1
|
Kumar A, George JM, Sharma S, Koyyadi S, Sharma SK, Verwilst P, Bhatia A, Patro SK, Aggarwal A, Gupta S, Sharma S, Sharma A. pH-Activatable Molecular Probe for COX-2 Imaging in Human Oral Squamous Carcinoma Cells and Patient-Derived Tissues. ACS APPLIED BIO MATERIALS 2024; 7:8517-8527. [PMID: 39561328 DOI: 10.1021/acsabm.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
For developing a successful cancer therapeutic modality, the early precise detection of cancer cells in patient biopsies in oral squamous cell carcinoma (OSCC) is crucial. This could help researchers create new diagnostic and therapeutic tools and assist clinicians in recommending more effective treatment plans and improving patient survival. We have developed an SMPD, cyclooxygenase-2 (COX-2) targeting pH-activable fluorophore named CNP, combining a potent COX-2 inhibitor, celecoxib, linked to a naphthalimide fluorophore with an acidic microenvironment-responsive piperazine moiety for specific optical imaging of OSCC in cells and patient tissues. Compared to reference probe RNP lacking celecoxib, CNP selectively enters the COX-2 overexpressing oral cancer cells. Its acidity-responsive imaging response enhances selectivity over cancers with lower COX-2 expression levels and normal cells. Further, CNP is demonstrated in imaging OSCC cells in patient-derived biopsies. Thus, multifunctional CNP shows potential in exploring more reagents for fluorescence-based detection of OSCC cells in patient tissues with translational applications.
Collapse
Affiliation(s)
- Akhil Kumar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Jiya Mary George
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
| | - Sushank Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sundar Koyyadi
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Suchinder K Sharma
- Amity School of Physical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
| | - Peter Verwilst
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1041, Leuven 3000, Belgium
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sourabha Kumar Patro
- Department of Otolaryngology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Anjali Aggarwal
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Shipra Gupta
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sheetal Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
| |
Collapse
|
2
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
3
|
Zhang L, Li D, Aierken Y, Zhang J, Liu Z, Lin Z, Jiang L, Li Q, Wu Y, Liu Y. KPV and RAPA Self-Assembled into Carrier-Free Nanodrugs for Vascular Calcification Therapy. Adv Healthc Mater 2024:e2402320. [PMID: 39252648 DOI: 10.1002/adhm.202402320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Cardiovascular disease (CVD) is a leading cause of death globally, and vascular calcification (VC) is an important independent risk factor for predicting CVD. Currently, there are no established therapeutic strategies for the treatment of VC. Although recognized combination therapies of nanomedicines can provide effective strategies for disease treatment, the clinical application of nanomedicines is limited because of their complex preparation processes, low drug loading rates, and unpredictable safety risks. Thus, developing a simple, efficient, and safe nanodrug to simultaneously regulate inflammation and autophagy may be a promising strategy for treating VC. Herein, an anti-inflammatory peptide (lysine-proline-valine peptides, KPV) and the autophagy activator rapamycin (RAPA) are self-assembled to form new carrier-free spherical nanoparticles (NPs), which shows good stability and biosafety. In vivo and in vitro, KPV-RAPA NPs significantly inhibit VC in mice compared to the other treatment groups. Mechanistically, KPV-RAPA NPs inhibit inflammatory responses and activated autophagy. Therefore, this study indicates that the new carrier-free KPV-RAPA NPs have great potential as therapeutic agents for VC combination therapy, which can promote the development of nanodrugs for VC.
Collapse
Affiliation(s)
- Li Zhang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Dongze Li
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yierpani Aierken
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jie Zhang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Zhenyu Liu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Zipeng Lin
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Longqi Jiang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Qingzhu Li
- Department of General Surgery, Gulin People's Hospital, Luzhou, 646000, China
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
4
|
Ok HW, Jin S, Park G, Jana B, Ryu JH. Folic Acid-Functionalized β-Cyclodextrin for Delivery of Organelle-Targeted Peptide Chemotherapeutics in Cancer. Mol Pharm 2024; 21:4498-4509. [PMID: 39069731 DOI: 10.1021/acs.molpharmaceut.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Recent emphasis on the design of drug delivery systems typically involves the effective transport of a pharmaceutical substance to the disease site with the desired therapeutic efficacy and minimal cytotoxicity. Organelle-targeted peptides have become an integral part of designing an important class of prodrug/prodrug assemblies for new supramolecular therapeutics owing to their favorable biocompatibility, synthetic ease, tunability of their aggregation behavior, and desired functionalization for site-specificity. However, it is still limited due to the low selectivity. We designed a folic acid-functionalized β-cyclodextrin (FA-CD) as a delivery platform for specific and selective delivery of organelle-targeted (such as microtubule, lysosome, and mitochondria) peptide chemotherapeutics to the folate receptor (FR) overexpressing cancer cell lines. Low toxicity was found for the FA-CD and organelle-targeted peptide inclusion complex in FR-negative normal cells, but superior inhibition of tumor growth with no in vivo toxicity was found for the inclusion complex in the xenograft tumor model.
Collapse
Affiliation(s)
- Hae Won Ok
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gaeun Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Wang F, Lai W, Xie D, Zhou M, Wang J, Xu R, Zhang R, Li G. Nanoparticle-mediated celastrol ER targeting delivery amplify immunogenic cell death in melanoma. J Adv Res 2024:S2090-1232(24)00248-0. [PMID: 38897272 DOI: 10.1016/j.jare.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Chemoimmunotherapy, which benefits from the combination of chemotherapy and immunotherapy, has emerged as a promising strategy in cancer treatment. However, effectively inducing a robust immune response remains challenging due to the limited responsiveness across patients. Endoplasmic reticulum (ER) stress is essential for activating intracellular signaling pathways associated with immunogenic cell death (ICD), targeting drugs to ER might enhance ER stress and improve ICD-related immunotherapy. OBJECTIVES To improve the immune response of Chemoimmunotherapy. METHODS ER targeting nanoparticles TSE-CEL/NP were constructed to enhance immunogenic cancer cell death. Flow cytometry, confocal microscope, TEM and immunofluorescence were used to evaluate the ER targeting effect and immunogenic tumor cell death in vitro on B16F10 tumor cells. Unilateral and bilateral tumor models were constructed to investigate the efficacy of anti-tumor and immunotherapy in vivo. Lung metastasis B16F10 melanoma tumor-bearing mice were used to assess the anti-metastasis efficacy. RESULTS TSE-CEL/NP could specially accumulate in ER, thereby induce ER stress. High ER stress trigger the exposure of CRT, the extracellular release of HMGB1 and ATP. These danger signals subsequently promote the recruitment and maturation of dendritic cells (DCs), which in turn increase the proliferation of cytotoxic T lymphocytes (CD8+ T cells), ultimately resulted in an improved immunotherapy efficacy against melanoma. Invivo experiments showed that TSE-CEL/NP exhibits excellent antitumor efficacy and triggers a strong immune response. CONCLUSION Our findings demonstrated that celastrol ER targeting delivery could amplify immunogenic cell death in melanoma, which provide experimental basis for melanoma immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Dandan Xie
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Min Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Jie Wang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Rufu Xu
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China.
