1
|
Rich A, Rubin W, Rickli S, Akhmetshina T, Cossu J, Berger L, Magno M, Nuss K, Schaller B, Löffler J. Development of an implantable sensor system for in vivo strain, temperature, and pH monitoring: comparative evaluation of titanium and resorbable magnesium plates. Bioact Mater 2025; 43:603-618. [PMID: 39498360 PMCID: PMC11532740 DOI: 10.1016/j.bioactmat.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 11/07/2024] Open
Abstract
Biodegradable magnesium is a highly desired material for fracture fixation implants because of its good mechanical properties and ability to completely dissolve in the body over time, eliminating the need for a secondary surgery to remove the implant. Despite extensive research on these materials, there remains a dearth of information regarding critical factors that affect implant performance in clinical applications, such as the in vivo pH and mechanical loading conditions. We developed a measurement system with implantable strain, temperature, pH and motion sensors to characterize magnesium and titanium plates, fixating bilateral zygomatic arch osteotomies in three Swiss alpine sheep for eight weeks. pH 1-2 mm above titanium plates was 6.6 ± 0.4, while for magnesium plates it was slightly elevated to 7.4 ± 0.8. Strains on magnesium plates were higher than on titanium plates, possibly due to the lower Young's modulus of magnesium. One magnesium plate experienced excessive loading, which led to plate failure within 31 h. This is, to our knowledge, the first in vivo strain, temperature, and pH data recorded for magnesium implants used for fracture fixation. These results provide insight into magnesium degradation and its influence on the in vivo environment, and may help to improve material and implant design for future clinical applications.
Collapse
Affiliation(s)
- A.M. Rich
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - W. Rubin
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - S. Rickli
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - T. Akhmetshina
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - J. Cossu
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - L. Berger
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - M. Magno
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - K.M. Nuss
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - B. Schaller
- Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - J.F. Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
Iskhakova K, Wieland DCF, Marek R, Schwarze UY, Davydok A, Cwieka H, AlBaraghtheh T, Reimers J, Hindenlang B, Sefa S, Lopes Marinho A, Willumeit-Römer R, Zeller-Plumhoff B. Sheep Bone Ultrastructure Analyses Reveal Differences in Bone Maturation around Mg-Based and Ti Implants. J Funct Biomater 2024; 15:192. [PMID: 39057313 PMCID: PMC11278010 DOI: 10.3390/jfb15070192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Magnesium alloys are some of the most convenient biodegradable materials for bone fracture treatment due to their tailorable degradation rate, biocompatibility, and mechanical properties resembling those of bone. Despite the fact that magnesium-based implants and ZX00 (Mg-0.45Zn-0.45Ca in wt.%), in particular, have been shown to have suitable degradation rates and good osseointegration, knowledge gaps remain in our understanding of the impact of their degradation properties on the bone's ultrastructure. Bone is a hierarchically structured material, where not only the microstructure but also the ultrastructure are important as properties like the local mechanical response are determined by it. This study presents the first comparative analysis of bone ultrastructure parameters with high spatial resolution around ZX00 and Ti implants after 6, 12, and 24 weeks of healing. The mineralization was investigated, revealing a significant decrease in the lattice spacing of the (002) Bragg's peak closer to the ZX00 implant in comparison to Ti, while no significant difference in the crystallite size was observed. The hydroxyapatite platelet thickness and osteon density demonstrated a decrease closer to the ZX00 implant interface. Correlative indentation and strain maps obtained by scanning X-ray diffraction measurements revealed a higher stiffness and faster mechanical adaptation of the bone surrounding Ti implants as compared to the ZX00 ones. Thus, the results suggest the incorporation of Mg2+ ions into the bone ultrastructure, as well as a lower degree of remodeling and stiffness of the bone in the presence of ZX00 implants than Ti.
Collapse
Affiliation(s)
- Kamila Iskhakova
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - D. C. Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Romy Marek
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (R.M.); (U.Y.S.)
| | - Uwe Y. Schwarze
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (R.M.); (U.Y.S.)
- Department of Dental Medicine and Oral Health, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria
| | - Anton Davydok
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany;
| | - Hanna Cwieka
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Tamadur AlBaraghtheh
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Jan Reimers
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Birte Hindenlang
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Sandra Sefa
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - André Lopes Marinho
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| |
Collapse
|
3
|
Hassan N, Krieg T, Kopp A, Bach AD, Kröger N. Challenges and Pitfalls of Research Designs Involving Magnesium-Based Biomaterials: An Overview. Int J Mol Sci 2024; 25:6242. [PMID: 38892430 PMCID: PMC11172609 DOI: 10.3390/ijms25116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Magnesium-based biomaterials hold remarkable promise for various clinical applications, offering advantages such as reduced stress-shielding and enhanced bone strengthening and vascular remodeling compared to traditional materials. However, ensuring the quality of preclinical research is crucial for the development of these implants. To achieve implant success, an understanding of the cellular responses post-implantation, proper model selection, and good study design are crucial. There are several challenges to reaching a safe and effective translation of laboratory findings into clinical practice. The utilization of Mg-based biomedical devices eliminates the need for biomaterial removal surgery post-healing and mitigates adverse effects associated with permanent biomaterial implantation. However, the high corrosion rate of Mg-based implants poses challenges such as unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. The biocompatibility and degradability of materials based on magnesium have been studied by many researchers in vitro; however, evaluations addressing the impact of the material in vivo still need to be improved. Several animal models, including rats, rabbits, dogs, and pigs, have been explored to assess the potential of magnesium-based materials. Moreover, strategies such as alloying and coating have been identified to enhance the degradation rate of magnesium-based materials in vivo to transform these challenges into opportunities. This review aims to explore the utilization of Mg implants across various biomedical applications within cellular (in vitro) and animal (in vivo) models.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50937 Cologne, Germany
| | | | - Alexander D. Bach
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| | - Nadja Kröger
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| |
Collapse
|
4
|
Nie X, Shi Y, Wang L, Abudureheman W, Yang J, Lin C. Study on the mechanism of magnesium calcium alloys/mineralized collagen composites mediating macrophage polarization to promote bone repair. Heliyon 2024; 10:e30279. [PMID: 38711636 PMCID: PMC11070863 DOI: 10.1016/j.heliyon.2024.e30279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Magnesium-based composites are a focal point in biomaterials research. However, the rapid degradation rate of magnesium alloys does not align with the healing time of bone tissue. Additionally, the host reaction caused by magnesium implantation hampers its full osteogenic potential. To maintain an appropriate microenvironment, it is important to enhance both corrosion resistance and osteogenic activity of the magnesium matrix. In this study, a composite scaffold composed of mineralized collagen and magnesium alloy was utilized to investigate the regulatory effect of mineralized collagen on mouse macrophages and evaluate its impact on mouse bone marrow mesenchymal stem cells in terms of osteogenesis, immune response, and macrophage-induced osteogenic differentiation. This experiment examined the biocompatibility of mouse bone marrow mesenchymal stem cells and macrophage-induced osteogenic differentiation in vitro, and examined the expression levels of relevant pathways proteins. Magnesium calcium alloys/mineralized collagen exhibited extensive spreading, facilitated by broad and abundant pseudopodia that firmly adhered them to the material surface and promoted growth and pseudopodia formation. The findings revealed that magnesium calcium alloy/mineralized collagen scaffold materials induced osteogenic differentiation mainly through M2 polarization of macrophages. This effect was mainly mediated by promoting the integrin α2β1-FAK-ERK1/2 signaling pathways and inhibiting the RANK signaling pathways.
