1
|
Hirad A, Fakhouri FS, Raterman B, Lakony R, Wang M, Gonring D, Kedwai B, Kolipaka A, Mix D. Feasibility of measuring magnetic resonance elastography-derived stiffness in human thoracic aorta and aortic dissection phantoms. J Vasc Surg Cases Innov Tech 2025; 11:101697. [PMID: 39816441 PMCID: PMC11732680 DOI: 10.1016/j.jvscit.2024.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/20/2024] [Indexed: 01/18/2025] Open
Abstract
Type B aortic dissection (TBAD) represents a serious medical emergency with up to a 50% associated 5-year mortality caused by thoracic aorta, dissection-associated aneurysmal (DAA) degeneration, and rupture. Unfortunately, conventional size-related diagnostic methods cannot distinguish high-risk DAAs that benefit from surgical intervention from stable DAAs. Our goal is to use DAA stiffness measured with magnetic resonance elastography (MRE) as a biomarker to distinguish high-risk DAAs from stable DAAs. This is a feasibility study using MRE to (1) fabricate human-like geometries TBAD phantoms with different stiffnesses, (2) measure stiffness in TBAD phantoms with rheometry, and (3) demonstrate the first successful application of MRE to the thoracic aorta of a human volunteer. AD phantoms with heterogenous wall stiffness demonstrated the correlation between MRE-derived stiffness and rheometric measured stiffness. A pilot scan was performed in a healthy volunteer to test the technique's feasibility in the thoracic aorta.
Collapse
Affiliation(s)
- Adnan Hirad
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Faisal S. Fakhouri
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Brian Raterman
- Department of Radiology, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - Ronald Lakony
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Maxwell Wang
- Division of Vascular Surgery, Loma Linda University Health Medical Center, Loma Linda, CA
| | - Dakota Gonring
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Baqir Kedwai
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - Doran Mix
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| |
Collapse
|
2
|
Agrawal Y, Fortunato RN, Asadbeygi A, Hill MR, Robertson AM, Maiti S. Effect of Collagen Fiber Tortuosity Distribution on the Mechanical Response of Arterial Tissues. J Biomech Eng 2025; 147:021004. [PMID: 39545747 DOI: 10.1115/1.4067152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
This study investigated the effect of collagen fiber tortuosity distribution on the biomechanical failure and prefailure properties of arterial wall tissue. An in-silico model of the arterial wall was developed using data obtained from combined multiphoton microscopy imaging and uni-axial tensile testing. Layer-dependent properties were prescribed for collagen, elastin, and ground substance. Collagen fibers were modeled as discrete anisotropic elements, while elastin and ground substance were modeled as homogeneous isotropic components. Our parametric analysis, using a finite element approach, revealed that different parameters of collagen fibers tortuosity distribution significantly influence both prefailure and failure biomechanical properties. Increased fiber tortuosity improved the tissue strength whereas the dispersion in the tortuosity distribution reduced it. This study provides novel insights into the structural-mechanical interdependencies in arterial walls, offering potential targets for clinical assessments and therapeutic interventions aimed at mitigating rupture risks.
Collapse
Affiliation(s)
- Yamnesh Agrawal
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
| | - Ronald N Fortunato
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
| | - Alireza Asadbeygi
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
| | - Michael R Hill
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
| | - Anne M Robertson
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261
| | - Spandan Maiti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
3
|
Doukas P, Hruschka B, Bassett C, Buhl EM, Simon F, Saraber P, Jacobs MJ, Uhl C, Schurgers LJ, Gombert A. Distribution and Maturity of Medial Collagen Fibers in Thoracoabdominal Post-Dissection Aortic Aneurysms: A Comparative Study of Marfan and Non-Marfan Patients. Int J Mol Sci 2024; 26:14. [PMID: 39795873 PMCID: PMC11720456 DOI: 10.3390/ijms26010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
Thoracoabdominal aortic aneurysms (TAAAs) are rare but serious conditions characterized by dilation of the aorta characterized by remodeling of the vessel wall, with changes in the elastin and collagen content. Individuals with Marfan syndrome have a genetic predisposition for elastic fiber fragmentation and elastin degradation and are prone to early aneurysm formation and progression. Our objective was to analyze the medial collagen characteristics through histological, polarized light microscopy, and electron microscopy methods across the thoracic and abdominal aorta in twenty-five patients undergoing open surgical repair, including nine with Marfan syndrome. While age at surgery differed significantly between the groups, maximum aortic diameter and aneurysm extent did not. Collagen content increased from thoracic to infrarenal segments in both cohorts, with non-Marfan patients exhibiting higher collagen percentages, notably in the infrarenal aorta (729.3 nm vs. 1068.3 nm, p = 0.02). Both groups predominantly displayed mature collagen fibers, with the suprarenal segment containing the highest proportion of less mature fibers. Electron microscopy revealed comparable collagen fibril diameters across segments irrespective of Marfan status. Our findings underscore non-uniform histological patterns in TAAAs and suggest that ECM remodeling involves mature collagen deposition, albeit with lower collagen content observed in the infrarenal aorta of Marfan patients.
Collapse
Affiliation(s)
- Panagiotis Doukas
- Department of Vascular Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (B.H.); (C.B.); (M.J.J.); (C.U.); (A.G.)
| | - Bernhard Hruschka
- Department of Vascular Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (B.H.); (C.B.); (M.J.J.); (C.U.); (A.G.)
| | - Cathryn Bassett
- Department of Vascular Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (B.H.); (C.B.); (M.J.J.); (C.U.); (A.G.)
| | - Eva Miriam Buhl
- Institute of Pathology, Electron Microscopy Facility, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Florian Simon
- Clinic for Vascular and Endovascular Surgery, University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany;
| | - Pepijn Saraber
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (P.S.); (L.J.S.)
| | - Michael Johan Jacobs
- Department of Vascular Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (B.H.); (C.B.); (M.J.J.); (C.U.); (A.G.)
| | - Christian Uhl
- Department of Vascular Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (B.H.); (C.B.); (M.J.J.); (C.U.); (A.G.)
| | - Leon J. Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (P.S.); (L.J.S.)
| | - Alexander Gombert
- Department of Vascular Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (B.H.); (C.B.); (M.J.J.); (C.U.); (A.G.)
| |
Collapse
|
4
|
Kramer B, Thompson MA, Tarraf SA, Vianna E, Gillespie C, Germano E, Gentle B, Cikach F, Lowry AM, Pande A, Blackstone E, Hargrave J, Colbrunn R, Bellini C, Roselli EE. Longitudinal versus circumferential biomechanical behavior of the aneurysmal ascending aorta. J Thorac Cardiovasc Surg 2024; 168:1589-1600.e8. [PMID: 37716653 DOI: 10.1016/j.jtcvs.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVES We evaluate the independent effects of patient and aortic tissue characteristics on biaxial physiologic mechanical metrics in aneurysmal and nonaneurysmal tissues, and uniaxial failure metrics in aneurysmal tissue, comparing longitudinal and circumferential behavior. METHODS From February 2017 to October 2022, 382 aortic specimens were collected from 134 patients; 268 specimens underwent biaxial testing, and 114 specimens underwent uniaxial testing. Biaxial testing evaluated Green-Lagrange transition strain and low and high tangent moduli. Uniaxial testing evaluated failure stretch, Cauchy stress, and low and high tangent moduli. Longitudinal gradient boosting models were implemented to estimate mechanical metrics and covariates of importance. RESULTS On biaxial testing, nonaneurysmal tissue was less deformable and exhibited a lower transition strain than aneurysmal tissue in the longitudinal (0.18 vs 0.30, P < .001) and circumferential (0.25 vs 0.30, P = .01) directions. Older age and increasing ascending aortic length contributed most to predicting transition strain. On uniaxial testing, longitudinal specimens failed at lower stretch (1.4 vs 1.5, P = .003) and Cauchy stress (1.0 vs 1.9 kPa, P < .001) than circumferential specimens. Failure stretch and Cauchy stress were most strongly associated with tissue orientation and decreased sharply with older age. Age, ascending aortic length, and tissue thickness were the most frequent covariates predicting mechanical metrics across 10 prediction models. CONCLUSIONS Age was the strongest predictor of mechanical behavior. After adjusting for age, nonaneurysmal tissue was less deformable than aneurysmal tissue. Differences in longitudinal and circumferential mechanics contribute to tissue dysfunction and failure in ascending aneurysms. This highlights the need to better understand the effects of age, ascending aortic length, and thickness on clinical aortic behavior.
Collapse
Affiliation(s)
- Benjamin Kramer
- Department of Thoracic and Cardiovascular Surgery, Aortic Center, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Matthew A Thompson
- Department of Thoracic and Cardiovascular Surgery, Aortic Center, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Samar A Tarraf
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, Mass
| | - Emily Vianna
- Department of Thoracic and Cardiovascular Surgery, Aortic Center, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Callan Gillespie
- BioRobotics and Mechanical Testing Core, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Emidio Germano
- Department of Thoracic and Cardiovascular Surgery, Aortic Center, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Brett Gentle
- Department of Cardiothoracic Anesthesiology, Cleveland Clinic, Cleveland, Ohio
| | - Frank Cikach
- Department of Thoracic and Cardiovascular Surgery, Aortic Center, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ashley M Lowry
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Amol Pande
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Eugene Blackstone
- Department of Thoracic and Cardiovascular Surgery, Aortic Center, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio; Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jennifer Hargrave
- Department of Cardiothoracic Anesthesiology, Cleveland Clinic, Cleveland, Ohio
| | - Robb Colbrunn
- BioRobotics and Mechanical Testing Core, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Chiara Bellini
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, Mass
| | - Eric E Roselli
- Department of Thoracic and Cardiovascular Surgery, Aortic Center, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
5
|
Bracco MI, Yousefi AAK, Rouet L, Avril S. Ultrasound Probe Pressure Affects Aortic Wall Stiffness: A Patient-Specific Computational Study in Abdominal Aortic Aneurysms. Ann Biomed Eng 2024:10.1007/s10439-024-03608-8. [PMID: 39230788 DOI: 10.1007/s10439-024-03608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE Ultrasound imaging is key in the management of patients with an abdominal aortic aneurysm (AAA). It was recently shown that the cyclic diameter variations between diastole and systole, which can be quantified with US imaging, increase significantly with the strength of the applied probe pressure on the patient's abdomen. The goal of this study is to investigate this effect more thoroughly. METHODS With finite-element modeling, pulsatile blood pressure and probe pressure are simulated in three patient-specific geometries. Two distinct models for the aortic wall were simulated: a nonlinear hyperelastic and a linear elastic model. In addition, varying stiffness was considered for the surrounding tissues. The effect of light, moderate, and firm probe pressure was quantified on the stresses and strains in the aortic wall, and on two in vivo stiffness measures. In addition, the Elasticity Loss Index was proposed to quantify the change in stiffness due to probe pressure. RESULTS Firm probe pressure decreased the measured aortic stiffness, and material stiffness was affected only when the wall was modeled as nonlinear, suggesting a shift in the stress-strain curve. In addition, stiffer surrounding tissues and a more elongated aneurysm sac decreased the responsiveness to the probe pressure. CONCLUSION The effect of probe pressure on the AAA wall stiffness was clarified. In particular, the AAA wall nonlinear behavior was found to be of primary importance in determining the probe pressure response. Thus, further work will intend to make use of this novel finding in a clinical context.