| |
Collapse
|
6
|
Wang K, Liao PY, Chang WC, Yang CR, Su YT, Wu PC, Wu YC, Hung YC, Akhtar N, Lai HC, Ma WL. Linoleate-pazopanib conjugation as active pharmacological ingredient to abolish hepatocellular carcinoma growth. Front Pharmacol 2024; 14:1281067. [PMID: 38293667 PMCID: PMC10824963 DOI: 10.3389/fphar.2023.1281067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Small molecule compounds targeting multiple kinases involved in neoangiogenesis have shown survival benefits in patients with unresectable hepatocellular carcinoma (HCC). Nonetheless, despite the beneficial effects of multikinase inhibitors (MKIs), a lack of boosting adjuvant limits their objective response rate. Lipid conjugates have been used to improve delivery efficacy or pharmaceutical benefits for decades. However, the feasibility of utilizing lipid-drug conjugates (LDCs) in HCC regimens remains untested. In this study, oral feeding of linoleate-fluorescein isothiocyanate conjugates showed that the compound was well distributed in a spontaneous HCC mouse model. Therefore, a rationale design was developed for chemically synthesizing a linoleate-pazopanib conjugate (LAPC). The LAPC showed a significantly improved cytotoxicity compared to the parental drug pazopanib. Pazopanib's angiogenic suppressing signals were not observed in LAPC-treated HCC cells, potentially suggesting an altered mechanism of action (MOA). In an efficacy trial comparing placebo, oral pazopanib, and LAPC treatments in the hepatitis B virus transgene-related spontaneous HCC mouse model (HBVtg-HCC), the LAPC treatment demonstrated superior tumor ablating capacity in comparison to both placebo and pazopanib treatments, without any discernible systemic toxicity. The LAPC exposure is associated with an apoptosis marker (Terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL]) and an enhanced ferroptosis (glutathione peroxidase 4 [GPX4]) potential in HBVtg-HCC tumors. Therefore, the LAPC showed excellent HCC ablative efficacy with altered MOA. The molecular mechanisms of the LAPC and LDCs for HCC therapeutics are of great academic interest. Further comprehensive preclinical trials (e.g., chemical-manufacture-control, toxicity, distribution, and pharmacokinetics/pharmacodynamics) are expected.
Collapse
Affiliation(s)
- Ke Wang
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Yin Liao
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Cian-Ru Yang
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Ting Su
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ping-Ching Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Institute of Oral Medicine and Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, Taiwan Innovation Center of Medical Devices and Technology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yao-Ching Hung
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung, Taiwan
| | - Najim Akhtar
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Wang Z, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-empowered therapeutics targeting neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1907. [PMID: 37248794 PMCID: PMC10525015 DOI: 10.1002/wnan.1907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/15/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
Neurodegenerative diseases are posing pressing health issues due to the high prevalence among aging populations in the 21st century. They are evidenced by the progressive loss of neuronal function, often associated with neuronal necrosis and many related devastating complications. Nevertheless, effective therapeutical strategies to treat neurodegenerative diseases remain a tremendous challenge due to the multisystemic nature and limited drug delivery to the central nervous system. As a result, there is a pressing need to develop effective alternative therapeutics to manage the progression of neurodegenerative diseases. By utilizing the functional reconstructive materials and technologies with specific targeting ability at the nanoscale level, nanotechnology-empowered medicines can transform the therapeutic paradigms of neurodegenerative diseases with minimal systemic side effects. This review outlines the current applications and progresses of the nanotechnology-enabled drug delivery systems to enhance the therapeutic efficacy in treating neurodegenerative diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
- Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, Arizona, 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States
| |
Collapse
|
8
|
Vasdev N, Pawar B, Gupta T, Mhatre M, Tekade RK. A Bird's Eye View of Various Cell-Based Biomimetic Nanomedicines for the Treatment of Arthritis. Pharmaceutics 2023; 15:1150. [PMID: 37111636 PMCID: PMC10146206 DOI: 10.3390/pharmaceutics15041150] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Arthritis is the inflammation and tenderness of the joints because of some metabolic, infectious, or constitutional reasons. Existing arthritis treatments help in controlling the arthritic flares, but more advancement is required to cure arthritis meticulously. Biomimetic nanomedicine represents an exceptional biocompatible treatment to cure arthritis by minimizing the toxic effect and eliminating the boundaries of current therapeutics. Various intracellular and extracellular pathways can be targeted by mimicking the surface, shape, or movement of the biological system to form a bioinspired or biomimetic drug delivery system. Different cell-membrane-coated biomimetic systems, and extracellular-vesicle-based and platelets-based biomimetic systems represent an emerging and efficient class of therapeutics to treat arthritis. The cell membrane from various cells such as RBC, platelets, macrophage cells, and NK cells is isolated and utilized to mimic the biological environment. Extracellular vesicles isolated from arthritis patients can be used as diagnostic tools, and plasma or MSCs-derived extracellular vesicles can be used as a therapeutic target for arthritis. Biomimetic systems guide the nanomedicines to the targeted site by hiding them from the surveillance of the immune system. Nanomedicines can be functionalized using targeted ligand and stimuli-responsive systems to reinforce their efficacy and minimize off-target effects. This review expounds on various biomimetic systems and their functionalization for the therapeutic targets of arthritis treatment, and discusses the challenges for the clinical translation of the biomimetic system.