Collapse
Affiliation(s)
- Xiaojing Nie
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| | - Yonghua Shi
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| | - Lei Wang
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| | - Wumidan Abudureheman
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| | - Jingxin Yang
- Beijing Engineering Research Center of Smart Mechanical Innovation Design Service, Beijing Union University, No.4 Gongti North Road, Chaoyang District, Beijing, 100027, PR China
| | - Chen Lin
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| |
Collapse
|
5
|
Wang B, Pan S, Nie C, Zou R, Liu J, Han X, Dong L, Zhang J, Yang X, Yu M, Fan B, Hong X, Yang W. Magnesium implantation as a continuous hydrogen production generator for the treatment of myocardial infarction in rats. Sci Rep 2024; 14:10959. [PMID: 38745034 PMCID: PMC11094026 DOI: 10.1038/s41598-024-60609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Molecular hydrogen is an emerging broad-spectrum antioxidant molecule that can be used to treat myocardial infarction (MI). However, with hydrogen inhalation, the concentration that can be reached within target organs is low and the duration of action is short, which makes it difficult to achieve high dose targeted delivery of hydrogen to the heart, seriously limiting the therapeutic potential of hydrogen for MI. As a result of reactions with the internal environment of the body, subcutaneous implantation of magnesium slices leads to continuous endogenous hydrogen production, leading to a higher hydrogen concentration and a longer duration of action in target organs. In this study, we propose magnesium implant-based hydrogen therapy for MI. After subcutaneous implantation of magnesium slices in the dorsum of rats, we measured hydrogen production and efficiency, and evaluated the safety of this approach. Compared with hydrogen inhalation, it significantly improved cardiac function in rats with MI. Magnesium implantation also cleared free radicals that were released as a result of mitochondrial dysfunction, as well as suppressing cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Bin Wang
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Pan
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Nie
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Jiaren Liu
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Han
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Li Dong
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawen Zhang
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinrui Yang
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengshu Yu
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bowei Fan
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaojian Hong
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Wei Yang
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Ashammakhi N. CORR Insights®: Mg-Zn-Ca Alloy (ZX00) Screws Are Resorbed at a Mean of 2.5 Years After Medial Malleolar Fracture Fixation: Follow-up of a First-in-humans Application and Insights From a Sheep Model. Clin Orthop Relat Res 2024; 482:198-200. [PMID: 37768868 PMCID: PMC10723840 DOI: 10.1097/corr.0000000000002866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Affiliation(s)
- Nureddin Ashammakhi
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Labmayr V, Suljevic O, Sommer NG, Schwarze UY, Marek RL, Brcic I, Foessl I, Leithner A, Seibert FJ, Herber V, Holweg PL. Mg-Zn-Ca Alloy (ZX00) Screws Are Resorbed at a Mean of 2.5 Years After Medial Malleolar Fracture Fixation: Follow-up of a First-in-humans Application and Insights From a Sheep Model. Clin Orthop Relat Res 2024; 482:184-197. [PMID: 37603369 PMCID: PMC10723859 DOI: 10.1097/corr.0000000000002799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/05/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND In the ongoing development of bioresorbable implants, there has been a particular focus on magnesium (Mg)-based alloys. Several Mg alloys have shown promising properties, including a lean, bioresorbable magnesium-zinc-calcium (Mg-Zn-Ca) alloy designated as ZX00. To our knowledge, this is the first clinically tested Mg-based alloy free from rare-earth elements or other elements. Its use in medial malleolar fractures has allowed for bone healing without requiring surgical removal. It is thus of interest to assess the resorption behavior of this novel bioresorbable implant. QUESTIONS/PURPOSES (1) What is the behavior of implanted Mg-alloy (ZX00) screws in terms of resorption (implant volume, implant surface, and gas volume) and bone response (histologic evaluation) in a sheep model after 13 months and 25 months? (2) What are the radiographic changes and clinical outcomes, including patient-reported outcome measures, at a mean of 2.5 years after Mg-alloy (ZX00) screw fixation in patients with medial malleolar fractures? METHODS A sheep model was used to assess 18 Mg-alloy (ZX00) different-length screws (29 mm, 24 mm, and 16 mm) implanted in the tibiae and compared with six titanium-alloy screws. Micro-CT was performed at 13 and 25 months to quantify the implant volume, implant surface, and gas volume at the implant sites, as well as histology at both timepoints. Between July 2018 and October 2019, we treated 20 patients with ZX00 screws for medial malleolar fractures in a first-in-humans study. We considered isolated, bimalleolar, or trimalleolar fractures potentially eligible. Thus, 20 patients were eligible for follow-up. However, 5% (one patient) of patients were excluded from the analysis because of an unplanned surgery for a pre-existing osteochondral lesion of the talus performed 17 months after ZX00 implantation. Additionally, another 5% (one patient) of patients were lost before reaching the minimum study follow-up period. Our required minimum follow-up period was 18 months to ensure sufficient time to observe the outcomes of interest. At this timepoint, 10% (two patients) of patients were either missing or lost to follow-up. The follow-up time was a mean of 2.5 ± 0.6 years and a median of 2.4 years (range 18 to 43 months). RESULTS In this sheep model, after 13 months, the 29-mm screws (initial volume: 198 ± 1 mm 3 ) degraded by 41% (116 ± 6 mm 3 , mean difference 82 [95% CI 71 to 92]; p < 0.001), and after 25 months by 65% (69 ± 7 mm 3 , mean difference 130 [95% CI 117 to 142]; p < 0.001). After 13 months, the 24-mm screws (initial volume: 174 ± 0.2 mm 3 ) degraded by 51% (86 ± 21 mm 3 , mean difference 88 [95% CI 52 to 123]; p = 0.004), and after 25 months by 72% (49 ± 25 mm 3 , mean difference 125 [95% CI 83 to 167]; p = 0.003). After 13 months, the 16-mm screws (initial volume: 112 ± 5 mm 3 ) degraded by 57% (49 ± 8 mm 3 , mean difference 63 [95% CI 50 to 76]; p < 0.001), and after 25 months by 61% (45 ± 10 mm 3 , mean difference 67 [95% CI 52 to 82]; p < 0.001). Histologic evaluation qualitatively showed ongoing resorption with new bone formation closely connected to the resorbing screw without an inflammatory reaction. In patients treated with Mg-alloy screws after a mean of 2.5 years, the implants were radiographically not visible in 17 of 18 patients and the bone had homogenous texture in 15 of 18 patients. No clinical or patient-reported complications were observed. CONCLUSION In this sheep model, Mg-alloy (ZX00) screws showed a resorption to one-third of the original volume after 25 months, without eliciting adverse immunologic reactions, supporting biocompatibility during this period. Mg-alloy (ZX00) implants were not detectable on radiographs after a mean of 2.5 years, suggesting full resorption, but further studies are needed to assess environmental changes regarding bone quality at the implantation site after implant resorption. CLINICAL RELEVANCE The study demonstrated successful healing of medial malleolar fractures using bioresorbable Mg-alloy screws without clinical complications or revision surgery, resulting in pain-free ankle function after 2.5 years. Future prospective studies with larger samples and extended follow-up periods are necessary to comprehensively assess the long-term effectiveness and safety of ZX00 screws, including an exploration of limitations when there is altered bone integrity, such as in those with osteoporosis. Additional use of advanced imaging techniques, such as high-resolution CT, can enhance evaluation accuracy.
Collapse
Affiliation(s)
- Viktor Labmayr
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Omer Suljevic
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | | | - Uwe Yacine Schwarze
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
- Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Graz, Austria
| | - Romy Linda Marek
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Iva Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Franz Josef Seibert
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Valentin Herber
- Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Graz, Austria
- Department of Oral Surgery, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| | - Patrick Lukas Holweg
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
Zhang K, Liu Y, Zhao Z, Shi X, Zhang R, He Y, Zhang H, Sun Y, Wang W. Synthesis Technology of Magnesium-Doped Nanometer Hydroxyapatite: A Review. ACS OMEGA 2023; 8:44458-44471. [PMID: 38046298 PMCID: PMC10688058 DOI: 10.1021/acsomega.3c06091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023]
Abstract
Ion substitution techniques for nanoparticles have become an important neighborhood of biomedical engineering and have led to the development of innovative bioactive materials for health systems. Magnesium-doped nanohydroxyapatite (Mg-nHA) has good bone conductivity, biological activity, flexural strength, and fracture toughness due to particle doping technology, making it an ideal candidate material for biomedical applications. In this Review, we have systematically presented the synthesis methods of Mg-nHA and their application in the field of biomedical science and highlighted the pros and cons of each method. Finally, some future prospects for this important neighborhood are proposed. The purpose of this Review is to provide readers with an understanding of this new field of research on bioactive materials with innovative functions and systematically introduce the latest technologies for obtaining uniform, continuous, and morphologically diverse Mg-nHA.
Collapse
Affiliation(s)
- Kui Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yan Liu
- Department
of Gynecology, First Affiliated Hospital
of Xi ’an Medical College, Xi’an, Shaanxi 710000, China
| | - Zhenrui Zhao
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuewen Shi
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ruihao Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yixiang He
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huaibin Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yi Sun
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenji Wang
- Department
of Orthopedics, The First Hospital of Lanzhou
University, Lanzhou, Gansu 730000, China
| |
Collapse
|
9
|
Martinez DC, Dobkowska A, Marek R, Ćwieka H, Jaroszewicz J, Płociński T, Donik Č, Helmholz H, Luthringer-Feyerabend B, Zeller-Plumhoff B, Willumeit-Römer R, Święszkowski W. In vitro and in vivo degradation behavior of Mg-0.45Zn-0.45Ca (ZX00) screws for orthopedic applications. Bioact Mater 2023; 28:132-154. [PMID: 37250863 PMCID: PMC10209338 DOI: 10.1016/j.bioactmat.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Magnesium (Mg) alloys have become a potential material for orthopedic implants due to their unnecessary implant removal, biocompatibility, and mechanical integrity until fracture healing. This study examined the in vitro and in vivo degradation of an Mg fixation screw composed of Mg-0.45Zn-0.45Ca (ZX00, in wt.%). With ZX00 human-sized implants, in vitro immersion tests up to 28 days under physiological conditions, along with electrochemical measurements were performed for the first time. In addition, ZX00 screws were implanted in the diaphysis of sheep for 6, 12, and 24 weeks to assess the degradation and biocompatibility of the screws in vivo. Using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), micro-computed tomography (μCT), X-ray photoelectron spectroscopy (XPS), and histology, the surface and cross-sectional morphologies of the corrosion layers formed, as well as the bone-corrosion-layer-implant interfaces, were analyzed. Our findings from in vivo testing demonstrated that ZX00 alloy promotes bone healing and the formation of new bone in direct contact with the corrosion products. In addition, the same elemental composition of corrosion products was observed for in vitro and in vivo experiments; however, their elemental distribution and thicknesses differ depending on the implant location. Our findings suggest that the corrosion resistance was microstructure-dependent. The head zone was the least corrosion-resistant, indicating that the production procedure could impact the corrosion performance of the implant. In spite of this, the formation of new bone and no adverse effects on the surrounding tissues demonstrated that the ZX00 is a suitable Mg-based alloy for temporary bone implants.