Collapse
Affiliation(s)
| | | | | | - Stéphane Avril
- INSERM, Sainbiose, Mines Saint-Étienne, Saint-Étienne, France
| |
Collapse
|
6
|
Mackay CDA, Meechem MB, Patel VB. Macrophages in vascular disease: Roles of mitochondria and metabolic mechanisms. Vascul Pharmacol 2024; 156:107419. [PMID: 39181483 DOI: 10.1016/j.vph.2024.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Macrophages are a dynamic cell type of the immune system implicated in the pathophysiology of vascular diseases and are a major contributor to pathological inflammation. Excessive macrophage accumulation, activation, and polarization is observed in aortic aneurysm (AA), atherosclerosis, and pulmonary arterial hypertension. In general, macrophages become activated and polarized to a pro-inflammatory phenotype, which dramatically changes cell behavior to become pro-inflammatory and infiltrative. These cell types become cumbersome and fail to be cleared by normal mechanisms such as autophagy. The result is a hyper-inflammatory environment causing the recruitment of adjacent cells and circulating immune cells to further augment the inflammatory response. In AA, this leads to excessive ECM degradation and chemokine secretion, ultimately causing macrophages to dominate the immune cell landscape in the aortic wall. In atherosclerosis, monocytes are recruited to the vascular wall, where they polarize to the pro-inflammatory phenotype and induce inflammatory pathway activation. This leads to the development of foam cells, which significantly contribute to neointima and necrotic core formation in atherosclerotic plaques. Pro-inflammatory macrophages, which affect other vascular diseases, present with fragmented mitochondria and corresponding metabolic dysfunction. Targeting macrophage mitochondrial dynamics has proved to be an exciting potential therapeutic approach to combat vascular disease. This review will summarize mitochondrial and metabolic mechanisms of macrophage activation, polarization, and accumulation in vascular diseases.
Collapse
Affiliation(s)
- Cameron D A Mackay
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Megan B Meechem
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Valente R, Mourato A, Xavier J, Sousa P, Domingues T, Tavares P, Avril S, Tomás A, Fragata J. Experimental Protocols to Test Aortic Soft Tissues: A Systematic Review. Bioengineering (Basel) 2024; 11:745. [PMID: 39199703 PMCID: PMC11351783 DOI: 10.3390/bioengineering11080745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Experimental protocols are fundamental for quantifying the mechanical behaviour of soft tissue. These data are crucial for advancing the understanding of soft tissue mechanics, developing and calibrating constitutive models, and informing the development of more accurate and predictive computational simulations and artificial intelligence tools. This paper offers a comprehensive review of experimental tests conducted on soft aortic tissues, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, based on the Scopus, Web of Science, IEEE, Google Scholar and PubMed databases. This study includes a detailed overview of the test method protocols, providing insights into practical methodologies, specimen preparation and full-field measurements. The review also briefly discusses the post-processing methods applied to extract material parameters from experimental data. In particular, the results are analysed and discussed providing representative domains of stress-strain curves for both uniaxial and biaxial tests on human aortic tissue.
Collapse
Affiliation(s)
- Rodrigo Valente
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
| | - André Mourato
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
| | - José Xavier
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
- Intelligent Systems Associate Laboratory, LASI, 4800-058 Guimarães, Portugal
| | - Pedro Sousa
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Tiago Domingues
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Paulo Tavares
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Stéphane Avril
- Mines Saint-Etienne, University of Lyon, Inserm, Sainbiose U1059, Campus Santé Innovation, 10, rue de la Marandière, 42270 Saint-Priest-en-Jarez, France;
| | - António Tomás
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta, 1169-024 Lisboa, Portugal; (A.T.); (J.F.)
| | - José Fragata
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta, 1169-024 Lisboa, Portugal; (A.T.); (J.F.)
- Department of Surgery and Human Morphology, NOVA Medical School, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisboa, Portugal
| |
Collapse
|
8
|
Kugo H, Moriyama T, Zaima N. Nicotine induces vasa vasorum stenosis in the aortic wall. Biotech Histochem 2024; 99:197-203. [PMID: 38780082 DOI: 10.1080/10520295.2024.2352724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disease that involves aortic wall dilation. Cigarette smoking is an established risk factor and rupture, and nicotine may be a major contributor to the onset of AAA. In humans the condition is associated with stenosis of the vasa vasorum (VV), which may be caused by nicotine. In this study, we evaluated the effects of nicotine on VV pathology. After 4 weeks of nicotine administration to rats using an osmotic pump, the VV patency rate in the nicotine administration group was significantly lower than that in the control group. The levels of Ki-67, a cell proliferation marker, were significantly increased in the regions containing VV in the nicotine group, as were hypoxia inducible factor-α levels. Collagen levels around VV were significantly lower in the nicotine group than in the controls. Our data suggest that nicotine can cause VV stenosis by inducing abnormal proliferation of smooth muscle cells in the VV. The increased risk of AAA development due to cigarette smoking may be partially explained by nicotine-induced VV denaturation and collagen fiber degradation.
Collapse
Affiliation(s)
- Hirona Kugo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara City, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara City, Japan
| |
Collapse
|
9
|
Mei J, Yu H, Qin L, Zhang J, Xu H, Xue T, Tang L, Jia Z. Multimodal Study of the Superior Mesenteric Artery Wall. Ann Vasc Surg 2024; 102:92-100. [PMID: 38301851 DOI: 10.1016/j.avsg.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND To quantitatively analyze histological and fiber structure of the superior mesenteric artery (SMA) wall and to further explore the possible relationship between the architecture and histology changes of vessel wall and the occurrence of related diseases. METHODS Histological and fiber structure analysis were performed on SMA specimens obtained from 22 cadavers. The SMA specimens were divided into initial, curved, and distal segments, and each segment was separated into the anterior and posterior walls. RESULTS From the initial to the curved to the distal segment, the ratio of elastin decreased (31.4% ± 6.0%, 21.1% ± 5.8%, 18.6% ± 4.7%, respectively; P < 0.001), whereas the ratio of smooth muscle actin (24.5% ± 8.7%, 30.5% ± 6.8%, 36.1% ± 7.3%, respectively; P < 0.001) increased. Elastic fiber longitudinal amplitude of angular undulation was highest in the initial segment [7° (3.25°, 15°)] and lowest in the curved segment [2° (1°, 5°)]. In SMA curved segment, the anterior wall, when compared with the posterior wall, demonstrated a lower ratio of elastin (19.0% ± 5.8% vs. 23.3% ± 5.0%; P = 0.010) and collagen (41.4% ± 12.3% vs. 49.0% ± 10.2%; P = 0.032), a lower elastic fiber longitudinal amplitude of angular undulation [1° (1°, 5°) vs. 3° (2°, 5.25°); P = 0.013], a lower average fiber diameter (8.06 ± 0.36 pixels vs. 8.45 ± 0.50 pixels; P = 0.005), and a lower average segment length (17.96 ± 1.59 pixels vs. 20.05 ± 2.33 pixels; P = 0.001). CONCLUSIONS SMA wall structure varies along the circumferential and axial directions, the presence of dense undulated elastic fiber protects the SMA initial segment of from dissection and aneurysm, but highly cross-linked collagen fiber here increases the likelihood of plaque formation. In the anterior wall of the curved segment, lower elastin and collagen content, lower elastic fiber undulation, and higher degree of collagen fiber cross-linking leads to the occurrence of SMA dissection and aneurysm. In the distal segment, high levels of vascular smooth muscle cells and bundles of long collagen fiber offer protection against the development of SMA-related diseases.
Collapse
Affiliation(s)
- Junhao Mei
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Haiyang Yu
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lihao Qin
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jiawei Zhang
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Haoran Xu
- Department of Pathology, The Affiliated Changzhou Second People's Hospital with Nanjing Medical University, Changzhou, China
| | - Tongqing Xue
- Department of Interventional Radiology, Huaian Hospital of Huai'an City, Huai'an, China
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou Second People's Hospital with Nanjing Medical University, Changzhou, China
| | - Zhongzhi Jia
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
10
|
Wei X, Li Y, Jiang T, Luo P, Dai Y, Wang Q, Xu M, Yan J, Li Y, Gao J, Liu L, Zhang C, Liu Y. Terazosin attenuates abdominal aortic aneurysm formation by downregulating Peg3 expression to inhibit vascular smooth muscle cell apoptosis and senescence. Eur J Pharmacol 2024; 968:176397. [PMID: 38331337 DOI: 10.1016/j.ejphar.2024.176397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Abdominal aortic aneurysm (AAA), a vascular degenerative disease, is a potentially life-threatening condition characterised by the loss of vascular smooth muscle cells (VSMCs), degradation of extracellular matrix (ECM), inflammation, and oxidative stress. Despite the severity of AAA, effective drugs for treatment are scarce. At low doses, terazosin (TZ) exerts antiapoptotic and anti-inflammatory effects in several diseases, but its potential to protect against AAA remains unexplored. Herein, we investigated the effects of TZ in two AAA animal models: Angiotensin II (Ang II) infusion in Apoe-/- mice and calcium chloride application in C57BL/6J mice. Mice were orally administered with TZ (100 or 1000 μg/kg/day). The in vivo results indicated that low-dose TZ alleviated AAA formation in both models. Low-dose TZ significantly reduced aortic pulse wave velocity without exerting an apparent antihypertensive effect in the Ang II-induced AAA model. Paternally expressed gene 3 (Peg3) was identified via RNA sequencing as a novel TZ target. PEG3 expression was significantly elevated in both mouse and human AAA tissues. TZ suppressed PEG3 expression and reduced the abundance of matrix metalloproteinases (MMP2/MMP9) in the tunica media. Functional experiments and molecular analyses revealed that TZ (10 nM) treatment and Peg3 knockdown effectively prevented Ang II-induced VSMC senescence and apoptosis in vitro. Thus, Peg3, a novel target of TZ, mediates inflammation-induced VSMC apoptosis and senescence. Low-dose TZ downregulates Peg3 expression to attenuate AAA formation and ECM degradation, suggesting a promising therapeutic strategy for AAA.
Collapse
Affiliation(s)
- Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Jiang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mulin Xu
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
| | - Jingwen Gao
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Pukaluk A, Sommer G, Holzapfel GA. Multimodal experimental studies of the passive mechanical behavior of human aortas: Current approaches and future directions. Acta Biomater 2024; 178:1-12. [PMID: 38401775 DOI: 10.1016/j.actbio.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Cardiovascular diseases are the leading cause of death worldwide and include, among others, critical conditions of the aortic wall. Importantly, such critical conditions require effective diagnosis and treatment, which are not yet accurate enough. However, they could be significantly strengthened with predictive material models of the aortic wall. In particular, such predictive models could support surgical decisions, preoperative planning, and estimation of postoperative tissue remodeling. However, developing a predictive model requires experimental data showing both structural parameters and mechanical behavior. Such experimental data can be obtained using multimodal experiments. This review therefore discusses the current approaches to multimodal experiments. Importantly, the strength of the aortic wall is determined primarily by its passive components, i.e., mainly collagen, elastin, and proteoglycans. Therefore, this review focuses on multimodal experiments that relate the passive mechanical behavior of the human aortic wall to the structure and organization of its passive components. In particular, the multimodal experiments are classified according to the expected results. Multiple examples are provided for each experimental class and summarized with highlighted advantages and disadvantages of the method. Finally, future directions of multimodal experiments are envisioned and evaluated. STATEMENT OF SIGNIFICANCE: Multimodal experiments are innovative approaches that have gained interest very quickly, but also recently. This review presents therefore a first clear summary of groundbreaking research in the field of multimodal experiments. The benefits and limitations of various types of multimodal experiments are thoroughly discussed, and a comprehensive overview of possible results is provided. Although this review focuses on multimodal experiments performed on human aortic tissues, the methods used and described are not limited to human aortic tissues but can be extended to other soft materials.
