1
|
Beilharz S, Debnath MK, Vinella D, Shoffstall AJ, Karayilan M. Advances in Injectable Polymeric Biomaterials and Their Contemporary Medical Practices. ACS APPLIED BIO MATERIALS 2024. [PMID: 39471414 DOI: 10.1021/acsabm.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Injectable biomaterials have been engineered to operate within the human body, offering versatile solutions for minimally invasive therapies and meeting several stringent requirements such as biocompatibility, biodegradability, low viscosity for ease of injection, mechanical strength, rapid gelation postinjection, controlled release of therapeutic agents, hydrophobicity/hydrophilicity balance, stability under physiological conditions, and the ability to be sterilized. Their adaptability and performance in diverse clinical settings make them invaluable for modern medical treatments. This article reviews recent advancements in the design, synthesis, and characterization of injectable polymeric biomaterials, providing insights into their emerging applications. We discuss a broad spectrum of these materials, including natural, synthetic, hybrid, and composite types, that are being applied in targeted drug delivery, cell and protein transport, regenerative medicine, tissue adhesives, injectable implants, bioimaging, diagnostics, and 3D bioprinting. Ultimately, the review highlights the critical role of injectable polymeric biomaterials in shaping the future of medical treatments and improving patient outcomes across a wide range of therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Sophia Beilharz
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Mithun Kumar Debnath
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Daniele Vinella
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Metin Karayilan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
2
|
Mo C, Zhang W, Zhu K, Du Y, Huang W, Wu Y, Song J. Advances in Injectable Hydrogels Based on Diverse Gelation Methods for Biomedical Imaging. SMALL METHODS 2024:e2400076. [PMID: 38470225 DOI: 10.1002/smtd.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Indexed: 03/13/2024]
Abstract
The injectable hydrogels can deliver the loads directly to the predetermined sites and form reservoirs to increase the enrichment and retention of the loads in the target areas. The preparation and injection of injectable hydrogels involve the sol-gel transformation of hydrogels, which is affected by factors such as temperature, ions, enzymes, light, mechanics (self-healing property), and pH. However, tracing the injection, degradation, and drug release from hydrogels based on different ways of gelation is a major concern. To solve this problem, contrast agents are introduced into injectable hydrogels, enabling the hydrogels to be imaged under techniques such as fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, and radionuclide imaging. This review details methods for causing the gelation of imageable hydrogels; discusses the application of injectable hydrogels containing contrast agents in various imaging techniques, and finally explores the potential and challenges of imageable hydrogels based on different modes of gelation.
Collapse
Affiliation(s)
- Chunxiang Mo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Weiyao Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| |
Collapse
|
3
|
Doulames VM, Marquardt LM, Hefferon ME, Baugh NJ, Suhar RA, Wang AT, Dubbin KR, Weimann JM, Palmer TD, Plant GW, Heilshorn SC. Custom-engineered hydrogels for delivery of human iPSC-derived neurons into the injured cervical spinal cord. Biomaterials 2024; 305:122400. [PMID: 38134472 PMCID: PMC10846596 DOI: 10.1016/j.biomaterials.2023.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023]
Abstract
Cervical damage is the most prevalent type of spinal cord injury clinically, although few preclinical research studies focus on this anatomical region of injury. Here we present a combinatorial therapy composed of a custom-engineered, injectable hydrogel and human induced pluripotent stem cell (iPSC)-derived deep cortical neurons. The biomimetic hydrogel has a modular design that includes a protein-engineered component to allow customization of the cell-adhesive peptide sequence and a synthetic polymer component to allow customization of the gel mechanical properties. In vitro studies with encapsulated iPSC-neurons were used to select a bespoke hydrogel formulation that maintains cell viability and promotes neurite extension. Following injection into the injured cervical spinal cord in a rat contusion model, the hydrogel biodegraded over six weeks without causing any adverse reaction. Compared to cell delivery using saline, the hydrogel significantly improved the reproducibility of cell transplantation and integration into the host tissue. Across three metrics of animal behavior, this combinatorial therapy significantly improved sensorimotor function by six weeks post transplantation. Taken together, these findings demonstrate that design of a combinatorial therapy that includes a gel customized for a specific fate-restricted cell type can induce regeneration in the injured cervical spinal cord.
Collapse
Affiliation(s)
- V M Doulames
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - L M Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - M E Hefferon
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - N J Baugh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - R A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - A T Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - K R Dubbin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - J M Weimann
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - T D Palmer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - G W Plant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - S C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Wang J, Deng G, Wang S, Li S, Song P, Lin K, Xu X, He Z. Enhancing regenerative medicine: the crucial role of stem cell therapy. Front Neurosci 2024; 18:1269577. [PMID: 38389789 PMCID: PMC10881826 DOI: 10.3389/fnins.2024.1269577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Stem cells offer new therapeutic avenues for the repair and replacement of damaged tissues and organs owing to their self-renewal and multipotent differentiation capabilities. In this paper, we conduct a systematic review of the characteristics of various types of stem cells and offer insights into their potential applications in both cellular and cell-free therapies. In addition, we provide a comprehensive summary of the technical routes of stem cell therapy and discuss in detail current challenges, including safety issues and differentiation control. Although some issues remain, stem cell therapy demonstrates excellent potential in the field of regenerative medicine and provides novel tactics and methodologies for managing a wider spectrum of illnesses and traumas.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kun Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Chi J, Lu M, Wang S, Xu T, Ju R, Liu C, Zhang Z, Jiang Z, Han B. Injectable hydrogels derived from marine polysaccharides as cell carriers for large corneal epithelial defects. Int J Biol Macromol 2023; 253:127084. [PMID: 37769782 DOI: 10.1016/j.ijbiomac.2023.127084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Injectable hydrogels have been employed for sutureless repair of corneal epithelial defects, which can perfectly fit the defect sites and minimize the associated discomfort. However, numerous hydrogels are ineffective in treating large corneal epithelial defects and still suffer from poor biocompatibility or weak applicability when used as cell carriers. Herein, hydroxypropyl chitin/carboxymethyl chitosan (HPCT/CMCS) temperature-sensitive hydrogels are fabricated, and their physicochemical properties and suitability for corneal epithelial repair are investigated. The results demonstrate that HPCT/CMCS hydrogels have excellent temperature sensitivity between 20 and 25 °C and a transparency of over 80 %. Besides, HPCT/CMCS hydrogels can promote cell proliferation and facilitate cell migration of primary rabbit corneal epithelial cells (CEpCs). A rabbit large corneal epithelial defect model (6 mm) is established, and CEpCs are transplanted into defect sites by HPCT/CMCS hydrogels. The results suggest that HPCT/CMCS/CEpCs significantly enhance the repair of large corneal epithelial defects with a healing rate of 99.6 % on day 8, while reducing inflammatory responses and scarring formation. Furthermore, HPCT/CMCS/CEpCs can contribute to the reconstruction of damaged tissues and the recovery of functional capacities. Overall, HPCT/CMCS hydrogels may be a feasible corneal cell carrier material and can provide an alternative approach to large corneal epithelial defects.
