1
|
Santos N, Fuentes-Lemus E, Ahumada M. Use of photosensitive molecules in the crosslinking of biopolymers: applications and considerations in biomaterials development. J Mater Chem B 2024; 12:6550-6562. [PMID: 38913025 DOI: 10.1039/d4tb00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The development of diverse types of biomaterials has significantly contributed to bringing new biomedical strategies to treat clinical conditions. Applications of these biomaterials can range from mechanical support and protection of injured tissues to joint replacement, tissue implants, and drug delivery systems. Among the strategies commonly used to prepare biomaterials, the use of electromagnetic radiation to initiate crosslinking stands out. The predominance of photo-induced polymerization methods relies on a fast, efficient, and straightforward process that can be easily adjusted to clinical needs. This strategy consists of irradiating the components that form the material with photons in the near ultraviolet-visible wavelength range (i.e., ∼310 to 750 nm) in the presence of a photoactive molecule. Upon photon absorption, photosensitive molecules can generate excited species that initiate photopolymerization through different reaction mechanisms. However, this process could promote undesired side reactions depending on the target zone or treatment type (e.g., oxidative stress and modification of biomolecules such as proteins and lipids). This review explores the basic concepts behind the photopolymerization process of ex situ and in situ biomaterials. Particular emphasis was put on the photosensitization initiated by the most employed photosensitizers and the photoreactions that they mediate in aqueous media. Finally, the undesired oxidation reactions at the bio-interface and potential solutions are presented.
Collapse
Affiliation(s)
- Nicolas Santos
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark.
| | - Manuel Ahumada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile.
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| |
Collapse
|
2
|
Sacramento MMA, Oliveira MB, Gomes JR, Borges J, Freedman BR, Mooney DJ, Rodrigues JMM, Mano JF. Natural Polymer-Polyphenol Bioadhesive Coacervate with Stable Wet Adhesion, Antibacterial Activity, and On-Demand Detachment. Adv Healthc Mater 2024; 13:e2304587. [PMID: 38334308 PMCID: PMC11469155 DOI: 10.1002/adhm.202304587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Medical adhesives are emerging as an important clinical tool as adjuvants for sutures and staples in wound closure and healing and in the achievement of hemostasis. However, clinical adhesives combining cytocompatibility, as well as strong and stable adhesion in physiological conditions, are still in demand. Herein, a mussel-inspired strategy is explored to produce adhesive coacervates using tannic acid (TA) and methacrylate pullulan (PUL-MA). TA|PUL-MA coacervates mainly comprise van der Waals forces and hydrophobic interactions. The methacrylic groups in the PUL backbone increase the number of interactions in the adhesives matrix, resulting in enhanced cohesion and adhesion strength (72.7 Jm-2), compared to the non-methacrylated coacervate. The adhesive properties are kept in physiologic-mimetic solutions (72.8 Jm-2) for 72 h. The photopolymerization of TA|PUL-MA enables the on-demand detachment of the adhesive. The poor cytocompatibility associated with the use of phenolic groups is here circumvented by mixing reactive oxygen species-degrading enzyme in the adhesive coacervate. This addition does not hamper the adhesive character of the materials, nor their anti-microbial or hemostatic properties. This affordable and straightforward methodology, together with the tailorable adhesivity even in wet environments, high cytocompatibility, and anti-bacterial activity, enables foresee TA|PUL-MA as a promising ready-to-use bioadhesive for biomedical applications.