Collapse
Affiliation(s)
- Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering (NTNU), Trondheim, Norway.
| |
Collapse
|
12
|
Lin AC, Pirrung F, Niestrawska JA, Ondruschka B, Pinter G, Henyš P, Hammer N. Shape or size matters? Towards standard reporting of tensile testing parameters for human soft tissues: systematic review and finite element analysis. Front Bioeng Biotechnol 2024; 12:1368383. [PMID: 38600944 PMCID: PMC11005100 DOI: 10.3389/fbioe.2024.1368383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Material properties of soft-tissue samples are often derived through uniaxial tensile testing. For engineering materials, testing parameters (e.g., sample geometries and clamping conditions) are described by international standards; for biological tissues, such standards do not exist. To investigate what testing parameters have been reported for tensile testing of human soft-tissue samples, a systematic review of the literature was performed using PRISMA guidelines. Soft tissues are described as anisotropic and/or hyperelastic. Thus, we explored how the retrieved parameters compared against standards for engineering materials of similar characteristics. All research articles published in English, with an Abstract, and before 1 January 2023 were retrieved from databases of PubMed, Web of Science, and BASE. After screening of articles based on search terms and exclusion criteria, a total 1,096 articles were assessed for eligibility, from which 361 studies were retrieved and included in this review. We found that a non-tapered shape is most common (209 of 361), followed by a tapered sample shape (92 of 361). However, clamping conditions varied and were underreported (156 of 361). As a preliminary attempt to explore how the retrieved parameters might influence the stress distribution under tensile loading, a pilot study was performed using finite element analysis (FEA) and constitutive modeling for a clamped sample of little or no fiber dispersion. The preliminary FE simulation results might suggest the hypothesis that different sample geometries could have a profound influence on the stress-distribution under tensile loading. However, no conclusions can be drawn from these simulations, and future studies should involve exploring different sample geometries under different computational models and sample parameters (such as fiber dispersion and clamping effects). Taken together, reporting and choice of testing parameters remain as challenges, and as such, recommendations towards standard reporting of uniaxial tensile testing parameters for human soft tissues are proposed.
Collapse
Affiliation(s)
- Alvin C. Lin
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
| | - Felix Pirrung
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Justyna A. Niestrawska
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerald Pinter
- Institute of Materials Science and Testing of Polymers, Montanuniversität Leoben, Leoben, Austria
| | - Petr Henyš
- Institute of New Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, Czechia
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Forming Tools, Division of Biomechatronics, Dresden, Germany
| |
Collapse
|
13
|
Alberini R, Spagnoli A, Sadeghinia MJ, Skallerud B, Terzano M, Holzapfel GA. Fourier transform-based method for quantifying the three-dimensional orientation distribution of fibrous units. Sci Rep 2024; 14:1999. [PMID: 38263352 PMCID: PMC11222475 DOI: 10.1038/s41598-024-51550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
Several materials and tissues are characterized by a microstructure composed of fibrous units embedded in a ground matrix. In this paper, a novel three-dimensional (3D) Fourier transform-based method for quantifying the distribution of fiber orientations is presented. The method allows for an accurate identification of individual fiber families, their in-plane and out-of-plane dispersion, and showed fast computation times. We validated the method using artificially generated 3D images, in terms of fiber dispersion by considering the error between the standard deviation of the reconstructed and the prescribed distributions of the artificial fibers. In addition, we considered the measured mean orientation angles of the fibers and validated the robustness using a measure of fiber density. Finally, the method is employed to reconstruct a full 3D view of the distribution of collagen fiber orientations based on in vitro second harmonic generation microscopy of collagen fibers in human and mouse skin. The dispersion parameters of the reconstructed fiber network can be used to inform mechanical models of soft fiber-reinforced materials and biological tissues that account for non-symmetrical fiber dispersion.
Collapse
Affiliation(s)
- Riccardo Alberini
- Department of Engineering and Architecture, University of Parma, Parma, Italy
| | - Andrea Spagnoli
- Department of Engineering and Architecture, University of Parma, Parma, Italy.
| | - Mohammad Javad Sadeghinia
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjørn Skallerud
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Gerhard A Holzapfel
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| |
Collapse
|
14
|
Arbănaşi EM, Russu E, Arbănaşi EM, Ciucanu CC, Mureșan AV, Suzuki S, Chirilă TV. Effect of Ultraviolet Radiation on the Enzymolytic and Biomechanical Profiles of Abdominal Aortic Adventitia Tissue. J Clin Med 2024; 13:633. [PMID: 38276139 PMCID: PMC10817471 DOI: 10.3390/jcm13020633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The abdominal aortic aneurysm (AAA) is defined as an increase in aortic diameter by more than 50% and is associated with a high risk of rupture and mortality without treatment. The aim of this study is to analyze the role of aortic adventitial collagen photocrosslinking by UV-A irradiation on the biomechanical profile of the aortic wall. METHODS This experimental study is structured in two parts: the first part includes in vitro uniaxial biomechanical evaluation of porcine adventitial tissue subjected to either short-term elastolysis or long-term collagenolysis in an attempt to duplicate two extreme situations as putative stages of aneurysmal degeneration. In the second part, we included biaxial biomechanical evaluation of in vitro human abdominal aortic adventitia and human AAA adventitia specimens. Biomechanical profiles were examined for porcine and human aortic tissue before and after irradiation with UV-A light (365 nm wavelength). RESULTS On the porcine aortic sample, the enhancing effect of irradiation was evident both on the tissue subjected to elastolysis, which had a high collagen-to-elastin ratio, and on the tissue subjected to prolonged collagenolysis despite being considerably depleted in collagen. Further, the effect of irradiation was conclusively demonstrated in the human adventitia samples, where significant post-irradiation increases in Cauchy stress (longitudinal axis: p = 0.001, circumferential axis: p = 0.004) and Young's modulus (longitudinal axis: p = 0.03, circumferential axis: p = 0.004) were recorded. Moreover, we have a stronger increase in the strengthening of the AAA adventitia samples following the exposure to UV-A irradiation (p = 0.007) and a statistically significant but not very important increase (p = 0.021) regarding the stiffness in the circumferential axis. CONCLUSIONS The favorable effect of UV irradiation on the strength and stiffness of degraded aortic adventitia in experimental situations mimicking early and later stages of aneurysmal degeneration is essential for the development and potential success of procedures to prevent aneurysmal ruptures. The experiments on human normal and aneurysmal adventitial tissue confirmed the validity and potential success of a procedure based on exposure to UV-A radiation.
Collapse
Affiliation(s)
- Emil-Marian Arbănaşi
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures (UMFST), 540142 Targu Mures, Romania; (E.-M.A.); (E.-M.A.); (C.C.C.)
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (S.S.); (T.V.C.)
| | - Eliza Russu
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Eliza-Mihaela Arbănaşi
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures (UMFST), 540142 Targu Mures, Romania; (E.-M.A.); (E.-M.A.); (C.C.C.)
| | - Constantin Claudiu Ciucanu
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures (UMFST), 540142 Targu Mures, Romania; (E.-M.A.); (E.-M.A.); (C.C.C.)
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Adrian Vasile Mureșan
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Shuko Suzuki
- Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (S.S.); (T.V.C.)
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia
| | - Traian V. Chirilă
- Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (S.S.); (T.V.C.)
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Australian Institute of Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
15
|
Zhao TY, Johnson EMI, Elisha G, Halder S, Smith BC, Allen BD, Markl M, Patankar NA. Blood-wall fluttering instability as a physiomarker of the progression of thoracic aortic aneurysms. Nat Biomed Eng 2023; 7:1614-1626. [PMID: 38082182 PMCID: PMC11440811 DOI: 10.1038/s41551-023-01130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/16/2023] [Indexed: 12/20/2023]
Abstract
The diagnosis of aneurysms is informed by empirically tracking their size and growth rate. Here, by analysing the growth of aortic aneurysms from first principles via linear stability analysis of flow through an elastic blood vessel, we show that abnormal aortic dilatation is associated with a transition from stable flow to unstable aortic fluttering. This transition to instability can be described by the critical threshold for a dimensionless number that depends on blood pressure, the size of the aorta, and the shear stress and stiffness of the aortic wall. By analysing data from four-dimensional flow magnetic resonance imaging for 117 patients who had undergone cardiothoracic imaging and for 100 healthy volunteers, we show that the dimensionless number is a physiomarker for the growth of thoracic ascending aortic aneurysms and that it can be used to accurately discriminate abnormal versus natural growth. Further characterization of the transition to blood-wall fluttering instability may aid the understanding of the mechanisms underlying aneurysm progression in patients.
Collapse
Affiliation(s)
- Tom Y Zhao
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
| | - Ethan M I Johnson
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Guy Elisha
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Sourav Halder
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Ben C Smith
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bradley D Allen
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Michael Markl
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Neelesh A Patankar
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
16
|
Ren H, Dai R, Nik Nabil WN, Xi Z, Wang F, Xu H. Unveiling the dual role of autophagy in vascular remodelling and its related diseases. Biomed Pharmacother 2023; 168:115643. [PMID: 37839111 DOI: 10.1016/j.biopha.2023.115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Vascular remodelling is an adaptive response to physiological and pathological stimuli that leads to structural and functional changes in the vascular intima, media, and adventitia. Pathological vascular remodelling is a hallmark feature of numerous vascular diseases, including atherosclerosis, hypertension, abdominal aortic aneurysm, pulmonary hypertension and preeclampsia. Autophagy is critical in maintaining cellular homeostasis, and its dysregulation has been implicated in the pathogenesis of various diseases, including vascular diseases. However, despite emerging evidence, the role of autophagy and its dual effects on vascular remodelling has garnered limited attention. Autophagy can exert protective and detrimental effects on the vascular intima, media and adventitia, thereby substantially influencing the course of vascular remodelling and its related vascular diseases. Currently, there has not been a review that thoroughly describes the regulation of autophagy in vascular remodelling and its impact on related diseases. Therefore, this review aimed to bridge this gap by focusing on the regulatory roles of autophagy in diseases related to vascular remodelling. This review also summarizes recent advancements in therapeutic agents targeting autophagy to regulate vascular remodelling. Additionally, this review offers an overview of recent breakthroughs in therapeutic agents targeting autophagy to regulate vascular remodelling. A deeper understanding of how autophagy orchestrates vascular remodelling can drive the development of targeted therapies for vascular diseases.
Collapse
Affiliation(s)
- Hangui Ren
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China; Pharmaceutical Services Program, Ministry of Health, Selangor 46200, Malaysia
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Feng Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| |
Collapse
|
17
|
Dalbosco M, Terzano M, Carniel TA, Fancello EA, Holzapfel GA. A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms. J R Soc Interface 2023; 20:20230472. [PMID: 37907092 PMCID: PMC10618057 DOI: 10.1098/rsif.2023.0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and mechanical alterations in the tissue. Macro-scale geometries of a healthy aorta and idealized aneurysms with increasing diameter are developed on the basis of existing experimental data and subjected to physiological boundary conditions. Subsequently, microscopic representative volume elements of the abluminal side of each macro-model are employed to analyse the local kinematics at the cellular scale. The results suggest that the formation of the aneurysm disrupts the micromechanics of healthy tissue, which could trigger collagen growth and remodelling by mechanosensing cells. The resulting changes to the macro-mechanics and microstructure of the tissue seem to establish a new homeostatic state at the cellular scale, at least for the diameter range investigated.