Collapse
Affiliation(s)
- Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Minxin Lu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Tianjiao Xu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Ruibao Ju
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Chenqi Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhenguo Zhang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China.
| |
Collapse
|
6
|
Yuan M, Xu S, Zhou Y, Chen Y, Song J, Ma S, He Y, Mao H, Kong D, Gu Z. A facile bioorthogonal chemistry-based reversible to irreversible strategy to surmount the dilemma between injectability and stability of hyaluronic acid hydrogels. Carbohydr Polym 2023; 317:121103. [PMID: 37364964 DOI: 10.1016/j.carbpol.2023.121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Injectable and stable hydrogels have great promise for clinical applications. Fine-tuning the injectability and the stability of the hydrogels at different stages has been challenging due to the limited number of coupling reactions. A distinct "reversible to irreversible" concept using a thiazolidine-based bioorthogonal reaction between 1,2-aminothiols and aldehydes in physiological conditions to surmount the dilemma between injectability and stability is presented for the first time. Upon mixing aqueous solutions of aldehyde-functionalized hyaluronic acid (SA-HA) and cysteine-capped ethylenediamine (DI-Cys), SA-HA/DI-Cys hydrogels formed through reversible hemithioacetal crosslinking within 2 min. The reversible kinetic intermediate facilitated thiol-triggered gel-to-sol transition, shear-thinning and injectability of the SA-HA/DI-Cys hydrogel but then converted to the irreversible thermodynamic network after injection, thereby permitting the resulting gel with improved stability. As compared to the Schiff base hydrogels, the hydrogels generated from this simple, yet effective concept awarded improved protection to the embedded mesenchymal stem cells and fibroblast during injection, retained the cells homogeneously within the gel, and allowed them further proliferation in vitro and in vivo. There is potential for the proposed approach of "reversible to irreversible" based on thiazolidine chemistry to be applied as a general coupling technique for developing injectable and stable hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Ming Yuan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Shuangshuang Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Yin Zhou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Yi Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Jiliang Song
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Shengnan Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Yiyan He
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hongli Mao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, PR China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, PR China; Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
7
|
Niu H, Guan Y, Zhong T, Ma L, Zayed M, Guan J. Thermosensitive and antioxidant wound dressings capable of adaptively regulating TGFβ pathways promote diabetic wound healing. NPJ Regen Med 2023; 8:32. [PMID: 37422462 PMCID: PMC10329719 DOI: 10.1038/s41536-023-00313-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023] Open
Abstract
Various therapies have been utilized for treating diabetic wounds, yet current regiments do not simultaneously address the key intrinsic causes of slow wound healing, i.e., abnormal skin cell functions (particularly migration), delayed angiogenesis, and chronic inflammation. To address this clinical gap, we develop a wound dressing that contains a peptide-based TGFβ receptor II inhibitor (PTβR2I), and a thermosensitive and reactive oxygen species (ROS)-scavenging hydrogel. The wound dressing can quickly solidify on the diabetic wounds following administration. The released PTβR2I inhibits the TGFβ1/p38 pathway, leading to improved cell migration and angiogenesis, and decreased inflammation. Meanwhile, the PTβR2I does not interfere with the TGFβ1/Smad2/3 pathway that is required to regulate myofibroblasts, a critical cell type for wound healing. The hydrogel's ability to scavenge ROS in diabetic wounds further decreases inflammation. Single-dose application of the wound dressing significantly accelerates wound healing with complete wound closure after 14 days. Overall, using wound dressings capable of adaptively modulating TGFβ pathways provides a new strategy for diabetic wound treatment.
Collapse
Affiliation(s)
- Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Ting Zhong
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Liang Ma
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
8
|
Chen L, Zheng B, Xu Y, Sun C, Wu W, Xie X, Zhu Y, Cai W, Lin S, Luo Y, Shi C. Nano hydrogel-based oxygen-releasing stem cell transplantation system for treating diabetic foot. J Nanobiotechnology 2023; 21:202. [PMID: 37370102 DOI: 10.1186/s12951-023-01925-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023] Open
Abstract
The employment of stem cells and hydrogel is widespread in contemporary clinical approaches to treating diabetic foot ulcers. However, the hypoxic conditions in the surrounding lesion tissue lead to a low stem cell survival rate following transplantation. This research introduces a novel hydrogel with superior oxygen permeability and biocompatibility, serving as a vehicle for developing a stem cell transplantation system incorporating oxygen-releasing microspheres and cardiosphere-derived stem cells (CDCs). By optimizing the peroxidase fixation quantity on the microsphere surface and the oxygen-releasing microsphere content within the transplantation system, intracellular oxygen levels were assessed using electron paramagnetic resonance (EPR) under simulated low-oxygen conditions in vitro. The expression of vascularization and repair-related indexes were evaluated via RT-PCR and ELISA. The microspheres were found to continuously release oxygen for three weeks within the transplantation system, promoting growth factor expression to maintain intracellular oxygen levels and support the survival and proliferation of CDCs. Moreover, the effect of this stem cell transplantation system on wound healing in a diabetic foot mice model was examined through an in vivo animal experiment. The oxygen-releasing microspheres within the transplantation system preserved the intracellular oxygen levels of CDCs in the hypoxic environment of injured tissues. By inhibiting the expression of inflammatory factors and stimulating the upregulation of pertinent growth factors, it improved the vascularization of ulcer tissue on the mice's back and expedited the healing of the wound site. Overall, the stem cell transplantation system in this study, based on hydrogels containing CDCs and oxygen-releasing microspheres, offers a promising strategy for the clinical implementation of localized stem cell delivery to improve diabetic foot wound healing.