Collapse
Affiliation(s)
- Margarida M. A. Sacramento
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Mariana B. Oliveira
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - José R.B. Gomes
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - João Borges
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Benjamin R. Freedman
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMA02138USA
- Department of Orthopaedic SurgeryBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMA02138USA
| | - João M. M. Rodrigues
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - João F. Mano
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
3
|
Han GY, Kwack HW, Kim YH, Je YH, Kim HJ, Cho CS. Progress of polysaccharide-based tissue adhesives. Carbohydr Polym 2024; 327:121634. [PMID: 38171653 DOI: 10.1016/j.carbpol.2023.121634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Recently, polymer-based tissue adhesives (TAs) have gained the attention of scientists and industries as alternatives to sutures for sealing and closing wounds or incisions because of their ease of use, low cost, minimal tissue damage, and short application time. However, poor mechanical properties and weak adhesion strength limit the application of TAs, although numerous studies have attempted to develop new TAs with enhanced performance. Therefore, next-generation TAs with improved multifunctional properties are required. In this review, we address the requirements of polymeric TAs, adhesive characteristics, adhesion strength assessment methods, adhesion mechanisms, applications, advantages and disadvantages, and commercial products of polysaccharide (PS)-based TAs, including chitosan (CS), alginate (AL), dextran (DE), and hyaluronic acid (HA). Additionally, future perspectives are discussed.
Collapse
Affiliation(s)
- Gi-Yeon Han
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Wook Kwack
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Yo-Han Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Joong Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Zhang M, An H, Gu Z, Zhang YC, Wan T, Jiang HR, Zhang FS, Jiang BG, Han N, Wen YQ, Zhang PX. Multifunctional wet-adhesive chitosan/acrylic conduit for sutureless repair of peripheral nerve injuries. Int J Biol Macromol 2023; 253:126793. [PMID: 37709238 DOI: 10.1016/j.ijbiomac.2023.126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
The incidence of peripheral nerve injury (PNI) is high worldwide, and a poor prognosis is common. Surgical closure and repair of the affected area are crucial to ensure the effective treatment of peripheral nerve injuries. Despite being the standard treatment approach, reliance on sutures to seal the severed nerve ends introduces several limitations and restrictions. This technique is intricate and time-consuming, and the application of threading and punctate sutures may lead to tissue damage and heightened tension concentrations, thus increasing the risk of fixation failure and local inflammation. This study aimed to develop easily implantable chitosan-based peripheral nerve repair conduits that combine acrylic acid and cleavable N-hydroxysuccinimide to reduce nerve damage during repair. In ex vivo tissue adhesion tests, the conduit achieved maximal interfacial toughness of 705 J m-2 ± 30 J m-2, allowing continuous bridging of the severed nerve ends. Adhesive repair significantly reduces local inflammation caused by conventional sutures, and the positive charge of chitosan disrupts the bacterial cell wall and reduces implant-related infections. This promises to open new avenues for sutureless nerve repair and reliable medical implants.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Yi-Chong Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Bao-Guo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Yong-Qiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| |
Collapse
|
5
|
Argenziano R, Viggiano S, Esposito R, Schibeci M, Gaglione R, Castaldo R, Fusaro L, Boccafoschi F, Arciello A, Della Greca M, Gentile G, Cerruti P, D'Errico G, Panzella L, Napolitano A. All natural mussel-inspired bioadhesives from soy proteins and plant derived polyphenols with marked water-resistance and favourable antibacterial profile for wound treatment applications. J Colloid Interface Sci 2023; 652:1308-1324. [PMID: 37659303 DOI: 10.1016/j.jcis.2023.08.170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/06/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
HYPOTHESIS Implementation of tissue adhesives from natural sources endowed with good mechanical properties and underwater resistance still represents a challenging research goal. Inspired by the extraordinary wet adhesion properties of mussel byssus proteins resulting from interaction of catechol and amino residues, hydrogels from soy protein isolate (SPI) and selected polyphenols i.e. caffeic acid (CA), chlorogenic acid (CGA) and gallic acid (GA) under mild aerial oxidative conditions were prepared. EXPERIMENTS The hydrogels were subjected to chemical assays, ATR FT-IR and EPR spectroscopy, rheological and morphological SEM analysis. Mechanical tests were carried out on hydrogels prepared by inclusion of agarose. Biological tests included evaluation of the antibacterial and wound healing activity, and hemocompatibility. FINDINGS The decrease of free NH2 and SH groups of SPI, the EPR features, the good cohesive strength and excellent underwater resistance (15 days for SPI/GA) under conditions relevant to their use as surgical glues indicated an efficient interaction of the polyphenols with the protein in the hydrogels. The polyphenols greatly also improved the mechanical properties of the SPI/ agarose/polyphenols hydrogels. These latter proved biocompatible, hemocompatible, not harmful to skin, displayed durable adhesiveness and good water-vapour permeability. Excellent antibacterial properties and in some cases (SPI/CGA) a favourable wound healing activity on dermal fibroblasts was obtained.
