1
|
Wu Y, Wang X, Song L, Zhao Z, Xia Y, Tang K, Wang H, Liu J, Wang Z. Tuning macrophage phenotype for enhancing patency rate and tissue regeneration of vascular grafts. Acta Biomater 2025; 198:245-256. [PMID: 40158766 DOI: 10.1016/j.actbio.2025.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Macrophages are primary immune cells that play a crucial role in tissue regeneration during the early stages of biomaterial implantation. They create a microenvironment that facilitates cell infiltration, angiogenesis, and tissue remodeling. In the field of vascular tissue engineering, numerous studies have been conducted to modulate the macrophage phenotype by designing various biomaterials, which in turn enhances the regenerative capacity and long-term patency of vascular grafts. However, the mechanism underlying the different phenotypes of macrophages involved in the tissue regeneration of vascular grafts remains unclear. In this study, vascular grafts loaded with various macrophage phenotypes were developed, and their effects were evaluated both in vivo and in vitro. The RAW 264.7 macrophages (M0) were initially treated with LPS or IL-4/IL-10 and polarized into M1 and M2 phenotypes. Subsequently, M0, M1, and M2 macrophages were seeded onto electrospun PCL scaffolds to obtain macrophage-loaded vascular grafts (PCL-M0, PCL-M1, and PCL-M2). As prepared vascular grafts were implanted into the mouse carotid artery for up to one month. The results indicate that the loading of M2 macrophages effectively enhances the patency rate and neotissue formation of vascular grafts. This is achieved through the development of a well-defined endothelium and smooth muscle layer. RNA sequencing was used to investigate the mechanisms of action of different macrophages on tissue regeneration. The study found that M1 macrophages inhibited tissue regeneration by mediating angiogenesis and chronic inflammation through upregulation of VEGFa, IL-1β, and IL-6 expression. In contrast, M2 macrophages regulate the immune microenvironment by upregulating the expression of IL-4 and TGF-β, thereby promoting tissue regeneration. In conclusion, our study demonstrates how different macrophage phenotypes contribute to the initial inflammatory microenvironment surrounding vascular grafts, thereby modulating the biological process of vascular remodeling. STATEMENT OF SIGNIFICANCE: Regulating the biophysical and biochemical characteristics of biomaterials can induce macrophage polarization and enhance vascular remodeling. In previous work, we fabricated a vascular graft with a macroporous structure that promoted macrophage infiltration and polarization into a pro-regenerative phenotype. To illustrate the mechanism, we established a new mouse model and evaluated the effects of different macrophages on vascular regeneration. The study revealed that tuning macrophage phenotype can impact the initial inflammatory microenvironment by secreting cytokines, which can increase the patency rate and regenerative capacity of vascular grafts. These findings provide essential theoretical support for the development of immunoregulatory scaffolds for vascular and other tissue regeneration.
Collapse
Affiliation(s)
- Yifan Wu
- College of Life Sciences, Tiangong University, Tianjin 300387, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xixi Wang
- College of Life Sciences, Tiangong University, Tianjin 300387, China; Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Lili Song
- College of Life Sciences, Tiangong University, Tianjin 300387, China; Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhe Zhao
- College of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Ying Xia
- College of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Kai Tang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing 100037, China
| | - Huiquan Wang
- College of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhihong Wang
- Institute of Transplant Medicine, School of Medicine, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Li X, Zhang X, Wang Y, Ji S, Zhao Z, Yin J, Yang T, Feng X, Chen H, Li W, Wang X, Jing C, Ding D, Zhao L. Preparation and Evaluation of RGD-Conjugated Crosslinked PVA Tissue Engineered Vascular Scaffold with Endothelial Differentiation and Its Impact on Vascular Regeneration In Vivo. Macromol Biosci 2025; 25:e2400554. [PMID: 39985427 DOI: 10.1002/mabi.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/03/2025] [Indexed: 02/24/2025]
Abstract
PVA has emerged as a prevalent material for the construction of vascular tissue engineering scaffolds. Nonetheless, the integration of 3D crosslinked polyvinyl alcohol (PVA) scaffolds featuring arginine-glycine-aspartate (RGD) binding remains a rarity in tissue engineering. In the present study, a PVA-4-azidobenzoic acid (AZ)-RGD scaffold is prepared based on cross-linking of two distinct PVA derivatives: one featuring photoreactive azides for ultraviolet (UV)-crosslinking and the other incorporating RGD peptides. The results show that the PVA-AZ-RGD scaffold has good blood compatibility and biomechanical properties, with hydrophilic properties, and a hydrolysis rate of 27.31% at 12 weeks. Notably, the incorporation of RGD peptides significantly bolsters the attachment and proliferation of mesenchymal stem cells (MSCs) on the scaffolds, compared to non-RGD-conjugated controls. Furthermore, RGD conjugation markedly accelerates endothelialization of MSCs following 15 days of endothelial culture. Post-transplantation, the PVA-AZ-RGD scaffold exhibits favorable blood flow patency, minimal immune rejection, promotes endothelialization and smooth muscle cell proliferation, and facilitates the development of extracellular matrix, ultimately contributing to the formation of regenerative artificial blood vessels. These comprehensive findings underscore the promising potential of RGD-integrated, crosslinked PVA scaffolds for applications in vascular tissue engineering.
Collapse
Affiliation(s)
- Xiafei Li
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xuewei Zhang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yameng Wang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shenglu Ji
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ziwei Zhao
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jianshen Yin
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tuo Yang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xin Feng
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Huaihe hospital, Henan University, Kaifeng, 475004, China
| | - Hongli Chen
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Wenbin Li
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China
| | - Changqin Jing
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Liang Zhao
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| |
Collapse
|
3
|
Teng Y, Zhang X, Song L, Yang J, Li D, Shi Z, Guo X, Wang S, Fan H, Jiang L, Hou S, Ramakrishna S, Lv Q, Shi J. Construction of anti-calcification small-diameter vascular grafts using decellularized extracellular matrix/poly (L-lactide-co-ε-caprolactone) and baicalin-cathepsin S inhibitor. Acta Biomater 2025; 197:184-201. [PMID: 40120837 DOI: 10.1016/j.actbio.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
The long-term transplantation of small-diameter vascular grafts (SDVGs) is associated with a risk of calcification, which is a key factor limiting the clinical translation of SDVG. Hence, there is an urgency attached to the development of new SDVGs with anti-calcification properties. Here, we used decellularized extracellular matrix (dECM) and poly (L-lactide-co-ε-caprolactone) (PLCL) as base materials and combined these with baicalin, cathepsin S (Cat S) inhibitor to prepare PBC-SDVGs by electrospinning. Baicalin contains carboxyl and hydroxyl groups that can interact with chemical groups in dECM powder, potentially blocking calcium nucleation sites. Cat S inhibitor prevents elastin degradation and further reduces the risk of calcification. PBC-SDVGs were biocompatible and when implanted in rat abdominal aorta, accelerated endothelialization, enhanced vascular tissue regeneration, inhibited elastin degradation, and promoted macrophage polarization M2 phenotype to regulate inflammation. After 3 months of implantation, the results of Doppler ultrasound, MicroCT, and histological staining revealed a significant reduction in calcification. In summary, the developed anti-calcification SDVGs offer a promising strategy for long-term implantation with significant clinical application potential. STATEMENT OF SIGNIFICANCE: The dECM and PLCL were used as base materials, connected with baicalin, and loaded with Cat S inhibitor to prepare PBC-SDVGs. The baicalin and dECM powder formed hydrogen bonds to crosslink together reducing the calcium deposition. In vitro, the vascular graft downregulated the expression level of osteogenic genes and promoted macrophage polarization toward an anti-inflammatory M2 phenotype, thereby reducing calcification. The PBC-SDVGs implanted in rat abdominal aorta can accelerate endothelialization, enhance vascular tissue regeneration, inhibit elastin degradation, reduce inflammation response and calcification.
Collapse
Affiliation(s)
- Yanjiao Teng
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China
| | - Xiaohai Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210000, PR China
| | - Lin Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210000, PR China
| | - Jianing Yang
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China
| | - Duo Li
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China
| | - Ziqi Shi
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China
| | - Xiaoqin Guo
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Haojun Fan
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China
| | - Li Jiang
- Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin 300021, PR China
| | - Shike Hou
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore.
| | - Qi Lv
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China.
| | - Jie Shi
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China.
| |
Collapse
|
4
|
Zhang J, Li Y, Xiang Z, Pu H, Ji C, Ren X, Fu D, Wang Y. In Situ H 2S-Releasing Stents Optimize Vascular Healing. ACS NANO 2025; 19:12864-12882. [PMID: 40159867 DOI: 10.1021/acsnano.4c16345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Stent implantation remains a cornerstone of interventional cardiology, providing a minimally invasive solution to restore blood flow in occluded vessels. However, current stents face persistent challenges in simultaneously preventing neointimal hyperplasia and promoting reendothelialization, compromising their long-term efficacy. To address these limitations, we developed an in situ H2S-releasing polymer brush-coated stent that actively modulates material-blood interactions, creating a favorable microenvironment for vascular healing. H2S enhances the stent's antithrombotic properties by inhibiting fibrinogen binding and platelet activation, while also mitigating oxidative stress and promoting macrophage polarization toward the anti-inflammatory M2 phenotype. In vivo, the H2S-releasing stents significantly improved vascular healing by accelerating endothelialization and inhibiting smooth muscle cell overproliferation, resulting in a thinner neointima with functional endothelial coverage. Transcriptomic analysis further elucidated the underlying mechanisms, revealing H2S-mediated modulation of key biological pathways that support vascular healing. These findings underscore the potential of in situ H2S release as an effective strategy for optimizing vascular implants and improving long-term outcomes.