Collapse
Affiliation(s)
- Liangmiao Chen
- Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, 325200, Wenzhou, Zhejiang, China
| | - Bingru Zheng
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Yizhou Xu
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Changzheng Sun
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, Zhejiang, China
| | - Wanrui Wu
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Xiangpang Xie
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Yu Zhu
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Wei Cai
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Suifang Lin
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Ya Luo
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China.
| | - Changsheng Shi
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China.
| |
Collapse
|
9
|
Dabiri D, Dehghan Banadaki M, Bazargan V, Schaap A. Numerical investigation of moving gel wall formation in a Y-shaped microchannel. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-023-05331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
AbstractMolecular diffusive membranes play crucial roles in the field of microfluidics for biological applications e.g., 3D cell culture and biosensors. Hydrogels provide a range of benefits such as free diffusion of small molecules, cost-effectiveness, and the ability to be produced in bulk. Among various hydrogels, Pluronic F127 can be used for cell culture purposes due to its biocompatibility and flexible characteristics regarding its environment. Aqueous solutions of Pluronic F127 shows a reversible thermo-thickening property, which can be manipulated by introduction of ions. As a result, controlled diffusion of ions into the solution of Pluronic F127 can result in a controlled gel formation. In this study, the flow of immiscible solutions of Pluronic and sodium phosphate inside a Y-shaped microchannel is simulated using the level set method, and the effects of volume flow rates and temperature on the gel formation are investigated. It is indicated that the gel wall thickness can decrease by either increasing the Pluronic volume flow rate or increasing both volume flow rates while increasing the saline volume flow rate enhances the gel wall thickness. Below a critical temperature value, no gel wall is formed, and above that, a gel wall is constructed, with a thickness that increases with temperature. This setup can be used for drug screening, where gel wall provides an environment for drug-cell interactions.Article Highlights
Parallel flow of Pluronic F127 and saline solutions inside a Y-shaped microchannel results in formation of a gel wall at their interface.
The numerical analysis reveals the impact of each inlet flow rate and temperature on gel wall thickness and movement.
The findings indicate that the gel wall has a low but steady velocity toward the saline solution.
Graphical abstract
Collapse
|
10
|
Wu JJ, Zhang J, Xia CY, Ding K, Li XX, Pan XG, Xu JK, He J, Zhang WK. Hypericin: A natural anthraquinone as promising therapeutic agent. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154654. [PMID: 36689857 DOI: 10.1016/j.phymed.2023.154654] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hypericin is a prominent secondary metabolite mainly existing in genus Hypericum. It has become a research focus for a quiet long time owing to its extensively pharmacological activities especially the anti-cancer, anti-bacterial, anti-viral and neuroprotective effects. This review concentrated on summarizing and analyzing the existing studies of hypericin in a comprehensive perspective. METHODS The literature with desired information about hypericin published after 2010 was gained from electronic databases including PubMed, SciFinder, Science Direct, Web of Science, China National Knowledge Infrastructure databases and Wan Fang DATA. RESULTS According to extensive preclinical and clinical studies conducted on the hypericin, an organized and comprehensive summary of the natural and artificial sources, strategies for improving the bioactivities, pharmacological activities, drug combination of hypericin was presented to explore the future therapeutic potential of this active compound. CONCLUSIONS Overall, this review offered a theoretical guidance for the follow-up research of hypericin. However, the pharmacological mechanisms, pharmacokinetics and structure activity relationship of hypericin should be further studied in future research.
Collapse
Affiliation(s)
- Jing-Jing Wu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kang Ding
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin-Xin Li
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wei-Ku Zhang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
11
|
Wu WX, Chang CW, Lee WF. (2-Hydroxyl-3-aminopyrenyl) propyl methacrylate-based thermo/metal ion sensitive fluorescent hydrogels. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-023-01158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Li Z, Zhao T, Ding J, Gu H, Wang Q, Wang Y, Zhang D, Gao C. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioact Mater 2023; 19:550-568. [PMID: 35600969 PMCID: PMC9108756 DOI: 10.1016/j.bioactmat.2022.04.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 10/29/2022] Open
Abstract
Spinal cord injury (SCI) is an overwhelming and incurable disabling event accompanied by complicated inflammation-related pathological processes, such as excessive reactive oxygen species (ROS) produced by the infiltrated inflammatory immune cells and released to the extracellular microenvironment, leading to the widespread apoptosis of the neuron cells, glial and oligodendroctyes. In this study, a thioketal-containing and ROS-scavenging hydrogel was prepared for encapsulation of the bone marrow derived mesenchymal stem cells (BMSCs), which promoted the neurogenesis and axon regeneration by scavenging the overproduced ROS and re-building a regenerative microenvironment. The hydrogel could effectively encapsulate BMSCs, and played a remarkable neuroprotective role in vivo by reducing the production of endogenous ROS, attenuating ROS-mediated oxidative damage and downregulating the inflammatory cytokines such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), resulting in a reduced cell apoptosis in the spinal cord tissue. The BMSCs-encapsulated ROS-scavenging hydrogel also reduced the scar formation, and improved the neurogenesis of the spinal cord tissue, and thus distinctly enhanced the motor functional recovery of SCI rats. Our work provides a combinational strategy against ROS-mediated oxidative stress, with potential applications not only in SCI, but also in other central nervous system diseases with similar pathological conditions.