Collapse
Affiliation(s)
| | | | | | | | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opposite Air Force Station, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
9
|
Sun Y, Cronin MF, Mendonça MCP, Guo J, O'Driscoll CM. Sialic Acid-Targeted Cyclodextrin-Based Nanoparticles Deliver CSF-1R siRNA and Reprogram Tumour-Associated Macrophages for Immunotherapy of Prostate Cancer. Eur J Pharm Sci 2023; 185:106427. [PMID: 36948408 DOI: 10.1016/j.ejps.2023.106427] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
Prostate cancer remains a serious condition threatening the health of men. Due to the complicated nature of the tumour microenvironment (TME), conventional treatments face challenges including poor prognosis and tumour resistance, therefore new therapeutic strategies are urgently needed. Small interfering RNA (siRNA), a double-stranded non-coding RNA, regulates specific gene expression through RNA interference. Tumour-associated macrophages (TAMs) are a potential therapeutic target in cancer immunotherapy. Colony stimulating factor-1/colony stimulating factor-1 receptor (CSF-1/CSF-1R) signaling pathway plays a crucial role in the polarization of the immunosuppressive TAMs, M2 macrophages. Downregulation of CSF-1R is known to reprogram the immunosuppressive TAMs, M2 macrophages, to the immunostimulatory phenotype, M1 macrophages. Sialic acid is a ligand for Siglec-1 (CD169) which is overexpressed on M2 macrophages with little expression in other phenotypes. Therefore, a sialic acid-targeted cyclodextrin-based nanoparticle was developed to specifically deliver CSF-1R siRNA to M2 macrophages. The nanoparticles were studied in vitro using both human and mouse prostate cancer cell lines. Results show that the targeted nanoparticles achieved cell specific delivery to M2 macrophages via the sialic acid-CD169 axis. The expression of CSF-1R was significantly downregulated in M2 macrophages (29.64% for targeted vs 19.31% for non-targeted nanoparticles in THP-1-derived M2 macrophages and 38.94% for targeted vs 18.51% for non-targeted nanoparticles in RAW 264.7-derived M2 macrophages, n = 4, p < 0.01). The resulting reprograming of M2 macrophages to M1 enhanced the level of apoptosis in the prostate cancer cells in a Transwell model (49.17% for targeted vs 37.68% for non-targeted nanoparticles in PC-3 cells and 69.15% for targeted vs 44.73% for non-targeted nanoparticles in TRAMP C1 cells, n = 3, p < 0.01). Thus, this targeted cyclodextrin-based siRNA drug delivery system provides a potential strategy for prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Yao Sun
- School of Pharmacy, University College Cork, Ireland
| | | | | | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, China.
| | | |
Collapse
|
10
|
Qin S, Li J, Pan Z, Wang C, Zhang BF. Targeted paclitaxel prodrug nanoassemblies to improve therapeutic effects for liver cancer. Colloids Surf B Biointerfaces 2023; 226:113285. [PMID: 37028229 DOI: 10.1016/j.colsurfb.2023.113285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Prodrug nanoassemblies fabricated by anticancer drug conjugates exhibited more advantages in controlled drug release and bioavailability and favorable antitumor efficacy. In this paper, lactobionic acid (LA) was connected with polyethylene glycol through amido linkages, and paclitaxel was joined with polyethylene glycol by means of ester bonds to form the prodrug copolymer LA-PEG-PTX. Then, LA-PEG-PTX was automatically assembled into LA-PEG-PTX nanoparticles (LPP NPs) by dialysis. The LPP NPs had a relatively uniform size of approximately 200 nm, a negative potential (-13.68 mV), and a spherical shape under TEM. The drug loading of LPP NPs was 3.91%, which was measured by HPLC. The in vitro release profile of LPP NPs exhibited a sustained release feature. The results of the pharmacokinetic test in rats showed that LPP NPs had higher T1/2 and AUC values than the control group (free PTX) and a prolonged in vivo circulation time, thus increasing the bioavailability of PTX. Remarkably, the LPP NPs were absorbed into HepG2 cells after galactose-directed internalization and enhanced cytotoxicity. Consequently, LPP NPs displayed notable antitumor activity in Kunming mice with H22 hepatocellular carcinoma. Collectively, these findings suggested that paclitaxel prodrug-based self-assembled nanoparticles were a promising alternative for improving the bioavailability and antitumor effect of PTX.
Collapse
|
11
|
Li W, Gong H, Fu Y, Sun J, Wang Y. Novel pH-sensitive nanoparticles based on prodrug strategy to delivery All-Trans Retinoic Acid for breast cancer. Colloids Surf B Biointerfaces 2022; 219:112838. [PMID: 36148708 DOI: 10.1016/j.colsurfb.2022.112838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Developing chemotherapy with nanoparticle-based prodrugs provides promising strategies for improving the safety and delivery of anti-cancer drugs therapeutics and effective cancer treatment. Herein, we developed a pH-sensitive prodrug delivery system (All-Trans-Retinoic Acid (ATRA) grafted poly (β-amino esters) (PBAE) copolymers, ATRA-g-PBAE) for delivery of ATRA with some physicochemical and biological properties. The in vitro release of ATRA-g-PBAE prodrug nanoparticles (PNPs) was sustained-release and pH-sensitive. The cytotoxicity and uptake of different preparations in vitro were evaluated on MCF-7 cells at pH 7.4 and 5.5. The carrier PBAE had no cytotoxicity, and ATRA-g-PBAE PNPs could significantly inhibit cell growth at pH 5.5. MCF-7 cells treated with Cy5.5 grafted PBAE (Cy5.5-PBAE) showed stronger fluorescence signals at pH 5.5. Meanwhile, ATRA-g-PBAE PNPs entered the cell via a clathrin-mediated endocytic pathway. Subsequently, PBAE protonation facilitated the escape of PNPs from the lysosome and released the drug. ATRA-g-PBAE seems promising as a novel pH-sensitive prodrug to overcome the limitations of ATRA for breast cancer therapy.
Collapse
Affiliation(s)
- Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - HeXin Gong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - Jialin Sun
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin 150066, People's Republic of China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China.
| |
Collapse
|
12
|
Katopodi T, Petanidis S, Tsavlis D, Anestakis D, Charalampidis C, Chatziprodromidou I, Eskitzis P, Zarogoulidis P, Kosmidis C, Matthaios D, Porpodis K. Engineered multifunctional nanocarriers for controlled drug delivery in tumor immunotherapy. Front Oncol 2022; 12:1042125. [PMID: 36338748 PMCID: PMC9634039 DOI: 10.3389/fonc.2022.1042125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
The appearance of chemoresistance in cancer is a major issue. The main barriers to conventional tumor chemotherapy are undesirable toxic effects and multidrug resistance. Cancer nanotherapeutics were developed to get around the drawbacks of conventional chemotherapy. Through clinical evaluation of thoughtfully developed nano delivery systems, cancer nanotherapeutics have recently offered unmatched potential to comprehend and combat drug resistance and toxicity. In different design approaches, including passive targeting, active targeting, nanomedicine, and multimodal nanomedicine combination therapy, were successful in treating cancer in this situation. Even though cancer nanotherapy has achieved considerable technological development, tumor biology complexity and heterogeneity and a lack of full knowledge of nano-bio interactions remain important hurdles to future clinical translation and commercialization. The recent developments and advancements in cancer nanotherapeutics utilizing a wide variety of nanomaterial-based platforms to overcome cancer treatment resistance are covered in this article. Additionally, an evaluation of different nanotherapeutics-based approaches to cancer treatment, such as tumor microenvironment targeted techniques, sophisticated delivery methods for the precise targeting of cancer stem cells, as well as an update on clinical studies are discussed. Lastly, the potential for cancer nanotherapeutics to overcome tumor relapse and the therapeutic effects and targeted efficacies of modern nanosystems are analyzed.