Collapse
Affiliation(s)
- Misael Dalbosco
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- GRANTE—Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Thiago A. Carniel
- Polytechnic School, Community University of Chapecó Region, Chapecó, Santa Catarina, Brazil
- Graduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, Santa Catarina, Brazil
| | - Eduardo A. Fancello
- GRANTE—Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- LEBm—University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
18
|
Niestrawska JA, Rodewald M, Schultz C, Quansah E, Meyer-Zedler T, Schmitt M, Popp J, Tomasec I, Ondruschka B, Hammer N. Morpho-mechanical mapping of human dura mater microstructure. Acta Biomater 2023; 170:86-96. [PMID: 37598794 DOI: 10.1016/j.actbio.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
The human dura mater is known to impact vastly traumatic brain injury mechanopathology. In spite of this involvement, dura mater is typically neglected in computational and physical human head models. The lack of location-dependent microstructural and related mechanical data of dura mater may be considered a rationale behind this simplification. The anisotropic nature of dura mater under various loading conditions so far remains unelucidated. Furthermore, principal collagen fiber orientation is yet to be quantified for a morpho-mechanically-informed material model on the dura mater. This study aims to assess how location-dependent mechanical anisotropy is linked to principal collagen fiber orientation. Uniaxial extension tests were performed in a heated tissue bath for 60 samples from six individuals and correlated to the three-dimensional collagen structure in four individuals using second-harmonic generation (SHG) imaging. Failure stress and stretch at failure, elastic modulus, and a microstructurally motivated material model were integrated to examine local differences in dura mater morpho-mechanics. The quantitative observation of collagen fiber orientation and dispersion confirmed that collagen is highly aligned in the human dura mater and that both fiber orientation and dispersion differ depending on the location investigated. This observation provides a possible explanation for the previously observed isotropic mechanical behavior, as the main collagen fiber direction is not oriented along the anterior-posterior or medial-lateral direction at most of the mapped locations. Additionally, these site-dependent structural properties have implications for the mechanical load response and therefore potentially for the regional functions dura mater has to fulfill. The here chosen non-symmetrical fiber dispersion material model fits the data well and provides a comprehensive parameter base for further studies and future finite element models. STATEMENT OF SIGNIFICANCE: The human dura mater greatly affects traumatic brain injury mechanisms, but it is often ignored in computational and physical head models. This is because there is a lack of detailed microstructural and mechanical data specific to the dura mater. Its anisotropic nature and collagen fiber orientation have not been fully understood, hindering the development of an accurate material model. Hence, this study combines morphological data on collagen fiber orientation and dispersion at multiple locations of human cranial dura mater, and links microstructure to location-specific load-displacement behavior. It provides microstructurally informed mechanical information towards realistic head models for predicting location-dependent tissue behavior and failure for assessing brain injury and graft material development.
Collapse
Affiliation(s)
- Justyna Anna Niestrawska
- Division of Macroscopic and Clinical Anatomy Gottfried Schatz Research Center, Medical University of Graz, Austria.
| | - Marko Rodewald
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Constanze Schultz
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena Germany
| | - Elsie Quansah
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Tobias Meyer-Zedler
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Igor Tomasec
- Division of Macroscopic and Clinical Anatomy Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy Gottfried Schatz Research Center, Medical University of Graz, Austria; Department of Orthopaedic and Trauma Surgery University of Leipzig, Leipzig, Germany; Fraunhofer IWU, Dresden, Germany
| |
Collapse
|
19
|
Hegner A, Wittek A, Derwich W, Huß A, Gámez AJ, Blase C. Using averaged models from 4D ultrasound strain imaging allows to significantly differentiate local wall strains in calcified regions of abdominal aortic aneurysms. Biomech Model Mechanobiol 2023; 22:1709-1727. [PMID: 37405538 PMCID: PMC10511614 DOI: 10.1007/s10237-023-01738-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
Abdominal aortic aneurysms are a degenerative disease of the aorta associated with high mortality. To date, in vivo information to characterize the individual elastic properties of the aneurysm wall in terms of rupture risk is lacking. We have used time-resolved 3D ultrasound strain imaging to calculate spatially resolved in-plane strain distributions characterized by mean and local maximum strains, as well as indices of local variations in strains. Likewise, we here present a method to generate averaged models from multiple segmentations. Strains were then calculated for single segmentations and averaged models. After registration with aneurysm geometries based on CT-A imaging, local strains were divided into two groups with and without calcifications and compared. Geometry comparison from both imaging modalities showed good agreement with a root mean squared error of 1.22 ± 0.15 mm and Hausdorff Distance of 5.45 ± 1.56 mm (mean ± sd, respectively). Using averaged models, circumferential strains in areas with calcifications were 23.2 ± 11.7% (mean ± sd) smaller and significantly distinguishable at the 5% level from areas without calcifications. For single segmentations, this was possible only in 50% of cases. The areas without calcifications showed greater heterogeneity, larger maximum strains, and smaller strain ratios when computed by use of the averaged models. Using these averaged models, reliable conclusions can be made about the local elastic properties of individual aneurysm (and long-term observations of their change), rather than just group comparisons. This is an important prerequisite for clinical application and provides qualitatively new information about the change of an abdominal aortic aneurysm in the course of disease progression compared to the diameter criterion.
Collapse
Affiliation(s)
- Achim Hegner
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
- Department of Mechanical Engineering and Industrial Design, School of Engineering, University of Cadiz, Cadiz, Spain
| | - Andreas Wittek
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
| | - Wojciech Derwich
- Department of Vascular and Endovascular Surgery, Goethe University Hospital, Frankfurt am Main, Germany
| | - Armin Huß
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
| | - Antonio J. Gámez
- Department of Mechanical Engineering and Industrial Design, School of Engineering, University of Cadiz, Cadiz, Spain
| | - Christopher Blase
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
- Cell and Vascular Mechanics, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Hegner A, Cebull HL, Gámez AJ, Blase C, Goergen CJ, Wittek A. Biomechanical characterization of tissue types in murine dissecting aneurysms based on histology and 4D ultrasound-derived strain. Biomech Model Mechanobiol 2023; 22:1773-1788. [PMID: 37707685 PMCID: PMC10511389 DOI: 10.1007/s10237-023-01759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023]
Abstract
Abdominal aortic aneurysm disease is the local enlargement of the aorta, typically in the infrarenal section, causing up to 200,000 deaths/year. In vivo information to characterize the individual elastic properties of the aneurysm wall in terms of rupture risk is lacking. We used a method that combines 4D ultrasound and direct deformation estimation to compute in vivo 3D Green-Lagrange strain in murine angiotensin II-induced dissecting aortic aneurysms, a commonly used mouse model. After euthanasia, histological staining of cross-sectional sections along the aorta was performed in areas where in vivo strains had previously been measured. The histological sections were segmented into intact and fragmented elastin, thrombus with and without red blood cells, and outer vessel wall including the adventitia. Meshes were then created from the individual contours based on the histological segmentations. The isolated contours of the outer wall and lumen from both imaging modalities were registered individually using a coherent point drift algorithm. 2D finite element models were generated from the meshes, and the displacements from the registration were used as displacement boundaries of the lumen and wall contours. Based on the resulting deformed contours, the strains recorded were grouped according to segmented tissue regions. Strains were highest in areas containing intact elastin without thrombus attachment. Strains in areas with intact elastin and thrombus attachment, as well as areas with disrupted elastin, were significantly lower. Strains in thrombus regions with red blood cells were significantly higher compared to thrombus regions without. We then compared this analysis to statistical distribution indices and found that the results of each aligned, elucidating the relationship between vessel strain and structural changes. This work demonstrates the possibility of advancing in vivo assessments to a microstructural level ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Achim Hegner
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
- Department of Mechanical Engineering and Industrial Design, School of Engineering, University of Cadiz, Cadiz, Spain
| | - Hannah L. Cebull
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, USA
| | - Antonio J. Gámez
- Department of Mechanical Engineering and Industrial Design, School of Engineering, University of Cadiz, Cadiz, Spain
| | - Christopher Blase
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
- Cell and Vascular Mechanics, Goethe University, Frankfurt am Main, Germany
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA
| | - Andreas Wittek
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Zottola ZR, Kong DS, Medhekar AN, Frye LE, Hao SB, Gonring DW, Hirad AA, Stoner MC, Richards MS, Mix DS. Intermediate pressure-normalized principal wall strain values are associated with increased abdominal aortic aneurysmal growth rates. Front Cardiovasc Med 2023; 10:1232844. [PMID: 37719977 PMCID: PMC10501562 DOI: 10.3389/fcvm.2023.1232844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Current abdominal aortic aneurysm (AAA) assessment relies on analysis of AAA diameter and growth rate. However, evidence demonstrates that AAA pathology varies among patients and morphometric analysis alone is insufficient to precisely predict individual rupture risk. Biomechanical parameters, such as pressure-normalized AAA principal wall strain (ε ρ + ¯ /PP, %/mmHg), can provide useful information for AAA assessment. Therefore, this study utilized a previously validated ultrasound elastography (USE) technique to correlate ε ρ + ¯ /PP with the current AAA assessment methods of maximal diameter and growth rate. Methods Our USE algorithm utilizes a finite element mesh, overlaid a 2D cross-sectional view of the user-defined AAA wall, at the location of maximum diameter, to track two-dimensional, frame-to-frame displacements over a full cardiac cycle, using a custom image registration algorithm to produce ε ρ + ¯ /PP. This metric was compared between patients with healthy aortas and AAAs (≥3 cm) and compared between small and large AAAs (≥5 cm). AAAs were then separated into terciles based on ε ρ + ¯ /PP values to further assess differences in our metric across maximal diameter and prospective growth rate. Non-parametric tests of hypotheses were used to assess statistical significance as appropriate. Results USE analysis was conducted on 129 patients, 16 healthy aortas and 113 AAAs, of which 86 were classified as small AAAs and 27 as large. Non-aneurysmal aortas showed higher ε ρ + ¯ /PP compared to AAAs (0.044 ± 0.015 vs. 0.034 ± 0.017%/mmHg, p = 0.01) indicating AAA walls to be stiffer. Small and large AAAs showed no difference in ε ρ + ¯ /PP. When divided into terciles based on ε ρ + ¯ /PP cutoffs of 0.0251 and 0.038%/mmHg, there was no difference in AAA diameter. There was a statistically significant difference in prospective growth rate between the intermediate tercile and the outer two terciles (1.46 ± 2.48 vs. 3.59 ± 3.83 vs. 1.78 ± 1.64 mm/yr, p = 0.014). Discussion There was no correlation between AAA diameter and ε ρ + ¯ /PP, indicating biomechanical markers of AAA pathology are likely independent of diameter. AAAs in the intermediate tercile of ε ρ + ¯ /PP values were found to have nearly double the growth rates than the highest or lowest tercile, indicating an intermediate range of ε ρ + ¯ /PP values for which patients are at risk for increased AAA expansion, likely necessitating more frequent imaging follow-up.
Collapse
Affiliation(s)
- Zachary R. Zottola
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Daniel S. Kong
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Ankit N. Medhekar
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Lauren E. Frye
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Scarlett B. Hao
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Dakota W. Gonring
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Adnan A. Hirad
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael C. Stoner
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael S. Richards
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Doran S. Mix
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
22
|
Wang X, Carpenter HJ, Ghayesh MH, Kotousov A, Zander AC, Amabili M, Psaltis PJ. A review on the biomechanical behaviour of the aorta. J Mech Behav Biomed Mater 2023; 144:105922. [PMID: 37320894 DOI: 10.1016/j.jmbbm.2023.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Large aortic aneurysm and acute and chronic aortic dissection are pathologies of the aorta requiring surgery. Recent advances in medical intervention have improved patient outcomes; however, a clear understanding of the mechanisms leading to aortic failure and, hence, a better understanding of failure risk, is still missing. Biomechanical analysis of the aorta could provide insights into the development and progression of aortic abnormalities, giving clinicians a powerful tool in risk stratification. The complexity of the aortic system presents significant challenges for a biomechanical study and requires various approaches to analyse the aorta. To address this, here we present a holistic review of the biomechanical studies of the aorta by categorising articles into four broad approaches, namely theoretical, in vivo, experimental and combined investigations. Experimental studies that focus on identifying mechanical properties of the aortic tissue are also included. By reviewing the literature and discussing drawbacks, limitations and future challenges in each area, we hope to present a more complete picture of the state-of-the-art of aortic biomechanics to stimulate research on critical topics. Combining experimental modalities and computational approaches could lead to more comprehensive results in risk prediction for the aortic system.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Harry J Carpenter
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Andrei Kotousov
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony C Zander
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marco Amabili
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Peter J Psaltis
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia; Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
23
|
Pukaluk A, Wolinski H, Viertler C, Regitnig P, Holzapfel GA, Sommer G. Changes in the microstructure of the human aortic adventitia under biaxial loading investigated by multi-photon microscopy. Acta Biomater 2023; 161:154-169. [PMID: 36812954 DOI: 10.1016/j.actbio.2023.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Among the three layers of the aortic wall, the media is primarily responsible for its mechanical properties, but the adventitia prevents the aorta from overstretching and rupturing. The role of the adventitia is therefore crucial with regard to aortic wall failure, and understanding the load-induced changes in tissue microstructure is of high importance. Specifically, the focus of this study is on the changes in collagen and elastin microstructure in response to macroscopic equibiaxial loading applied to the aortic adventitia. To observe these changes, multi-photon microscopy imaging and biaxial extension tests were performed simultaneously. In particular, microscopy images were recorded at 0.02 stretch intervals. The microstructural changes of collagen fiber bundles and elastin fibers were quantified with the parameters of orientation, dispersion, diameter, and waviness. The results showed that the adventitial collagen was divided from one into two fiber families under equibiaxial loading conditions. The almost diagonal orientation of the adventitial collagen fiber bundles remained unchanged, but the dispersion was substantially reduced. No clear orientation of the adventitial elastin fibers was observed at any stretch level. The waviness of the adventitial collagen fiber bundles decreased under stretch, but the adventitial elastin fibers showed no change. These original findings highlight differences between the medial and adventitial layers and provide insight into the stretching process of the aortic wall. STATEMENT OF SIGNIFICANCE: To provide accurate and reliable material models, it is essential to understand the mechanical behavior of the material and its microstructure. Such understanding can be enhanced with tracking of the microstructural changes caused by mechanical loading of the tissue. This study provides therefore a unique dataset of structural parameters of the human aortic adventitia obtained under equibiaxial loading. The structural parameters describe orientation, dispersion, diameter, and waviness of collagen fiber bundles and elastin fibers. Eventually, the microstructural changes in the human aortic adventitia are compared with the microstructural changes in the human aortic media from a previous study. This comparison reveals the cutting-edge findings on the differences in the response to the loading between these two human aortic layers.