Collapse
|
13
|
Niu H, Li H, Guan Y, Zhou X, Li Z, Zhao SL, Chen P, Tan T, Zhu H, Bergdall V, Xu X, Ma J, Guan J. Sustained delivery of rhMG53 promotes diabetic wound healing and hair follicle development. Bioact Mater 2022; 18:104-115. [PMID: 35387169 PMCID: PMC8961467 DOI: 10.1016/j.bioactmat.2022.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
MG53 is an essential component of the cell membrane repair machinery, participating in the healing of dermal wounds. Here we develop a novel delivery system using recombinant human MG53 (rhMG53) protein and a reactive oxygen species (ROS)-scavenging gel to treat diabetic wounds. Mice with ablation of MG53 display defective hair follicle structure, and topical application of rhMG53 can promote hair growth in the mg53 -/- mice. Cell lineage tracing studies reveal a physiological function of MG53 in modulating the proliferation of hair follicle stem cells (HFSCs). We find that rhMG53 protects HFSCs from oxidative stress-induced apoptosis and stimulates differentiation of HSFCs into keratinocytes. The cytoprotective function of MG53 is mediated by STATs and MAPK signaling in HFSCs. The thermosensitive ROS-scavenging gel encapsulated with rhMG53 allows for sustained release of rhMG53 and promotes healing of chronic cutaneous wounds and hair follicle development in the db/db mice. These findings support the potential therapeutic value of using rhMG53 in combination with ROS-scavenging gel to treat diabetic wounds.
Collapse
Affiliation(s)
- Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Haichang Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Xin Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.,Laboratory of Cell Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Zhongguang Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Serana Li Zhao
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Peng Chen
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Valerie Bergdall
- Department of Veterinary Preventive Medicine, University Laboratory Animals Resources, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuehong Xu
- Laboratory of Cell Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
14
|
Impresari E, Bossi A, Lumina EM, Ortenzi MA, Kothuis JM, Cappelletti G, Maggioni D, Christodoulou MS, Bucci R, Pellegrino S. Fatty Acids/Tetraphenylethylene Conjugates: Hybrid AIEgens for the Preparation of Peptide-Based Supramolecular Gels. Front Chem 2022; 10:927563. [PMID: 36003614 PMCID: PMC9393247 DOI: 10.3389/fchem.2022.927563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Aggregation-induced emissive materials are gaining particular attention in the last decades due to their wide application in different fields, from optical devices to biomedicine. In this work, compounds having these kinds of properties, composed of tetraphenylethylene scaffold combined with fatty acids of different lengths, were synthesized and characterized. These molecules were found able to self-assemble into different supramolecular emissive structures depending on the chemical composition and water content. Furthermore, they were used as N-terminus capping agents in the development of peptide-based materials. The functionalization of a 5-mer laminin-derived peptide led to the obtainment of luminescent fibrillary materials that were not cytotoxic and were able to form supramolecular gels in aqueous environment.
Collapse
Affiliation(s)
- Elisa Impresari
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| | - Alberto Bossi
- Istituto di Scienze e Tecnologie Chimiche “G.Natta”, Consiglio Nazionale delle Ricerche (CNR-SCITEC), Milan, Italy
- SmartMatLab Center, Milan, Italy
| | - Edoardo Mario Lumina
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| | - Marco Aldo Ortenzi
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | | | | | - Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Michael S. Christodoulou
- Departiment of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Raffaella Bucci
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| | - Sara Pellegrino
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
15
|
|
16
|
Maxwell CJ, Soltisz AM, Rich WW, Choi A, Reilly MA, Swindle-Reilly KE. Tunable alginate hydrogels as injectable drug delivery vehicles for optic neuropathy. J Biomed Mater Res A 2022; 110:1621-1635. [PMID: 35607724 PMCID: PMC9543600 DOI: 10.1002/jbm.a.37412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/08/2022] [Accepted: 05/06/2022] [Indexed: 11/08/2022]
Abstract
Many disease pathologies, particularly in the eye, are induced by oxidative stress. In particular, injury to the optic nerve (ON), or optic neuropathy, is one of the most common causes of vision loss. Traumatic optic neuropathy (TON) occurs when the ON is damaged following blunt or penetrating trauma to either the head or eye. Currently, there is no effective treatment for TON, only management options, namely the systematic delivery of corticosteroids and surgical decompression of the optic nerve. Unfortunately, neither option alleviates the generation of reactive oxygen species (ROS) which are responsible for downstream damage to the ON. Additionally, the systemic delivery of corticosteroids can cause fatal off‐target effects in cases with brain involvement. In this study, we developed a tunable injectable hydrogel delivery system for local methylene blue (MB) delivery using an internal method of crosslinking. MB was chosen due to its ROS scavenging ability and neuroprotective properties. Our MB‐loaded polymeric scaffold demonstrated prolonged release of MB as well as in situ gel formation. Additionally, following rheological characterization, these alginate hydrogels demonstrated minimal cytotoxicity to human retinal pigment epithelial cells in vitro and exhibited injection feasibility through small‐gauge needles. Our chosen MB concentrations displayed a high degree of ROS scavenging following release from the alginate hydrogels, suggesting this approach may be successful in reducing ROS levels following ON injury, or could be applied to other ocular injuries.