Collapse
Affiliation(s)
- Theodora Katopodi
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Savvas Petanidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Drosos Tsavlis
- Department of Medicine, Laboratory of Experimental Physiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Doxakis Anestakis
- Department of Histology, Medical School, University of Cyprus, Nicosia, Cyprus
| | | | | | | | - Paul Zarogoulidis
- Third Department of Surgery, “AHEPA“ University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christoforos Kosmidis
- Third Department of Surgery, “AHEPA“ University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Zhou Z, Wang C, Bai J, Zeng Z, Yang X, Wei B, Yang Z. Cinnamaldehyde-modified chitosan hybrid nanoparticles for DOX delivering to produce synergistic anti-tumor effects. Front Bioeng Biotechnol 2022; 10:968065. [PMID: 36304902 PMCID: PMC9592695 DOI: 10.3389/fbioe.2022.968065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer cells are under oxidative stress associated with the increased generation of reactive oxygen species (ROS). Therefore, increasing the oxidative stress of tumor cells by delivering ROS generators is an effective strategy to induce apoptosis of cancer cells. Herein, we reported a hybrid nanoparticle based on lactobionic acid (LA) modified chitosan and cinnamaldehyde (CA) modified chitosan, which possesses both active tumor-targeting ability and ROS regulation ability, in order to have a synergistic effect with the anti-tumor drug doxorubicin (DOX). LA can improve the tumor-targeting ability and cellular accumulation of these nanoparticles, and CA can induce apoptotic cell death through ROS generation, mitochondrial permeability transition and caspase activation. The particle size and distribution as well as drug release profiles of these nanoparticles were observed. In vitro and in vivo antitumor studies demonstrated that the hybrid nanoparticles show a significant synergistic antitumor effect. Thus, we anticipate that the hybrid nanoparticles have promising potential as an anticancer drug carrier.
Collapse
Affiliation(s)
- Zuoqin Zhou
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
- Anhui Ecological Fermentation Engineering Research Center for Functional Fruit Beverage, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Caiyun Wang
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Jingqi Bai
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Zihan Zeng
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Xiaoyu Yang
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Bing Wei
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
- *Correspondence: Bing Wei, ; Zheng Yang,
| | - Zheng Yang
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
- *Correspondence: Bing Wei, ; Zheng Yang,
| |
Collapse
|
14
|
Wan D, Liu Y, Guo X, Zhang J, Pan J. Intelligent Drug Delivery by Peptide-Based Dual-Function Micelles. Int J Mol Sci 2022; 23:ijms23179698. [PMID: 36077102 PMCID: PMC9456463 DOI: 10.3390/ijms23179698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
To endow the polymeric prodrug with smart properties through a safe and simple method, matrix metalloproteinase (MMPs) responsive peptide GPLGVRGDG was introduced into the block copolymer to prepare TPGS3350-GPLGVRGDG-DOX&DOX micelles, where TPGS3350 is D-α-tocopheryl polyethylene glycol 3350 succinate. During the doxorubicin delivery, the cleavage of the peptide chain triggers de-PEGylation, and the remaining VRGDG sequence was retained on the surface of the micelles, which can act as a ligand to facilitate cell uptake. Moreover, the cytotoxicity of TPGS3350-GPLGVRGDG-DOX&DOX micelles against 4T1 cells was significantly improved, compared with TPGS3350-GPLGVRG-DOX&DOX micelles and TPGS3350-DOX&DOX micelles. During in vivo studies, TPGS3350-GPLGVRGDG-DOX&DOX micelles exhibited good anticancer efficacy with long circulation in the body and more efficient accumulation at the tumor site. Therefore, TPGS3350-GPLGVRGDG-DOX&DOX micelles have improved antitumor activity and reduced toxic side effects. This work opens new potential for exploring the strategy of drug delivery in clinical applications.
Collapse
Affiliation(s)
- Dong Wan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Yujun Liu
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Xinhao Guo
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Jianxin Zhang
- School of Chemistry, Tiangong University, Tianjin 300387, China
- Correspondence: (J.Z.); (J.P.)
| | - Jie Pan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- Correspondence: (J.Z.); (J.P.)
| |
Collapse
|
15
|
Curcio M, Vittorio O, Bell JL, Iemma F, Nicoletta FP, Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162851. [PMID: 36014715 PMCID: PMC9413373 DOI: 10.3390/nano12162851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Self-assembling nanoparticles (SANPs) based on hyaluronic acid (HA) represent unique tools in cancer therapy because they combine the HA targeting activity towards cancer cells with the advantageous features of the self-assembling nanosystems, i.e., chemical versatility and ease of preparation and scalability. This review describes the key outcomes arising from the combination of HA and SANPs, focusing on nanomaterials where HA and/or HA-derivatives are inserted within the self-assembling nanostructure. We elucidate the different HA derivatization strategies proposed for this scope, as well as the preparation methods used for the fabrication of the delivery device. After showing the biological results in the employed in vivo and in vitro models, we discussed the pros and cons of each nanosystem, opening a discussion on which approach represents the most promising strategy for further investigation and effective therapeutic protocol development.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jessica Lilian Bell
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
16
|
Xie X, Jiang K, Li B, Hou S, Tang H, Shao B, Ping Y, Zhang Q. A small-molecule self-assembled nanodrug for combination therapy of photothermal-differentiation-chemotherapy of breast cancer stem cells. Biomaterials 2022; 286:121598. [DOI: 10.1016/j.biomaterials.2022.121598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023]
|
17
|
Yang L, Li J, Guan Z, Zhang J, Wang X, Tang R. Carrier-free prodrug nanoparticles based on lonidamine and cisplatin for synergistic treatment of breast cancer. J Biomater Appl 2022; 37:634-645. [PMID: 35689328 DOI: 10.1177/08853282221107951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Herein, we combined a derivative of cisplatin (CP) and the chemosensitizer lonidamine (LND) to design an amphiphilic prodrug, in which the ratio of LND to cisplatin was fixed at 2:1. Diaminedichlorodihydroxyplatinum (DH-CP) is a hydrophilic cisplatin derivative. Due to its appropriate amphiphilicity, this prodrug could self-assemble into stable nanoparticles (denoted as LNP-NPs). Under the action of excessive glutathione (GSH) in tumor cells, DH-CP could be reduced to cytotoxic cisplatin. In addition, the released LND could inhibit the metabolic process of tumor cells, and improving the sensitivity of tumor cells to cisplatin. In vitro studies demonstrated that LNP-NPs displayed significantly cytotoxicity on breast cancer cells, and the cell viability after co-incubation for 48 h (CP 16 μg/mL) were 18.77% (MCF-7) and 20.01% (EMT6), respectively. LNP-NPs could also significantly inhibit the growth of MCF-7 tumor-like spheroids, which were realized through the high coordination and cooperation between CP and LND. Therefore, the carrier-free drug delivery system based on LND and DH-CP is expected to achieve a good synergistic anti-tumor effect.