Collapse
Affiliation(s)
- Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Austria; Field of Excellence BioHealth, University of Graz, Austria
| | - Christian Viertler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Peter Regitnig
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering (NTNU), Trondheim, Norway
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria.
| |
Collapse
|
24
|
Dayal S, Broekelmann T, Mecham RP, Ramamurthi A. Targeting Epidermal Growth Factor Receptor to Stimulate Elastic Matrix Regenerative Repair. Tissue Eng Part A 2023; 29:187-199. [PMID: 36641641 PMCID: PMC10122231 DOI: 10.1089/ten.tea.2022.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/15/2022] [Indexed: 01/16/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) represent a multifactorial, proteolytic disorder involving disintegration of the matrix structure within the AAA wall. Intrinsic deficiency of adult vascular cells to regenerate and repair the wall elastic matrix, which contributes to vessel stretch and recoil, is a major clinical challenge to therapeutic reversal of AAA growth. In this study, we investigate the involvement of epidermal growth factor receptor-mitogen activated protein kinase (EGFR-MAPK) pathway in the activation of aneurysmal smooth muscle cells (SMCs) by neutrophil elastase, and how EGFR can be targeted for elastic matrix regeneration. We have demonstrated that neutrophil elastase activates EGFR and downregulates expression level of key elastin homeostasis genes (elastin, crosslinking enzyme-lysyl oxidase, and fibulin4) between a dose range of 1-10 μg/mL (p < 0.05). It also incites downstream proteolytic outcomes by upregulating p-extracellular signal-regulated kinase (ERK)1/2 (p < 0.0001) and matrix metalloprotease 2 (MMP2) at a protein level, which is significantly downregulated upon EGFR-specific inhibition by tyrosine kinase inhibitor AG1478 (p-ERK1/2 and MMP2 [p < 0.05]). Moreover, we have shown that EGFR inhibition suppresses collagen amounts in aneurysmal SMCs (p < 0.05) and promotes robust formation of elastic fibers by enhancing its deposition in the extracellular space. Hence, the EGFR-MAPK pathway in aneurysmal cells can be targeted to provide therapeutic effects toward stimulating vascular matrix regeneration. Impact statement Proteolytic disorders such as aortal expansions, called abdominal aortic aneurysms (AAAs), are characterized by naturally irreversible enzymatic breakdown and loss of elastic fibers, a problem that has not yet been surmounted by existing tissue engineering approaches. In this work, we show, for the first time, how epidermal growth factor receptor (EGFR) inhibition provides downstream benefits in elastic fiber assembly and deposition in aneurysmal smooth muscle cell cultures. This work can open future possibilities for development of EGFR-targeted drug-based therapies not only for vessel wall repair in AAAs but also other proteolytically compromised elastic tissues.
Collapse
Affiliation(s)
- Simran Dayal
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Thomas Broekelmann
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
25
|
Kugo H, Sugiura Y, Fujishima R, Jo S, Mishima H, Sugamoto E, Tanaka H, Yamaguchi S, Ikeda Y, Hirano KI, Moriyama T, Zaima N. Tricaprin can prevent the development of AAA by attenuating aortic degeneration. Biomed Pharmacother 2023; 160:114299. [PMID: 36724640 DOI: 10.1016/j.biopha.2023.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Medical therapeutic options to prevent rupture of abdominal aortic aneurysm (AAA), a critical event, must be developed. Moreover, further understanding of the process of AAA development and rupture is crucial. Previous studies have revealed that aortic hypoperfusion can induce the development of AAA, and we successfully developed a hypoperfusion-induced AAA animal model. In this study, we examined the effects of medium-chain triglycerides (MCTs), tricaprylin (C8-TG) and tricaprin (C10-TG), on hypoperfusion-induced AAA rat model. We estimated the effects of MCTs on aortic pathologies, mechanical properties of the aorta, and development of AAA. C10-TG, but not C8-TG, significantly suppressed AAA development and completely prevented the rupture. We observed that C10-TG prevented the development and rupture of AAA, but not C8-TG. Additionally, regression of AAA diameter was observed in the C10-TG group. Pathological analysis revealed C10-TG improved the hypoperfusion-induced increase in hypoxia-inducible factor-1α levels, medial smooth muscle cells (SMCs) loss, degeneration of aortic elastin and collagen fibers, and loss of aortic wall elasticity. In addition, regression of the formed AAA was observed by administration of C10-TG after AAA formation. C10-TG administration after AAA formation improved degeneration of AAA wall including degradation of aortic elastin and collagen fibers, stenosis of vasa vasorum, and loss of medial SMCs. These data suggest C10-TG can prevent AAA by attenuating aortic hypoperfusion and degeneration. Considering the clinical safety of C10-TG, C10-TG can be a promising AAA drug candidate.
Collapse
Affiliation(s)
- Hirona Kugo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | - Rena Fujishima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Shintou Jo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Hirotaka Mishima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Erina Sugamoto
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Hiroki Tanaka
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Satoshi Yamaguchi
- Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshihiko Ikeda
- Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Ken-Ichi Hirano
- Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan.
| |
Collapse
|
26
|
Derwich W, Keller T, Filmann N, Schmitz-Rixen T, Blasé C, Oikonomou K, Wittek A. Changes in Aortic Diameter and Wall Strain in Progressing Abdominal Aortic Aneurysms. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023. [PMID: 36794590 DOI: 10.1002/jum.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES The analysis of wall strain opens new perspectives in the prediction of abdominal aortic aneurysm (AAA) rupture. This study investigates the capability of four-dimensional ultrasound (4D US) to detect and characterize changes in wall strain in the same patients during follow-up observations. METHODS Eighteen patients were examined by 64 4D US scans during a median follow-up period of 24.5 months. After performing the 4D US and manual aneurysm segmentation, kinematic analysis was performed using a customized interface and evaluation of the mean and peak circumferential strain, as well as spatial heterogeneity. RESULTS All aneurysms showed a continuous diameter growth with a mean rate of 4% per year (P < .001). The mean circumferential strain (MCS) tends to increase from a median 0.89% by 10.49% per year in follow-up independent of the aneurysm diameter (P = .063). The subgroup analysis reveals a cohort with increasing MCS and decreasing spatial heterogeneity, as well as a cohort with nonincreasing MCS and increasing spatial heterogeneity (P < .05). CONCLUSIONS The 4D US is able to register the strain changes in AAA follow-up. The MCS tends to increase during the observation time in the entire cohort, but the changes were independent of the maximum aneurysm diameter. The kinematic parameters allow the entire AAA cohort to differentiate into two subgroups and provide additional information about the pathologic behavior of the aneurysm wall.
Collapse
Affiliation(s)
- Wojciech Derwich
- Department of Vascular and Endovascular Surgery, University Hospital Frankfurt Goethe University, Frankfurt am Main, Germany
| | - Tobias Keller
- Department of General, Visceral and Oncological Surgery, Klinikum Wetzlar, Wetzlar, Germany
| | - Natalie Filmann
- Institute for Biostatistics and Mathematical Modeling, Goethe University, Frankfurt am Main, Germany
| | | | - Christopher Blasé
- Personalised Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
| | - Kyriakos Oikonomou
- Department of Vascular and Endovascular Surgery, University Hospital Frankfurt Goethe University, Frankfurt am Main, Germany
| | - Andreas Wittek
- Personalised Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Johnson EMI, Scott MB, Jarvis K, Allen B, Carr J, Chris Malaisrie S, McCarthy P, Mehta C, Fedak PWM, Barker AJ, Markl M. Global Aortic Pulse Wave Velocity is Unchanged in Bicuspid Aortopathy With Normal Valve Function but Elevated in Patients With Aortic Valve Stenosis: Insights From a 4D Flow MRI Study of 597 Subjects. J Magn Reson Imaging 2023; 57:126-136. [PMID: 35633284 PMCID: PMC9701914 DOI: 10.1002/jmri.28266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Aortopathy is common with bicuspid aortic valve (BAV), and underlying intrinsic tissue abnormalities are believed causative. Valve-mediated hemodynamics are altered in BAV and may contribute to aortopathy and its progression. The contribution of intrinsic tissue defects versus altered hemodynamics to aortopathy progression is not known. PURPOSE To investigate relative contributions of tissue-innate versus hemodynamics in progression of BAV aortopathy. STUDY TYPE Retrospective. SUBJECTS Four hundred seventy-three patients with aortic dilatation (diameter ≥40 mm; comprised of 281 BAV with varied AS severity, 192 tricuspid aortic valve [TAV] without AS) and 124 healthy controls. Subjects were 19-91 years (141/24% female). FIELD STRENGTH/SEQUENCE 1.5T, 3T; time-resolved gradient-echo 3D phase-contrast (4D flow) MRI. ASSESSMENT A surrogate measure for global aortic wall stiffness, pulse wave velocity (PWV), was quantified from MRI by standardized, automated technique based on through-plane flow cross-correlation maximization. Comparisons were made between BAV patients with aortic dilatation and varying aortic valve stenosis (AS) severity and healthy subjects and aortopathy patients with normal TAV. STATISTICAL TESTS Multivariable regression, analysis of covariance (ANCOVA), Tukey's, student's (t), Mann-Whitney (U) tests, were used with significance levels P < 0.05 or P < 0.01 for post-hoc Bonferroni-corrected t/U tests. Bland-Altman and ICC calculations were performed. RESULTS Multivariable regression showed age with the most significant association for increased PWV in all groups (increase 0.073-0.156 m/sec/year, R2 = 0.30-48). No significant differences in aortic PWV were observed between groups without AS (P = 0.20-0.99), nor were associations between PWV and regurgitation or Sievers type observed (P = 0.60, 0.31 respectively). In contrast, BAV AS patients demonstrated elevated PWV and a significant relationship for AS severity with increased PWV (covariate: age, R2 = 0.48). BAV and TAV patients showed no association between aortic diameter and PWV (P = 0.73). DATA CONCLUSION No significant PWV differences were observed between BAV patients with normal valve function and control groups. However, AS severity and age in BAV patients were directly associated with PWV increases. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
| | - Michael B Scott
- Northwestern University, Radiology,Northwestern University, Bioengineering
| | | | | | | | | | | | | | | | - Alex J Barker
- University of Colorado Anschutz, Radiology, Bioengineering
| | - Michael Markl
- Northwestern University, Radiology,Northwestern University, Bioengineering
| |
Collapse
|
28
|
Pukaluk A, Wolinski H, Viertler C, Regitnig P, Holzapfel GA, Sommer G. Changes in the microstructure of the human aortic medial layer under biaxial loading investigated by multi-photon microscopy. Acta Biomater 2022; 151:396-413. [PMID: 35970481 DOI: 10.1016/j.actbio.2022.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/01/2022]
Abstract
Understanding the correlation between tissue architecture, health status, and mechanical properties is essential for improving material models and developing tissue engineering scaffolds. Since structural-based material models are state of the art, there is an urgent need for experimentally obtained structural parameters. For this purpose, the medial layer of nine human abdominal aortas was simultaneously subjected to equibiaxial loading and multi-photon microscopy. At each loading interval of 0.02, collagen and elastin fibers were imaged based on their second-harmonic generation signal and two-photon excited autofluorescence, respectively. The structural alterations in the fibers were quantified using the parameters of orientation, diameter, and waviness. The results of the mechanical tests divided the sample cohort into the ruptured and non-ruptured, and stiff and non-stiff groups, which were covered by the findings from histological investigations. The alterations in structural parameters provided an explanation for the observed mechanical behavior. In addition, the waviness parameters of both collagen and elastin fibers showed the potential to serve as indicators of tissue strength. The data provided address deficiencies in current material models and bridge multiscale mechanisms in the aortic media. STATEMENT OF SIGNIFICANCE: Available material models can reproduce, but cannot predict, the mechanical behavior of human aortas. This deficiency could be overcome with the help of experimentally validated structural parameters as provided in this study. Simultaneous multi-photon microscopy and biaxial extension testing revealed the microstructure of human aortic media at different stretch levels. Changes in the arrangement of collagen and elastin fibers were quantified using structural parameters such as orientation, diameter and waviness. For the first time, structural parameters of human aortic tissue under continuous loading conditions have been obtained. In particular, the waviness parameters at the reference configuration have been associated with tissue stiffness, brittleness, and the onset of atherosclerosis.