Collapse
Affiliation(s)
- Jiayi Zhang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Yang Li
- Department of Vascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhen Xiang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongxia Pu
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Cheng Ji
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Xingrong Ren
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Daihua Fu
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Zhang C, Wang C, Cha R, Meng Q, Hu Z, Sun Y, Li Z, Xiao M, Zhang Y, Jiang X. Rapid Preparation of Collagen/Red Blood Cell Membrane Tubes for Stenosis-Free Vascular Regeneration. ACS NANO 2025; 19:3293-3311. [PMID: 39806273 DOI: 10.1021/acsnano.4c11919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects. Here, we rapidly prepared an electrospinning film-collagen/red blood cell membrane-genipin hydrogel tube (ES-C/Rm-G-ht, ID = 2 mm) by the combination of the cross-linking of genipin, plastic compression, electrospinning, and rolling without a biological adhesive, which had a shorter preparation time of less than 17 h compared to the existing ECM-based SDVGs (preparation time of 4-18 weeks). ES-C/Rm-G-ht exhibited a layered honeycomb-like structure and demonstrated the ECM-like functions to promote the proliferation and migration of endothelial cells, and prevent thrombus and inflammation. Furthermore, ES-C/Rm-G-ht, possessing sufficient mechanical strength, showed high patency, rapid endothelialization (95%), good regeneration of smooth muscle cell layers and ECM, and effective antistenosis capability after implantation in the rabbit's carotid artery for 31 days. This work provides a straightforward, cost-effective, and promising strategy to prepare SDVGs with ECM-like structure and function, which is an ideal alternative for vascular grafts and autologous vessels in the current clinic.
Collapse
Affiliation(s)
- Chunliang Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China
- The Ninth Medical Center of PLA General Hospital, No. 9 Anxiang Beili, Chaoyang District, Beijing 100101, PR China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Chunyuan Wang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing 100037, PR China
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China
| | - Qinghua Meng
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China
| | - Zhan Hu
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing 100037, PR China
| | - Yang Sun
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing 100037, PR China
| | - Zulan Li
- The Ninth Medical Center of PLA General Hospital, No. 9 Anxiang Beili, Chaoyang District, Beijing 100101, PR China
| | - Min Xiao
- The Ninth Medical Center of PLA General Hospital, No. 9 Anxiang Beili, Chaoyang District, Beijing 100101, PR China
| | - Yan Zhang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing 100037, PR China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
6
|
Liang C, Wang Y, Zhao R, Du J, Yao J, Khan AUR, Zhu Y, Xia H, Zhu T. Multifunctional hybrid poly(ester-urethane)urea/resveratrol electrospun nanofibers for a potential vascularizing matrix. SOFT MATTER 2025; 21:55-67. [DOI: doi:10.1039/d4sm00937a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
P/R-1.0 nanofiber with excellent antioxidant, blood and cell compatibility fibricated via electrospinning for a potential vascularizing matrix.
Collapse
Affiliation(s)
- Chen Liang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China
| | - Yanan Wang
- Department of Minimally Invasive Spine Surgery, Shandong Wendeng Orthopedic Hospital, 1 Fengshan Rd., Weihai 264400, Shandong, P. R. China
| | - Renliang Zhao
- Orthopedics Research Institute, Trauma Medical Center, Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Ln., Chengdu 610041, Sichuan, P. R. China
| | - Juan Du
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China
| | - Jin Yao
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China
| | - Atta ur Rehman Khan
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd., Shanghai 200025, P. R. China
- Shanghai Key Laboratory of Pancreatic Neoplasms Translational Medicine, 197 Ruijin 2nd Rd., Shanghai 200025, P. R. China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd., Shanghai 200025, P. R. China
| | - Huitang Xia
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Rd., Jinan 250014, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, 16766 Jingshi Rd., Jinan 250014, Shangdong, P. R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China
| |
Collapse
|
7
|
Liang C, Wang Y, Zhao R, Du J, Yao J, Khan AUR, Zhu Y, Xia H, Zhu T. Multifunctional hybrid poly(ester-urethane)urea/resveratrol electrospun nanofibers for a potential vascularizing matrix. SOFT MATTER 2024; 21:55-67. [PMID: 39624984 DOI: 10.1039/d4sm00937a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
The challenges for clinical application of small-diameter vascular graft are mainly acute/chronic thrombosis, inadequate endothelialization, intimal hyperplasia caused by inflammation, oxidative stress, and the mismatch of mechanical compliance after transplantation. How to construct an effective regenerative microenvironment through a material with uniform dispersion of active components is the premise of maintaining patency of a vascular graft. In this study, we have compounded poly(ester-urethane)urea (PEUU) with various optimized concentrations of resveratrol (Res) by homogeneous emulsion blending, followed by electrospinning into the hybrid PEUU/Res nanofibers (P/R-0, P/R-0.5, P/R-1.0, and P/R-1.5). Then the microstructure, surface wettability, mechanical properties, degradation, Res sustained release properties, hemocompatibility, and cytocompatibility of P/R were evaluated comprehensively. The results indicate that Res can be gradually released from the P/R, and both the hydrophilicity and antioxidant ability of the nanofiber gradually increase with the increase of Res content. Moreover, with the increase of Res, the viability and proliferation behavior of HUVECs were significantly improved. Meanwhile, tube formation and migration experiments showed that Res promoted the formation of a neovascularization network. In brief, it is concluded that P/R-1.0 is the optimal candidate with a uniform microstructure, moderate wettability, optimized mechanical properties, reliable hemocompatibility and cytocompatibility, and strongest ability to promote endothelial growth for the vascularizing matrix.
Collapse
Affiliation(s)
- Chen Liang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| | - Yanan Wang
- Department of Minimally Invasive Spine Surgery, Shandong Wendeng Orthopedic Hospital, 1 Fengshan Rd., Weihai 264400, Shandong, P. R. China
| | - Renliang Zhao
- Orthopedics Research Institute, Trauma Medical Center, Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Ln., Chengdu 610041, Sichuan, P. R. China
| | - Juan Du
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| | - Jin Yao
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| | - Atta Ur Rehman Khan
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd., Shanghai 200025, P. R. China.
- Shanghai Key Laboratory of Pancreatic Neoplasms Translational Medicine, 197 Ruijin 2nd Rd., Shanghai 200025, P. R. China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd., Shanghai 200025, P. R. China
| | - Huitang Xia
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Rd., Jinan 250014, Shandong, P. R. China.
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, 16766 Jingshi Rd., Jinan 250014, Shangdong, P. R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| |
Collapse
|
8
|
Wang Z, Zhou M, Li M, Li J, Zhang S, Wang J. Tailored endothelialization enabled by engineered endothelial cell vesicles accelerates remodeling of small-diameter vascular grafts. Bioact Mater 2024; 41:127-136. [PMID: 39131628 PMCID: PMC11314893 DOI: 10.1016/j.bioactmat.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Current gold standard for the replacement of small-diameter blood vessel (ID < 4 mm) is still to utilize the autologous vessels of patients due to the limitations of small-diameter vascular grafts (SDVG) on weak endothelialization, intimal hyperplasia and low patency. Herein, we create the SDVG with the tailored endothelialization by applying the engineered endothelial cell vesicles to camouflaging vascular grafts for the enhancement of vascular remodeling. The engineered endothelial cell vesicles were modified with azide groups (ECVs-N3) through metabolic glycoengineering to precisely link the vascular graft made of PCL-DBCO via click chemistry, and thus fabricating ECVG (ECVs-N3 modified SDVG), which assists inhibition of platelet adhesion and activation, promotion of ECs adhesion and enhancement of anti-inflammation. Furthermore, In vivo single-cell transcriptome analysis revealed that the proportion of ECs in the cell composition of ECVG surpassed that of PCL, and the tailored endothelialization enabled to convert endothelial cells (ECs) into some specific ECs clusters. One of the specific cluster, Endo_C5 cluster, was only detected in ECVG. Consequently, our study integrates the engineered membrane vesicles of ECVs-N3 from native ECs for tailored endothelialization on SDVG by circumventing the limitations of living cells, and paves a new way to construct the alternative endothelialization in vessel remodeling following injury.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengxue Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengyu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianglin Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
9
|
Zhou S, Liu Y, Yu X, Wang D, Wang X, Li Q. Bidirectional Elastic PTFE Small Diameter Artificial Blood Vessel Grafts and Surface Antithrombotic Functionalized Construction. ACS APPLIED BIO MATERIALS 2024; 7:6985-6997. [PMID: 39381979 DOI: 10.1021/acsabm.4c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Expanded polytetrafluoroethylene (ePTFE) failed to achieve clinical application in the field of small-diameter blood vessels due to its lack of elasticity in the circumferential direction and high stiffness. Excellent multidirectional elasticity and dynamic compliance matching with natural blood vessels are important means to solve the problem of acute thrombosis and poor long-term patency. Herein, novel PTFE spinning blood vessels were prepared by the PTFE emulsion electrospinning process, which not only presented good bidirectional elasticity but also promoted the adhesion and proliferation of endothelial cells and induced the contractile expression of SMCs. And, a PTFE-shish and aminated polycaprolactone (PCL)-kebab structure has been developed that converted the chemically inert PTFE surface into a drug-loading platform for the multifunctionalization of PTFE vascular grafts. It provides novel preparation methods for the application of new bidirectional elastic small-diameter artificial blood vessels and their surface functionalization construction.