Collapse
Affiliation(s)
- Lu Yang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, P. R. China
| | - Junnan Li
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, P. R. China
| | - Zhaoyuan Guan
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, P. R. China
| | - Jingwen Zhang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, P. R. China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, P. R. China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, P. R. China
| |
Collapse
|
18
|
Hou DY, Wang MD, Zhang NY, Xu S, Wang ZJ, Hu XJ, Lv GT, Wang JQ, Lv MY, Yi L, Wang L, Cheng DB, Sun T, Wang H, Xu W. A Lysosome-Targeting Self-Condensation Prodrug-Nanoplatform System for Addressing Drug Resistance of Cancer. NANO LETTERS 2022; 22:3983-3992. [PMID: 35548949 DOI: 10.1021/acs.nanolett.2c00540] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lysosome-targeting self-assembling prodrugs had emerged as an attractive approach to overcome the acquisition of resistance to chemotherapeutics by inhibiting lysosomal sequestration. Taking advantage of lysosomal acidification induced intracellular hydrolytic condensation, we developed a lysosomal-targeting self-condensation prodrug-nanoplatform (LTSPN) system for overcoming lysosome-mediated drug resistance. Briefly, the designed hydroxycamptothecine (HCPT)-silane conjugates self-assembled into silane-based nanoparticles, which were taken up into lysosomes by tumor cells. Subsequently, the integrity of the lysosomal membrane was destructed because of the acid-triggered release of alcohol, wherein the nanoparticles self-condensed into silicon particles outside the lysosome through intracellular hydrolytic condensation. Significantly, the LTSPN system reduced the half-maximal inhibitory concentration (IC50) of HCPT by approximately 4 times. Furthermore, the LTSPN system realized improved control of large established tumors and reduced regrowth of residual tumors in several drug-resistant tumor models. Our findings suggested that target destructing the integrity of the lysosomal membrane may improve the therapeutic effects of chemotherapeutics, providing a potent treatment strategy for malignancies.
Collapse
Affiliation(s)
- Da-Yong Hou
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Man-Di Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ni-Yuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Shaoxin Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhi-Jia Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Xing-Jie Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Gan-Tian Lv
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia-Qi Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Mei-Yu Lv
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Li Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Lu Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No.122 LuoshiRoad, Wuhan, 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No.122 LuoshiRoad, Wuhan, 430070, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
19
|
Zhu D, Lu Y, Gui L, Wang W, Hu X, Chen S, Wang Y, Wang Y. Self-assembling, pH-responsive nanoflowers for inhibiting PAD4 and neutrophil extracellular trap formation and improving the tumor immune microenvironment. Acta Pharm Sin B 2022; 12:2592-2608. [PMID: 35646534 PMCID: PMC9136569 DOI: 10.1016/j.apsb.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 10/10/2021] [Indexed: 12/25/2022] Open
Abstract
Self-assembling carrier-free nanodrugs are attractive agents because they accumulate at tumor by an enhanced permeability and retention (EPR) effect without introduction of inactive substances, and some nanodrugs can alter the immune environment. We synthesized a peptidyl arginine deiminase 4 (PAD4) molecular inhibitor, ZD-E-1M. It could self-assembled into nanodrug ZD-E-1. Using confocal laser scanning microscopy, we observed its cellular colocalization, PAD4 activity and neutrophil extracellular traps (NETs) formation. The populations of immune cells and expression of immune-related proteins were determined by single-cell mass cytometry. ZD-E-1 formed nanoflowers in an acidic environment, whereas it formed nanospheres at pH 7.4. Accumulation of ZD-E-1 at tumor was pH-responsive because of its pH-dependent differences in the size and shape. It could enter the nucleus and bind to PAD4 to prolong the intracellular retention time. In mice, ZD-E-1 inhibited tumor growth and metastasis by inhibiting PAD4 activity and NETs formation. Besides, ZD-E-1 could regulate the ratio of immune cells in LLC tumor-bearing mice. Immunosuppressive proteins like LAG3 were suppressed, while IFN-γ and TNF-α as stimulators of tumor immune response were upregulated. Overall, ZD-E-1 is a self-assembling carrier-free nanodrug that responds to pH, inhibits PAD4 activity, blocks neutrophil extracellular traps formation, and improves the tumor immune microenvironment.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Lin Gui
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xi Hu
- Quantum Design China Ltd., Universal Business Park, Beijing 100015, China
| | - Su Chen
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| |
Collapse
|
20
|
Wang H, Monroe M, Leslie F, Flexner C, Cui H. Supramolecular nanomedicines through rational design of self-assembling prodrugs. Trends Pharmacol Sci 2022; 43:510-521. [PMID: 35459589 DOI: 10.1016/j.tips.2022.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/23/2023]
Abstract
Advancements in the development of nanomaterials have led to the creation of a plethora of functional constructs as drug delivery vehicles to address many dire medical needs. The emerging prodrug strategy provides an alternative solution to create nanomedicines of extreme simplicity by directly using the therapeutic agents as molecular building blocks. This Review outlines different prodrug-based drug delivery systems, highlights the advantages of the prodrug strategy for therapeutic delivery, and demonstrates how combinations of different functionalities - such as stimuli responsiveness, targeting propensity, and multidrug conjugation - can be incorporated into designed prodrug delivery systems. Furthermore, we discuss the opportunities and challenges facing this rapidly growing field.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Maya Monroe
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Faith Leslie
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Center of Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Emerging Nanotherapeutic Approaches to Overcome Drug Resistance in Cancers with Update on Clinical Trials. Pharmaceutics 2022; 14:pharmaceutics14040866. [PMID: 35456698 PMCID: PMC9028322 DOI: 10.3390/pharmaceutics14040866] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
A key issue with modern cancer treatments is the emergence of resistance to conventional chemotherapy and molecularly targeted medicines. Cancer nanotherapeutics were created in order to overcome the inherent limitations of traditional chemotherapeutics. Over the last few decades, cancer nanotherapeutics provided unparalleled opportunities to understand and overcome drug resistance through clinical assessment of rationally designed nanoparticulate delivery systems. In this context, various design strategies such as passive targeting, active targeting, nano-drug, and multimodal nano-drug combination therapy provided effective cancer treatment. Even though cancer nanotherapy has made great technological progress, tumor biology complexity and heterogeneity and a lack of comprehensive knowledge of nano-bio interactions remain important roadblocks to future clinical translation and commercialization. The current developments and advancements in cancer nanotherapeutics employing a wide variety of nanomaterial-based platforms to overcome cancer treatment resistance are discussed in this article. There is also a review of various nanotherapeutics-based approaches to cancer therapy, including targeting strategies for the tumor microenvironment and its components, advanced delivery systems for specific targeting of cancer stem cells (CSC), as well as exosomes for delivery strategies, and an update on clinical trials. Finally, challenges and the future perspective of the cancer nanotherapeutics to reverse cancer drug resistance are discussed.