Collapse
Affiliation(s)
- Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Austria; Field of Excellence BioHealth - University of Graz, Austria
| | | | - Peter Regitnig
- Institute of Pathology, Medical University of Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, NTNU, Trondheim, Norway
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria.
| |
Collapse
|
29
|
Muneerungsee N, Tanasawet S, Moolsap F, Udomuksorn W, Tantisira M, Zaima N, Sukketsiri W. The standardized Centella asiatica extract suppressed the inflammation and apoptosis in macrophage-conditioned medium and nutrient stress-induced adipocytes. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
30
|
Hejazi M, Phani AS. On growth, buckling, and rupture of aneurysms in cylindrical tubes. J Biomech 2022; 144:111313. [DOI: 10.1016/j.jbiomech.2022.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 07/20/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022]
|
31
|
Thorsted B, Bjerregaard L, Jensen PS, Rasmussen LM, Lindholt JS, Bloksgaard M. Artificial intelligence assisted compositional analyses of human abdominal aortic aneurysms ex vivo. Front Physiol 2022; 13:840965. [PMID: 36072852 PMCID: PMC9441486 DOI: 10.3389/fphys.2022.840965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Quantification of histological information from excised human abdominal aortic aneurysm (AAA) specimens may provide essential information on the degree of infiltration of inflammatory cells in different regions of the AAA. Such information will support mechanistic insight in AAA pathology and can be linked to clinical measures for further development of AAA treatment regimens. We hypothesize that artificial intelligence can support high throughput analyses of histological sections of excised human AAA. We present an analysis framework based on supervised machine learning. We used TensorFlow and QuPath to determine the overall architecture of the AAA: thrombus, arterial wall, and adventitial loose connective tissue. Within the wall and adventitial zones, the content of collagen, elastin, and specific inflammatory cells was quantified. A deep neural network (DNN) was trained on manually annotated, Weigert stained, tissue sections (14 patients) and validated on images from two other patients. Finally, we applied the method on 95 new patient samples. The DNN was able to segment the sections according to the overall wall architecture with Jaccard coefficients after 65 epocs of 92% for the training and 88% for the validation data set, respectively. Precision and recall both reached 92%. The zone areas were highly variable between patients, as were the outputs on total cell count and elastin/collagen fiber content. The number of specific cells or stained area per zone was deterministically determined. However, combining the masks based on the Weigert stainings, with images of immunostained serial sections requires addition of landmark recognition to the analysis path. The combination of digital pathology, the DNN we developed, and landmark registration will provide a strong tool for future analyses of the histology of excised human AAA. In combination with biomechanical testing and microstructurally motivated mathematical models of AAA remodeling, the method has the potential to be a strong tool to provide mechanistic insight in the disease. In combination with each patients’ demographic and clinical profile, the method can be an interesting tool to in supportof a better treatment regime for the patients.
Collapse
Affiliation(s)
- Bjarne Thorsted
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Lisette Bjerregaard
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Pia S. Jensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- Odense Artery Biobank, Odense University Hospital, Odense, Denmark
- Center for Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark
| | - Lars M. Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- Odense Artery Biobank, Odense University Hospital, Odense, Denmark
- Center for Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark
| | - Jes S. Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
- Center for Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark
| | - Maria Bloksgaard
- Medical Molecular Pharmacology Laboratory, Cardiovascular and Renal Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- *Correspondence: Maria Bloksgaard,
| |
Collapse
|
32
|
Kugo H, Enomoto H, Yanagimoto K, Tanaka H, Moriyama T, Zaima N. Eicosapentaenoic acid is associated with the attenuation of dysfunctions of mesenchymal stem cells in the abdominal aortic aneurysm wall. Food Funct 2022; 13:7540-7547. [PMID: 35766346 DOI: 10.1039/d2fo01102f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disease characterized by progressive dilation of the aorta which is reportedly associated with inflammation. Previous studies suggested that eicosapentaenoic acid (EPA) has suppressive effects on AAA development via anti-inflammatory activities. However, relationships between the anti-inflammatory effects and the cells in the AAA wall are poorly understood. In this study, we visualized the distribution of EPA-containing phosphatidylcholine (EPA-PC) in the AAA wall. EPA-PC was not ubiquitously distributed in both animal (hypoperfusion-induced AAA model) and human AAA walls, suggesting the preferential incorporation of EPA into certain cells. In the EPA-PC-high region of both animal and human AAAs, mesenchymal stem cell (MSC) marker positive areas were significantly higher than those in the EPA-PC-low region. Matrix metalloproteinase-positive MSCs were significantly lower in the AAA wall of the animal model which was administered EPA-rich fish oil. These data suggest that EPA is associated with the attenuation of MSC dysfunctions, which result in the suppression of AAA development.
Collapse
Affiliation(s)
- Hirona Kugo
- Department of Applied Biological Chemistry, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan.
| | - Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan.,Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan.,Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan
| | | | - Hiroki Tanaka
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan. .,Agricultural Technology and Innovation Research Institute, Kindai University, 204-3327 Nakamachi, Nara City, Nara, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan. .,Agricultural Technology and Innovation Research Institute, Kindai University, 204-3327 Nakamachi, Nara City, Nara, Japan
| |
Collapse
|
33
|
Dalbosco M, Carniel TA, Fancello EA, Holzapfel GA. Multiscale simulations suggest a protective role of neo-adventitia in abdominal aortic aneurysms. Acta Biomater 2022; 146:248-258. [PMID: 35526737 DOI: 10.1016/j.actbio.2022.04.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/01/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are a dangerous cardiovascular disease, the pathogenesis of which is not yet fully understood. In the present work a recent mechanopathological theory, which correlates AAA progression with microstructural and mechanical alterations in the tissue, is investigated using multiscale models. The goal is to combine these changes, within the framework of mechanobiology, with possible mechanical cues that are sensed by vascular cells along the AAA pathogenesis. Particular attention is paid to the formation of a 'neo-adventitia' on the abluminal side of the aortic wall, which is characterized by a highly random (isotropic) distribution of collagen fibers. Macro- and micro-scale results suggest that the formation of an AAA, as expected, perturbs the micromechanical state of the aortic tissue and triggers a growth and remodeling (G&R) reaction by mechanosensing cells such as fibroblasts. This G&R then leads to the formation of a thick neo-adventitia that appears to bring the micromechanical state of the tissue closer to the original homeostatic level. In this context, this new layer could act like a protective sheath, similar to the tunica adventitia in healthy aortas. This potential 'attempt at healing' by vascular cells would have important implications on the stability of the AAA wall and thus on the risk of rupture. STATEMENT OF SIGNIFICANCE: Current clinical criteria for risk assessment in AAAs are still empirical, as the causes and mechanisms of the disease are not yet fully understood. The strength of the arterial tissue is closely related to its microstructure, which in turn is remodeled by mechanosensing cells in the course of the disease. In this study, multiscale simulations show a possible connection between mechanical cues at the microscopic level and collagen G&R in AAA tissue. It should be emphasized that these micromechanical cues cannot be visualized in vivo. Therefore, the results presented here will help to advance our current understanding of the disease and motivate future experimental studies, with important implications for AAA risk assessment.
Collapse
|
34
|
Niestrawska JA, Pukaluk A, Babu AR, Holzapfel GA. Differences in Collagen Fiber Diameter and Waviness between Healthy and Aneurysmal Abdominal Aortas. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-15. [PMID: 35545876 DOI: 10.1017/s1431927622000629] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Collagen plays a key role in the strength of aortic walls, so studying micro-structural changes during disease development is critical to better understand collagen reorganization. Second-harmonic generation microscopy is used to obtain images of human aortic collagen in both healthy and diseased states. Methods are being developed in order to efficiently determine the waviness, that is, tortuosity and amplitude, as well as the diameter, orientation, and dispersion of collagen fibers, and bundles in healthy and aneurysmal tissues. The results show layer-specific differences in the collagen of healthy tissues, which decrease in samples of aneurysmal aortic walls. In healthy tissues, the thick collagen bundles of the adventitia are characterized by greater waviness, both in the tortuosity and in the amplitude, compared to the relatively thin and straighter collagen fibers of the media. In contrast, most aneurysmal tissues tend to have a more uniform structure of the aortic wall with no significant difference in collagen diameter between the luminal and abluminal layers. An increase in collagen tortuosity compared to the healthy media is also observed in the aneurysmal luminal layer. The data set provided can help improve related material and multiscale models of aortic walls and aneurysm formation.
Collapse
Affiliation(s)
- Justyna A Niestrawska
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16, 8010Graz, Austria
| | - Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16, 8010Graz, Austria
| | - Anju R Babu
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16, 8010Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16, 8010Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), 7491Trondheim, Norway
| |
Collapse
|
35
|
Mackay CDA, Jadli AS, Fedak PWM, Patel VB. Adventitial Fibroblasts in Aortic Aneurysm: Unraveling Pathogenic Contributions to Vascular Disease. Diagnostics (Basel) 2022; 12:diagnostics12040871. [PMID: 35453919 PMCID: PMC9025866 DOI: 10.3390/diagnostics12040871] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/21/2022] Open
Abstract
Aortic aneurysm (AA) is a degenerative vascular disease that involves aortic dilatation, and, if untreated, it can lead to rupture. Despite its significant impact on the healthcare system, its multifactorial nature and elusive pathophysiology contribute to limited therapeutic interventions that prevent the progression of AA. Thus, further research into the mechanisms underlying AA is paramount. Adventitial fibroblasts are one of the key constituents of the aortic wall, and they play an essential role in maintaining vessel structure and function. However, adventitial fibroblasts remain understudied when compared with endothelial cells and smooth muscle cells. Adventitial fibroblasts facilitate the production of extracellular matrix (ECM), providing structural integrity. However, during biomechanical stress and/or injury, adventitial fibroblasts can be activated into myofibroblasts, which move to the site of injury and secrete collagen and cytokines, thereby enhancing the inflammatory response. The overactivation or persistence of myofibroblasts has been shown to initiate pathological vascular remodeling. Therefore, understanding the underlying mechanisms involved in the activation of fibroblasts and in regulating myofibroblast activation may provide a potential therapeutic target to prevent or delay the progression of AA. This review discusses mechanistic insights into myofibroblast activation and associated vascular remodeling, thus illustrating the contribution of fibroblasts to the pathogenesis of AA.