Collapse
Affiliation(s)
- Diana C. Martinez
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Anna Dobkowska
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Romy Marek
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Hanna Ćwieka
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502, Geesthacht, Germany
| | - Jakub Jaroszewicz
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Tomasz Płociński
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Črtomir Donik
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology, University of Ljubljana, Lepi Pot 11, SI-1000, Ljubljana, Slovenia
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502, Geesthacht, Germany
| | | | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502, Geesthacht, Germany
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502, Geesthacht, Germany
| | - Wojciech Święszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| |
Collapse
|
10
|
Degradation behavior of ZE21C magnesium alloy suture anchors and their effect on ligament-bone junction repair. Bioact Mater 2023; 26:128-141. [PMID: 36891259 PMCID: PMC9986500 DOI: 10.1016/j.bioactmat.2023.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 03/04/2023] Open
Abstract
Current materials comprising suture anchors used to reconstruct ligament-bone junctions still have limitation in biocompatibility, degradability or mechanical properties. Magnesium alloys are potential bone implant materials, and Mg2+ has been shown to promote ligament-bone healing. Here, we used Mg-2 wt.% Zn-0.5 wt.% Y-1 wt.% Nd-0.5 wt.% Zr (ZE21C) alloy and Ti6Al4V (TC4) alloy to prepare suture anchors to reconstruct the patellar ligament-tibia in SD rats. We studied the degradation behavior of the ZE21C suture anchor via in vitro and in vivo experiments and assessed its reparative effect on the ligament-bone junction. In vitro, the ZE21C suture anchor degraded gradually, and calcium and phosphorus products accumulated on its surface during degradation. In vivo, the ZE21C suture anchor could maintain its mechanical integrity within 12 weeks of implantation in rats. The tail of the ZE21C suture anchor in high stress concentration degraded rapidly during the early implantation stage (0-4weeks), while bone healing accelerated the degradation of the anchor head in the late implantation stage (4-12weeks). Radiological, histological, and biomechanical assays indicated that the ZE21C suture anchor promoted bone healing above the suture anchor and fibrocartilaginous interface regeneration in the ligament-bone junction, leading to better biomechanical strength than the TC4 group. Hence, this study provides a basis for further research on the clinical application of degradable magnesium alloy suture anchors.
Collapse
|
11
|
Tomic J, Wiederstein-Grasser I, Schanbacher M, Weinberg AM. Newly Developed Resorbable Magnesium Biomaterials for Orbital Floor Reconstruction in Caprine and Ovine Animal Models-A Prototype Design and Proof-of-Principle Study. J Funct Biomater 2023; 14:339. [PMID: 37504834 PMCID: PMC10381438 DOI: 10.3390/jfb14070339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND orbital floor fractures have not been reconstructed using magnesium biomaterials. METHODS To test technical feasibility, ex vivo caprine and ovine heads (n = 5) were used. Head tissues were harvested from pubescent animals (n = 5; mean age: 3.2 years; mean mass: 26.3 kg) and stored below 11 degrees for 7-10 days. All procedures were performed in a university animal resource facility. Two experienced maxillofacial surgeons performed orbital floor procedures in both orbits of all animals in a step-by-step preplanned dissection. A transconjunctival approach was chosen to repair the orbital floor with three different implants (i.e., magnesium implants; titanium mesh; and polydioxanone or PDO sheets). The position of each implant was evaluated by Cone-beam computed tomography (CBCT). RESULTS Axial, coronal, and sagittal plane images showed good positioning of the magnesium plates. The magnesium plates had a radiographic visibility similar to that of the PDO sheets but lower than that of the titanium mesh. CONCLUSIONS The prototype design study showed a novel indication for magnesium biomaterials. Further testing of this new biomaterial may lead to the first resorbable biomaterial with good mechanical properties for extensive orbital wall defects.
Collapse
Affiliation(s)
- Josip Tomic
- Department of Oral and Maxillofacial Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Iris Wiederstein-Grasser
- Core Facility Experimental Biomodels, Division of Biomedical Research, Medical University of Graz, 8036 Graz, Austria
| | - Monika Schanbacher
- Department of Oral and Maxillofacial Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Annelie Martina Weinberg
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria
| |
Collapse
|
12
|
Yang H, Zhang F, Sun S, Li H, Li L, Xu H, Wang J, Shao M, Li C, Wang H, Pei J, Niu J, Yuan G, Lyu F. Brushite-coated Mg-Nd-Zn-Zr alloy promotes the osteogenesis of vertebral laminae through IGF2/PI3K/AKT signaling pathway. BIOMATERIALS ADVANCES 2023; 152:213505. [PMID: 37327764 DOI: 10.1016/j.bioadv.2023.213505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable magnesium (Mg) alloys have been extensively investigated in orthopedic implants due to their suitable mechanical strength and high biocompatibility. However, no studies have reported whether Mg alloys can be used to repair lamina defects, and the biological mechanisms regulating osteogenesis are not fully understood. The present study developed a lamina reconstruction device using our patented biodegradable Mg-Nd-Zn-Zr alloy (JDBM), and brushite (CaHPO4·2H2O, Dicalcium phosphate dihydrate, DCPD) coating was developed on the implant. Through in vitro and in vivo experiments, we evaluated the degradation behavior and biocompatibility of DCPD-JDBM. In addition, we explored the potential molecular mechanisms by which it regulates osteogenesis. In vitro, ion release and cytotoxicity tests revealed that DCPD-JDBM had better corrosion resistance and biocompatibility. We found that DCPD-JDBM extracts could promote MC3T3-E1 osteogenic differentiation via the IGF2/PI3K/AKT pathway. The lamina reconstruction device was implanted on a rat lumbar lamina defect model. Radiographic and histological analysis showed that DCPD-JDBM accelerated the repair of rat lamina defects and exhibited lower degradation rate compared to uncoated JDBM. Immunohistochemical and qRT-PCR results showed that DCPD-JDBM promoted osteogenesis in rat laminae via IGF2/PI3K/AKT pathway. This study shows that DCPD-JDBM is a promising biodegradable Mg-based material with great potential for clinical applications.
Collapse
Affiliation(s)
- Haiyuan Yang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Fan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiwei Sun
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Hailong Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Linli Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Haocheng Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyan Li
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China; Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Marek R, Eichler J, Schwarze UY, Fischerauer S, Suljevic O, Berger L, Löffler JF, Uggowitzer PJ, Weinberg AM. Long-term in vivo degradation of Mg-Zn-Ca elastic stable intramedullary nails and their influence on the physis of juvenile sheep. BIOMATERIALS ADVANCES 2023; 150:213417. [PMID: 37087913 DOI: 10.1016/j.bioadv.2023.213417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/28/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023]
Abstract
The use of bioresorbable magnesium (Mg)-based elastic stable intramedullary nails (ESIN) is highly promising for the treatment of pediatric long-bone fractures. Being fully resorbable, a removal surgery is not required, preventing repeated physical and psychological stress for the child. Further, the osteoconductive properties of the material support fracture healing. Nowadays, ESIN are exclusively implanted in a non-transphyseal manner to prevent growth discrepancies, although transphyseal implantation would often be required to guarantee optimized fracture stabilization. Here, we investigated the influence of trans-epiphyseally implanted Mg-Zinc (Zn)-Calcium (Ca) ESIN on the proximal tibial physis of juvenile sheep over a period of three years, until skeletal maturity was reached. We used the two alloying systems ZX10 (Mg-1Zn-0.3Ca, in wt%) and ZX00 (Mg-0.3Zn-0.4Ca, in wt%) for this study. To elaborate potential growth disturbances such as leg-length differences and axis deviations we used a combination of in vivo clinical computed tomography (cCT) and ex vivo micro CT (μCT), and also performed histology studies on the extracted bones to obtain information on the related tissue. Because there is a lack of long-term data regarding the degradation performance of magnesium-based implants, we used cCT and μCT data to evaluate the implant volume, gas volume and degradation rate of both alloying systems over a period of 148 weeks. We show that transepiphyseal implantation of Mg-Zn-Ca ESIN has no negative influence on the longitudinal bone growth in juvenile sheep, and that there is no axis deviation observed in all cases. We also illustrate that 95 % of the ESIN degraded over nearly three years, converging the time point of full resorption. We thus conclude that both, ZX10 and ZX00, constitute promising implant materials for the ESIN technique.