Collapse
Affiliation(s)
- Rita Argenziano
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy
| | - Sara Viggiano
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Rodolfo Esposito
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Martina Schibeci
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Rachele Castaldo
- Institute for Polymers, Composites and Biomaterials - CNR, Pozzuoli (NA), Italy
| | - Luca Fusaro
- Department of Health Sciences, University of Piemonte Orientale, Italy
| | | | - Angela Arciello
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Marina Della Greca
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gennaro Gentile
- Institute for Polymers, Composites and Biomaterials - CNR, Pozzuoli (NA), Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), CNR, Pozzuoli (Na), Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | | |
Collapse
|
6
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
7
|
Kulkarni N, Shinde SD, Maingle M, Nikam D, Sahu B. Reactive oxygen species-responsive thymine-conjugated chitosan: Synthesis and evaluation as cryogel. Int J Biol Macromol 2023:125074. [PMID: 37244332 DOI: 10.1016/j.ijbiomac.2023.125074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Chitosan (CS) is a biodegradable, biocompatible cationic polysaccharide based natural polymer with antibacterial and anti-inflammatory properties. Hydrogels made from CS have been found their applications in wound healing, tissue regeneration and drug delivery. Although, mucoadhesive properties resulted from the polycationic nature of CS, in hydrogel form amines are engaged in interactions with water leading to decrease in mucoadhesive properties. In case of injury, presence of elevated level of reactive oxygen species (ROS) has inspired many drug delivery platform to conjugate ROS responsive linkers for on demand drug delivery. In this report we have conjugated a reactive oxygen species (ROS) responsive thioketal (TK) linker and nucleobase thymine (Thy) with CS. Cryogel from this doubly functionalized polymer CS-Thy-TK was prepared through crosslinking with sodium alginate. Inosine was loaded on the scaffold and studied for its release under oxidative condition. We anticipated that the presence of thymine shall retain the mucoadhesive nature of the CS-Thy-TK polymer in hydrogel form and when placed at the site of injury, due to the presence of excessive ROS at inflammatory condition, loaded drug shall release due to degradation of the linker. Porous cryogel scaffold was prepared via chemical crosslinking of amine functional group of chitosan with carboxylic acid containing polysaccharide sodium alginate. The cryogel was evaluated for porosity (FE-SEM), rheology, swelling, degradation, mucoadhesive properties and biocompatibility. Resulted scaffold was found to be porous with average pore size of 107 ± 23 μm, biocompatible, hemocompatible and possesses improved mucoadhesive property (mucin binding efficiency of 19.54 %) which was found to be 4 times better as compared to chitosan (4.53 %). The cumulative drug release found to be better in the presence of H2O2 (~90 %) when compared to that of PBS alone (~60-70 %). Therefore, the modified CS-Thy-TK polymer may hold potential as interesting scaffold in case of conditions associated with elevated ROS level such as injury and tumor.