Collapse
|
22
|
Dong X, Brahma RK, Fang C, Yao SQ. Stimulus-responsive self-assembled prodrugs in cancer therapy. Chem Sci 2022; 13:4239-4269. [PMID: 35509461 PMCID: PMC9006903 DOI: 10.1039/d2sc01003h] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Small-molecule prodrugs have become the main toolbox to improve the unfavorable physicochemical properties of potential therapeutic compounds in contemporary anti-cancer drug development. Many approved small-molecule prodrugs, however, still face key challenges in their pharmacokinetic (PK) and pharmacodynamic (PD) properties, thus severely restricting their further clinical applications. Self-assembled prodrugs thus emerged as they could take advantage of key benefits in both prodrug design and nanomedicine, so as to maximize drug loading, reduce premature leakage, and improve PK/PD parameters and targeting ability. Notably, temporally and spatially controlled release of drugs at cancerous sites could be achieved by encoding various activable linkers that are sensitive to chemical or biological stimuli in the tumor microenvironment (TME). In this review, we have comprehensively summarized the recent progress made in the development of single/multiple-stimulus-responsive self-assembled prodrugs for mono- and combinatorial therapy. A special focus was placed on various prodrug conjugation strategies (polymer-drug conjugates, drug-drug conjugates, etc.) that facilitated the engineering of self-assembled prodrugs, and various linker chemistries that enabled selective controlled release of active drugs at tumor sites. Furthermore, some polymeric nano-prodrugs that entered clinical trials have also been elaborated here. Finally, we have discussed the bottlenecks in the field of prodrug nanoassembly and offered potential solutions to overcome them. We believe that this review will provide a comprehensive reference for the rational design of effective prodrug nanoassemblies that have clinic translation potential.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Pharmacy, School of Medicine, Shanghai University Shanghai 200444 China
| | - Rajeev K Brahma
- Department of Chemistry, National University of Singapore Singapore 117543 Singapore
| | - Chao Fang
- State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore Singapore 117543 Singapore
| |
Collapse
|
23
|
Fu Y, Bian X, Li P, Huang Y, Li C. Carrier-Free Nanomedicine for Cancer Immunotherapy. J Biomed Nanotechnol 2022; 18:939-956. [PMID: 35854464 DOI: 10.1166/jbn.2022.3315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the rapid development of nanotechnology, carrier-based nano-drug delivery systems (DDSs) have been widely studied due to their advantages in optimizing pharmacokinetic and distribution profiles. However, despite those merits, some carrier-related limitations, such as low drug-loading capacity, systematic toxicity and unclear metabolism, usually prevent their further clinical transformation. Carrier-free nanomedicines with non-therapeutic excipients, are considered as an excellent paradigm to overcome these obstacles, owing to their superiority in improving both drug delivery efficacy and safety concern. In recent years, carrier-free nanomedicines have opened new horizons for cancer immunotherapy, and have already made outstanding progress. Herein, in this review, we are focusing on making an integrated and exhaustive overview of lately reports about them. Firstly, the major synthetic strategies of carrier-free nanomedicines are introduced, such as nanocrystals, prodrug-, amphiphilic drug-drug conjugates (ADDCs)-, polymer-drug conjugates-, and peptide-drug conjugates (PepDCs)-assembled nanomedicines. Afterwards, the typical applications of carrier-free nanomedicines in cancer immunotherapy are well-discussed, including cancer vaccines, cytokine therapy, enhancing T-cell checkpoint inhibition, as well as modulating tumor microenvironment (TME). After that, both the advantages and the potential challenges, as well as the future prospects of carrier-free nanomedicines in cancer immunotherapy, were discussed. And we believe that it would be of great potential practiced and reference value to the relative fields.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Pingrong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
24
|
Kaushik N, Borkar SB, Nandanwar SK, Panda PK, Choi EH, Kaushik NK. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J Nanobiotechnology 2022; 20:152. [PMID: 35331246 PMCID: PMC8944113 DOI: 10.1186/s12951-022-01364-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Presently, nanocarriers (NCs) have gained huge attention for their structural ability, good biocompatibility, and biodegradability. The development of effective NCs with stimuli-responsive properties has acquired a huge interest among scientists. When developing drug delivery NCs, the fundamental goal is to tackle the delivery-related problems associated with standard chemotherapy and to carry medicines to the intended sites of action while avoiding undesirable side effects. These nanocarriers were able of delivering drugs to tumors through regulating their pH, temperature, enzyme responsiveness. With the use of nanocarriers, chemotherapeutic drugs could be supplied to tumors more accurately that can equally encapsulate and deliver them. Material carriers for chemotherapeutic medicines are discussed in this review keeping in viewpoint of the structural properties and targeting methods that make these carriers more therapeutically effective, in addition to metabolic pathways triggered by drug-loaded NCs. Largely, the development of NCs countering to endogenous and exogenous stimuli in tumor regions and understanding of mechanisms would encourage the progress for tumor therapy and precision diagnosis in future.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea.