Collapse
Affiliation(s)
- R Marek
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria.
| | - J Eichler
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| | - U Y Schwarze
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria; Department of Dental Medicine and Oral Health, Medical University of Graz, 8010 Graz, Austria
| | - S Fischerauer
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| | - O Suljevic
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| | - L Berger
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - J F Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - P J Uggowitzer
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland; Chair of Nonferrous Metallurgy, Montanuniversitaet Leoben, 8700 Leoben, Austria
| | - A-M Weinberg
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
14
|
Okutan B, Schwarze UY, Berger L, Martinez DC, Herber V, Suljevic O, Plocinski T, Swieszkowski W, Santos SG, Schindl R, Löffler JF, Weinberg AM, Sommer NG. The combined effect of zinc and calcium on the biodegradation of ultrahigh-purity magnesium implants. BIOMATERIALS ADVANCES 2023; 146:213287. [PMID: 36669235 DOI: 10.1016/j.bioadv.2023.213287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Magnesium (Mg)-based implants are promising candidates for orthopedic interventions, because of their biocompatibility, good mechanical features, and ability to degrade completely in the body, eliminating the need for an additional removal surgery. In the present study, we synthesized and investigated two Mg-based materials, ultrahigh-purity ZX00 (Mg-Zn-Ca; <0.5 wt% Zn and <0.5 wt% Ca, in wt%; Fe-content <1 ppm) and ultrahigh-purity Mg (XHP-Mg, >99.999 wt% Mg; Fe-content <1 ppm), in vitro and in vivo in juvenile healthy rats to clarify the effect of the alloying elements Zn and Ca on mechanical properties, microstructure, cytocompatibility and degradation rate. Potential differences in bone formation and bone in-growth were also assessed and compared with state-of-the-art non-degradable titanium (Ti)-implanted, sham-operated, and control (non-intervention) groups, using micro-computed tomography, histology and scanning electron microscopy. At 6 and 24 weeks after implantation, serum alkaline phosphatase (ALP), calcium (Ca), and Mg level were measured and bone marrow stromal cells (BMSCs) were isolated for real-time PCR analysis. Results show that ZX00 implants have smaller grain size and superior mechanical properties than XHP-Mg, and that both reveal good biocompatibility in cytocompatibilty tests. ZX00 homogenously degraded with an increased gas accumulation 12 and 24 weeks after implantation, whereas XHP-Mg exhibited higher gas accumulation already at 2 weeks. Serum ALP, Ca, and Mg levels were comparable among all groups and both Mg-based implants led to similar relative expression levels of Alp, Runx2, and Bmp-2 genes at weeks 6 and 24. Histologically, Mg-based implants are superior for new bone tissue formation and bone in-growth compared to Ti implants. Furthermore, by tracking the sequence of multicolor fluorochrome labels, we observed higher mineral apposition rate at week 2 in both Mg-based implants compared to the control groups. Our findings suggest that (i) ZX00 and XHP-Mg support bone formation and remodeling, (ii) both Mg-based implants are superior to Ti implants in terms of new bone tissue formation and osseointegration, and (iii) ZX00 is more favorable due to its lower degradation rate and moderate gas accumulation.
Collapse
Affiliation(s)
- Begüm Okutan
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Uwe Y Schwarze
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria.
| | - Leopold Berger
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Diana C Martinez
- Department of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland.
| | - Valentin Herber
- Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria; Department of Oral Surgery, University Center for Dental Medicine, University of Basel, Mattenstrasse 40, 4058 Basel, Switzerland.
| | - Omer Suljevic
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Tomasz Plocinski
- Department of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland.
| | - Wojciech Swieszkowski
- Department of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland.
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal.
| | - Rainer Schindl
- Gottfried Schatz Research Center, Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria.
| | - Jörg F Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Annelie M Weinberg
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Nicole G Sommer
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| |
Collapse
|
15
|
Kopp A, Fischer H, Soares AP, Schmidt-Bleek K, Leber C, Kreiker H, Duda G, Kröger N, van Gaalen K, Hanken H, Jung O, Smeets R, Heiland M, Rendenbach C. Long-term in vivo observations show biocompatibility and performance of ZX00 magnesium screws surface-modified by plasma-electrolytic oxidation in Göttingen miniature pigs. Acta Biomater 2023; 157:720-733. [PMID: 36460289 DOI: 10.1016/j.actbio.2022.11.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Bioabsorbable magnesium implants for orthopedic fixation of bone have recently become available for different fields of indication. While general questions of biocompatibility have been answered, tailoring suitable degradation kinetics for specific applications as well as long-term tissue integration remain the focus of current research. The aim of this study was the evaluation of the long-term degradation behavior and osseointegration of Mg-Ca-Zn (ZX00MEO) based magnesium implants with plasma-electrolytic oxidation (PEO) surface modification (ZX00MEO-PEO) in comparison to non-surface modified implants in vivo and in vitro. Besides a general evaluation of the biological performance of the alloy over a prolonged period, the main hypothesis was that PEO surface modification significantly reduces implant degradation rate and improves tissue interaction. In vitro, the microstructure and surface of the bioabsorbable screws were characterized by SEM/EDS, cytocompatibility and degradation testing facilitating hydrogen gas evolution, carried out following ISO 10993-5/-12 and ASTM F3268-18a/ASTM G1-03 (E1:2017). In vivo, screws were implanted in the frontal bone of Minipigs for 6, 12, and 18 months, following radiological and histomorphometric analysis. A slower and more uniform degradation and improved cytocompatibility could be shown for the ZX00MEO-PEO group in vitro. A significant reduction of degradation rate and enhanced bone formation around the ZX00MEO-PEO screws in vivo was confirmed. Proficient biocompatibility and tissue integration could generally be shown in vivo regardless of surface state. The tested magnesium alloy shows generally beneficial properties as an implant material, while PEO-surface modification further improves the bioabsorption behavior both in vitro and in vivo. STATEMENT OF SIGNIFICANCE: Devices from bioabsorbable Magnesium have recently been introduced to orthopedic applications. However, the vast degradation of Magnesium within the human body still gives limitations. While reliable in-vivo data on most promising surface treatments such as Plasma-electrolytic-Oxidation is generally scarce, long-time results in large animals are to this date completely missing. To overcome this lack of evidence, we studied a Magnesium-Calzium-Zinc-alloy with surface enhancement by PEO for the first time ever over a period of 18 months in a large animal model. In-vitro, surface-modified screws showed significantly improved cytocompatibility and reduction of degradation confirmed by hydrogen gas evolution testing, while in-vivo radiological and histological evaluation generally showed good biocompatibility and bioabsorption as well as significantly enhanced reduction of degradation and faster bone regeneration in the PEO-surface-modified group.
Collapse
Affiliation(s)
| | - Heilwig Fischer
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, Berlin 10178, Germany; Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Ana Prates Soares
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Christoph Leber
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Henri Kreiker
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Georg Duda
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, Cologne 50937, Germany
| | | | - Henning Hanken
- Department of Oral and Maxillofacial Surgery, Asklepios Hospital North, Faculty of Medicine, Semmelweis University Campus Hamburg, Hamburg 20099, Germany; Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock 18057, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| |
Collapse
|
16
|
Chen C, Huang B, Liu Y, Liu F, Lee IS. Functional engineering strategies of 3D printed implants for hard tissue replacement. Regen Biomater 2022; 10:rbac094. [PMID: 36683758 PMCID: PMC9845531 DOI: 10.1093/rb/rbac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Three-dimensional printing technology with the rapid development of printing materials are widely recognized as a promising way to fabricate bioartificial bone tissues. In consideration of the disadvantages of bone substitutes, including poor mechanical properties, lack of vascularization and insufficient osteointegration, functional modification strategies can provide multiple functions and desired characteristics of printing materials, enhance their physicochemical and biological properties in bone tissue engineering. Thus, this review focuses on the advances of functional engineering strategies for 3D printed biomaterials in hard tissue replacement. It is structured as introducing 3D printing technologies, properties of printing materials (metals, ceramics and polymers) and typical functional engineering strategies utilized in the application of bone, cartilage and joint regeneration.
Collapse
Affiliation(s)
- Cen Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bo Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yi Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China
| | - Fan Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China
| | | |
Collapse
|
17
|
Marek R, Ćwieka H, Donohue N, Holweg P, Moosmann J, Beckmann F, Brcic I, Schwarze UY, Iskhakova K, Chaabane M, Sefa S, Zeller-Plumhoff B, Weinberg AM, Willumeit-Römer R, Sommer NG. Degradation behavior and osseointegration of Mg-Zn-Ca screws in different bone regions of growing sheep: a pilot study. Regen Biomater 2022; 10:rbac077. [PMID: 36683753 PMCID: PMC9845522 DOI: 10.1093/rb/rbac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 02/01/2023] Open
Abstract
Magnesium (Mg)-based implants are highly attractive for the orthopedic field and may replace titanium (Ti) as support for fracture healing. To determine the implant-bone interaction in different bony regions, we implanted Mg-based alloy ZX00 (Mg < 0.5 Zn < 0.5 Ca, in wt%) and Ti-screws into the distal epiphysis and distal metaphysis of sheep tibiae. The implant degradation and osseointegration were assessed in vivo and ex vivo after 4, 6 and 12 weeks, using a combination of clinical computed tomography, medium-resolution micro computed tomography (µCT) and high-resolution synchrotron radiation µCT (SRµCT). Implant volume loss, gas formation and bone growth were evaluated for both implantation sites and each bone region independently. Additionally, histological analysis of bone growth was performed on embedded hard-tissue samples. We demonstrate that in all cases, the degradation rate of ZX00-implants ranges between 0.23 and 0.75 mm/year. The highest degradation rates were found in the epiphysis. Bone-to-implant contact varied between the time points and bone types for both materials. Mostly, bone-volume-to-total-volume was higher around Ti-implants. However, we found an increased cortical thickness around the ZX00-screws when compared with the Ti-screws. Our results showed the suitability of ZX00-screws for implantation into the distal meta- and epiphysis.