Collapse
Affiliation(s)
- Courtney J Maxwell
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Andrew M Soltisz
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Wade W Rich
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Andrew Choi
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Matthew A Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Katelyn E Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
17
|
Niu H, Gao N, Dang Y, Guan Y, Guan J. Delivery of VEGF and delta-like 4 to synergistically regenerate capillaries and arterioles in ischemic limbs. Acta Biomater 2022; 143:295-309. [PMID: 35301145 PMCID: PMC9926495 DOI: 10.1016/j.actbio.2022.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022]
Abstract
Vascularization of the poorly vascularized limbs affected by critical limb ischemia (CLI) is necessary to salvage the limbs and avoid amputation. Effective vascularization requires forming not only capillaries, but also arterioles and vessel branching. These processes rely on the survival, migration and morphogenesis of endothelial cells in the ischemic limbs. Yet endothelial cell functions are impaired by the upregulated TGFβ. Herein, we developed an injectable hydrogel-based drug release system capable of delivering both VEGF and Dll4 to synergistically restore endothelial cellular functions, leading to accelerated formation of capillaries, arterioles and vessel branching. In vitro, the Dll4 and VEGF synergistically promoted the human arterial endothelial cell (HAEC) survival, migration, and formation of filopodial structure, lumens, and branches under the elevated TGFβ1 condition mimicking that of the ischemic limbs. The synergistic effect was resulted from activating VEGFR2, Notch-1 and Erk1/2 signaling pathways. After delivering the Dll4 and VEGF via an injectable and thermosensitive hydrogel to the ischemic mouse hindlimbs, 95% of blood perfusion was restored at day 14, significantly higher than delivery of Dll4 or VEGF only. The released Dll4 and VEGF significantly increased density of capillaries and arterioles, vessel branching point density, and proliferating cell density. Besides, the delivery of Dll4 and VEGF stimulated skeletal muscle regeneration and improved muscle function. Overall, the developed hydrogel-based Dll4 and VEGF delivery system promoted ischemic limb vascularization and muscle regeneration. STATEMENT OF SIGNIFICANCE: Effective vascularization of the poorly vascularized limbs affected by critical limb ischemia (CLI) requires forming not only capillaries, but also arterioles and vessel branching. These processes rely on the survival, migration and morphogenesis of endothelial cells. Yet endothelial cell functions are impaired by the upregulated TGFβ in the ischemic limbs. Herein, we developed an injectable hydrogel-based drug release system capable of delivering both VEGF and Dll4 to synergistically restore endothelial cell functions, leading to accelerated formation of capillaries, arterioles and vessel branching.
Collapse
Affiliation(s)
- Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Center of Regenerative Medicine, Washington University in St. Louis. St. Louis, MO, 63130, United States; Department of Materials Science and Engineering, Ohio State University. Columbus, OH, 43210, United States
| | - Ning Gao
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO, 63130, United States
| | - Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO, 63130, United States
| | - Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO, 63130, United States
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Center of Regenerative Medicine, Washington University in St. Louis. St. Louis, MO, 63130, United States; Department of Materials Science and Engineering, Ohio State University. Columbus, OH, 43210, United States; Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO, 63130, United States.
| |
Collapse
|
18
|
Guan Y, Niu H, Liu Z, Dang Y, Shen J, Zayed M, Ma L, Guan J. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. SCIENCE ADVANCES 2021; 7:eabj0153. [PMID: 34452918 PMCID: PMC8397271 DOI: 10.1126/sciadv.abj0153] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/06/2021] [Indexed: 05/09/2023]
Abstract
Nonhealing diabetic wounds are common complications for diabetic patients. Because chronic hypoxia prominently delays wound healing, sustained oxygenation to alleviate hypoxia is hypothesized to promote diabetic wound healing. However, sustained oxygenation cannot be achieved by current clinical approaches, including hyperbaric oxygen therapy. Here, we present a sustained oxygenation system consisting of oxygen-release microspheres and a reactive oxygen species (ROS)-scavenging hydrogel. The hydrogel captures the naturally elevated ROS in diabetic wounds, which may be further elevated by the oxygen released from the administered microspheres. The sustained release of oxygen augmented the survival and migration of keratinocytes and dermal fibroblasts, promoted angiogenic growth factor expression and angiogenesis in diabetic wounds, and decreased the proinflammatory cytokine expression. These effects significantly increased the wound closure rate. Our findings demonstrate that sustained oxygenation alone, without using drugs, can heal diabetic wounds.
Collapse
Affiliation(s)
- Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Zhongting Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jie Shen
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Mohamed Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Liang Ma
- Department of Internal Medicine, Division of Dermatology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
19
|
Guan Y, Gao N, Niu H, Dang Y, Guan J. Oxygen-release microspheres capable of releasing oxygen in response to environmental oxygen level to improve stem cell survival and tissue regeneration in ischemic hindlimbs. J Control Release 2021; 331:376-389. [PMID: 33508351 DOI: 10.1016/j.jconrel.2021.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/09/2023]
Abstract
Stem cell transplantation has been extensively explored to promote ischemic limb vascularization and skeletal muscle regeneration. Yet the therapeutic efficacy is low due to limited cell survival under low oxygen environment of the ischemic limbs. Therefore, continuously oxygenating the transplanted cells has potential to increase their survival. During tissue regeneration, the number of blood vessels are gradually increased, leading to the elevation of tissue oxygen content. Accordingly, less exogenous oxygen is needed for the transplanted cells. Excessive oxygen may induce reactive oxygen species (ROS) formation, causing cell apoptosis. Thus, it is attractive to develop oxygen-release biomaterials that are responsive to the environmental oxygen level. Herein, we developed oxygen-release microspheres whose oxygen release was controlled by oxygen-responsive shell. The shell hydrophilicity and degradation rate decreased as the environmental oxygen level increased, leading to slower oxygen release. The microspheres were capable of directly releasing molecular oxygen, which are safer than those oxygen-release biomaterials that release hydrogen peroxide and rely on its decomposition to form oxygen. The released oxygen significantly enhanced mesenchymal stem cell (MSC) survival without inducing ROS production under hypoxic condition. Co-delivery of MSCs and microspheres to the mouse ischemic limbs ameliorated MSC survival, proliferation and paracrine effects under ischemic conditions. It also significantly accelerated angiogenesis, blood flow restoration, and skeletal muscle regeneration without provoking tissue inflammation. The above results demonstrate that the developed microspheres have potential to augment cell survival in ischemic tissues, and promote ischemic tissue regeneration in a safer and more efficient manner.