Collapse
Affiliation(s)
- Siqi Zhou
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yulu Liu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xueke Yu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Dongfang Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Ma W, Liu Z, Zhu T, Wang L, Du J, Wang K, Xu C. Fabric-Enhanced Vascular Graft with Hierarchical Structure for Promoting the Regeneration of Vascular Tissue. Adv Healthc Mater 2024; 13:e2302676. [PMID: 38279911 DOI: 10.1002/adhm.202302676] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Natural blood vessels have completed functions, including elasticity, compliance, and excellent antithrombotic properties because of their mature structure. To replace damaged blood vessels, vascular grafts should perform these functions by simulating the natural vascular structures. Although the structures of natural blood vessels are thoroughly explored, constructing a small-diameter vascular graft that matches the mechanical and biological properties of natural blood vessels remains a challenge. A hierarchical vascular graft is fabricated by Electrospinning, Braiding, and Thermally induced phase separation (EBT) processes, which could simulate the structure of natural blood vessels. The internal electrospun structure facilitates the adhesion of endothelial cells, thereby accelerating endothelialization. The intermediate PLGA fabric exhibits excellent mechanical properties, which allow it to maintain its shape during long-term transplantation and prevent graft expansion. The external macroporous structure is beneficial for cell growth and infiltration. Blood vessel remodeling aims to combine a structure that promotes tissue regeneration with anti-inflammatory materials. The results in vitro demonstrated that it EBT vascular graft (EBTVG) has matched the mechanical properties, reliable cytocompatibility, and the strongest endothelialization in situ. The results in vitro and replacement of the resected artery in vivo suggest that the EBTVG combines different structural advantages with biomechanical properties and reliable biocompatibility, significantly promoting the stabilization and regeneration of vascular endothelial cells and vascular smooth muscle cells, as well as stabilizing the blood microenvironment.
Collapse
Affiliation(s)
- Wenxin Ma
- Multidisciplinary Centre for Advanced Materials, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
- School of Textiles and Fashion, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Zhuo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Xueyuan Rd., Shanghai, 200032, P. R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Liming Wang
- School of Textiles and Fashion, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Juan Du
- Multidisciplinary Centre for Advanced Materials, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Kun Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Key Laboratory of Metabolism and Gastrointestinal Tumors, the First Affiliated Hospital of Shandong First Medical University, Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Shandong Medicine and Health Key Laboratory of General Surgery, 16766 Jingshi Rd., Jinan, 250014, P. R. China
| | - Chen Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Xueyuan Rd., Shanghai, 200032, P. R. China
| |
Collapse
|
11
|
Serpelloni S, Williams ME, Caserta S, Sharma S, Rahimi M, Taraballi F. Electrospun Chitosan-Based Nanofibrous Coating for the Local and Sustained Release of Vancomycin. ACS OMEGA 2024; 9:11701-11717. [PMID: 38496925 PMCID: PMC10938330 DOI: 10.1021/acsomega.3c08113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
As the population ages, the number of vascular surgery procedures performed increases. Older adults often have multiple comorbidities, such as diabetes and hypertension, that increase the risk of complications from vascular surgery including vascular graft infection (VGI). VGI is a serious complication with significant morbidity, mortality, and healthcare costs. Here, we aimed to develop a nanofibrous chitosan-based coating for vascular grafts loaded with different concentrations of the vancomycin antibiotic vancomycin (VAN). Blending chitosan with poly(vinyl alcohol) or poly(ethylene oxide) copolymers improved solubility and ease of spinning. Thermal gravimetric analysis and Fourier transform infrared spectroscopy confirmed the presence of VAN in the nanofibrous membranes. Kinetics of VAN release from the nanofibrous mats were evaluated using high-performance liquid chromatography, showing a burst followed by sustained release over 24 h. To achieve longer sustained release, a poly(lactic-co-glycolic acid) coating was applied, resulting in extended release of up to 7 days. Biocompatibility assessment using human umbilical vein endothelial cells demonstrated successful attachment and viability of the nanofiber patches. Our study provides insights into the development of a drug delivery system for vascular grafts aimed at preventing infection during implantation, highlighting the potential of electrospinning as a promising technique in the field of vascular surgery.
Collapse
Affiliation(s)
- Stefano Serpelloni
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Department
of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan 20133, Italy
- Department
of Orthopedics and Sport Medicine, Houston
Methodist Hospital, Houston, Texas 77030-2707, United States
| | - Michael Ellis Williams
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Reproductive
Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8QA, U.K.
| | - Sergio Caserta
- Department
of Chemical Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80138, Italy
| | - Shashank Sharma
- Department
of Cardiovascular Surgery, Houston Methodist
Hospital, Houston, Texas 77030-2707, United States
| | - Maham Rahimi
- Department
of Cardiovascular Surgery, Houston Methodist
Hospital, Houston, Texas 77030-2707, United States
| | - Francesca Taraballi
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Department
of Orthopedics and Sport Medicine, Houston
Methodist Hospital, Houston, Texas 77030-2707, United States
| |
Collapse
|
12
|
Li Y, Liu S, Zhang J, Wang Y, Lu H, Zhang Y, Song G, Niu F, Shen Y, Midgley AC, Li W, Kong D, Zhu M. Elastic porous microspheres/extracellular matrix hydrogel injectable composites releasing dual bio-factors enable tissue regeneration. Nat Commun 2024; 15:1377. [PMID: 38355941 PMCID: PMC10866888 DOI: 10.1038/s41467-024-45764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Injectable biomaterials have garnered increasing attention for their potential and beneficial applications in minimally invasive surgical procedures and tissue regeneration. Extracellular matrix (ECM) hydrogels and porous synthetic polymer microspheres can be prepared for injectable administration to achieve in situ tissue regeneration. However, the rapid degradation of ECM hydrogels and the poor injectability and biological inertness of most polymeric microspheres limit their pro-regenerative capabilities. Here, we develop a biomaterial system consisting of elastic porous poly(l-lactide-co-ε-caprolactone) (PLCL) microspheres mixed with ECM hydrogels as injectable composites with interleukin-4 (IL-4) and insulin-like growth factor-1 (IGF-1) dual-release functionality. The developed multifunctional composites have favorable injectability and biocompatibility, and regulate the behavior of macrophages and myogenic cells following injection into muscle tissue. The elicited promotive effects on tissue regeneration are evidenced by enhanced neomusle formation, vascularization, and neuralization at 2-months post-implantation in a male rat model of volumetric muscle loss. Our developed system provides a promising strategy for engineering bioactive injectable composites that demonstrates desirable properties for clinical use and holds translational potential for application as a minimally invasive and pro-regenerative implant material in multiple types of surgical procedures.
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Siyang Liu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jingjing Zhang
- Chifeng Municipal Hospital, Chifeng, 024000, Inner Mongolia, China
| | - Yumeng Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Hongjiang Lu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yuexi Zhang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| | - Guangzhou Song
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Fanhua Niu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yufan Shen
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Wen Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Deling Kong
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Meifeng Zhu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
13
|
Xu Y, Saiding Q, Zhou X, Wang J, Cui W, Chen X. Electrospun fiber-based immune engineering in regenerative medicine. SMART MEDICINE 2024; 3:e20230034. [PMID: 39188511 PMCID: PMC11235953 DOI: 10.1002/smmd.20230034] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/26/2024] [Indexed: 08/28/2024]
Abstract
Immune engineering, a burgeoning field within regenerative medicine, involves a spectrum of strategies to optimize the intricate interplay between tissue regenerative biomaterials and the host tissue. These strategies are applied across different types of biomaterials and various disease models, which encompasses finely modulating the immune response at the levels of immune cells and factors, aiming to mitigate adverse effects like fibrosis and persistent inflammation that may arise at the injury site and consequently promote tissue regeneration. With the continuous progress in electrospinning technology, the immunoregulatory capabilities of electrospun fibers have gained substantial attention over the years. Electrospun fibers, with their extracellular matrix-like characteristics, high surface-area-to-volume ratio, and reliable pharmaceutical compound capacity, have emerged as key players among tissue engineering materials. This review specifically focuses on the role of electrospun fiber-based immune engineering, emphasizing their unique design strategies. Notably, electrospinning actively engages in immune engineering by modulating immune responses through four essential strategies: (i) surface modification, (ii) drug loading, (iii) physicochemical parameters, and (iv) biological grafting. This review presents a comprehensive overview of the intricate mechanisms of the immune system in injured tissues while unveiling the key strategies adopted by electrospun fibers to orchestrate immune regulation. Furthermore, the review explores the current developmental trends and limitations concerning the immunoregulatory function of electrospun fibers, aiming to drive the advancements in electrospun fiber-based immune engineering to its full potential.
Collapse
Affiliation(s)
- Yiru Xu
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Qimanguli Saiding
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue Zhou
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xinliang Chen
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| |
Collapse
|
14
|
Ferrari PF, Aliakbarian B, Barisione C, Kahn CJF, Arab-Tehrany E, Palombo D, Perego P. Engineering of poly(caprolactone) and poly(glycerol sebacate) small-diameter vascular prosthesis with quercetin. J Biomed Mater Res A 2023; 111:1500-1512. [PMID: 37128974 DOI: 10.1002/jbm.a.37535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/31/2023] [Accepted: 03/08/2023] [Indexed: 05/03/2023]
Abstract
The fabrication of biodegradable, bioabsorbable, and biocompatible vascular scaffolds with enhanced mechanical and biological properties that are able to modulate local inflammation and induce endothelialization after surgical implant is still a challenge. In this work, a fibrous scaffold, made of poly(ε-caprolactone) and poly(glycerol sebacate), was fabricated to be potentially used as a small-diameter graft in vascular surgery. The novelty of this research is represented by the direct incorporation of quercetin, a well-known antioxidant compound with several biological properties, into a polymeric scaffold obtaining a vascular construct able to modulate two key factors involved in postsurgical inflammation, matrix metalloproteinase-9 and endothelial nitric oxide synthase. For its production, an electrospinning apparatus, a solution made of the two polymers (both 20% (w/v), mixed at the ratio 1:1 (v/v)), and free quercetin (0.05% (w/v)) were used. Scanning electron and atomic force microscopies were employed to investigate the morphological properties of the fabricated electrospun scaffolds. Furthermore, physicochemical properties, including Fourier-transform infrared spectroscopy, mass loss, fluid uptake, quercetin release, mechanical properties, and biological activity of the scaffolds were studied. The expression of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and of endothelial nitric oxide synthase was evaluated when the quercetin-functionalized scaffold was exposed to human endothelial cells treated with tumor necrosis factor-α. The results of this study confirmed the feasibility of incorporating free quercetin during the electrospinning process to impart biological properties to small-diameter vascular prostheses.