Collapse
Affiliation(s)
| | | | - Nicholas Donohue
- National Institute for Bioprocessing Research and Training, University College Dublin, Dublin 4, Ireland
| | - Patrick Holweg
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| | - Julian Moosmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | - Felix Beckmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | - Iva Brcic
- D&R Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Uwe Yacine Schwarze
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria,Department of Dental Medicine and Oral Health, Medical University of Graz, 8010 Graz, Austria
| | - Kamila Iskhakova
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | - Marwa Chaabane
- SCANCO Medical AG, 8306 Wangen-Brüttisellen, Switzerland
| | - Sandra Sefa
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | | | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | | |
Collapse
|
18
|
Holweg P, Labmayr V, Schwarze U, Sommer NG, Ornig M, Leithner A. Osteotomy after medial malleolus fracture fixed with magnesium screws ZX00 - A case report. Trauma Case Rep 2022; 42:100706. [PMID: 36217422 PMCID: PMC9547279 DOI: 10.1016/j.tcr.2022.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Magnesium alloys have recently become the focus of research, as these implants exhibit suitable biocompatibility and appropriate mechanical properties (Grün et al., 2018 [1]). Through intensive preclinical and clinical investigation, many questions regarding stability, biocompatibility and degradation behavior have been answered (Holweg et al., 2020 [2]). This case report aims to describe handling of these implants in a revision situation, especially when located in situ. To describe available options and relevant considerations, including planning and implementation, a revision surgery of a healed medial malleolus fracture is presented. A medial malleolus fracture was primarily treated by a trauma surgeon with two magnesium screws. Due to an osteochondral lesion of the talus, a revision surgery with osteotomy of the medial malleolus was necessary after 17 months. In this revision, conventional screw removal was not possible due to the degradation of the implant. Taking the degradation and the yield strength of the implant into account, we have chosen on the one hand to over-drill and on the other to leave and perforate the screw. To the best of our knowledge, this is the first case study focusing on the clinical intraoperative site of human bone stabilized with magnesium screws. Despite the hydrogen gas production that occurs during degradation, a solid bone-to-implant interface was evident. With this report, we want to encourage the surgical user to get more involved with resorbable magnesium implants.
Collapse
Affiliation(s)
- Patrick Holweg
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria,Corresponding author.
| | - Viktor Labmayr
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Uwe Schwarze
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria,Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Austria
| | - Nicole G. Sommer
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Martin Ornig
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| |
Collapse
|
19
|
Sommer NG, Hirzberger D, Paar L, Berger L, Ćwieka H, Schwarze UY, Herber V, Okutan B, Bodey AJ, Willumeit-Römer R, Zeller-Plumhoff B, Löffler JF, Weinberg AM. Implant degradation of low-alloyed Mg-Zn-Ca in osteoporotic, old and juvenile rats. Acta Biomater 2022; 147:427-438. [PMID: 35644328 DOI: 10.1016/j.actbio.2022.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022]
Abstract
Implant removal is unnecessary for biodegradable magnesium (Mg)-based implants and, therefore, the related risk for implant-induced fractures is limited. Aging, on the other hand, is associated with low bone-turnover and decreased bone mass and density, and thus increased fracture risk. Osteoporosis is accompanied by Mg deficiency, therefore, we hypothesized that Mg-based implants may support bone formation by Mg2+ ion release in an ovariectomy-induced osteoporotic rat model. Hence, we investigated osseointegration and implant degradation of a low-alloyed, degrading Mg-Zn-Ca implant (ZX00) in ovariectomy-induced osteoporotic (Osteo), old healthy (OH), and juvenile healthy (JH) groups of female Sprague Dawley rats via in vivo micro-computed tomography (µCT). For the Osteo rats, we demonstrate diminished trabecular bone already after 8 weeks upon ovariectomy and significantly enhanced implant volume loss, with correspondingly pronounced gas formation, compared to the OH and JH groups. Sclerotic rim development was observed in about half of the osteoporotic rats, suggesting a prevention from foreign-body and osteonecrosis development. Synchrotron radiation-based µCT confirmed lower bone volume fractions in the Osteo group compared to the OH and JH groups. Qualitative histological analysis additionally visualized the enhanced implant degradation in the Osteo group. To date, ZX00 provides an interesting implant material for young and older healthy patients, but it may not be of advantage in pharmacologically untreated osteoporotic conditions. STATEMENT OF SIGNIFICANCE: Magnesium-based implants are promising candidates for treatment of osteoporotic fractures because of their biodegradable, biomechanical, anti-bacterial and bone regenerative properties. Here we investigate magnesium‒zinc‒calcium implant materials in a rat model with ovariectomy-induced osteoporosis (Osteo group) and compare the related osseointegration and implant degradation with the results obtained for old healthy (OH) and juvenile healthy (JH) rats. The work applied an appropriate disease model for osteoporosis and focused in particular on long-term implant degradation for different bone conditions. Enhanced implant degradation and sclerotic rim formation was observed in osteoporotic rats, which illustrates that the setting of different bone models generates significantly modified clinical outcome. It further illustrated that these differences must be taken into account in future biodegradable implant development.
Collapse
|
20
|
Herber V, Labmayr V, Sommer NG, Marek R, Wittig U, Leithner A, Seibert F, Holweg P. Can Hardware Removal be Avoided Using Bioresorbable Mg-Zn-Ca Screws After Medial Malleolar Fracture Fixation? Mid-Term Results of a First-In-Human Study. Injury 2022; 53:1283-1288. [PMID: 34758916 DOI: 10.1016/j.injury.2021.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/27/2021] [Indexed: 02/02/2023]
Abstract
UNLABELLED Ankle is the most common site of hardware removal, mainly performed within 12 months of the primary surgery. The prominence of the metallic hardware is a frequent cause of pain after fracture fixation. Over the last decade, the development of bioresorbable materials based on magnesium (Mg) has increased. Bioresorbable metals aim to avoid a second surgery for hardware removal. METHODS Twenty patients with isolated, bimalleolar, or trimalleolar ankle fractures were treated with bioresorbable screws made of Mg, 0.45wt% calcium (Ca) and 0.45wt% zinc (Zn) (ZX00). Patient-reported outcome measures (PROMs) including visual analogue scale (VAS) for pain, the presence of complications 6 and 12 months after surgery and the AOFAS scale after 12 months were reported. The functional outcomes were analysed through the range of motion (ROM) of the ankle joint with a standard goniometer. Degradation products and the bioresorbability of the screws were evaluated using plane radiographs. RESULTS One patient was lost to follow-up. All patients were free of pain, no complications, shoe conflict or misalignement were reported after 12 months of follow-up. No Mg screws were surgically removed. An additional fixation of the distal fibula or the dorsal tibial fragment with conventional titanium implants (Ti) was performed in 17 patients. Within 12 months after primary refixation, 12 of these patients (71%) underwent a second surgery for Ti hardware removal. The mean AOFAS score was 89.8±7.1 and the difference between the treated and the non-treated site in the ROM of the talocrural joint was 2°±11° after 12 months. Radiolucent areas around the screws were attributed to degradation and did not affect clinical or functional outcomes. After one year, the Mg screw heads could not be detected in the plane radiographs of 17 patients which suggests that the majority of the screw head is degraded without introducing adverse reactions. CONCLUSIONS At 6 and 12 months, the bioresorbable Mg screws show excellent PROMs without complications or need for screw removal. The resorbability of the screw heads in most of the patients after one year could also provide an advantage over conventional bio-inert implants by avoiding related skin irritation due for instance to shoe conflict.
Collapse
Affiliation(s)
- Valentin Herber
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria; Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria..
| | - Viktor Labmayr
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria
| | - Nicole G Sommer
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria
| | - Romy Marek
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria
| | - Ulrike Wittig
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria
| | - Franz Seibert
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria
| | - Patrick Holweg
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria
| |
Collapse
|
21
|
Distinct Advantages of Circumferential Notch Tensile (CNT) Testing in the Determination of a Threshold for Stress Corrosion Cracking (K ISCC). MATERIALS 2021; 14:ma14195620. [PMID: 34640017 PMCID: PMC8509828 DOI: 10.3390/ma14195620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022]
Abstract
Stress corrosion cracking (SCC) is a vexing problem for load-bearing equipment operating in a corrosive environment in various industries, such as aerospace, chemical and mineral processing, civil structures, bioimplants, energy generation etc. For safe operation, effective maintenance and life prediction of such equipment, reliable design data on SCC (such as threshold stress intensity for SCC, i.e., KISCC) are invaluable. Generating reliable KISCC data invariably requires a large number of tests. Traditional techniques can be prohibitively expensive. This article reviews the determination of KISCC using the circumferential notch tensile (CNT) technique, the validation of the technique and its application to a few industrially relevant scenarios. The CNT technique is a relatively recent and considerably inexpensive approach for the determination of KISCC when compared to traditional techniques, viz., double-cantilever beam (DCB) and compact tension (CT) that may be fraught with prohibitive complexities. As established through this article, the CNT technique circumvents some critical limitations of the traditional techniques.