Collapse
Affiliation(s)
- Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ning Gao
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Ma J, Huang C. Composition and Mechanism of Three-Dimensional Hydrogel System in Regulating Stem Cell Fate. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:498-518. [PMID: 32272868 DOI: 10.1089/ten.teb.2020.0021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three-dimensional (3D) hydrogel systems integrating different types of stem cells and scaffolding biomaterials have an important application in tissue engineering. The biomimetic hydrogels that pattern cell suspensions within 3D configurations of biomaterial networks allow for the transport of bioactive factors and mimic the stem cell niche in vivo, thereby supporting the proliferation and differentiation of stem cells. The composition of a 3D hydrogel system determines the physical and chemical characteristics that regulate stem cell function through a biological mechanism. Here, we discuss the natural and synthetic hydrogel compositions that have been employed in 3D scaffolding, focusing on their characteristics, fabrication, biocompatibility, and regulatory effects on stem cell proliferation and differentiation. We also discuss the regulatory mechanisms of cell-matrix interaction and cell-cell interaction in stem cell activities in various types of 3D hydrogel systems. Understanding hydrogel compositions and their cellular mechanisms can yield insights into how scaffolding biomaterials and stem cells interact and can lead to the development of novel hydrogel systems of stem cells in tissue engineering and stem cell-based regenerative medicine. Impact statement Three-dimensional hydrogel system of stem cell mimicking the stemcell niche holds significant promise in tissue engineering and regenerative medicine. Exactly how hydrogel composition regulates stem cell fate is not well understood. This review focuses on the composition of hydrogel, and how the hydrogel composition and its properties regulate the stem cell adhesion, growth, and differentiation. We propose that cell-matrix interaction and cell-cell interaction are important regulatory mechanisms in stem cell activities. Our review provides key insights into how the hydrogel composition regulates the stem cell fate, untangling the engineering of three-dimensional hydrogel systems for stem cells.
Collapse
Affiliation(s)
- Jianrui Ma
- Center for Neurobiology, Shantou University Medical College, Shantou, China
| | - Chengyang Huang
- Center for Neurobiology, Shantou University Medical College, Shantou, China
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
21
|
Abstract
The fluorescent gel with good flexibility and biocompatibility has attracted more and more attention due to its excellent optical properties. In this paper, the research progresses in preparation methods and applications of fluorescent gels are reviewed. In addition, the preparation methods of self-assembly and polymerization of fluorescent gel are also introduced. In this paper, it should be noted that some outstanding research about the fluorescent gels used in sensors, bio-imaging probes, drug delivery, and other application fields is summarized. This work provides useful reference information for further exploration and study of fluorescent hydrogels.
Collapse
|
22
|
Cardiac Stem Cell-Loaded Delivery Systems: A New Challenge for Myocardial Tissue Regeneration. Int J Mol Sci 2020; 21:ijms21207701. [PMID: 33080988 PMCID: PMC7589970 DOI: 10.3390/ijms21207701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death in Western countries. Post-myocardial infarction heart failure can be considered a degenerative disease where myocyte loss outweighs any regenerative potential. In this scenario, regenerative biology and tissue engineering can provide effective solutions to repair the infarcted failing heart. The main strategies involve the use of stem and progenitor cells to regenerate/repair lost and dysfunctional tissue, administrated as a suspension or encapsulated in specific delivery systems. Several studies demonstrated that effectiveness of direct injection of cardiac stem cells (CSCs) is limited in humans by the hostile cardiac microenvironment and poor cell engraftment; therefore, the use of injectable hydrogel or pre-formed patches have been strongly advocated to obtain a better integration between delivered stem cells and host myocardial tissue. Several approaches were used to refine these types of constructs, trying to obtain an optimized functional scaffold. Despite the promising features of these stem cells’ delivery systems, few have reached the clinical practice. In this review, we summarize the advantages, and the novelty but also the current limitations of engineered patches and injectable hydrogels for tissue regenerative purposes, offering a perspective of how we believe tissue engineering should evolve to obtain the optimal delivery system applicable to the everyday clinical scenario.
Collapse
|
23
|
Guan Y, Niu H, Dang Y, Gao N, Guan J. Photoluminescent oxygen-release microspheres to image the oxygen release process in vivo. Acta Biomater 2020; 115:333-342. [PMID: 32853800 DOI: 10.1016/j.actbio.2020.08.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023]
Abstract
Cell therapy is a promising strategy to treat ischemic diseases, but the efficacy is limited due to high rate of cell death under low oxygen environment of the ischemic tissues. Sustained release of oxygen to continuously oxygenate the transplanted cells may augment cell survival and improve therapeutic efficacy. We have shown previously that oxygen released from oxygen-release microspheres stimulated cell survival in ischemic tissue [1]. To understand how oxygen is released in vivo and duration of release, it is attractive to image the process of oxygen release. Herein, we have developed photoluminenscent oxygen-release microspheres where the in vivo oxygen release can be non-invasively and real-time monitored by an In Vivo Imaging System (IVIS). In the oxygen-release microspheres, a complex of polyvinylpyrrolidone, H2O2 and a fluorescent drug hypericin (HYP) was used as core, and poly(N-isopropylacrylamide-co-acrylate-oligolactide-co-hydroxyethyl methacrylate-co-N-acryloxysuccinimide) conjugated with catalase was used as shell. To distinguish fluorescent signal change for different oxygen release kinetics, the microspheres with various release profiles were developed by using the shell with different degradation rates. In vitro, the fluorescent intensity gradually decreased during the 21-day oxygen release period, consistent with oxygen release kinetics. The released oxygen significantly augmented mesenchymal stem cell (MSC) survival under hypoxic condition. In vivo, the oxygen release rate was faster. The fluorescent signal can be detected for 17 days for the microspheres with the slowest oxygen release kinetics. The implanted microspheres did not induce substantial inflammation. The above results demonstrate that the developed microspheres have potential to monitor the in vivo oxygen release.
Collapse
|
24
|
A Sacrificial PLA Block Mediated Route to Injectable and Degradable PNIPAAm-Based Hydrogels. Polymers (Basel) 2020; 12:polym12040925. [PMID: 32316376 PMCID: PMC7240404 DOI: 10.3390/polym12040925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm)-based injectable hydrogels represent highly attractive materials in tissue engineering and drug/vaccine delivery but face the problem of long-term bioaccumulation due to non-degradability. In this context, we developed an amphiphilic poly(D,L-lactide)-b-poly(NIPAAm-co-polyethylene glycol methacrylate) (PLA-b-P(NIPAAm-co-PEGMA)) copolymer architecture, through a combination of ring-opening and nitroxide-mediated polymerizations, undergoing gelation in aqueous solution near 30 °C. Complete hydrogel mass loss was observed under physiological conditions after few days upon PLA hydrolysis. This was due to the inability of the resulting P(NIPAAm-co-PEGMA) segment, that contains sufficiently high PEG content, to gel. The copolymer was shown to be non-toxic on dendritic cells. These results thus provide a new way to engineer safe PNIPAAm-based injectable hydrogels with PNIPAAm-reduced content and a degradable feature.