Collapse
Affiliation(s)
- Neeraj Kulkarni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India
| | - Suchita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India
| | - Mohit Maingle
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India
| | - Darshani Nikam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gujarat 382355, India.
| |
Collapse
|
8
|
Tang W, Wang J, Hou H, Li Y, Wang J, Fu J, Lu L, Gao D, Liu Z, Zhao F, Gao X, Ling P, Wang F, Sun F, Tan H. Review: Application of chitosan and its derivatives in medical materials. Int J Biol Macromol 2023; 240:124398. [PMID: 37059277 DOI: 10.1016/j.ijbiomac.2023.124398] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Chitin is a natural polymeric polysaccharide extracted from marine crustaceans, and chitosan is obtained by removing part of the acetyl group (usually more than 60 %) in chitin's structure. Chitosan has attracted wide attention from researchers worldwide due to its good biodegradability, biocompatibility, hypoallergenic and biological activities (antibacterial, immune and antitumor activities). However, research has shown that chitosan does not melt or dissolve in water, alkaline solutions and general organic solvents, which greatly limits its application range. Therefore, researchers have carried out extensive and in-depth chemical modification of chitosan and prepared a variety of chitosan derivatives, which have expanded the application field of chitosan. Among them, the most extensive research has been conducted in the pharmaceutical field. This paper summarizes the application of chitosan and chitosan derivatives in medical materials over the past five years.
Collapse
Affiliation(s)
- Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Juan Wang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan 250001, Shandong, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Jie Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Jiaai Fu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Lu Lu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Xinqing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
9
|
Xu Y, Deng Z, Chen Y, Wu FF, Huang C, Hu Y. Preparation and characterization of mussel-inspired hydrogels based on methacrylated catechol-chitosan and dopamine methacrylamide. Int J Biol Macromol 2023; 229:443-451. [PMID: 36599382 DOI: 10.1016/j.ijbiomac.2022.12.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
A novel mussel-inspired adhesive hydrogel with enhanced adhesion based on methacrylated catechol-chitosan (MCCS) and dopamine methacrylate (DMA) was prepared via photopolymerization. The structure and morphology of the MCCS/DMA adhesive hydrogel were investigated by using FTIR, NMR, XRD, TG, and SEM. The rheological and texture properties, swelling and degradation characteristics, as well as the adhesion mechanism of the hydrogels were also examined. These results revealed that the MCCS/DMA hydrogels have a dense double cross-linking network structure with porous internal microstructures, and exhibited controllable swelling and degradation properties, good thermostability, and stable rheological characteristics. Furthermore, the adhesive mechanism of MCCS/DMA hydrogel has been confirmed by the FTIR and 2D correlation FTIR spectroscopy. Additionally, the results of in vitro cytotoxicity assessment indicated that the resulting hydrogels have good cytocompatibility. Overall, the MCCS/DMA adhesive hydrogel may have potential applications in medical bioadhesives.
Collapse
Affiliation(s)
- Yuan Xu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Zhicheng Deng
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Fang Fang Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528458, PR China.
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528458, PR China.
| |
Collapse
|
10
|
Yuan R, Yang N, Li W, Liu Z, Feng F, Zhang Q, Ge L. LBL Noninvasively Peelable Biointerfacial Adhesives for Cutaneo-Inspired pH/Tactility Artificial Receptors. Adv Healthc Mater 2023; 12:e2202296. [PMID: 36377355 DOI: 10.1002/adhm.202202296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Besides barrier functions, skin possesses multiple sentiences to external stimuli (e.g., temperature, force, and humidity) for human-outside interaction. Thus, skincare should be taken very seriously, especially by patients with sensory disorders. However, currently available skin-mimicking devices are always limited by so much insufficient response functions and nontunable interface behaviors so as not to realize precise health monitoring and self-defense against injury. Herein, a bioinspired cutaneous receptor-perceptual system (CRPS) patch is presented, integrating hybrid pH indicators and triboelectric nanogenerators into biointerface film-adhesives that are fabricated through facile layer-by-layer (LBL) self-assembly of amide and Schiff-base linkages between alginate grafted with N-hydroxysuccinimide ester (AN), tannic acid (TA), and polyethylenimine (PEI). This CRPS patch is adhered robustly to the soft-curved skin surface without failure via "molecular suturing," and amino acid enables its benign peel-on-demand from tissue interfaces. Postdamage self-healing brings it without surgical reoperation, avoiding extra cost, pain, as well as infection risks. Significantly, CRPS patches as artificial chemo/mechanoreceptors can remotely visualize skin physiological status by pH-induced chromism using smartphones and prevent skin contact injury by tactility-driven self-powered electrical signals. Overall, the LBL-based strategy to create controllably biointerface-adhesive CRPS patches will usher in a new era of the mobihealth care platform supporting smart diagnosis and self-protection.