Collapse
|
22
|
Weng W, Biesiekierski A, Li Y, Dargusch M, Wen C. A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys. Acta Biomater 2021; 130:80-97. [PMID: 34118448 DOI: 10.1016/j.actbio.2021.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Magnesium (Mg) is well-tolerated by the body, displaying exceedingly low toxicity, rapid excretion, and numerous bioactive effects, including improved bone formation and protection against oxidative stresses; further, Mg alloys can be degraded in vivo to allow complete removal of an implant without surgical intervention, avoiding revision surgery and thrombosis concerns seen with permanent implants. Rare earth elements (REEs) have been of particular interest in alloying Mg alloys for nearly a century due to their unique chemical and physical properties but have attracted increasing attention in recent decades. The REEs contribute greatly to the mechanical and biological properties of metal alloys, and so are common in Mg alloys in a wide variety of applications; in particular, they represent the dominant alloying additions in current, clinically applied Mg alloys. Notably, the use of these elements may assist in the development of advanced Mg alloys for use as biodegradable orthopedic implants and cardiovascular stents. To this end, current research progress in this area, highlighting the physiological impact of REEs in Mg alloys, is reviewed. Clinical work and preclinical data of REE-containing Mg alloys are analyzed. The biological roles of REEs in cellular responses in vivo require further research in the development of biofunctional Mg alloy medical devices. STATEMENT OF SIGNIFICANCE: The presented work is a review into the biological impact and current application of rare-earth elements (REEs) in biodegradable Mg-based biomaterials. Despite their efficacy in improving corrosion, mechanical, and manufacturability properties of Mg alloys, the physiological effects of REEs remain poorly understood. Therefore, the present work was undertaken to both provide guidance in the development of new biomedical alloys, and highlight areas of existing concerns and unclear knowledge. Key findings of this review include a summary of current clinical and preclinical work, and the identification of Sc as the most promising REE with regards to physiological impact. Y, Ce, Pr, Gd, Dy, Yb, Sm, and Eu should be considered carefully before their use as alloying elements, with other REEs intermediate or insufficiently studied.
Collapse
Affiliation(s)
- Weijie Weng
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia; Shanghai Power Equipment Research Institute, Shanghai 200240, China
| | - Arne Biesiekierski
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia; ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Matthew Dargusch
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
23
|
Brunner P, Brumbauer F, Steyskal EM, Renk O, Weinberg AM, Schroettner H, Würschum R. Influence of high-pressure torsion deformation on the corrosion behaviour of a bioresorbable Mg-based alloy studied by positron annihilation. Biomater Sci 2021; 9:4099-4109. [PMID: 33928974 DOI: 10.1039/d1bm00166c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of high-pressure torsion (HPT) on the corrosion behavior of extruded ZX00 (Mg-0.45wt%Zn-0.45wt%Ca) in phosphate buffered saline solution is investigated. MgCaZn alloys are promising candidates for the use as bioresorbable implant materials and, therefore, are in the focus of current research. To improve their strength, severe plastic deformation, e.g. via the technique of HPT, can be used. Positron lifetime spectroscopy (PLS) is applied as sensitive tool for studying open-volume defects which evolve during HPT processing and subsequent corrosion. The studies were complemented by electrochemical impedance spectroscopy (EIS). In the uncorroded state, grain boundaries are the major type of positron trap as quantitatively analysed by means of diffusion-reaction models for positron trapping and annihilation in fine-grained alloys. Upon corrosion, positronium formation and annihilation indicate larger open-volume structures, such as pores and cracks, in the emerging corrosion product and oxide layers. Both PLS and EIS clearly show that HPT-deformation strongly reduces the resistance against corrosion. Evidence is found for corrosion-induced open-volume defects, presumably related to hydrogen, in deeper parts of the material below the corrosion layer.
Collapse
Affiliation(s)
- Philipp Brunner
- Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
| | - Florian Brumbauer
- Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
| | - Eva-Maria Steyskal
- Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
| | - Oliver Renk
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, 8700 Leoben, Austria
| | - Annelie-Martina Weinberg
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria
| | - Hartmuth Schroettner
- Institute of Electron Microscopy and Nanoanalytics, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Roland Würschum
- Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
| |
Collapse
|
24
|
Herber V, Okutan B, Antonoglou G, Sommer NG, Payer M. Bioresorbable Magnesium-Based Alloys as Novel Biomaterials in Oral Bone Regeneration: General Review and Clinical Perspectives. J Clin Med 2021; 10:jcm10091842. [PMID: 33922759 PMCID: PMC8123017 DOI: 10.3390/jcm10091842] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone preservation and primary regeneration is a daily challenge in the field of dental medicine. In recent years, bioresorbable metals based on magnesium (Mg) have been widely investigated due to their bone-like modulus of elasticity, their high biocompatibility, antimicrobial, and osteoconductive properties. Synthetic Mg-based biomaterials are promising candidates for bone regeneration in comparison with other currently available pure synthetic materials. Different alloys based on Mg were developed to fit clinical requirements. In parallel, advances in additive manufacturing offer the possibility to fabricate experimentally bioresorbable metallic porous scaffolds. This review describes the promising clinical results of resorbable Mg-based biomaterials for bone repair in osteosynthetic application and discusses the perspectives of use in oral bone regeneration.
Collapse
Affiliation(s)
- Valentin Herber
- Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria; (G.A.); (M.P.)
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6, 8036 Graz, Austria; (B.O.); (N.G.S.)
- Correspondence:
| | - Begüm Okutan
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6, 8036 Graz, Austria; (B.O.); (N.G.S.)
| | - Georgios Antonoglou
- Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria; (G.A.); (M.P.)
| | - Nicole G. Sommer
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6, 8036 Graz, Austria; (B.O.); (N.G.S.)
| | - Michael Payer
- Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria; (G.A.); (M.P.)
| |
Collapse
|
25
|
Rahmati M, Stötzel S, Khassawna TE, Iskhahova K, Florian Wieland DC, Zeller Plumhoff B, Haugen HJ. Early osteoimmunomodulatory effects of magnesium-calcium-zinc alloys. J Tissue Eng 2021; 12:20417314211047100. [PMID: 34589198 PMCID: PMC8474317 DOI: 10.1177/20417314211047100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Today, substantial attention is given to biomaterial strategies for bone regeneration, and among them, there is a growing interest in using immunomodulatory biomaterials. The ability of a biomaterial to induce neo vascularization and macrophage polarization is a major factor in defining its success. Magnesium (Mg)-based degradable alloys have attracted significant attention for bone regeneration owing to their biodegradability and potential for avoiding secondary removal surgeries. However, there is insufficient evidence in the literature regarding the early inflammatory responses to these alloys in vivo. In this study, we investigated the early body responses to Mg-0.45wt%Zn-0.45wt%Ca pin-shaped alloy (known as ZX00 alloy) in rat femora 2, 5, and 10 days after implantation. We used 3D micro computed tomography (µCT), histological, immunohistochemical, histomorphometrical, and small angle X-ray scattering (SAXS) analyses to study new bone formation, early macrophage polarization, neo vascularization, and bone quality at the implant bone interface. The expression of macrophage type 2 biological markers increased significantly after 10 days of Mg alloy implantation, indicating its potential in stimulating macrophage polarization. Our biomineralization results using µCT as well as histological stained sections did not indicate any statistically significant differences between different time points for both groups. The activity of alkaline phosphatase (ALP) and Runt-related transcription factor 2 (Runx 2) biological markers decreased significantly for Mg group, indicating less osteoblast activity. Generally, our results supported the potential of ZX00 alloy to enhance the expression of macrophage polarization in vivo; however, we could not observe any statistically significant changes regarding biomineralization.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute
for Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Sabine Stötzel
- Experimental Trauma Surgery,
Justus-Liebig University Giessen, Giessen, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery,
Justus-Liebig University Giessen, Giessen, Germany
- Faculty of Health Sciences, University
of Applied Sciences, Giessen, Germany
| | - Kamila Iskhahova
- Institute of Metallic Biomaterials,
Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - DC Florian Wieland
- Institute of Metallic Biomaterials,
Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | | | - Håvard Jostein Haugen
- Department of Biomaterials, Institute
for Clinical Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Antoniac I, Adam R, Biță A, Miculescu M, Trante O, Petrescu IM, Pogărășteanu M. Comparative Assessment of In Vitro and In Vivo Biodegradation of Mg-1Ca Magnesium Alloys for Orthopedic Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 14:E84. [PMID: 33375385 PMCID: PMC7795943 DOI: 10.3390/ma14010084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/30/2022]
Abstract
Use of magnesium implants is a new trend in orthopedic research because it has several important properties that recommend it as an excellent resorbable biomaterial for implants. In this study, the corrosion rate and behavior of magnesium alloys during the biodegradation process were determined by in vitro assays, evolution of hydrogen release, and weight loss, and further by in vivo assays (implantation in rabbits' bone and muscle tissue). In these tests, we also used imaging assessments and histological examination of different tissue types near explants. In our study, we analyzed the Mg-1Ca alloy and all the hypotheses regarding the toxic effects found in in vitro studies from the literature and those from this in vitro study were rejected by the data obtained by the in vivo study. Thus, the Mg-1Ca alloy represents a promising solution for orthopedic surgery at the present time, being able to find applicability in the small bones: hand or foot.