Collapse
Affiliation(s)
- Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145, Genoa, Italy
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145, Genoa, Italy
| | - Bahar Aliakbarian
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan, USA
- The Axia Institute, Michigan State University, Midland, Michigan, USA
| | - Chiara Barisione
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145, Genoa, Italy
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, viale Benedetto XV, 6, 16132, Genoa, Italy
| | | | | | - Domenico Palombo
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145, Genoa, Italy
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, viale Benedetto XV, 6, 16132, Genoa, Italy
- Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145, Genoa, Italy
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145, Genoa, Italy
| |
Collapse
|
15
|
Ding K, Yu X, Wang D, Wang X, Li Q. Small diameter expanded polytetrafluoroethylene vascular graft with differentiated inner and outer biomacromolecules for collaborative endothelialization, anti-thrombogenicity and anti-inflammation. Colloids Surf B Biointerfaces 2023; 229:113449. [PMID: 37506438 DOI: 10.1016/j.colsurfb.2023.113449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
Without differentiated inner and outer biological function, expanded polytetrafluoroethylene (ePTFE) small-diameter (<6 mm) artificial blood vessels would fail in vivo due to foreign body rejection, thrombosis, and hyperplasia. In order to synergistically promote endothelialization, anti-thrombogenicity, and anti-inflammatory function, we modified the inner and outer surface of ePTFE, respectively, by grafting functional biomolecules, such as heparin and epigallocatechin gallate (EGCG), into the inner surface and polyethyleneimine and rapamycin into the outer surface via layer-by-layer self-assembly. Fourier-transform infrared spectroscopy showed the successful incorporation of EGCG, heparin, and rapamycin. The collaborative release profile of heparin and rapamycin lasted for 42 days, respectively. The inner surface promoted human umbilical vein endothelial cells (HUVECs) adhesion and growth and that the outer surface inhibited smooth muscle cells growth and proliferation. The modified ePTFE effectively regulated the differentiation behavior of RAW264.7, inhibited the expression of proinflammatory mediator TNF-α, and up-regulated the expression of anti-inflammatory genes Arg1 and Tgfb-1. The ex vivo circulation results indicated that the occlusions and total thrombus weight of modified ePTFE was much lower than that of the thrombus formed on the ePTFE, presenting good anti-thrombogenic properties. Hence, the straightforward yet efficient synergistic surface functionalization approach presented a potential resolution for the prospective clinical application of small-diameter ePTFE blood vessel grafts.
Collapse
Affiliation(s)
- Kangjia Ding
- School of Materials science & Engineering, Zhengzhou University, Zhengzhou 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xueke Yu
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China
| | - Dongfang Wang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China; School of Mechanics and safety Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Xiaofeng Wang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China; School of Mechanics and safety Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qian Li
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
16
|
Shi J, Teng Y, Li D, He J, Midgley AC, Guo X, Wang X, Yang X, Wang S, Feng Y, Lv Q, Hou S. Biomimetic tri-layered small-diameter vascular grafts with decellularized extracellular matrix promoting vascular regeneration and inhibiting thrombosis with the salidroside. Mater Today Bio 2023; 21:100709. [PMID: 37455822 PMCID: PMC10339197 DOI: 10.1016/j.mtbio.2023.100709] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/20/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Small-diameter vascular grafts (SDVGs) are urgently required for clinical applications. Constructing vascular grafts mimicking the defining features of native arteries is a promising strategy. Here, we constructed a tri-layered vascular graft with a native artery decellularized extracellular matrix (dECM) mimicking the component of arteries. The porcine thoracic aorta was decellularized and milled into dECM powders from the differential layers. The intima and media dECM powders were blended with poly (L-lactide-co-caprolactone) (PLCL) as the inner and middle layers of electrospun vascular grafts, respectively. Pure PLCL was electrospun as a strengthening sheath for the outer layer. Salidroside was loaded into the inner layer of vascular grafts to inhibit thrombus formation. In vitro studies demonstrated that dECM provided a bioactive milieu for human umbilical vein endothelial cell (HUVEC) extension adhesion, proliferation, migration, and tube-forming. The in vivo studies showed that the addition of dECM could promote endothelialization, smooth muscle regeneration, and extracellular matrix deposition. The salidroside could inhibit thrombosis. Our study mimicked the component of the native artery and combined it with the advantages of synthetic polymer and dECM which provided a promising strategy for the design and construction of SDVGs.
Collapse
Affiliation(s)
- Jie Shi
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Yanjiao Teng
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Duo Li
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Ju He
- Vascular Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoqin Guo
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Xiudan Wang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Xinran Yang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, 30072, China
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, 30072, China
| | - Qi Lv
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Shike Hou
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| |
Collapse
|
17
|
Sousa AB, Barbosa JN. The Use of Specialized Pro-Resolving Mediators in Biomaterial-Based Immunomodulation. J Funct Biomater 2023; 14:jfb14040223. [PMID: 37103313 PMCID: PMC10145769 DOI: 10.3390/jfb14040223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
The implantation of a biomaterial will lead to the immediate onset of an acute inflammatory response, which is of key importance in shaping the quality of the repair process. However, the return to homeostasis is critical to prevent a chronic inflammatory response that may impair the healing process. The resolution of the inflammatory response is now recognized as an active and highly regulated process, being described as specialized immunoresolvents that have a fundamental role in the termination of the acute inflammatory response. These mediators collectively coined as specialized pro-resolving mediators (SPMs) are a family of endogenous molecules that include lipoxins (Lx), resolvins (Rv), protectins (PD), maresins (Mar), Cysteinyl-SPMs (Cys-SPMs) and n-3 docosapentaenoic acid-derived SPMs (n-3 DPA-derived SPMs). SPMs have important anti-inflammatory and pro-resolutive actions such as decreasing the recruitment of polymorphonuclear leukocytes (PMNs), inducing the recruitment of anti-inflammatory macrophages, and increasing macrophage clearance of apoptotic cells through a process known as efferocytosis. Over the last years, the trend in biomaterials research has shifted towards the engineering of materials that are able to modulate the inflammatory response and thus stimulate appropriate immune responses, the so-called immunomodulatory biomaterials. These materials should be able to modulate the host immune response with the aim of creating a pro-regenerative microenvironment. In this review, we explore the potential of using of SPMs in the development of new immunomodulatory biomaterials and we propose insights for future research in this field.
Collapse
Affiliation(s)
- Ana Beatriz Sousa
- i3S-Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Judite N Barbosa
- i3S-Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Dal-Fabbro R, Swanson WB, Capalbo LC, Sasaki H, Bottino MC. Next-generation biomaterials for dental pulp tissue immunomodulation. Dent Mater 2023; 39:333-349. [PMID: 36894414 PMCID: PMC11034777 DOI: 10.1016/j.dental.2023.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVES The current standard for treating irreversibly damaged dental pulp is root canal therapy, which involves complete removal and debridement of the pulp space and filling with an inert biomaterial. A regenerative approach to treating diseased dental pulp may allow for complete healing of the native tooth structure and enhance the long-term outcome of once-necrotic teeth. The aim of this paper is, therefore, to highlight the current state of dental pulp tissue engineering and immunomodulatory biomaterials properties, identifying exciting opportunities for their synergy in developing next-generation biomaterials-driven technologies. METHODS An overview of the inflammatory process focusing on immune responses of the dental pulp, followed by periapical and periodontal tissue inflammation are elaborated. Then, the most recent advances in treating infection-induced inflammatory oral diseases, focusing on biocompatible materials with immunomodulatory properties are discussed. Of note, we highlight some of the most used modifications in biomaterials' surface, or content/drug incorporation focused on immunomodulation based on an extensive literature search over the last decade. RESULTS We provide the readers with a critical summary of recent advances in immunomodulation related to pulpal, periapical, and periodontal diseases while bringing light to tissue engineering strategies focusing on healing and regenerating multiple tissue types. SIGNIFICANCE Significant advances have been made in developing biomaterials that take advantage of the host's immune system to guide a specific regenerative outcome. Biomaterials that efficiently and predictably modulate cells in the dental pulp complex hold significant clinical promise for improving standards of care compared to endodontic root canal therapy.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - W Benton Swanson
- Department of Biologic and Materials Science, Division of Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - Leticia C Capalbo
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Su H, Liu W, Li X, Li G, Guo S, Liu C, Yang T, Ou C, Liu J, Li Y, Wei C, Huang Q, Xu T, Duan C. Cellular energy supply for promoting vascular remodeling of small-diameter vascular grafts: a preliminary study of a new strategy for vascular graft development. Biomater Sci 2023; 11:3197-3213. [PMID: 36928127 DOI: 10.1039/d2bm01338j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Rapid endothelialization is extremely essential for the success of small-diameter tissue-engineered vascular graft (TEVG) (<6 mm) transplantation. However, severe inflammation in situ often causes cellular energy decline of endothelial cells. The cellular energy supply involved in vascular graft therapy remains unclear, and whether promoting energy supply would be helpful in the regeneration of vascular grafts needs to be established. In our work, we generated an AMPK activator (5-aminoimidazole-4-carboxamide ribonucleotide, AICAR) immobilized vascular graft. AICAR-modified vascular grafts were successfully generated by the co-electrospinning technique. In vitro results indicated that AICAR could upregulate energy supply in endothelial cells and reprogram macrophages (MΦ) to assume an anti-inflammatory phenotype. Furthermore, endothelial cells (ECs) co-cultured with AICAR achieved higher survival rates, better migration, and angiogenic capacity than the controls. Concurrently, a rabbit carotid artery transplantation model was used to investigate AICAR-modified vascular grafts at different time points. The results showed that AICAR-modified vascular grafts had higher patency rates (92.9% and 85.7% at 6 and 12 weeks, respectively) than those of the untreated group (11.1% and 0%). In conclusion, AICAR strengthened the cellular energy state and attenuated the adverse effects of inflammation. AICAR-modified vascular grafts achieved better vascular remodeling. This study provides a new perspective on promoting the regeneration of small-diameter vascular grafts.