| | - Shweta B Borkar
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sondavid K Nandanwar
- Department of Basic Science Research Institute, Pukyong National University, Busan, 48513, Korea
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Box 516, S-75120, Uppsala, Sweden
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
25
|
Wang Y, Sun C, Huang L, Liu M, Li L, Wang X, Wang L, Sun S, Xu H, Ma G, Zhang L, Zheng J, Liu H. Magnolol-loaded Cholesteryl Biguanide Conjugate Hydrochloride Nanoparticles for Triple-negative Breast Cancer Therapy. Int J Pharm 2022; 615:121509. [PMID: 35085734 DOI: 10.1016/j.ijpharm.2022.121509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 12/25/2022]
Abstract
The potential of combination therapy using nanoparticle delivery systems in improving triple-negative breast cancer treatment efficacy remains to be explored. Here, we report a novel nanoparticle system using a cholesterol biguanide conjugate hydrochloride (CBH) as both a drug and carrier to load magnolol (MAG). Poly(ethylene glycol)-poly(lactic-co-glycolic acid) (mPEG-PLGA) and aminoethyl anisamide-poly(ethylene glycol)-poly(lactic-co-glycolic acid) (AEAA-PEG-PLGA) were added to form nanoparticles. Nanoparticles accumulated most in tumor tissues when the weight ratio of AEAA-PEG-PLGA to mPEG-PLGA was 4:1. MAG and CBH exerted a synergistic inhibitory effect on 4T1 cells. An in vitro study showed that nanoparticles displayed the highest tumor cell uptake rate, highest apoptosis rate, and strongest inhibitory effect on tumor cell migration and monoclonal formation. CBH might promote nanoparticle uptake by cells and lysosomal escape. After intravenous administration to mice with 4T1 breast tumors in situ, the nanoparticles inhibited tumor growth without obvious toxicity. Western blot results showed that nanoparticles altered the levels of p53, p-AKT, and p-AMPK in the tumor tissue. Moreover, cell apoptosis was found in the same area of H&E-stained and TUNEL-stained tumors treated with the nanoparticles. Collectively, this nanoparticle system provides a novel combination drug delivery strategy for treating triple-negative breast cancer.
Collapse
Affiliation(s)
- Yanzhi Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China.
| | - Cancan Sun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China; Department of Pharmacy, People's Hospital of Zhengzhou, Zhengzhou 450001, China
| | - Leaf Huang
- Division of Pharmaco-engineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mengqian Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Lu Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Xiping Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Linchao Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Shanshan Sun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Haiwei Xu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Gege Ma
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Lei Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China
| | - Jiaxin Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China.
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, China.
| |
Collapse
|
26
|
Gupta S, Tejavath KK. Nano Phytoceuticals: A Step Forward in Tracking Down Paths for Therapy Against Pancreatic Ductal Adenocarcinoma. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Li G, Sun B, Li Y, Luo C, He Z, Sun J. Small-Molecule Prodrug Nanoassemblies: An Emerging Nanoplatform for Anticancer Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101460. [PMID: 34342126 DOI: 10.1002/smll.202101460] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The antitumor efficiency and clinical translation of traditional nanomedicines is mainly restricted by low drug loading, complex preparation technology, and potential toxicity caused by the overused carrier materials. In recent decades, small-molecule prodrug nanoassemblies (SMP-NAs), which are formed by the self-assembly of prodrugs themselves, have been widely investigated with distinct advantages of ultrahigh drug-loading and negligible excipients-trigged adverse reaction. Benefited from the simple preparation process, SMP-NAs are widely used for chemotherapy, phototherapy, immunotherapy, and tumor diagnosis. In addition, combination therapy based on the accurate co-delivery behavior of SMP-NAs can effectively address the challenges of tumor heterogeneity and multidrug resistance. Recent trends in SMP-NAs are outlined, and the corresponding self-assembly mechanisms are discussed in detail. Besides, the smart stimuli-responsive SMP-NAs and the combination therapy based on SMP-NAs are summarized, with special emphasis on the structure-function relationships. Finally, the outlooks and potential challenges of SMP-NAs in cancer therapy are highlighted.
Collapse
Affiliation(s)
- Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaqiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
28
|
Yang L, Xu J, Xie Z, Song F, Wang X, Tang R. Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo. Asian J Pharm Sci 2021; 16:762-771. [PMID: 35027952 PMCID: PMC8737405 DOI: 10.1016/j.ajps.2021.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023] Open
Abstract
Carrier-free drug self-delivery systems consisting of amphiphilic drug-drug conjugate (ADDC) with well-defined structure and nanoscale features have drawn much attention in tumor drug delivery. Herein, we report a simple and effective strategy to prepare ADDC using derivatives of cisplatin (CP) and dasatinib (DAS), which further self-assembled to form reduction-responsive nanoparticles (CP-DDA NPs). DAS was modified with succinic anhydride and then connected with CP derivative by ester bonds. The size, micromorphology and in vitro drug release of CP-DDA NPs were characterized. The biocompatibility and bioactivity of these carrier-free nanoparticles were then investigated by HepG2 cells and H22-tumor bearing mice. In vitro and in vivo experiments proved that CP-DDA NPs had excellent anti-tumor activity and significantly reduced toxicities. This study provides a new strategy to design the carrier-free nanomedicine composed of CP and DAS for synergistic tumor treatment.
Collapse
Affiliation(s)
- Lu Yang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Jiaxi Xu
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Zheng Xie
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Faquan Song
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| |
Collapse
|
29
|
Sialic acid conjugate-modified liposomes enable tumor homing of epirubicin via neutrophil/monocyte infiltration for tumor therapy. Acta Biomater 2021; 134:702-715. [PMID: 34339869 DOI: 10.1016/j.actbio.2021.07.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022]
Abstract
Neutrophils and monocytes (N/Ms) are potential candidates for the delivery of therapeutic agents to the tumor microenvironment (TME) because of their tumor-accumulating nature. L-selectin and Siglec-1, receptors for sialic acid (SA), are highly expressed in circulating neutrophils and monocytes, respectively, in tumor-bearing mice, and N/Ms are recruited to tumors in response to inflammatory cytokines secreted by the TME, promoting tumor growth and invasion. Therefore, we constructed a drug delivery nano-platform using N/Ms as vehicles. SA-stearic acid conjugate was synthesized and utilized to modify epirubicin-loaded liposomes (EPI-SL) for enhanced endocytosis of liposomes by circulating N/Ms. Cellular uptake studies showed that SA modification improved the accumulation of EPI in N/Ms and did not alter the inherent chemotaxis of N/Ms. In tumor-bearing mice, EPI-SL significantly improved the tumor-targeting efficiency and therapeutic efficacy of EPI compared to other preparations and even eradicated tumors because of the tumor-accumulating and inhibitory effects of N/Ms containing EPI-SL. Our research showed, for the first time, that as an N/M-based drug delivery platform, EPI-SL remedied the limited tumor targeting in the conventional EPR effect-based treatment strategy, contributing to the exploitation of a new drug delivery platform for cancer treatment. STATEMENT OF SIGNIFICANCE: Tumor-associated neutrophils (TANs) and macrophages (TAMs) are closely associated with tumor growth and invasion, and therefore the development of therapeutic strategies targeting TANs and TAMs is crucial for tumor treatment. Given that most TANs and TAMs are derived from peripheral blood neutrophils and monocytes (N/Ms), respectively, we synthesized sialic acid-stearic acid conjugates that specifically bind N/Ms for the surface modification of liposomal epirubicin (EPI-SL). The N/Ms loaded with EPI-SL maintained their inherent chemotaxis toward the tumor. Additionally, EPI-SL significantly improved the survival of tumor-bearing mice and even eradicated tumors. These findings suggested that EPI-SL has substantial potential for clinical application by compensating for the previous low efficacy of ex vivo transformed cell infusion and improving the tumor-targeting efficiency.