Collapse
|
25
|
Niu H, Li C, Guan Y, Dang Y, Li X, Fan Z, Shen J, Ma L, Guan J. High oxygen preservation hydrogels to augment cell survival under hypoxic condition. Acta Biomater 2020; 105:56-67. [PMID: 31954189 PMCID: PMC7098391 DOI: 10.1016/j.actbio.2020.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022]
Abstract
Cell therapy is a promising approach for ischemic tissue regeneration. However, high death rate of delivered cells under low oxygen condition, and poor cell retention in tissues largely limit the therapeutic efficacy. Using cell carriers with high oxygen preservation has potential to improve cell survival. To increase cell retention, cell carriers that can quickly solidify at 37 °C so as to efficiently immobilize the carriers and cells in the tissues are necessary. Yet there lacks cell carriers with these combined properties. In this work, we have developed a family of high oxygen preservation and fast gelation hydrogels based on N-isopropylacrylamide (NIPAAm) copolymers. The hydrogels were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAAm, acrylate-oligolactide (AOLA), 2-hydroxyethyl methacrylate (HEMA), and methacrylate-poly(ethylene glycol)-perfluorooctane (MAPEGPFC). The hydrogel solutions exhibited sol-gel temperatures around room temperature and were flowable and injectable at 4°C. They can quickly solidify (≤6 s) at 37°C to form flexible gels. These hydrogels lost 9.4~29.4% of their mass after incubation in Dulbecco's Phosphate-Buffered Saline (DPBS) for 4 weeks. The hydrogels exhibited a greater oxygen partial pressure than DPBS after being transferred from a 21% O2 condition to a 1% O2 condition. When bone marrow mesenchymal stem cells (MSCs) were encapsulated in the hydrogels and cultured under 1% O2, the cells survived and proliferated during the 14-day culture period. In contrast, the cells experienced extensive death in the control hydrogel that had low oxygen preservation capability. The hydrogels possessed excellent biocompatibility. The final degradation products did not provoke cell death even when the concentration was as high as 15 mg/ml, and the hydrogel implantation did not induce substantial inflammation. These hydrogels are promising as cell carriers for cell transplantation into ischemic tissues. STATEMENT OF SIGNIFICANCE: Stem cell therapy for ischemic tissues experiences low therapeutic efficacy largely due to poor cell survival under low oxygen condition. Using cell carriers with high oxygen preservation capability has potential to improve cell survival. In this work, we have developed a family of hydrogels with this property. These hydrogels promoted the encapsulated stem cell survival and growth under low oxygen condition.
Collapse
Affiliation(s)
- Hong Niu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Chao Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ya Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yu Dang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jie Shen
- Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 631310, USA
| | - Liang Ma
- Division of Dermatology, Washington University School of Medicine, St. Louis, MO, 631310, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
26
|
Jiang B, Yan L, Shamul JG, Hakun M, He X. Stem cell therapy of myocardial infarction: a promising opportunity in bioengineering. ADVANCED THERAPEUTICS 2020; 3:1900182. [PMID: 33665356 PMCID: PMC7928435 DOI: 10.1002/adtp.201900182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is a life-threatening disease resulting from irreversible death of cardiomyocytes (CMs) and weakening of the heart blood-pumping function. Stem cell-based therapies have been studied for MI treatment over the last two decades with promising outcome. In this review, we critically summarize the past work in this field to elucidate the advantages and disadvantages of treating MI using pluripotent stem cells (PSCs) including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), adult stem cells, and cardiac progenitor cells. The main advantage of the latter is their cytokine production capability to modulate immune responses and control the progression of healing. However, human adult stem cells have very limited (if not 'no') capacity to differentiate into functional CMs in vitro or in vivo. In contrast, PSCs can be differentiated into functional CMs although the protocols for the cardiac differentiation of PSCs are mainly for adherent cells under 2D culture. Derivation of PSC-CMs in 3D, allowing for large-scale production of CMs via modulation of the Wnt/β-catenin signal pathway with defined chemicals and medium, may be desired for clinical translation. Furthermore, the technology of purification and maturation of the PSC-CMs may need further improvements to eliminate teratoma formation after in vivo implantation of the PSC-CMs for treating MI. In addition, in vitro derived PSC-CMs may have mechanical and electrical mismatch with the patient's cardiac tissue, which causes arrhythmia. This supports the use of PSC-derived cells committed to cardiac lineage without beating for implantation to treat MI. In this case, the PSC derived cells may utilize the mechanical, electrical, and chemical cues in the heart to further differentiate into mature/functional CMs in situ. Another major challenge facing stem cell therapy of MI is the low retention/survival of stem cells or their derivatives (e.g., PSC-CMs) in the heart for MI treatment after injection in vivo. This may be resolved by using biomaterials to engineer stem cells for reduced immunogenicity, immobilization of the cells in the heart, and increased integration with the host cardiac tissue. Biomaterials have also been applied in the derivation of CMs in vitro to increase the efficiency and maturation of differentiation. Collectively, a lot has been learned from the past failure of simply injecting intact stem cells or their derivatives in vivo for treating MI, and bioengineering stem cells with biomaterials is expected to be a valuable strategy for advancing stem cell therapy towards its widespread application for treating MI in the clinic.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Li Yan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Maxwell Hakun
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
27
|
Huang Y, Huang Z, Liu H, Zhang X, Cai Q, Yang X. Photoluminescent biodegradable polyorganophosphazene: A promising scaffold material for in vivo application to promote bone regeneration. Bioact Mater 2020; 5:102-109. [PMID: 31993535 PMCID: PMC6976913 DOI: 10.1016/j.bioactmat.2020.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/18/2022] Open
Abstract
Tissue engineering scaffolds made of conventional aliphatic polyesters are inherently non-fluorescent, which results in their in vivo degradation hard to be visualized. Photoluminescent biodegradable polyorganophosphazenes (PPOPs) are synthesized by introducing fluorophores onto the polyphosphazene backbone via nucleophilic substitution reaction. In this study, a fluorophore (termed as TPCA), derived from citric acid and 2-aminoethanethiol, was co-substituted with alanine ethyl ester onto the polyphosphazene backbone to obtain a photoluminescent biodegradable POPP (termed as PTA). The scaffolds made of PTA demonstrated non-cytotoxicity and cell affinity, particularly, capacity in promoting osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs). In vivo evaluations using the rat calvarial defect model confirmed its strong potential in enhancing osteogenesis, more importantly, the in vivo degradation of the PTA scaffold could be monitored via its fluorescence intensity alongside implantation time.