Collapse
Affiliation(s)
- Hengxian Su
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Guangxu Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Shenquan Guo
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chang Liu
- Department of Orthopedic Surgery, The Lingnan Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tao Yang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chubin Ou
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Jiahui Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yuanzhi Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chengcong Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Qing Huang
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China.
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering and Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China. .,East China Institute of Digital Medical Engineering, Shangrao, 334000, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
20
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
21
|
Jiang X, Liu J, Li S, Qiu Y, Wang X, He X, Pedersen TØ, Mustafa K, Xue Y, Mustafa M, Kantarci A, Xing Z. The effect of resolvin D1 on bone regeneration in a rat calvarial defect model. J Tissue Eng Regen Med 2022; 16:987-997. [PMID: 35980287 DOI: 10.1002/term.3345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 01/07/2023]
Abstract
Resolvin D1 (RvD1) is a pro-resolving lipid mediator of inflammation, endogenously synthesized from omega-3 docosahexaenoic acid. The purpose of this study was to investigate the effect of RvD1 on bone regeneration using a rat calvarial defect model. Collagen 3D nanopore scaffold (COL) and Pluronic F127 hydrogel (F127) incorporated with RvD1 (RvD1-COL-F127 group) or COL and F127 (COL-F127 group) were implanted in symmetrical calvarial defects. After implantation, RvD1 was administrated subcutaneously every 7 days for 4 weeks. The rats were sacrificed at weeks 1 and 8 post-implantation. Tissue samples were analyzed by real-time reverse transcriptase-polymerase chain reaction and histology at week 1. Radiographical and histological analyses were done at week 8. At week 1, calvarial defects treated with RvD1 exhibited decreased numbers of inflammatory cells and tartrate-resistant acid phosphatase (TRAP) positive cells, greater numbers of newly formed blood vessels, upregulated gene expression of vascular endothelial growth factor and alkaline phosphatase, and downregulated gene expression of receptor activator of nuclear factor-κB ligand, interleukin-1β and tumor necrosis factor-α. At week 8, the radiographical results showed that osteoid area fraction of the RvD1-COL-F127 group was higher than that of the COL-F127 group, and histological examination exhibited enhanced osteoid formation and newly formed blood vessels in the RvD1-COL-F127 group. In conclusion, this study showed that RvD1 enhanced bone formation and vascularization in rat calvarial defects.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jing Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Si Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Yingfei Qiu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaoli Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaoli He
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Torbjørn Ø Pedersen
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Maxillofacial Surgery, Haukeland University Hospital, Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Manal Mustafa
- Oral Health Centre of Expertise in Western Norway, Bergen, Norway
| | - Alpdogan Kantarci
- The Forsyth Institute, Cambridge, Massachusetts, USA.,Harvard University, School of Dental Medicine, Boston, Massachusetts, USA
| | - Zhe Xing
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China.,Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou, China.,Institute of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
22
|
Gui Y, Qin K, Zhang Y, Bian X, Wang Z, Han D, Peng Y, Yan H, Gao Z. Quercetin improves rapid endothelialization and inflammatory microenvironment in electrospun vascular grafts. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac9266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022]
Abstract
Abstract
There is a great need for small diameter vascular grafts among patients with cardiovascular diseases annually. However, continuous foreign body reactions and fibrosis capsules brought by biomaterials are both prone to poor vascular tissue regeneration. To address this problem, we fabricated a polycaprolactone (PCL) vascular graft incorporated with quercetin (PCL/QCT graft) in this study. In vitro cell assay showed that quercetin reduced the expressions of pro-inflammatory genes of macrophages while increased the expressions of anti-inflammatory genes. Furthermore, in vivo implantation was performed in a rat abdominal aorta replacement model. Upon implantation, the grafts exhibited sustained quercetin release and effectively enhanced the regeneration of vascular tissue. The results revealed that quercetin improved endothelial layer formation along the lumen of the vascular grafts at 4 weeks. Furthermore, the thickness of vascular smooth muscle layers significantly increased in PCL/QCT group compared with PCL group. More importantly, the presence of quercetin stimulated the infiltration of a large amount of M2 phenotype macrophages into the grafts. Collectively, the above data reinforced our hypothesis that the incorporation of quercetin may be in favor of modulating the inflammatory microenvironment and improving vascular tissue regeneration and remodeling in vascular grafts.
Collapse
|
23
|
Resolution of Inflammation after Skeletal Muscle Ischemia-Reperfusion Injury: A Focus on the Lipid Mediators Lipoxins, Resolvins, Protectins and Maresins. Antioxidants (Basel) 2022; 11:antiox11061213. [PMID: 35740110 PMCID: PMC9220296 DOI: 10.3390/antiox11061213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Skeletal muscle ischemia reperfusion is very frequent in humans and results not only in muscle destruction but also in multi-organ failure and death via systemic effects related to inflammation and oxidative stress. In addition to overabundance of pro-inflammatory stimuli, excessive and uncontrolled inflammation can also result from defects in resolution signaling. Importantly, the resolution of inflammation is an active process also based on specific lipid mediators including lipoxins, resolvins and maresins that orchestrate the potential return to tissue homeostasis. Thus, lipid mediators have received growing attention since they dampen deleterious effects related to ischemia–reperfusion. For instance, the treatment of skeletal muscles with resolvins prior to ischemia decreases polymorphonuclear leukocyte (PMN) infiltration. Additionally, remote alterations in lungs or kidneys are reduced when enhancing lipid mediators’ functions. Accordingly, lipoxins prevented oxidative-stress-mediated tissue injuries, macrophage polarization was modified and in mice lacking DRV2 receptors, ischemia/reperfusion resulted in excessive leukocyte accumulation. In this review, we first aimed to describe the inflammatory response during ischemia and reperfusion in skeletal muscle and then discuss recent discoveries in resolution pathways. We focused on the role of specialized pro-resolving mediators (SPMs) derived from polyunsaturated fatty acids (PUFAs) and their potential therapeutic applications.
Collapse
|
24
|
Ye J, Gong M, Song J, Chen S, Meng Q, Shi R, Zhang L, Xue J. Integrating Inflammation-Responsive Prodrug with Electrospun Nanofibers for Anti-Inflammation Application. Pharmaceutics 2022; 14:pharmaceutics14061273. [PMID: 35745845 PMCID: PMC9229020 DOI: 10.3390/pharmaceutics14061273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation plays a side effect on tissue regeneration, greatly inhibiting the repair or regeneration of tissues. Conventional local delivery of anti-inflammation drugs through physical encapsulation into carriers face the challenges of uncontrolled release. The construction of an inflammation-responsive prodrug to release anti-inflammation drugs depending on the occurrence of inflammation to regulate chronic inflammation is of high need. Here, we construct nanofiber-based scaffolds to regulate the inflammation response of chronic inflammation during tissue regeneration. An inflammation-sensitive prodrug is synthesized by free radical polymerization of the indomethacin-containing precursor, which is prepared by the esterification of N-(2-hydroxyethyl) acrylamide with the anti-inflammation drug indomethacin. Then, anti-inflammation scaffolds are constructed by loading the prodrug in poly(ε-caprolactone)/gelatin electrospun nanofibers. Cholesterol esterase, mimicking the inflammation environment, is adopted to catalyze the hydrolysis of the ester bonds, both in the prodrug and the nanofibers matrix, leading to the generation of indomethacin and the subsequent release to the surrounding. In contrast, only a minor amount of the drug is released from the scaffold, just based on the mechanism of hydrolysis in the absence of cholesterol esterase. Furthermore, the inflammation-responsive nanofiber scaffold can effectively inhibit the cytokines secreted from RAW264.7 macrophage cells induced by lipopolysaccharide in vitro studies, highlighting the great potential of these electrospun nanofiber scaffolds to be applied for regulating the chronic inflammation in tissue regeneration.
Collapse
Affiliation(s)
- Jingjing Ye
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Song
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shu Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qinghan Meng
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Rui Shi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
- Correspondence: (R.S.); (L.Z.); (J.X.)
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (R.S.); (L.Z.); (J.X.)
