs is achieved via amber codon suppression using an engineered orthogonal aminoacyl-tRNA
synthetase:tRNA pair. However, as more complex protein products are
targeted, researchers are identifying additional barriers limiting
the scope of currently available ncAA systems. One barrier is elongation
factor Tu (EF-Tu), a protein responsible for proofreading aa-tRNAs,
which substantially restricts ncAA scope by limiting ncaa-tRNA delivery
to the ribosome. Researchers have responded by engineering ncAA-compatible
EF-Tus for key ncAAs. However, this approach fails to address the
extent to which EF-Tu inhibits efficient ncAA incorporation. Here,
we demonstrate an alternative strategy leveraging computational analysis
to broaden EF-Tu’s substrate specificity. Evolutionary analysis
of EF-Tu and a naturally evolved specialized elongation factor, SelB,
provide the opportunity to engineer EF-Tu by targeting amino acid
residues that are associated with functional divergence between the
two ancient paralogues. Employing amber codon suppression, in combination
with mass spectrometry, we identified two EF-Tu variants with non-native
substrate compatibility. Additionally, we present data showing these
EF-Tu variants contribute to host organismal fitness, working cooperatively
with components of native and engineered translation machinery. These
results demonstrate the viability of our computational method and
lend support to corresponding assumptions about molecular evolution.
This work promotes enhanced polyspecific EF-Tu behavior as a viable
strategy to expand ncAA scope and complements ongoing research emphasizing
the importance of a comprehensive approach to further expand the genetic
code.
Collapse
Affiliation(s)
- Vanessa E. DeLey Cox
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Megan F. Cole
- Department of Biology, Emory University, Atlanta, Georgia 30322, United States
| | - Eric A. Gaucher
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
21
|
Chambers DM, Moretti L, Zhang JJ, Cooper SW, Chambers DM, Santangelo PJ, Barker TH. LEM domain-containing protein 3 antagonizes TGFβ-SMAD2/3 signaling in a stiffness-dependent manner in both the nucleus and cytosol. J Biol Chem 2018; 293:15867-15886. [PMID: 30108174 DOI: 10.1074/jbc.ra118.003658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
Transforming growth factor-β (TGFβ) signaling through SMAD2/3 is an important driver of pathological fibrosis in multiple organ systems. TGFβ signaling and extracellular matrix (ECM) stiffness form an unvirtuous pathological circuit in which matrix stiffness drives activation of latent TGFβ, and TGFβ signaling then drives cellular stress and ECM synthesis. Moreover, ECM stiffness also appears to sensitize cells to exogenously activated TGFβ through unknown mechanisms. Here, using human fibroblasts, we explored the effect of ECM stiffness on a putative inner nuclear membrane protein, LEM domain-containing protein 3 (LEMD3), which is physically connected to the cell's actin cytoskeleton and inhibits TGFβ signaling. We showed that LEMD3-SMAD2/3 interactions are inversely correlated with ECM stiffness and TGFβ-driven luciferase activity and that LEMD3 expression is correlated with the mechanical response of the TGFβ-driven luciferase reporter. We found that actin polymerization but not cellular stress or LEMD3-nuclear-cytoplasmic couplings were necessary for LEMD3-SMAD2/3 interactions. Intriguingly, LEMD3 and SMAD2/3 frequently interacted in the cytosol, and we discovered LEMD3 was proteolytically cleaved into protein fragments. We confirmed that a consensus C-terminal LEMD3 fragment binds SMAD2/3 in a stiffness-dependent manner throughout the cell and is sufficient for antagonizing SMAD2/3 signaling. Using human lung biopsies, we observed that these nuclear and cytosolic interactions are also present in tissue and found that fibrotic tissues exhibit locally diminished and cytoplasmically shifted LEMD3-SMAD2/3 interactions, as noted in vitro Our work reveals novel LEMD3 biology and stiffness-dependent regulation of TGFβ by LEMD3, providing a novel target to antagonize pathological TGFβ signaling.
Collapse
Affiliation(s)
- Dwight M Chambers
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Leandro Moretti
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, and
| | - Jennifer J Zhang
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Spencer W Cooper
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Davis M Chambers
- the College of Arts and Sciences, Georgia State University, Atlanta, Georgia 30303
| | - Philip J Santangelo
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Thomas H Barker
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, and
| |
Collapse
|
22
|
Schuurmans CCL, Abbadessa A, Bengtson MA, Pletikapic G, Eral HB, Koenderink G, Masereeuw R, Hennink WE, Vermonden T. Complex coacervation-based loading and tunable release of a cationic protein from monodisperse glycosaminoglycan microgels. SOFT MATTER 2018; 14:6327-6341. [PMID: 30024582 DOI: 10.1039/c8sm00686e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glycosaminoglycans (GAGs) are of interest for biomedical applications because of their ability to retain proteins (e.g. growth factors) involved in cell-to-cell signaling processes. In this study, the potential of GAG-based microgels for protein delivery and their protein release kinetics upon encapsulation in hydrogel scaffolds were investigated. Monodisperse hyaluronic acid methacrylate (HAMA) and chondroitin sulfate methacrylate (CSMA) micro-hydrogel spheres (diameters 500-700 μm), were used to study the absorption of a cationic model protein (lysozyme), microgel (de)swelling, intra-gel lysozyme distribution and its diffusion coefficient in the microgels dispersed in buffers (pH 7.4) of varying ionic strengths. Upon incubation in 20 mM buffer, lysozyme was absorbed up to 3 and 4 mg mg-1 dry microspheres for HAMA and CSMA microgels respectively, with loading efficiencies up to 100%. Binding stoichiometries of disaccharide : lysozyme (10.2 : 1 and 7.5 : 1 for HAMA and CSMA, respectively) were similar to those for GAG-lysozyme complex coacervates based on soluble GAGs found in literature. Complex coacervates inside GAG microgels were also formed in buffers of higher ionic strengths as opposed to GAG-lysozyme systems based on soluble GAGs, likely due to increased local anionic charge density in the GAG networks. Binding of cationic lysozyme to the negatively charged microgel networks resulted in deswelling up to a factor 2 in diameter. Lysozyme release from the microgels was dependent on the ionic strength of the buffer and on the number of anionic groups per disaccharide, (1 for HAMA versus 2 for CSMA). Lysozyme diffusion coefficients of 0.027 in HAMA and <0.006 μm2 s-1 in CSMA microgels were found in 170 mM buffer (duration of release 14 and 28 days respectively). Fluorescence Recovery After Photobleaching (FRAP) measurements yielded similar trends, although lysozyme diffusion was likely altered due to the negative charges introduced to the protein through the FITC-labeling resulting in weaker protein-matrix interactions. Finally, lysozyme-loaded CSMA microgels were embedded into a thermosensitive hydrogel scaffold. These composite systems showed complete lysozyme release in ∼58 days as opposed to only 3 days for GAG-free scaffolds. In conclusion, covalently crosslinked methacrylated GAG hydrogels have potential as controlled release depots for cationic proteins in tissue engineering applications.
Collapse
Affiliation(s)
- Carl C L Schuurmans
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|