Collapse
Affiliation(s)
- Iulian Antoniac
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (I.A.); (A.B.); (O.T.); (I.M.P.)
| | - Răzvan Adam
- Orthopedic Department, Clinical University Emergency Hospital Elias, 17 Mărăști Blvd., 011461 Bucharest, Romania
| | - Ana Biță
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (I.A.); (A.B.); (O.T.); (I.M.P.)
| | - Marian Miculescu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (I.A.); (A.B.); (O.T.); (I.M.P.)
| | - Octavian Trante
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (I.A.); (A.B.); (O.T.); (I.M.P.)
| | - Ionuț Mircea Petrescu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (I.A.); (A.B.); (O.T.); (I.M.P.)
| | - Mark Pogărășteanu
- Orthopedics-Traumatology Department, Carol Davila University of Medicine and Pharmacy Bucharest, 3-7 Dionisie Lupu Str., 020022 Bucharest, Romania;
| |
Collapse
|
27
|
Reich KM, Viitanen P, Apu EH, Tangl S, Ashammakhi N. The Effect of Diclofenac Sodium-Loaded PLGA Rods on Bone Healing and Inflammation: A Histological and Histomorphometric Study in the Femur of Rats. MICROMACHINES 2020; 11:mi11121098. [PMID: 33322731 PMCID: PMC7764049 DOI: 10.3390/mi11121098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/03/2022]
Abstract
Implants made of poly(lactide-co-glycolide) (PLGA) are biodegradable and frequently provoke foreign body reactions (FBR) in the host tissue. In order to modulate the inflammatory response of the host tissue, PLGA implants can be loaded with anti-inflammatory drugs. The aim of this study was to analyze the impact of PLGA 80/20 rods loaded with the diclofenac sodium (DS) on local tissue reactions in the femur of rats. Special emphasis was put on bone regeneration and the presence of multinucleated giant cells (MGCs) associated with FBR. PLGA 80/20 alone and PLGA 80/20 combined with DS was extruded into rods. PLGA rods loaded with DS (PLGA+DS) were implanted into the femora of 18 rats. Eighteen control rats received unloaded PLGA rods. The follow-up period was of 3, 6 and 12 weeks. Each group comprised of six rats. Peri-implant tissue reactions were histologically and histomorphometrically evaluated. The implantation of PLGA and PLGA+DS8 rods induced the formation of a layer of newly formed bone islands parallel to the contour of the implants. PLGA+DS rods tended to reduce the presence of multi-nucleated giant cells (MGCs) at the implant surface. Although it is known that the systemic administration of DS is associated with compromised bone healing, the local release of DS via PLGA rods did not have negative effects on bone regeneration in the femora of rats throughout 12 weeks.
Collapse
Affiliation(s)
- Karoline M. Reich
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Petrus Viitanen
- Institute of Biomaterials, Tampere University of Technology, 33101 Tampere, Finland;
| | - Ehsanul Hoque Apu
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland;
- Institute for Quantitative Health Science and Engineering, Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence: (S.T.); (N.A.)
| | - Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University Hospital, 90220 Oulu, Finland
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (S.T.); (N.A.)
| |
Collapse
|
28
|
Kim SY, Kim YK, Chong SW, Lee KB, Lee MH. Osteogenic Effect of a Biodegradable BMP-2 Hydrogel Injected into a Cannulated Mg Screw. ACS Biomater Sci Eng 2020; 6:6173-6185. [PMID: 33449641 DOI: 10.1021/acsbiomaterials.0c00709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cannulated screws, containing an internal hole for inserting a guide pin, are commonly used in the management of bone fractures. Cannulated Mg screws can be biodegraded easily because their increased surface area including that of the inner hole rapidly reacts with body fluids. To delay biodegradation of cannulated Mg screws and improve bone regeneration, we developed a specific type of screw by injecting it with gelatin hydrogels [10 wt % gelatin(gel) with 0.09 v/v % glutaraldehyde (cross-linker)] containing different concentrations (5, 10, or 25 μg/mL) of bone morphogenic proteins (BMPs). We analyzed the properties and biocompatibility of the screws with and without BMP-2 and found that the release rate of BMP-2 in the hydrogel changed proportionately with the degradation rate of the cross-linked hydrogel. Loading BMP-2 in the hydrogel resulted in sustained release of BMP-2 for 25 to 40 days or more. The degradation rate of BMP-2 hydrogels was inversely proportional to the concentration of BMP-2. The injection of the hydrogels in the cannulated screw delayed biodegradation inside of the screw by simulated body fluid. It also induced uniform corrosion and the precipitation of bioactive compounds onto the surface of the screw. In addition, osteoblast proliferation was very active near the BMP-2 hydrogels, depending on the BMP-2 concentration. The BMP-2 in the hydrogel improved cell differentiation. The cannulated screw injected with 10 μL/mL BMP-2 hydrogel prevented implant biodegradation and enhanced osteoconduction and osteointegration inside and outside the screw. In addition, the properties of BMP-2-loaded hydrogels can be changed by controlling the amount of the cross-linker and protein, which could be useful for tissue regeneration in other fields.
Collapse
Affiliation(s)
- Seo-Young Kim
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience and BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Yu-Kyoung Kim
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience and BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Seong-Woo Chong
- Department of Orthopedic Surgery, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School, Gungiro 20, Deokjin-Gu, Jeonju-si, Jeollabuk-do 561-180, Republic of Korea
| | - Kwang-Bok Lee
- Department of Orthopedic Surgery, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School, Gungiro 20, Deokjin-Gu, Jeonju-si, Jeollabuk-do 561-180, Republic of Korea
| | - Min-Ho Lee
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience and BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| |
Collapse
|
29
|
Holweg P, Berger L, Cihova M, Donohue N, Clement B, Schwarze U, Sommer NG, Hohenberger G, van den Beucken JJ, Seibert F, Leithner A, Löffler JF, Weinberg AM. A lean magnesium-zinc-calcium alloy ZX00 used for bone fracture stabilization in a large growing-animal model. Acta Biomater 2020; 113:646-659. [PMID: 32553919 DOI: 10.1016/j.actbio.2020.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
Over the last decade, demand has increased for developing new, alternative materials in pediatric trauma care to overcome the disadvantages associated with conventional implant materials. Magnesium (Mg)-based alloys seem to adequately fulfill the vision of a homogeneously resorbable, biocompatible, load-bearing and functionally supportive implant. The aim of the present study is to introduce the high-strength, lean alloy Mg‒0.45Zn‒0.45Ca, in wt% (ZX00), and for the first time investigate the clinical applicability of screw osteosynthesis using this alloy that contains no rare-earth elements. The alloy was applied in a growing sheep model with osteotomized bone (simulating a fracture) and compared to a non-osteotomy control group regarding degradation behavior and fracture healing. The alloy exhibits an ultimate tensile strength of 285.7 ± 3.1 MPa, an elongation at fracture of 18.2 ± 2.1%, and a reduced in vitro degradation rate compared to alloys containing higher amounts of Zn. In vivo, no significant difference between the osteotomized bone and the control group was found regarding the change in screw volume over implantation time. Therefore, it can be concluded that the fracture healing process, including its effects on the surrounding area, has no significant influence on degradation behavior. There was also no negative influence from hydrogen-gas formation on fracture healing. Despite the proximal and distal screws showing chronologically different gas release, the osteotomy showed complete consolidation. STATEMENT OF SIGNIFICANCE: Conventional implants involve several disadvantages in pediatric trauma care. Magnesium-based alloys seem to overcome these issues as discussed in the recent literature. This study evaluates the clinical applicability of high-strength lean Mg‒0.45Zn‒0.45Ca (ZX00) screws in a growing-sheep model. Two groups, one including a simulated fracture and one group without fracture, underwent implantation of the alloy and were compared to each other. No significant difference regarding screw volume was observed between the groups. There was no negative influence of hydrogen-gas formation on fracture healing and a complete fracture consolidation was found after 12 weeks for all animals investigated.
Collapse
|
30
|
Holweg P, Herber V, Ornig M, Hohenberger G, Donohue N, Puchwein P, Leithner A, Seibert F. A lean bioabsorbable magnesium-zinc-calcium alloy ZX00 used for operative treatment of medial malleolus fractures: early clinical results of a prospective non-randomized first in man study. Bone Joint Res 2020; 9:477-483. [PMID: 32874554 PMCID: PMC7437522 DOI: 10.1302/2046-3758.98.bjr-2020-0017.r2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aims This study is a prospective, non-randomized trial for the treatment of fractures of the medial malleolus using lean, bioabsorbable, rare-earth element (REE)-free, magnesium (Mg)-based biodegradable screws in the adult skeleton. Methods A total of 20 patients with isolated, bimalleolar, or trimalleolar ankle fractures were recruited between July 2018 and October 2019. Fracture reduction was achieved through bioabsorbable Mg-based screws composed of pure Mg alloyed with zinc (Zn) and calcium (Ca) ( Mg-Zn0.45-Ca0.45, in wt.%; ZX00). Visual analogue scale (VAS) and the presence of complications (adverse events) during follow-up (12 weeks) were used to evaluate the clinical outcomes. The functional outcomes were analyzed through the range of motion (ROM) of the ankle joint and the American Orthopaedic Foot and Ankle Society (AOFAS) score. Fracture reduction and gas formation were assessed using several plane radiographs. Results The follow-up was performed after at least 12 weeks. The mean difference in ROM of the talocrural joint between the treated and the non-treated sites decreased from 39° (SD 12°) after two weeks to 8° (SD 11°) after 12 weeks (p ≤ 0.05). After 12 weeks, the mean AOFAS score was 92.5 points (SD 4.1). Blood analysis revealed that Mg and Ca were within a physiologically normal range. All ankle fractures were reduced and stabilized sufficiently by two Mg screws. A complete consolidation of all fractures was achieved. No loosening or breakage of screws was observed. Conclusion This first prospective clinical investigation of fracture reduction and fixation using lean, bioabsorbable, REE-free ZX00 screws showed excellent clinical and functional outcomes. Cite this article: Bone Joint Res 2020;9(8):477–483.