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (R.S.); (L.Z.); (J.X.)
| |
Collapse
|
25
|
Kim SE, Jeong SI, Shim KM, Jang K, Park JS, Lim YM, Kang SS. In Vivo Evaluation of Gamma-Irradiated and Heparin-Immobilized Small-Diameter Polycaprolactone Vascular Grafts with VEGF in Aged Rats. Polymers (Basel) 2022; 14:polym14061265. [PMID: 35335595 PMCID: PMC8955708 DOI: 10.3390/polym14061265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/19/2023] Open
Abstract
The effectiveness of small-diameter vascular grafts depends on their antithrombogenic properties and ability to undergo accelerated endothelialization. The extreme hydrophobic nature of poly(ε-caprolactone) (PCL) hinders vascular tissue integration, limiting its use in medical implants. To enhance the antithrombogenicity of PCL as a biomaterial, we grafted 2-aminoethyl methacrylate (AEMA) hydrochloride onto the PCL surface using gamma irradiation; developed a biodegradable heparin-immobilized PCL nanofibrous scaffold using gamma irradiation and N-(3-dimethylaminopropyl)-N′-ethyl carbodiimide hydrochloride/N-hydroxysuccinimide reaction chemistry; and incorporated vascular endothelial growth factor (VEGF) into the scaffold to promote vascular endothelial cell proliferation and prevent thrombosis on the vascular grafts. We assessed the physicochemical properties of PCL, heparin-AEMA-PCL (H-PCL), and VEGF-loaded heparin-AEMA-PCL (VH-PCL) vascular grafts using scanning electron microscopy, attenuated total reflection–Fourier transform infrared spectroscopy, toluidine blue O staining, and fibrinogen adsorption and surface wettability measurement. In addition, we implanted the vascular grafts into 24-month-old Sprague Dawley rats and evaluated them for 3 months. The H-PCL and VH-PCL vascular grafts improved the recovery of blood vessel function by promoting the proliferation of endothelial cells and preventing thrombosis in clinical and histological evaluation, indicating their potential to serve as functional vascular grafts in vascular tissue engineering.
Collapse
Affiliation(s)
- Se-Eun Kim
- BK21 FOUR Program, Department of Veterinary Surgery, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea; (S.-E.K.); (K.-M.S.); (K.J.)
- Biomaterial R&BD Center, Chonnam National University, Gwangju 61186, Korea
| | - Sung-In Jeong
- Advanced Radiation Technology, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Korea; (S.-I.J.); (J.-S.P.)
| | - Kyung-Mi Shim
- BK21 FOUR Program, Department of Veterinary Surgery, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea; (S.-E.K.); (K.-M.S.); (K.J.)
- Biomaterial R&BD Center, Chonnam National University, Gwangju 61186, Korea
| | - Kwangsik Jang
- BK21 FOUR Program, Department of Veterinary Surgery, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea; (S.-E.K.); (K.-M.S.); (K.J.)
- Biomaterial R&BD Center, Chonnam National University, Gwangju 61186, Korea
| | - Jong-Seok Park
- Advanced Radiation Technology, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Korea; (S.-I.J.); (J.-S.P.)
| | - Youn-Mook Lim
- Advanced Radiation Technology, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Korea; (S.-I.J.); (J.-S.P.)
- Correspondence: (Y.-M.L.); (S.-S.K.); Tel.: +82-63-570-3065 (Y.-M.L.); +82-62-530-2877 (S.S.K.)
| | - Seong-Soo Kang
- BK21 FOUR Program, Department of Veterinary Surgery, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea; (S.-E.K.); (K.-M.S.); (K.J.)
- Biomaterial R&BD Center, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (Y.-M.L.); (S.-S.K.); Tel.: +82-63-570-3065 (Y.-M.L.); +82-62-530-2877 (S.S.K.)
| |
Collapse
|
26
|
Blaudez F, Ivanovski S, Fournier B, Vaquette C. The utilisation of resolvins in medicine and tissue engineering. Acta Biomater 2022; 140:116-135. [PMID: 34875358 DOI: 10.1016/j.actbio.2021.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Abstract
Recent advances in the field of regenerative medicine and biomaterial science have highlighted the importance of controlling immune cell phenotypes at the biomaterial interface. These studies have clearly indicated that a rapid resolution of the inflammatory process, mediated by a switch in the macrophage population towards a reparative phenotype, is essential for tissue regeneration to occur. While various biomaterial surfaces have been developed in order to impart immunomodulatory properties to the resulting constructs, an alternative strategy involving the use of reparative biological cues, known as resolvins, is emerging in regenerative medicine. This review reports on the mechanisms via which resolvins participate in the resolution of inflammation and describes their current utilisation in pre-clinical and clinical settings, along with their effectiveness when combined with biomaterial constructs in tissue engineering applications. STATEMENT OF SIGNIFICANCE: The resolution of the inflammatory process is necessary for achieving tissue healing and regeneration. Resolvins are lipid mediators and play a key role in the resolution of the inflammatory response and can be used in as biological cues to promote tissue regeneration. This review describes the various biological inflammatory mechanisms and pathways involving resolvins and how their action results in a pro-healing response. The use of these molecules in the clinical setting is then summarised for various applications along with their limitations. Lastly, the review focuses on the emergence resolvins in tissue engineering products including the use of a more stable form which holds greater prospect for regenerative purposes.
Collapse
Affiliation(s)
- Fanny Blaudez
- School of Dentistry and Oral Health, Griffith University, Parklands Dr, Southport QLD 4222, Australia; The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Benjamin Fournier
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia; Université de Paris, Dental Faculty Garanciere, Oral Biology Department, Centre of Reference for Oral Rare Diseases, 5 rue Garanciere, Paris, 75006, France; Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM UMRS 1138, Molecular Oral Pathophysiology, 15-21 rue de l'école de médecine, 75006 Paris, France
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia.
| |
Collapse
|
27
|
Modulation of the Immune System Promotes Tissue Regeneration. Mol Biotechnol 2022; 64:599-610. [PMID: 35022994 DOI: 10.1007/s12033-021-00430-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
The immune system plays an essential role in the angiogenesis, repair, and regeneration of damaged tissues. Therefore, the design of scaffolds that manipulate immune cells and factors in such a way that could accelerate the repair of damaged tissues, following implantation, is one of the main goals of regenerative medicine. However, before manipulating the immune system, the function of the various components of the immune system during the repair process should be well understood and the fabrication conditions of the manipulated scaffolds should be brought closer to the physiological state of the body. In this article, we first review the studies aimed at the role of distinct immune cell populations in angiogenesis and support of damaged tissue repair. In the second part, we discuss the use of strategies that promote tissue regeneration by modulating the immune system. Given that various studies have shown an increase in tissue repair rate with the addition of stem cells and growth factors to the scaffolds, and regarding the limited resources of stem cells, we suggest the design of scaffolds that are capable to develop repair of damaged tissue by manipulating the immune system and create an alternative for repair strategies that use stem cells or growth factors.
Collapse
|
28
|
Xing Z, Wu S, Zhao C, Bai Y, Jin D, Yin M, Liu H, Fan Y. Vascular transplantation with dual-biofunctional ePTFE vascular grafts in a porcine model. J Mater Chem B 2021; 9:7409-7422. [PMID: 34551061 DOI: 10.1039/d1tb01398j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiovascular disease (CVD) poses serious health concerns worldwide. The lack of transplantable vascular grafts is an unmet clinical need in the surgical treatment of CVD. Although expanded polytetrafluoroethylene (ePTFE) vascular grafts have been used in clinical practice, a low long-term patency rate in small-diameter transplantation application is still the biggest challenge. Thus, surface modification of ePTFE is sought after. In this study, polydopamine (PDA) was used to improve the hydrophilia and provide immobilization sites in ePTFE. Bivalirudin (BVLD), a direct thrombin inhibitor, was used to enhance the anti-thrombotic activity of ePTFE. The peptides derived from extracellular matrix proteins were used to elevate the bioactivity of ePTFE. The morphology, chemical composition, peptide modified strength, wettability, and hemocompatibility of modified ePTFE vascular grafts were investigated. Then, an endothelial cell proliferation assay was used to evaluate the best co-modification strategy of the ePTFE vascular graft in vitro. Since a large animal could relatively better mimic human physiology, we chose a porcine carotid artery replacement model in the current study. The results showed that the BVLD/REDV co-modified ePTFE vascular grafts had a satisfactory patency rate (66.7%) and a higher endothelial cell coverage ratio (70%) at 12 weeks after implantation. This may offer an opportunity to produce a multi-biofunctional ePTFE vascular graft, thereby yielding a potent product to meet the clinical needs.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Shuting Wu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Chen Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yating Bai
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| |
Collapse
|
29
|
Domínguez-Robles J, Diaz-Gomez L, Utomo E, Shen T, Picco CJ, Alvarez-Lorenzo C, Concheiro A, Donnelly RF, Larrañeta E. Use of 3D Printing for the Development of Biodegradable Antiplatelet Materials for Cardiovascular Applications. Pharmaceuticals (Basel) 2021; 14:921. [PMID: 34577621 PMCID: PMC8466262 DOI: 10.3390/ph14090921] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
Small-diameter synthetic vascular grafts are required for surgical bypass grafting when there is a lack of suitable autologous vessels due to different reasons, such as previous operations. Thrombosis is the main cause of failure of small-diameter synthetic vascular grafts when used for this revascularization technique. Therefore, the development of biodegradable vascular grafts capable of providing a localized and sustained antithrombotic drug release mark a major step forward in the fight against cardiovascular diseases, which are the leading cause of death globally. The present paper describes the use of an extrusion-based 3D printing technology for the production of biodegradable antiplatelet tubular grafts for cardiovascular applications. For this purpose, acetylsalicylic acid (ASA) was chosen as a model molecule due to its antiplatelet activity. Poly(caprolactone) and ASA were combined for the fabrication and characterization of ASA-loaded tubular grafts. Moreover, rifampicin (RIF) was added to the formulation containing the higher ASA loading, as a model molecule that can be used to prevent vascular prosthesis infections. The produced tubular grafts were fully characterized through multiple techniques and the last step was to evaluate their drug release, antiplatelet and antimicrobial activity and cytocompatibility. The results suggested that these materials were capable of providing a sustained ASA release for periods of up to 2 weeks. Tubular grafts containing 10% (w/w) of ASA showed lower platelet adhesion onto the surface than the blank and grafts containing 5% (w/w) of ASA. Moreover, tubular grafts scaffolds containing 1% (w/w) of RIF were capable of inhibiting the growth of Staphylococcus aureus. Finally, the evaluation of the cytocompatibility of the scaffold samples revealed that the incorporation of ASA or RIF into the composition did not compromise cell viability and proliferation at short incubation periods (24 h).