Collapse
Affiliation(s)
- Renqiang Yuan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.,Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Ning Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Weikun Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Zonghao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Fang Feng
- Jiangsu Yuyue Medical Equipment & Supply Co. Ltd. Development Zone, Danyang, 212310, P. R. China
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, No.1 Kerui Road, Suzhou, 215009, P. R. China
| | - Liqin Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
11
|
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022; 190:114554. [PMID: 36181993 PMCID: PMC11610523 DOI: 10.1016/j.addr.2022.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
12
|
Kim SJ, Choi M, Hong G, Hahn SK. Controlled afterglow luminescent particles for photochemical tissue bonding. LIGHT, SCIENCE & APPLICATIONS 2022; 11:314. [PMID: 36302759 PMCID: PMC9613626 DOI: 10.1038/s41377-022-01011-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Upconversion materials (UCMs) have been developed to convert tissue-penetrating near-infrared (NIR) light into visible light. However, the low energy conversion efficiency of UCMs has limited their further biophotonic applications. Here, we developed controlled afterglow luminescent particles (ALPs) of ZnS:Ag,Co with strong and persistent green luminescence for photochemical tissue bonding (PTB). The co-doping of Ag+ and Co2+ ions into ZnS:Ag,Co particles with the proper vacancy formation of host ions resulted in high luminescence intensity and long-term afterglow. In addition, the ALPs of ZnS:Ag,Co could be recharged rapidly under short ultraviolet (UV) irradiation, which effectively activated rose bengal (RB) in hyaluronate-RB (HA-RB) conjugates for the crosslinking of dissected collagen layers without additional light irradiation. The remarkable PTB of ZnS:Ag,Co particles with HA-RB conjugates was confirmed by in vitro collagen fibrillogenesis assay, in vivo animal wound closure rate analysis, and in vivo tensile strength evaluation of incised skin tissues. Taken together, we could confirm the feasibility of controlled ALPs for various biophotonic applications.
Collapse
Affiliation(s)
- Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
| | - Minji Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
13
|
Xu K, Wu X, Zhang X, Xing M. Bridging wounds: tissue adhesives' essential mechanisms, synthesis and characterization, bioinspired adhesives and future perspectives. BURNS & TRAUMA 2022; 10:tkac033. [PMID: 36225327 PMCID: PMC9548443 DOI: 10.1093/burnst/tkac033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/29/2022] [Indexed: 11/05/2022]
Abstract
Bioadhesives act as a bridge in wound closure by forming an effective interface to protect against liquid and gas leakage and aid the stoppage of bleeding. To their credit, tissue adhesives have made an indelible impact on almost all wound-related surgeries. Their unique properties include minimal damage to tissues, low chance of infection, ease of use and short wound-closure time. In contrast, classic closures, like suturing and stapling, exhibit potential additional complications with long operation times and undesirable inflammatory responses. Although tremendous progress has been made in the development of tissue adhesives, they are not yet ideal. Therefore, highlighting and summarizing existing adhesive designs and synthesis, and comparing the different products will contribute to future development. This review first provides a summary of current commercial traditional tissue adhesives. Then, based on adhesion interaction mechanisms, the tissue adhesives are categorized into three main types: adhesive patches that bind molecularly with tissue, tissue-stitching adhesives based on pre-polymer or precursor solutions, and bioinspired or biomimetic tissue adhesives. Their specific adhesion mechanisms, properties and related applications are discussed. The adhesion mechanisms of commercial traditional adhesives as well as their limitations and shortcomings are also reviewed. Finally, we also discuss the future perspectives of tissue adhesives.