Collapse
Affiliation(s)
- Patrick Holweg
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Valentin Herber
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Martin Ornig
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Gloria Hohenberger
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Nicolas Donohue
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Paul Puchwein
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Franz Seibert
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| |
Collapse
|
31
|
Li Z, Guo L, Yao H, Di X, Xing K, Tu J, Gu C. Formation and In Vitro Evaluation of a Deep Eutectic Solvent Conversion Film on Biodegradable Magnesium Alloy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33315-33324. [PMID: 32618185 DOI: 10.1021/acsami.0c10992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The chemical conversion films from deep eutectic solvents (DESs) have recently been shown to reduce the corrosion rate of magnesium alloys, which are recognized as a kind of promising materials applied in the human body. However, the biocompatibility of the conversion films has not been investigated. This study proposes an uncommon DES system composed of lithium chloride and urea to fabricate the chemical conversion films on Mg and its alloy. The fabrication process of the conversion film is facile, which is performed by the heat treatment of the substrate in the DES at about 200 °C for 30 min. It is found that the thermal decomposition of the DES can release hydrogen, which diffuses into the Mg substrate to form MgH2-based conversion films. The DES conversion film possesses a porous structure on pure Mg, whereas it becomes dense on the alloy with some cracks. X-ray photoelectron spectroscopy shows that MgCO3 and oxides also exist in the DES conversion films, which depends on the substrate. Electrochemical corrosion test and in vitro biocompatibility tests, including hemolysis, cytotoxicity, antibacterial, and cytoskeleton staining experiments, are performed in a simulated body environment, which shows that the corrosion resistance and biocompatibility of the substrates have been improved significantly. We expect that the DES heat treatment method will be applied to the fabrication of corrosion-resistant and biocompatible surfaces for biodegradable Mg alloys.
Collapse
Affiliation(s)
- Zhongxu Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, China
| | - Liting Guo
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, China
| | - Hui Yao
- Hebei Life Origin Bio-Technology Co, Shijiazhuang 051433, China
| | - Xiaosong Di
- Hebei Life Origin Bio-Technology Co, Shijiazhuang 051433, China
| | - Kai Xing
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, China
| | - Jiangping Tu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, China
| | - Changdong Gu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, China
| |
Collapse
|
32
|
Wang J, Xu J, Hopkins C, Chow DH, Qin L. Biodegradable Magnesium-Based Implants in Orthopedics-A General Review and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902443. [PMID: 32328412 PMCID: PMC7175270 DOI: 10.1002/advs.201902443] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/06/2020] [Indexed: 05/10/2023]
Abstract
Biodegradable Mg-based metals may be promising orthopedic implants for treating challenging bone diseases, attributed to their desirable mechanical and osteopromotive properties. This Review summarizes the current status and future research trends for Mg-based orthopedic implants. First, the properties between Mg-based implants and traditional orthopedic implants are compared on the following aspects: in vitro and in vivo degradation mechanisms of Mg-based implants, peri-implant bone responses, the fate of the degradation products, and the cellular and molecular mechanisms underlying the beneficial effects of Mg ions on osteogenesis. Then, the preclinical studies conducted at the low weight bearing sites of animals are introduced. The innovative strategies (for example, via designing Mg-containing hybrid systems) are discussed to address the limitations of Mg-based metals prior to their clinical applications at weight-bearing sites. Finally, the available clinical studies are summarized and the challenges and perspectives of Mg-based orthopedic implants are discussed. Taken together, the progress made on the development of Mg-based implants in basic, translational, and clinical research has laid down a foundation for developing a new era in the treatment of challenging and prevalent bone diseases.
Collapse
Affiliation(s)
- Jia‐Li Wang
- School of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou510006P. R. China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyThe Chinese University of Hong KongHong Kong SARP. R. China
| | - Jian‐Kun Xu
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyThe Chinese University of Hong KongHong Kong SARP. R. China
- Innovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARP. R. China
| | - Chelsea Hopkins
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyThe Chinese University of Hong KongHong Kong SARP. R. China
| | - Dick Ho‐Kiu Chow
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyThe Chinese University of Hong KongHong Kong SARP. R. China
- Innovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARP. R. China
| | - Ling Qin
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyThe Chinese University of Hong KongHong Kong SARP. R. China
- Innovative Orthopaedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARP. R. China
| |
Collapse
|
33
|
Papenberg NP, Gneiger S, Weißensteiner I, Uggowitzer PJ, Pogatscher S. Mg-Alloys for Forging Applications-A Review. MATERIALS 2020; 13:ma13040985. [PMID: 32098352 PMCID: PMC7079650 DOI: 10.3390/ma13040985] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/13/2022]
Abstract
Interest in magnesium alloys and their applications has risen in recent years. This trend is mainly evident in casting applications, but wrought alloys are also increasingly coming into focus. Among the most common forming processes, forging is a promising candidate for the industrial production of magnesium wrought products. This review is intended to give a general introduction into the forging of magnesium alloys and to help in the practical realization of forged products. The basics of magnesium forging practice are described and possible problems as well as material properties are discussed. Several alloy systems containing aluminum, zinc or rare earth elements as well as biodegradable alloys are evaluated. Overall, the focus of the review is on the process control and processing parameters, from stock material to finished parts. A discussion of the mechanical properties is included. These data have been comprehensively reviewed and are listed for a variety of magnesium forging alloys.
Collapse
Affiliation(s)
- Nikolaus P. Papenberg
- LKR Light Metals Technologies Ranshofen, Austrian Institute of Technology, A-5282 Ranshofen, Austria;
- Correspondence:
| | - Stefan Gneiger
- LKR Light Metals Technologies Ranshofen, Austrian Institute of Technology, A-5282 Ranshofen, Austria;
| | - Irmgard Weißensteiner
- Christian Doppler Laboratory for Advanced Aluminum Alloys, Chair of Nonferrous Metallurgy, Montanuniversität Leoben, A-8700 Leoben, Austria;
| | - Peter J. Uggowitzer
- Chair of Nonferrous Metallurgy, Montanuniversität Leoben, A-8700 Leoben, Austria; (P.J.U.); (S.P.)
- Department of Materials, Laboratory of Metal Physics and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Stefan Pogatscher
- Chair of Nonferrous Metallurgy, Montanuniversität Leoben, A-8700 Leoben, Austria; (P.J.U.); (S.P.)
| |
Collapse
|
34
|
Chen Y, Dou J, Yu H, Chen C. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements. J Biomater Appl 2019; 33:1348-1372. [PMID: 30854910 DOI: 10.1177/0885328219834656] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Magnesium-based alloys exhibit biodegradable, biocompatible and excellent mechanical properties which enable them to serve as ideal candidate biomedical materials. In particular, their biodegradable ability helps patients to avoid a second surgery. The corrosion rate, however, is too rapid to sustain the healing process. Alloying is an effective method to slow down the corrosion rate. However, currently magnesium alloys used as biomaterials are mostly commercial alloys without considering cytotoxicity from the perspective of biosafety. This article comprehensively reviews the status of various existing and newly developed degradable magnesium-based alloys specially designed for biomedical application. The effects of critical alloying elements, compositions, heat treatment and processing technology on the microstructure, mechanical properties and corrosion resistance of magnesium alloys are discussed in detail. This article covers Mg-Ca based, Mg-Zn based, Mg-Sr based, Mg-RE based and Mg-Cu-based alloy systems. The novel methods of fabricating Mg-based biomaterials and surface treatment on Mg based alloys for potential biomedical applications are summarized.
Collapse
Affiliation(s)
- Yang Chen
- 1 Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P.R. China.,2 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and engineering, Shandong University, Ji'nan, Shandong, P.R. China
| | - Jinhe Dou
- 1 Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P.R. China.,2 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and engineering, Shandong University, Ji'nan, Shandong, P.R. China
| | - Huijun Yu
- 1 Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P.R. China.,3 Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Shandong University), Ministry of Education, School of Mechanical Engineering, Shandong University, Ji'nan, Shandong, P.R. China.,4 National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), School of Mechanical Engineering, Shandong University, Ji'nan, Shandong, P.R. China
| | - Chuanzhong Chen
- 1 Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P.R. China.,2 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and engineering, Shandong University, Ji'nan, Shandong, P.R. China
| |
Collapse
|