Collapse
Affiliation(s)
- Juan Domínguez-Robles
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.D.-R.); (E.U.); (T.S.); (C.J.P.); (R.F.D.)
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.); (A.C.)
| | - Emilia Utomo
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.D.-R.); (E.U.); (T.S.); (C.J.P.); (R.F.D.)
| | - Tingjun Shen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.D.-R.); (E.U.); (T.S.); (C.J.P.); (R.F.D.)
| | - Camila J. Picco
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.D.-R.); (E.U.); (T.S.); (C.J.P.); (R.F.D.)
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.); (A.C.)
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.); (A.C.)
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.D.-R.); (E.U.); (T.S.); (C.J.P.); (R.F.D.)
| | - Eneko Larrañeta
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.D.-R.); (E.U.); (T.S.); (C.J.P.); (R.F.D.)
| |
Collapse
|
30
|
Tao C, Wang D. Tissue Engineering for Mimics and Modulations of Immune Functions. Adv Healthc Mater 2021; 10:e2100146. [PMID: 33871178 DOI: 10.1002/adhm.202100146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/21/2021] [Indexed: 11/12/2022]
Abstract
In the field of regenerative medicine, advances in tissue engineering have surpassed the reconstruction of individual tissues or organs and begun to work towards engineering systemic factors such as immune objects and functions. The immune system plays a crucial role in protecting and regulating systemic functions in the human body. Engineered immune tissues and organs have shown potential in recovering dysfunctions and aplasia of the immune system and the evasion from immune-mediated inflammatory responses and rejection elicited by engineered implants from allogeneic or xenogeneic sources are also being pursued to facilitate clinical transplantation of tissue engineered grafts. Here, current progress in tissue engineering to mimic or modulate immune functions is reviewed and elaborated from two perspectives: 1) engineering of immune tissues and organs per se and 2) immune evasion of host immunoinflammatory rejection by tissue-engineered implants.
Collapse
Affiliation(s)
- Chao Tao
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR China
| | - Dong‐An Wang
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR China
- Karolinska Institute Ming Wai Lau Centre for Reparative Medicine HKSTP Sha Tin Hong Kong SAR China
- Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P. R. China
| |
Collapse
|
31
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
32
|
Shen P, Chen Y, Luo S, Fan Z, Wang J, Chang J, Deng J. Applications of biomaterials for immunosuppression in tissue repair and regeneration. Acta Biomater 2021; 126:31-44. [PMID: 33722787 DOI: 10.1016/j.actbio.2021.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
The immune system plays an essential role in tissue repair and regeneration. Regardless of innate or adaptive immune responses, immunosuppressive strategies such as macrophage polarization and regulatory T (Treg) cell induction can be used to modulate the immune system to promote tissue repair and regeneration. Biomaterials can improve the production of anti-inflammatory macrophages and Treg cells by providing physiochemical cues or delivering therapeutics such as cytokines, small molecules, microRNA, growth factors, or stem cells in the damaged tissues. Herein, we present an overview of immunosuppressive modulation by biomaterials in tissue regeneration and highlight the mechanisms of macrophage polarization and Treg cell induction. Overall, we foresee that future biomaterials for regenerative strategies will entail more interactions between biomaterials and the immune cells, and more mechanisms of immunosuppression related to T cell subsets remain to be discovered and applied to develop novel biomaterials for tissue repair and regeneration. STATEMENT OF SIGNIFICANCE: Immunosuppression plays a key role in tissue repair and regeneration, and biomaterials can interact with the immune system through their biological properties and by providing physiochemical cues. Here, we summarize the studies on biomaterials that have been used for immunosuppression to facilitate tissue regeneration. In the first part of this review, we demonstrate the crucial role of macrophage polarization and induction of T regulatory (Treg) cells in immunosuppression. In the second part, distinct approaches used by biomaterials to induce immunosuppression are introduced, which show excellent performance in terms of promoting tissue regeneration.
Collapse
Affiliation(s)
- Peng Shen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yanxin Chen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Shuai Luo
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Zhiyuan Fan
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Jilong Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jiang Chang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.
| | - Junjie Deng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| |
Collapse
|
33
|
Ghaderpour A, Hoseinkhani Z, Yarani R, Mohammadiani S, Amiri F, Mansouri K. Altering the characterization of nanofibers by changing the electrospinning parameters and their application in tissue engineering, drug delivery, and gene delivery systems. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amir Ghaderpour
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Biology Department, Urmia Branch Islamic Azad University Urmia Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research Steno Diabetes Center Copenhagen Gentofte Denmark
| | | | - Farshid Amiri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Kamran Mansouri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Molecular Medicine Department, Faculty of Medicine Kermanshah University of Medical Kermanshah Iran
| |
Collapse
|
34
|
Sawada Y, Saito-Sasaki N, Nakamura M. Omega 3 Fatty Acid and Skin Diseases. Front Immunol 2021; 11:623052. [PMID: 33613558 PMCID: PMC7892455 DOI: 10.3389/fimmu.2020.623052] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Humans are exposed to various external environmental factors. Food intake is one of the most influential factors impacting daily lifestyle. Among nutrients obtained from foods, omega-3 polyunsaturated fatty acids (PUFAs) have various beneficial effects on inflammatory diseases. Furthermore, omega-3 PUFA metabolites, including resolvins, are known to demonstrate strong anti-inflammatory effects during allergic and inflammatory diseases; however, little is known regarding the actual impact of these metabolites on skin diseases. In this review, we focused on metabolites that have strong anti-inflammatory actions in various inflammatory diseases, as well as those that present antitumor actions in malignancies, in addition to the actual effect of omega-3 PUFA metabolites on various cells.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Natsuko Saito-Sasaki
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Motonobu Nakamura
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
35
|
Bilayer nicorandil-loaded small-diameter vascular grafts improve endothelial cell function via PI3K/AKT/eNOS pathway. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00107-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Wan Q, Zhang L, Huang Z, Zhang H, Gu J, Xu H, Yang X, Shen Y, Law BYK, Zhu J, Sun H. Aspirin alleviates denervation-induced muscle atrophy via regulating the Sirt1/PGC-1α axis and STAT3 signaling. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1524. [PMID: 33313269 PMCID: PMC7729378 DOI: 10.21037/atm-20-5460] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Our prior studies have shown that inflammation may play an important triggering role during the process of denervated muscle atrophy. The nonsteroidal anti-inflammatory drug aspirin exhibits the effect of anti-inflammatory factors. This study will investigate the protective effect of aspirin on denervated muscle atrophy and the underlying mechanism. Methods Mouse models of denervated muscle atrophy were established. The protective effect of aspirin (20 mg/kg/d, i.p.) on denervated muscle atrophy was analyzed using the wet weight ratio of tibialis anterior (TA) muscle and muscle fiber cross-sectional area (CSA). The levels of inflammatory factors were detected using quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Sirtuins1 (SIRT1)/Peroxisome Proliferator-Activated Receptor γ Co-Activator 1α (PGC-1α) and Signal transducer and activator of transcription 3 (STAT3) signaling pathway and the muscle fiber type related proteins in TA muscle after denervation were analyzed by western blot assay. Results Intraperitoneal injection of aspirin (20 mg/kg/d) effectively alleviated denervation-induced muscle atrophy. This mainly manifested as follows: The wet weight ratio of TA muscle and muscle fiber CSA of mice treated with aspirin were significantly greater compared with mice treated with normal saline. The level of myosin heavy chain (MHC) increased, and the levels of muscle specific E3 ubiquitin ligase Muscle-specific RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx) were decreased. Mitochondrial vacuolation and autophagy were inhibited, as evidenced by reduced level of autophagy related proteins PINK1, BNIP3, LC3B and Atg7 in mice treated with aspirin compared with mice treated with saline. In addition, aspirin treatment inhibited the slow-to-fast twitch muscle fiber conversion, which were related with triggering the expression of Sirt1 and PGC-1α. Moreover, aspirin reduced the levels of inflammatory factors interleukin-6, interleukin-1β and tumor necrosis factor-α and decreased the activation of STAT3 signaling pathway. Conclusions This is the first study to find that aspirin can alleviate denervation-induced muscle atrophy and inhibit the type I-to-type II muscle fiber conversion and mitophagy possibly through regulating the STAT3 inflammatory signaling pathway and Sirt1/PGC-1α signal axis. This study expands our knowledge regarding the pharmacological function of aspirin and provides a novel strategy for prevention and treatment of denervated muscle atrophy.