Collapse
Affiliation(s)
- Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Xiaozhuo Wu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Xingying Zhang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | |
Collapse
|
14
|
Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Veiga MD. Applications of Chitosan in Surgical and Post-Surgical Materials. Mar Drugs 2022; 20:md20060396. [PMID: 35736199 PMCID: PMC9228111 DOI: 10.3390/md20060396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
The continuous advances in surgical procedures require continuous research regarding materials with surgical applications. Biopolymers are widely studied since they usually provide a biocompatible, biodegradable, and non-toxic material. Among them, chitosan is a promising material for the development of formulations and devices with surgical applications due to its intrinsic bacteriostatic, fungistatic, hemostatic, and analgesic properties. A wide range of products has been manufactured with this polymer, including scaffolds, sponges, hydrogels, meshes, membranes, sutures, fibers, and nanoparticles. The growing interest of researchers in the use of chitosan-based materials for tissue regeneration is obvious due to extensive research in the application of chitosan for the regeneration of bone, nervous tissue, cartilage, and soft tissues. Chitosan can serve as a substance for the administration of cell-growth promoters, as well as a support for cellular growth. Another interesting application of chitosan is hemostasis control, with remarkable results in studies comparing the use of chitosan-based dressings with traditional cotton gauzes. In addition, chitosan-based or chitosan-coated surgical materials provide the formulation with antimicrobial activity that has been highly appreciated not only in dressings but also for surgical sutures or meshes.
Collapse
|
15
|
Hamedi H, Moradi S, Hudson SM, Tonelli AE, King MW. Chitosan based bioadhesives for biomedical applications: A review. Carbohydr Polym 2022; 282:119100. [DOI: 10.1016/j.carbpol.2022.119100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 11/02/2022]
|
16
|
Rezaei FS, Sharifianjazi F, Esmaeilkhanian A, Salehi E. Chitosan films and scaffolds for regenerative medicine applications: A review. Carbohydr Polym 2021; 273:118631. [PMID: 34561021 DOI: 10.1016/j.carbpol.2021.118631] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023]
Abstract
Over the last years, chitosan has demonstrated unparalleled characteristics for regenerative medicine applications. Beside excellent antimicrobial and wound healing properties, this polysaccharide biopolymer offers favorable characteristics such as biocompatibility, biodegradability, and film and fiber-forming capabilities. Having plentiful active amine groups, chitosan can be also readily modified to provide auxiliary features for growing demands in regenerative medicine, which is constantly confronted with new problems, necessitating the creation of biocompatible, immunogenic and biodegradable film/scaffold composites. A new look at the chitosan composites structure/activity/application tradeoff is the primary focus of the current review, which can help researchers to detect the bottlenecks and overcome the shortcomings that arose from this intersection. In the current review, the most recent advances in chitosan films and scaffolds in terms of preparation techniques and modifying methods for improving their functional properties, in three major biomedical fields i.e., tissue engineering, wound healing, and drug delivery are surveyed and discussed.
Collapse
Affiliation(s)
- Farnoush Sadat Rezaei
- Department of Chemical Engineering, Faculty of Engineering, Amir Kabir University, Tehran, Iran
| | - Fariborz Sharifianjazi
- Department of Mining and Metallurgical Engineering, Faculty of Engineering, Amir Kabir University, Tehran, Iran
| | - Amirhossein Esmaeilkhanian
- Department of Mining and Metallurgical Engineering, Faculty of Engineering, Amir Kabir University, Tehran, Iran
| | - Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran.