Collapse
Affiliation(s)
- Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhaohui Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huanhuan Liu
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Xu Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
28
|
Pertici V, Trimaille T, Gigmes D. Inputs of Macromolecular Engineering in the Design of Injectable Hydrogels Based on Synthetic Thermoresponsive Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b00705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vincent Pertici
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| | - Thomas Trimaille
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| | - Didier Gigmes
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| |
Collapse
|
29
|
Anamizu M, Tabata Y. Design of injectable hydrogels of gelatin and alginate with ferric ions for cell transplantation. Acta Biomater 2019; 100:184-190. [PMID: 31589929 DOI: 10.1016/j.actbio.2019.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022]
Abstract
The objective of this study is to design bioabsorbable injectable hydrogels based on the physico-chemical interaction between biocompatible polymers and ferric ions, and evaluate the survival, proliferation, and osteogenic differentiation of cells encapsulated in the hydrogels. The injectable hydrogels were prepared by simply mixing mixed alginate/gelatin solution at various ratios and FeCl3 solution. The hydrogels prepared disappeared within a few days in the phosphate buffered-saline solution (PBS) with containing collagenase although the disappearance rate increased with an increase of the gelatin ratio in the hydrogel. For the hydrogel of alginate/gelatin low ratio, the survival and proliferation of cells in the hydrogel-encapsulated condition were significantly high compared with those of hydrogel at the higher ratios. The cells collected 3 days after cultured in the hydrogel also proliferated to a significantly higher extent than those collected from other hydrogels. The proliferation ability of cells was similar that of cells cultured on the standard tissue culture polystyrene (TCPS) dish. When evaluated to compare with cells cultured on the TCPS dish, the expression of runt-related transcription factor-2 (RUNX2) gene, the alkaline phosphatase (ALP) activity, and the calcium precipitation were significantly high. The cells were encapsulated by the mixed alginate/gelatin and FeCl3 hydrogel and injected in the back subcutis of mice, the percentage of cells retained in the injected site was higher than that of cells injected in the PBS suspension. It is concluded that the injectable hydrogel prepared by simple mixing mixed alginate/gelatin solution and FeCl3 solution is a promising material for the cell transplantation. STATEMENT OF SIGNIFICANCE: Injectable hydrogels prepared by simple mixing mixed alginate/gelatin solution at various ratios and FeCl3 solution. For the hydrogel of alginate/gelatin low ratio, the survival, the proliferation, and the differentiate properties of cells in the hydrogel-encapsulated condition were similar those of cells cultured on the TCPS dish. When the cells encapsulated hydrogels were injected in the back subcutis of mice, the percentage of cells retained in the injected site was higher than that of cells injected in the PBS suspension. It is concluded that the present injectable hydrogel is a promising material for the cell transplantation.
Collapse
Affiliation(s)
- Mina Anamizu
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
30
|
Fan Z, Xu Z, Niu H, Sui Y, Li H, Ma J, Guan J. Spatiotemporal delivery of basic fibroblast growth factor to directly and simultaneously attenuate cardiac fibrosis and promote cardiac tissue vascularization following myocardial infarction. J Control Release 2019; 311-312:233-244. [PMID: 31521744 DOI: 10.1016/j.jconrel.2019.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/16/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
Following myocardial infarction (MI), the destruction of vasculature in the infarcted heart muscle and progression of cardiac fibrosis lead to cardiac function deterioration. Vascularization of the damaged tissue and prevention of cardiac fibrosis represent promising strategies to improve cardiac function. Herein we have developed a bFGF release system with suitable release kinetics to simultaneously achieve the two goals. The release system was based on an injectable, thermosensitive, and fast gelation hydrogel and bFGF. The hydrogel had gelation time <7 s. It can quickly solidify upon injection into tissue so as to increase drug retention in the tissue. Hydrogel complex modulus can be tuned by hydrogel solution concentration. The complex modulus of 176.6 Pa and lower allowed cardiac fibroblast to maintain its phenotype. Bioactive bFGF was able to gradually release from the hydrogel for 4 weeks. The released bFGF promoted cardiac fibroblast survival under ischemic conditions mimicking those of the infarcted hearts. It also attenuated cardiac fibroblasts from differentiating into myofibroblasts in the presence of TGFβ when tested in 3D collagen model mimicking the scenario when the bFGF release system was injected into hearts. Furthermore, the released bFGF stimulated human umbilical endothelial cells to form endothelial lumen. After 4 weeks of implantation into infarcted hearts, the bFGF release system significantly increased blood vessel density, decreased myofibroblast density and collagen content, augmented cardiac cell survival/proliferation, and reduced macrophage density. In addition, the bFGF release system significantly increased cardiac function. These results demonstrate that delivery of bFGF with appropriate release kinetics alone may represent an efficient approach to control cardiac remodeling after MI.
Collapse
Affiliation(s)
- Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States of America
| | - Zhaobin Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States of America
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yang Sui
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haichang Li
- Department of Surgery, The Ohio State University, Columbus, OH 43210, United States of America
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH 43210, United States of America
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States of America; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|