Collapse
Affiliation(s)
- Cameron D. A. Mackay
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
| | - Anshul S. Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
| | - Paul W. M. Fedak
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Vaibhav B. Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
- Correspondence: or ; Tel.: +1-(403)-220-3446
| |
Collapse
|
36
|
An ultrastructural 3D reconstruction method for observing the arrangement of collagen fibrils and proteoglycans in the human aortic wall under mechanical load. Acta Biomater 2022; 141:300-314. [PMID: 35065266 DOI: 10.1016/j.actbio.2022.01.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022]
Abstract
An insight into changes of soft biological tissue ultrastructures under loading conditions is essential to understand their response to mechanical stimuli. Therefore, this study offers an approach to investigate the arrangement of collagen fibrils and proteoglycans (PGs), which are located within the mechanically loaded aortic wall. The human aortic samples were either fixed directly with glutaraldehyde in the load-free state or subjected to a planar biaxial extension test prior to fixation. The aortic ultrastructure was recorded using electron tomography. Collagen fibrils and PGs were segmented using convolutional neural networks, particularly the ESPNet model. The 3D ultrastructural reconstructions revealed a complex organization of collagen fibrils and PGs. In particular, we observed that not all PGs are attached to the collagen fibrils, but some fill the spaces between the fibrils with a clear distance to the collagen. The complex organization cannot be fully captured or can be severely misinterpreted in 2D. The approach developed opens up practical possibilities, including the quantification of the spatial relationship between collagen fibrils and PGs as a function of the mechanical load. Such quantification can also be used to compare tissues under different conditions, e.g., healthy and diseased, to improve or develop new material models. STATEMENT OF SIGNIFICANCE: The developed approach enables the 3D reconstruction of collagen fibrils and proteoglycans as they are embedded in the loaded human aortic wall. This methodological pipeline comprises the knowledge of arterial mechanics, imaging with transmission electron microscopy and electron tomography, segmentation of 3D image data sets with convolutional neural networks and finally offers a unique insight into the ultrastructural changes in the aortic tissue caused by mechanical stimuli.
Collapse
|
37
|
Hossack M, Fisher R, Torella F, Madine J, Field M, Akhtar R. Micromechanical and Ultrastructural Properties of Abdominal Aortic Aneurysms. Artery Res 2022. [DOI: 10.1007/s44200-022-00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
AbstractAbdominal aortic aneurysms are a common condition of uncertain pathogenesis that can rupture if left untreated. Current recommended thresholds for planned repair are empirical and based entirely on diameter. It has been observed that some aneurysms rupture before reaching the threshold for repair whilst other larger aneurysms do not rupture. It is likely that geometry is not the only factor influencing rupture risk. Biomechanical indices aiming to improve and personalise rupture risk prediction require, amongst other things, knowledge of the material properties of the tissue and realistic constitutive models. These depend on the composition and organisation of the vessel wall which has been shown to undergo drastic changes with aneurysmal degeneration, with loss of elastin, smooth muscle cells, and an accumulation of isotropically arranged collagen. Most aneurysms are lined with intraluminal thrombus, which has an uncertain effect on the underlying vessel wall, with some authors demonstrating a reduction in wall stress and others a reduction in wall strength. The majority of studies investigating biomechanical properties of ex vivo abdominal aortic aneurysm tissues have used low-resolution techniques, such as tensile testing, able to measure the global material properties at the macroscale. High-resolution engineering techniques such as nanoindentation and atomic force microscopy have been modified for use in soft biological tissues and applied to vascular tissues with promising results. These techniques have the potential to advance the understanding and improve the management of abdominal aortic aneurysmal disease.
Collapse
|
38
|
Živić J, Virag L, Horvat N, Smoljkić M, Karšaj I. The risk of rupture and abdominal aortic aneurysm morphology: A computational study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3566. [PMID: 34919341 DOI: 10.1002/cnm.3566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/18/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Prediction of rupture and optimal timing for abdominal aortic aneurysm (AAA) surgical intervention remain wanting even after decades of clinical, histological, and numerical research. Although studies estimating rupture from AAA geometrical features from CT imaging showed some promising results, they are still not being used in practice. Patient-specific numerical stress analysis introduced too many assumptions about wall structure for the related rupture potential index (RPI) to be considered reliable. Growth and remodeling (G&R) numerical models eliminate some of these assumptions and thus might have the most potential to calculate mural stresses and RPI and increase our understanding of rupture. To recognize numerical models as trustworthy, it is necessary to validate the computed results with results derived from imaging. Elastin degradation function is one of the main factors that determine idealized aneurysm sac shape. Using a hundred different combinations of variables defining AAA geometry or influences AAA stability (elastin degradation function parameters, collagen mechanics, and initial healthy aortic diameters), we investigated the relationship between AAA morphology and RPI and compared numerical results with clinical findings. Good agreement of numerical results with clinical expectations from the literature gives us confidence in the validity of the numerical model. We show that aneurysm morphology significantly influences the stability of aneurysms. Additionally, we propose new parameters, geometrical rupture potential index (GRPI) and normalized aneurysm length (NAL), that might predict rupture of aneurysms without thrombus better than currently used criteria (i.e., maximum diameter and growth rate). These parameters can be computed quickly, without the tedious processing of CT images.
Collapse
Affiliation(s)
- Josip Živić
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | - Lana Virag
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | - Nino Horvat
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | | | - Igor Karšaj
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
39
|
Kessler V, Klopf J, Eilenberg W, Neumayer C, Brostjan C. AAA Revisited: A Comprehensive Review of Risk Factors, Management, and Hallmarks of Pathogenesis. Biomedicines 2022; 10:94. [PMID: 35052774 PMCID: PMC8773452 DOI: 10.3390/biomedicines10010094] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Despite declining incidence and mortality rates in many countries, the abdominal aortic aneurysm (AAA) continues to represent a life-threatening cardiovascular condition with an overall prevalence of about 2-3% in the industrialized world. While the risk of AAA development is considerably higher for men of advanced age with a history of smoking, screening programs serve to detect the often asymptomatic condition and prevent aortic rupture with an associated death rate of up to 80%. This review summarizes the current knowledge on identified risk factors, the multifactorial process of pathogenesis, as well as the latest advances in medical treatment and surgical repair to provide a perspective for AAA management.
Collapse
Affiliation(s)
| | | | | | | | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (V.K.); (J.K.); (W.E.); (C.N.)
| |
Collapse
|
40
|
Kugo H, Sukketsiri W, Iwamoto K, Suihara S, Moriyama T, Zaima N. Low glucose and serum levels cause an increased inflammatory factor in 3T3-L1 cell through Akt, MAPKs and NF-кB activation. Adipocyte 2021; 10:232-241. [PMID: 33896390 PMCID: PMC8078669 DOI: 10.1080/21623945.2021.1914420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) involves the degradation of vascular fibres, and dilation and rupture of the abdominal aorta. Hypoperfusion in the vascular walls due to stenosis of the vasa vasorum is reportedly a cause of AAA onset and involves the induction of adventitial ectopic adipocytes. Recent studies have reported that ectopic adipocytes are associated with AAA rupture in both human and hypoperfusion-induced animal models, highlighting the pathological importance of hypoperfusion and adipocytes in AAA. However, the relationship between hypoperfusion and AAA remains unknown. In this study, we investigated the changes in inflammation-related factors in adipocytes at low glucose and serum levels. Low glucose and serum levels enhanced the production of AAA-related factors in 3T3-L1 cells. Low glucose and serum levels increased the activation of protein kinase B (also known as Akt), extracellular signal-regulated protein kinase 1/2, p38, c-Jun N-terminal kinase, and nuclear factor (NF) кB at the protein level. The inflammatory factors and related signalling pathways were markedly decreased following the return of the cells to normal culture conditions. These data suggest that low glucose and serum levels increase the levels of inflammatory factors through the activation of Akt, mitogen activated protein kinase, and NF-κB signalling pathways.
Collapse
Affiliation(s)
- Hirona Kugo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
| | - Wanida Sukketsiri
- Department of Pharmacology, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kazuko Iwamoto
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
- Department of Health and Nutrition, Faculty of Health Science, Osaka Aoyama University, Minoh City, Japan
| | - Satoki Suihara
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| |
Collapse
|
41
|
Vignali E, Gasparotti E, Celi S, Avril S. Fully-Coupled FSI Computational Analyses in the Ascending Thoracic Aorta Using Patient-Specific Conditions and Anisotropic Material Properties. Front Physiol 2021; 12:732561. [PMID: 34744774 PMCID: PMC8564074 DOI: 10.3389/fphys.2021.732561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Computational hemodynamics has become increasingly important within the context of precision medicine, providing major insight in cardiovascular pathologies. However, finding appropriate compromise between speed and accuracy remains challenging in computational hemodynamics for an extensive use in decision making. For example, in the ascending thoracic aorta, interactions between the blood and the aortic wall must be taken into account for the sake of accuracy, but these fluid structure interactions (FSI) induce significant computational costs, especially when the tissue exhibits a hyperelastic and anisotropic response. The objective of the current study is to use the Small On Large (SOL) theory to linearize the anisotropic hyperelastic behavior in order to propose a reduced-order model for FSI simulations of the aorta. The SOL method is tested for fully-coupled FSI simulations in a patient-specific aortic geometry presenting an Ascending Thoracic Aortic Aneurysm (aTAA). The same model is also simulated with a fully-coupled FSI with non-linear material behavior, without SOL linearization. Eventually, the results and computational times with and without the SOL are compared. The SOL approach is demonstrated to provide a significant reduction of computational costs for FSI analysis in the aTAA, and the results in terms of stress state distribution are comparable. The method is implemented in ANSYS and will be further evaluated for clinical applications.
Collapse
Affiliation(s)
- Emanuele Vignali
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Emanuele Gasparotti
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Simona Celi
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Stéphane Avril
- Mines Saint-Etienne, Université de Lyon, INSERM, SaInBioSE U1059, Saint-Étienne, France
| |
Collapse
|
42
|
Mechanobiology of the arterial tissue from the aortic root to the diaphragm. Med Eng Phys 2021; 96:64-70. [PMID: 34565554 DOI: 10.1016/j.medengphy.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/26/2023]
Abstract
Arterial tissue microstructure and its mechanical properties directly correlate with cardiovascular diseases such as atherosclerosis and aneurysm. Experienced hemodynamic loads are the primary factor of arterial tissue remodeling. By virtue of altering hemodynamic loads along the arterial tree, respective structure-function relations will be region-dependent. Since, there is limited experimental evidence on these structure-function homeostases, the current study, aims to report microstructural and mechanical alterations along the aorta from the aortic root up to the diaphragm, where intense hemodynamic alterations take place. The ascending, arch, and descending parts of the same cadaveric aortas were investigated by histomechanical examinations. Anatomical landmarks were labeled on the specimens, and then biaxial tensile tests were conducted on samples from each region. Furthermore, area fractions of elastin and collagen were measured on stained sections of the tissue. Also, a fragmentation index of elastin tissue is proposed for quantitative measurement of ECM integrity, which correlates with the nature of experienced hemodynamic loads. For the ascending aorta and the aortic arch, different values for mechanical properties and fragmentation index are observed even in a specific cross-section of the artery. It is primarily due to the complex loading regimes and curved geometry. Conversely, microstructural and mechanical features along the descending aorta exhibited minimal variations, and hence, smooth blood flow and pressure waves are expected in this region, which is well-documented in the literature. Both of the microstructural and mechanical features of the aorta vary along the arterial tree depending on the hemodynamic and geometric complexities they incur and may shed light on the initiation of cardiovascular diseases.