| |
Collapse
|
17
|
An excellent antibacterial and high self-adhesive hydrogel can promote wound fully healing driven by its shrinkage under NIR. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112395. [PMID: 34579914 DOI: 10.1016/j.msec.2021.112395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
The lacks of antibacterial properties, low adhesion and delayed wound healing of the hydrogel wound dressings limit their applications in wound treatment. To resolve these, a novel hydrogel composed of polydopamine (PDA), Ag and graphene oxide (GO) is fabricated for wound dressing via the chemical crosslinking of N-isopropylacrylamide (NIPAM) and N,N'-methylene bisacrylamide (BIS). The prepared hydrogel containing PDA@Ag5GO1 (Ag5GO1 denotes the mass ratio between Ag and GO is 5:1) exhibits effective antibacterial properties and high inhibition rate against E. coli and S. aureus. It shows high adhesion ability to various substrate materials, implying a simpler method to the wound obtained by self-fixing rather than suturing. More important, it can produce strong contractility under the irradiation of near-infrared light (NIR), exerting a centripetal force that helps accelerate wound healing. Thus, the hydrogel containing a high concentration PDA@Ag5GO1 irradiated by NIR can completely repair the wound defect (1.0 × 1.0 cm2) within 15 days, the wound healing rate can reach 100%, which was far higher than other groups. Taken together, the new hydrogel with excellent antibacterial, high adhesion and strong contractility will subvert the traditional treatment methods on wound defect, extending its new application range in wound dressing.
Collapse
|
18
|
Kim MH, Lee J, Lee JN, Lee H, Park WH. Mussel-inspired poly(γ-gl utamic acid)/nanosilicate composite hydrogels with enhanced mechanical properties, tissue adhesive properties, and skin tissue regeneration. Acta Biomater 2021; 123:254-262. [PMID: 33465509 DOI: 10.1016/j.actbio.2021.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
It was demonstrated herein that the adhesive property of catechol-functionalized nanocomposite hydrogel can be enhanced by tuning the cohesive strength due to the secondary crosslinking between catechol and synthetic bioactive nanosilicate, viz. Laponite (LP). The nanocomposite hydrogel consists of the natural anionic poly(γ-glutamic acid) (γ-PGA), which was functionalized with catechol moiety, and incorporated with disk-structured LP. The dual-crosslinked hydrogel was fabricated by enzymatic chemical crosslinking of catechol in the presence of horseradish peroxidase (HRP) and H2O2, and physical crosslinking between γ-PGA-catechol conjugate and LP. The PGADA/LP nanocomposite hydrogels with catechol moieties showed strong adhesiveness to various tissue layers and demonstrated an excellent hemostatic properties. These PGADA/LP nanocomposite hydrogels are potentially applied for injectable tissue engineering hydrogels, tissue adhesives, and hemostatic materials. STATEMENT OF SIGNIFICANCE: Recently, many attempts have been performed to manufacture high-performance tissue adhesives using synthetic and natural polymer-based materials. In order to apply in various biological substrates, commercially available tissue adhesives should have an improved adhesive property in wet conditions. Here, we designed a mussel-inspired dual crosslinked tissue adhesive that meets most of conditions as an ideal tissue adhesive. The designed tissue adhesive is composed of poly(γ-glutamic acid)-dopamine conjugate (PGADA)-gluing macromer, horseradish peroxidase (HRP)/hydrogen peroxide (H2O2)-enzymatic crosslinker, and Laponite (LP)-additional physical crosslinking nanomaterial. The PGADA hydrogel has tunable physicochemical properties by controlling the LP concentration. Furthermore, this dual crosslinked hydrogel shows strong tissue adhesive property, regardless of the tissue types. Specially the PGADA hydrogel has tissue adhesive strength four times higher than commercial bioadhesive. This dual crosslinked PGADA hydrogel with improved tissue adhesion property is a promising biological tissue adhesive for various tissue type in surgical operation.