Collapse
Affiliation(s)
- Qiuxian Wan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, China
| | - Lilei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Haiyan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, China
| | - Jing Gu
- Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, China
| | - Hua Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
37
|
Zhao J, Feng Y. Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Adv Healthc Mater 2020; 9:e2000920. [PMID: 32833323 DOI: 10.1002/adhm.202000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Yaguan Road 135 Tianjin 300350 P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
38
|
Du Y, Taylor CG, Aukema HM, Zahradka P. Role of oxylipins generated from dietary PUFAs in the modulation of endothelial cell function. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102160. [PMID: 32717531 DOI: 10.1016/j.plefa.2020.102160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
Oxylipins, which are circulating bioactive lipids generated from polyunsaturated fatty acids (PUFAs) by cyclooxygenase, lipooxygenase and cytochrome P450 enzymes, have diverse effects on endothelial cells. Although studies of the effects of oxylipins on endothelial cell function are accumulating, a review that provides a comprehensive compilation of current knowledge and recent advances in the context of vascular homeostasis is lacking. This is the first compilation of the various in vitro, ex vivo and in vivo reports to examine the effects and potential mechanisms of action of oxylipins on endothelial cells. The aggregate data indicate docosahexaenoic acid-derived oxylipins consistently show beneficial effects related to key endothelial cell functions, whereas oxylipins derived from other PUFAs exhibit both positive and negative effects. Furthermore, information is lacking for certain oxylipin classes, such as those derived from α-linolenic acid, which suggests additional studies are required to achieve a full understanding of how oxylipins affect endothelial cells.
Collapse
Affiliation(s)
- Youjia Du
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada
| | - Carla G Taylor
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada
| | - Harold M Aukema
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada.
| |
Collapse
|
39
|
Kim AS, Conte MS. Specialized pro-resolving lipid mediators in cardiovascular disease, diagnosis, and therapy. Adv Drug Deliv Rev 2020; 159:170-179. [PMID: 32697951 PMCID: PMC10980506 DOI: 10.1016/j.addr.2020.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Persistent inflammation is the key aggravator in many cardiovascular diseases, including atherosclerosis, aneurysm, injury/reperfusion, thrombosis, and neointimal hyperplasia following surgical or percutaneous interventions. Resolution is an active process orchestrated by specialized pro-resolving lipid mediators (SPMs) which tamp down acute inflammatory signals, promote healing and facilitate a return to homeostasis. SPMs are endogenously derived from poly-unsaturated fatty acids, and their biologic activity is mediated via specific G-protein coupled receptor binding. The potency of SPM in regulating the inflammatory response has encouraged investigation into their therapeutic and diagnostic use in cardiovascular pathologies. Herein we describe the translational groundwork which has established the synthesis and interactions of SPM in cardiovascular and hematologic cells, the therapeutic effects of SPM in animal models of cardiovascular disease, and some early technologies that harness and attempt to optimize SPM delivery and "resolution pharmacology". Further studies are required to precisely determine the mechanisms of resolution in the cardiovascular system and to determine the clinical settings in which SPM can be utilized to optimize patient outcomes.
Collapse
Affiliation(s)
- Alexander S Kim
- Division of Vascular and Endovascular Surgery, Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Michael S Conte
- Division of Vascular and Endovascular Surgery, Cardiovascular Research Institute, University of California, San Francisco, USA.
| |
Collapse
|
40
|
Zhang H, Cao N, Yang Z, Fang X, Yang X, Li H, Hong Z, Ji Z. Bilobalide Alleviated Dextran Sulfate Sodium-Induced Experimental Colitis by Inhibiting M1 Macrophage Polarization Through the NF-κB Signaling Pathway. Front Pharmacol 2020; 11:718. [PMID: 32670051 PMCID: PMC7326085 DOI: 10.3389/fphar.2020.00718] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Bilobalide, a unique Ginkgo biloba constituent has attracted significant interest as a novel therapeutic option for neuronal protection. However, there is paucity of data on its effect on colitis. This work sought to evaluate the effect of bilobalide on macrophage polarization in vitro and dextran sulfate sodium (DSS) induced colitis in vivo. Through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and annexin V/PI assay, it was shown that bilobalide has no significant toxicity on macrophage. Lipopolysaccharide (LPS) and interferon-gamma (IFN-γ) induced macrophage activation and polarization were significantly suppressed by bilobalide as indicated by reduced expression of cytokine, major histocompatibility complex II (MHC-II), and CD11c. Pertinently, the signaling pathway study showed that the phosphorylation of p65 and its nuclear translocation were decreased while STAT1 was not affected. In DSS-treated mice, administration (i.g) of three doses of bilobalide na\mely 1.25 mg/kg (low dose group), 2.5 mg/kg (medium dose group), and 5 mg/kg (high dose group) was performed daily starting from day 1 to day 10. Medium and high dose bilobalide markedly reduced the inflammation of colitis proved via elevation of bodyweight, decrement in disease activity index (DAI), alleviation of colon damage as well as reduction in activity of colon tissue myeloperoxidase activity. In accordance with the in vitro results, the levels of inflammatory cytokines such as interleukin 6 (IL-6), IL-1β, and tumor necrosis factor (TNF-α) in serum as well as messenger RNA (mRNA) expression in colon were obviously reduced in the bilobalide treated groups. Also, factor nuclear factor kappa B (NF-κB) signaling pathway was decreased significantly by bilobalide treatment. Collectively, these results indicated that administration of bilobalide improved experimental colitis via inhibition of M1 macrophage polarization through the NF-κB signaling pathway. Thus, bilobalide could act as a potential drug for the treatment of inflammatory bowel disease (IBD) in the not-too-distant future.
Collapse
Affiliation(s)
- Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Nengqi Cao
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Zhilong Yang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Xingchao Fang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Xinyu Yang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Hao Li
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Zhi Hong
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Zhenling Ji
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
41
|
Brezovakova V, Jadhav S. Identification of Lyve-1 positive macrophages as resident cells in meninges of rats. J Comp Neurol 2020; 528:2021-2032. [PMID: 32003471 DOI: 10.1002/cne.24870] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 01/13/2023]
Abstract
Meningeal immunity along with its associated lymphatic vasculatures is widely discussed recently. Lymphatic vessels in meninges drain interstitial fluid into the deep-cervical lymph nodes. The vessels are composed of cells that express the cardinal marker for lymphatic endothelium-the lymphatic vessel hyaluronan receptor-1 (Lyve-1). However, studies also show the presence of nonendothelial Lyve-1 expressing cells in certain tissues. Therefore, we were curious if nonendothelial Lyve-1+ cells are also present in dura mater of meninges. We show that Lyve-1+ endothelial cells are distributed adjacent to the blood vessels in the brain dura mater of rats. We did not observe any lymphatic vessels in spinal dura mater. Interestingly, we also observed isolated population of nonlymphatic Lyve-1+ cells in both brain and spinal dura mater. Morphologically, the Lyve-1+ cells were extensively pleomorphic, sometimes elongated or round. Surprisingly, the thoracolumbal meningeal Lyve-1+ cells were predominantly round in morphology. Using endothelial specific marker VEGFR3 and macrophage markers CD68 and CD169, we observed that the isolated Lyve-1+ cells lacked endothelial cell signature, but were either CD68+ or CD169+ macrophages. Moreover, we observed that the Lyve-1+ cells colocalized with collagen fibers in the meninges, and some of Lyve-1+ cells had intracellular collagen. The study for the first time demonstrates the presence of Lyve-1 positive macrophages in the lymphatic and nonlymphatic regions in the meninges of rats.
Collapse
Affiliation(s)
- Veronika Brezovakova
- Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Institute of Neuroimmunology, Bratislava, Slovakia
| | - Santosh Jadhav
- Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Institute of Neuroimmunology, Bratislava, Slovakia
| |
Collapse
|
42
|
Wang Y, Ma B, Yin A, Zhang B, Luo R, Pan J, Wang Y. Polycaprolactone vascular graft with epigallocatechin gallate embedded sandwiched layer-by-layer functionalization for enhanced antithrombogenicity and anti-inflammation. J Control Release 2020; 320:226-238. [PMID: 31982435 DOI: 10.1016/j.jconrel.2020.01.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 11/15/2022]
Abstract
Small-diameter artificial vascular grafts modified with layer-by-layer (LBL) coating show promise in reducing the failure caused by thrombosis and inflammation, but undesirable stability and bioactivity issues of the coating and payload usually limits their long-term efficacy. Herein, inspired by catechol/gallol surface chemistry, a sandwiched layer-by-layer coating constructed by polyethyleneimine (PEI) and heparin with the embedding of epigallocatechin gallate (EGCG)-dexamethasone combination was used to modify the electrospun polycaprolactone (PCL) vascular grafts. Polyphenol embedding endowed the coating with abundant intermolecular interactions between each coating components, mainly contributed by the π-π stacking, weak intermolecular cross-linking and enriched hydrogen bonding, which further enhanced the coating stability and also supported the sustained release of the payloads, like polyelectrolytes and drugs. Compared with the conventional LBL coating, the loading amounts of heparin and dexamethasone in the EGCG embedded LBL coatings doubled and the drug release could be significantly prolonged without serious initial burst. The in vitro and ex vivo assays indicated that the modified PCL vascular grafts would address impressive prolonged anti-platelet adhesion/activation and anti-fibrinogen denaturation ability. Meanwhile, the dexamethasone loading entrusted the sandwiched LBL coating with mild tissue response, in terms of inhibiting the macrophage activation. These results strongly demonstrated that the sandwiched LBL coating with EGCG embedding was an effective method to improve the patency rates of PCL small artificial vascular grafts, which could also be extended to other blood-contacting materials.
Collapse
Affiliation(s)
- Yanan Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Boxuan Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Anlin Yin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Junqiang Pan
- Department of Cardiovascular Medicine, Xi'an Central Hospital, Xi'an 710003, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|