Collapse
|
43
|
Coccarelli A, Carson JM, Aggarwal A, Pant S. A framework for incorporating 3D hyperelastic vascular wall models in 1D blood flow simulations. Biomech Model Mechanobiol 2021; 20:1231-1249. [PMID: 33683514 PMCID: PMC8298378 DOI: 10.1007/s10237-021-01437-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/12/2021] [Indexed: 12/02/2022]
Abstract
We present a novel framework for investigating the role of vascular structure on arterial haemodynamics in large vessels, with a special focus on the human common carotid artery (CCA). The analysis is carried out by adopting a three-dimensional (3D) derived, fibre-reinforced, hyperelastic structural model, which is coupled with an axisymmetric, reduced order model describing blood flow. The vessel transmural pressure and lumen area are related via a Holzapfel-Ogden type of law, and the residual stresses along the thickness and length of the vessel are also accounted for. After a structural characterization of the adopted hyperelastic model, we investigate the link underlying the vascular wall response and blood-flow dynamics by comparing the proposed framework results against a popular tube law. The comparison shows that the behaviour of the model can be captured by the simpler linear surrogate only if a representative value of compliance is applied. Sobol's multi-variable sensitivity analysis is then carried out in order to identify the extent to which the structural parameters have an impact on the CCA haemodynamics. In this case, the local pulse wave velocity (PWV) is used as index for representing the arterial transmission capacity of blood pressure waveforms. The sensitivity analysis suggests that some geometrical factors, such as the stress-free inner radius and opening angle, play a major role on the system's haemodynamics. Subsequently, we quantified the differences in haemodynamic variables obtained from different virtual CCAs, tube laws and flow conditions. Although each artery presents a distinct vascular response, the differences obtained across different flow regimes are not significant. As expected, the linear tube law is unable to accurately capture all the haemodynamic features characterizing the current model. The findings from the sensitivity analysis are further confirmed by investigating the axial stretching effect on the CCA fluid dynamics. This factor does not seem to alter the pressure and flow waveforms. On the contrary, it is shown that, for an axially stretched vessel, the vascular wall exhibits an attenuation in absolute distension and an increase in circumferential stress, corroborating the findings of previous studies. This analysis shows that the new model offers a good balance between computational complexity and physics captured, making it an ideal framework for studies aiming to investigate the profound link between vascular mechanobiology and blood flow.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK.
| | - Jason M Carson
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
- Data Science Building, Swansea University Medical School, Swansea University, Swansea, UK
- HDR-UK Wales and Northern Ireland, Health Data Research UK, London, UK
| | - Ankush Aggarwal
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Sanjay Pant
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
| |
Collapse
|
44
|
MiR-137 regulates low-intensity shear stress-induced human aortic endothelial cell apoptosis via JNK/AP-1 signaling. J Physiol Biochem 2021; 77:451-460. [PMID: 33893994 DOI: 10.1007/s13105-021-00812-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
The objective of this study is to evaluate the role of miR-137 in low-intensity shear stress-induced endoplasmic reticulum (ER) stress and cell apoptosis in human aortic endothelial cells (HAECs). HAECs were transfected with miR-137 mimic, miR-137 inhibitor, or the corresponding negative control and then exposed to pulsatile shear stress in a parallel-plate flow chamber at 1, 2, 5, 10, and 15 dyn/cm2 for 3 h. Real-time polymerase chain reaction was used to detect mRNA expression of miR-137 and SDS22. A dual-luciferase reporter assay was employed to verify the direct interaction between miR-137 and SDS22. The internal morphology of cells and cell apoptosis was assessed by TUNEL staining observed under a transmission electron microscope. Meanwhile, the protein expression of oxidative stress-related, apoptosis-related, and activated c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling-related genes were analyzed by western blotting. Low strength shear stress (0-5 dyn/cm2) caused a negative change of HAEC surface and internal morphology in an intensity-dependent manner, and these changes were gradually weakened when shear stress was increased more than 5 dyn/cm2. Furthermore, low-intensity shear stress promoted oxidative stress response, accelerated cell apoptosis, and upregulated miR-137 expression and JNK/AP-1 signaling in HAECs. MiR-137 directly targets SDS22. Knockdown of miR-137 noticeably reduced activation of JNK/AP-1 signaling, oxidative stress response, and cell apoptosis induced by shear stress. MiR-137 regulated low-intensity shear stress-induced human aortic endothelial cell ER stress and cell apoptosis via JNK/AP-1 signaling.
Collapse
|
45
|
Hejazi M, Hsiang Y, Srikantha Phani A. Fate of a bulge in an inflated hyperelastic tube: theory and experiment. Proc Math Phys Eng Sci 2021. [DOI: 10.1098/rspa.2020.0837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mechanical instability in a pre-tensioned finite hyperelastic tube subjected to a slowly increasing internal pressure produces a spatially localized bulge at a critical pressure. This instability is studied in controlled experiments on inflated latex rubber tubes, from the perspective of buckling observed in aneurysms and their rupture risk. The fate of the bulge under continued inflation is governed by the end-conditions and the initial tension in the tube. In a tube with one end fixed and a weight attached to the other freely moving end, the bulge propagates axially at low initial tension, growing in length, and the tube relaxes by extension without buckling. Rupture occurs when the tension is high. By contrast, the bulge formed in an initially stretched tube held fixed at both its ends can buckle or rupture, depending on the amount of initial tension. Experiments are reported for different initial tensions and boundary conditions (BCs). Failure maps in the stretch parameter space and in stretch–tension space are constructed by extending existing theories for bulge formation and buckling analyses to the experimentally relevant BCs. Failure maps deduced from the theory are compared against experiments, and the underlying assumptions are critically assessed. Experiments reveal that buckling provides an alternative route to relieve the stress built up during inflation. Hence, buckling, when it occurs, can be a protective fail-safe mechanism against the rupture of a bulge in an inflated elastic tube.
Collapse
Affiliation(s)
- Masoud Hejazi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - York Hsiang
- Division of Vascular Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - A. Srikantha Phani
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
46
|
Time-Dependent Pathological Changes in Hypoperfusion-Induced Abdominal Aortic Aneurysm. BIOLOGY 2021; 10:biology10020149. [PMID: 33672844 PMCID: PMC7917844 DOI: 10.3390/biology10020149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary Abdominal aortic aneurysm (AAA) is a vascular disease that involves gradual dilation of the abdominal aorta and has a high mortality due to rupture. Hypoperfusion due to the obstruction of vasa vasorum, which is a blood supply system in the aortic wall, may be an important factor involved in AAA pathophysiology. A time-dependent analysis is important to understand the pathological cascade following hypoperfusion in the aortic wall. In our study, time-dependent analysis using a hypoperfusion-induced animal model showed that the dynamics of many AAA-related factors might be associated with the increased hypoxia-inducible factor-1α level. Hypoperfusion due to stenosis of the vasa vasorum might be a new drug target for AAA therapeutics. Abstract Hypoperfusion due to vasa vasorum stenosis can cause wall hypoxia and abdominal aortic aneurysm (AAA) development. Even though hypoperfusion is an important contributor toward pathological changes in AAA, the correlation between hypoperfusion and AAA is not fully understood. In this study, a time-dependent semi-quantitative pathological analysis of hypoperfusion-induced aortic wall changes was performed to understand the mechanisms underlying the gradual degradation of the aortic wall leading to AAA formation. AAA-related factors evaluated in this study were grouped according to the timing of dynamic change, and five groups were formed as follows: first group: angiotensin II type 1 receptor, endothelin-1 (ET-1), and malondialdehyde (MDA); second group: matrix metalloproteinase (MMP)-2, -9, -12, M1 macrophages (Mac387+ cells), and monocyte chemotactic protein-1; third group: synthetic smooth muscle cells (SMCs); fourth group: neutrophil elastase, contractile SMCs, and angiotensinogen; and the fifth group: M2 macrophages (CD163+ cells). Hypoxia-inducible factor-1α, ET-1, MDA, and MMP-9 were colocalized with alpha-smooth muscle actin cells in 3 h, suggesting that hypoperfusion-induced hypoxia directly affects the activities of contractile SMCs in the initial stage of AAA. Time-dependent pathological analysis clarified the cascade of AAA-related factors. These findings provide clues for understanding complicated multistage pathologies in AAA.
Collapse
|
47
|
Kozuń M, Chwiłkowska A, Pezowicz C, Kobielarz M. Influence of atherosclerosis on anisotropy and incompressibility of the human thoracic aortic wall. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2020.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Derwich W, Wittek A, Hegner A, Fritzen CP, Blase C, Schmitz-Rixen T. Comparison of Abdominal Aortic Aneurysm Sac and Neck Wall Motion with 4D Ultrasound Imaging. Eur J Vasc Endovasc Surg 2020; 60:539-547. [DOI: 10.1016/j.ejvs.2020.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 12/28/2022]
|
49
|
Mantella LE, Chan W, Bisleri G, Hassan SMA, Liblik K, Benbarkat H, Rival DE, Johri AM. The use of ultrasound to assess aortic biomechanics: Implications for aneurysm and dissection. Echocardiography 2020; 37:1844-1850. [PMID: 32931051 DOI: 10.1111/echo.14856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/08/2020] [Accepted: 08/21/2020] [Indexed: 12/30/2022] Open
Abstract
Arterial stiffening, which occurs when conduit arteries thicken and lose elasticity, has been associated with cardiovascular disease and increased risk for future cardiovascular events. Specifically, aortic stiffening plays a large role in the pathogenesis of vascular diseases, such as aneurysm formation and dissection. Current parameters used to assess risk of aortic rupture include absolute diameter and growth rate. However, these properties lack the reliability required to accurately risk-stratify patients. As with any elastic conduit, it is important to assess the biomechanical properties of the aorta in order to assess cardiovascular risk and prevent disease progression. There are several invasive and noninvasive methods by which stiffness of the large arteries can be assessed. Of particular interest are ultrasound-based methods, such as tissue Doppler imaging and speckle-tracking echocardiography, due to their noninvasive and feasible nature. In this review, we summarize studies demonstrating utility of noninvasive ultrasound imaging methods for measuring aortic biomechanics for the assessment and management of aortic aneurysms.
Collapse
Affiliation(s)
- Laura E Mantella
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Winnie Chan
- Department of Medicine, Kingston General Hospital, Kingston, ON, Canada
| | - Gianluigi Bisleri
- Division of Cardiac Surgery, Kingston General Hospital, Kingston, ON, Canada
| | - Syed M Ali Hassan
- Division of Cardiac Surgery, Kingston General Hospital, Kingston, ON, Canada
| | - Kiera Liblik
- Department of Medicine, Kingston General Hospital, Kingston, ON, Canada
| | - Hanane Benbarkat
- Department of Medicine, Kingston General Hospital, Kingston, ON, Canada
| | - David E Rival
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada
| | - Amer M Johri
- Department of Medicine, Kingston General Hospital, Kingston, ON, Canada
| |
Collapse
|
50
|
Predictors of Abdominal Aortic Aneurysm Risks. Bioengineering (Basel) 2020; 7:bioengineering7030079. [PMID: 32707846 PMCID: PMC7552640 DOI: 10.3390/bioengineering7030079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
Computational biomechanics via finite element analysis (FEA) has long promised a means of assessing patient-specific abdominal aortic aneurysm (AAA) rupture risk with greater efficacy than current clinically used size-based criteria. The pursuit stems from the notion that AAA rupture occurs when wall stress exceeds wall strength. Quantification of peak (maximum) wall stress (PWS) has been at the cornerstone of this research, with numerous studies having demonstrated that PWS better differentiates ruptured AAAs from non-ruptured AAAs. In contrast to wall stress models, which have become progressively more sophisticated, there has been relatively little progress in estimating patient-specific wall strength. This is because wall strength cannot be inferred non-invasively, and measurements from excised patient tissues show a large spectrum of wall strength values. In this review, we highlight studies that investigated the relationship between biomechanics and AAA rupture risk. We conclude that combining wall stress and wall strength approximations should provide better estimations of AAA rupture risk. However, before personalized biomechanical AAA risk assessment can become a reality, better methods for estimating patient-specific wall properties or surrogate markers of aortic wall degradation are needed. Artificial intelligence methods can be key in stratifying patients, leading to personalized AAA risk assessment.
Collapse
|