Collapse
|
19
|
Samyn P. A platform for functionalization of cellulose, chitin/chitosan, alginate with polydopamine: A review on fundamentals and technical applications. Int J Biol Macromol 2021; 178:71-93. [PMID: 33609581 DOI: 10.1016/j.ijbiomac.2021.02.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022]
Abstract
Nature provides concepts and materials with interesting functionalities to be implemented in innovative and sustainable materials. In this review, it is illustrated how the combination of biological macromolecules, i.e. polydopamine and polysaccharides (cellulose, chitin/chitosan, alginate), enables to create functional materials with controlled properties. The mussel-adhesive properties rely on the secretion of proteins having 3,4-dihydroxyphenylalanine amino acid with catechol groups. Fundamental understanding on the biological functionality and interaction mechanisms of dopamine in the mussel foot plaque is presented in parallel with the development of synthetic analogues through extraction or chemical polymer synthesis. Subsequently, modification of cellulose, chitin/chitosan or alginate and their nanoscale structures with polydopamine is discussed for various technical applications, including bio- and nanocomposites, films, filtration or medical membranes, adhesives, aerogels, or hydrogels. The presence of polydopamine stretches far beyond surface adhesive properties, as it can be used as an intermediate to provide additional performance of hydrophobicity, self-healing, antimicrobial, photocatalytic, sensoric, adsorption, biocompatibility, conductivity, coloring or mechanical properties. The dopamine-based 'green' chemistry can be extended towards generalized catechol chemistry for modification of polysaccharides with tannic acid, caffeic acid or laccase-mediated catechol functionalization. Therefore, the modification of polysaccharides with polydopamine or catechol analogues provides a general platform for sustainable material functionalization.
Collapse
Affiliation(s)
- Pieter Samyn
- Hasselt University, Institute for Materials Research, Applied and Analytical Chemistry, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
20
|
Bannerman AD, Davenport Huyer L, Montgomery M, Zhao N, Velikonja C, Bender TP, Radisic M. Elastic Biomaterial Scaffold with Spatially Varying Adhesive Design. ADVANCED BIOSYSTEMS 2020; 4:e2000046. [PMID: 32567253 PMCID: PMC7665997 DOI: 10.1002/adbi.202000046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/08/2020] [Indexed: 12/20/2022]
Abstract
In order to secure biomaterials to tissue surfaces, sutures or glues are commonly used. Of interest is the development of a biomaterial patch for applications in tissue engineering and regeneration that incorporates an adhesive component to simplify patch application and ensure sufficient adhesion. A separate region dedicated to fulfilling the specific requirements of an application such as mechanical support or tissue delivery is also desirable. Here, the design and fabrication of a unique patch are presented with distinct regions for adhesion and function, resulting in a biomaterial patch resembling the Band-Aid. The adhesive region contains a novel polymer, synthesized to incorporate a molecule capable of adhesion to tissue, dopamine. The desired polymer composition for patch development is selected based on chemical assessment and evaluation of key physical properties such as swelling and elastic modulus, which are tailored for use in soft tissue applications. The selected polymer formulation, referred to as the adhesive patch (AP) polymer, demonstrates negligible cytotoxicity and improves adhesive capability to rat cardiac tissue compared to currently used patch materials. Finally, the AP polymer is used in the patch, designed to possess distinct adhesive and nonadhesive domains, presenting a novel design for the next generation of biomaterials.
Collapse
Affiliation(s)
- A Dawn Bannerman
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Locke Davenport Huyer
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Miles Montgomery
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Nicholas Zhao
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Claire Velikonja
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Timothy P Bender
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| |
Collapse
|
21
|
Kim MH, Lee JN, Lee J, Lee H, Park WH. Enzymatically Cross-Linked Poly(γ-glutamic acid) Hydrogel with Enhanced Tissue Adhesive Property. ACS Biomater Sci Eng 2020; 6:3103-3113. [DOI: 10.1021/acsbiomaterials.0c00411] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Min Hee Kim
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Jee Na Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Jeehee Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34134, South Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34134, South Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|