Collapse
|
30
|
Lindberg J, Nilvebrant J, Nygren PÅ, Lehmann F. Progress and Future Directions with Peptide-Drug Conjugates for Targeted Cancer Therapy. Molecules 2021; 26:molecules26196042. [PMID: 34641586 PMCID: PMC8512983 DOI: 10.3390/molecules26196042] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
We review drug conjugates combining a tumor-selective moiety with a cytotoxic agent as cancer treatments. Currently, antibody-drug conjugates (ADCs) are the most common drug conjugates used clinically as cancer treatments. While providing both efficacy and favorable tolerability, ADCs have limitations due to their size and complexity. Peptides as tumor-targeting carriers in peptide-drug conjugates (PDCs) offer a number of benefits. Melphalan flufenamide (melflufen) is a highly lipophilic PDC that takes a novel approach by utilizing increased aminopeptidase activity to selectively increase the release and concentration of cytotoxic alkylating agents inside tumor cells. The only other PDC approved currently for clinical use is 177Lu-dotatate, a targeted form of radiotherapy combining a somatostatin analog with a radionuclide. It is approved as a treatment for gastroenteropancreatic neuroendocrine tumors. Results with other PDCs combining synthetic analogs of natural peptide ligands with cytotoxic agents have been mixed. The field of drug conjugates as drug delivery systems for the treatment of cancer continues to advance with the application of new technologies. Melflufen provides a paradigm for rational PDC design, with a targeted mechanism of action and the potential for deepening responses to treatment, maintaining remissions, and eradicating therapy-resistant stem cells.
Collapse
Affiliation(s)
- Jakob Lindberg
- Oncopeptides AB, Västra Trädgårdsgatan 15, SE-111 53 Stockholm, Sweden;
| | - Johan Nilvebrant
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (J.N.); (P.-Å.N.)
- SciLifeLab, SE-171 65 Solna, Sweden
| | - Per-Åke Nygren
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (J.N.); (P.-Å.N.)
- SciLifeLab, SE-171 65 Solna, Sweden
| | - Fredrik Lehmann
- Oncopeptides AB, Västra Trädgårdsgatan 15, SE-111 53 Stockholm, Sweden;
- Correspondence: ; Tel.: +46-(0)861-520-40
| |
Collapse
|
31
|
Zhang Y, Cui H, Zhang R, Zhang H, Huang W. Nanoparticulation of Prodrug into Medicines for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101454. [PMID: 34323373 PMCID: PMC8456229 DOI: 10.1002/advs.202101454] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Indexed: 05/28/2023]
Abstract
This article provides a broad spectrum about the nanoprodrug fabrication advances co-driven by prodrug and nanotechnology development to potentiate cancer treatment. The nanoprodrug inherits the features of both prodrug concept and nanomedicine know-how, attempts to solve underexploited challenge in cancer treatment cooperatively. Prodrugs can release bioactive drugs on-demand at specific sites to reduce systemic toxicity, this is done by using the special properties of the tumor microenvironment, such as pH value, glutathione concentration, and specific overexpressed enzymes; or by using exogenous stimulation, such as light, heat, and ultrasound. The nanotechnology, manipulating the matter within nanoscale, has high relevance to certain biological conditions, and has been widely utilized in cancer therapy. Together, the marriage of prodrug strategy which shield the side effects of parent drug and nanotechnology with pinpoint delivery capability has conceived highly camouflaged Trojan horse to maneuver cancerous threats.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Huaguang Cui
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Ruiqi Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-00520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-00520, Finland
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
32
|
Li W, Little N, Park J, Foster CA, Chen J, Lu J. Tumor-Associated Fibroblast-Targeting Nanoparticles for Enhancing Solid Tumor Therapy: Progress and Challenges. Mol Pharm 2021; 18:2889-2905. [PMID: 34260250 DOI: 10.1021/acs.molpharmaceut.1c00455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Even though nanoparticle drug delivery systems (nanoDDSs) have improved antitumor efficacy by delivering more drugs to tumor sites compared to free and unencapsulated therapeutics, achieving satisfactory distribution and penetration of nanoDDSs inside solid tumors, especially in stromal fibrous tumors, remains challenging. As one of the most common stromal cells in solid tumors, tumor-associated fibroblasts (TAFs) not only promote tumor growth and metastasis but also reduce the drug delivery efficiency of nanoparticles through the tumor's inherent physical and physiological barriers. Thus, TAFs have been emerging as attractive targets, and TAF-targeting nanotherapeutics have been extensively explored to enhance the tumor delivery efficiency and efficacy of various anticancer agents. The purpose of this Review is to opportunely summarize the underlying mechanisms of TAFs on obstructing nanoparticle-mediated drug delivery into tumors and discuss the current advances of a plethora of nanotherapeutic approaches for effectively targeting TAFs.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Nicholas Little
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jonghan Park
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Cole Alexander Foster
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jiawei Chen
- Michigan Institute for Clinical & Health Research, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States.,BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States.,NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona 85721, United States.,Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
33
|
Kashapov R, Ibragimova A, Pavlov R, Gabdrakhmanov D, Kashapova N, Burilova E, Zakharova L, Sinyashin O. Nanocarriers for Biomedicine: From Lipid Formulations to Inorganic and Hybrid Nanoparticles. Int J Mol Sci 2021; 22:7055. [PMID: 34209023 PMCID: PMC8269010 DOI: 10.3390/ijms22137055] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Encapsulation of cargoes in nanocontainers is widely used in different fields to solve the problems of their solubility, homogeneity, stability, protection from unwanted chemical and biological destructive effects, and functional activity improvement. This approach is of special importance in biomedicine, since this makes it possible to reduce the limitations of drug delivery related to the toxicity and side effects of therapeutics, their low bioavailability and biocompatibility. This review highlights current progress in the use of lipid systems to deliver active substances to the human body. Various lipid compositions modified with amphiphilic open-chain and macrocyclic compounds, peptide molecules and alternative target ligands are discussed. Liposome modification also evolves by creating new hybrid structures consisting of organic and inorganic parts. Such nanohybrid platforms include cerasomes, which are considered as alternative nanocarriers allowing to reduce inherent limitations of lipid nanoparticles. Compositions based on mesoporous silica are beginning to acquire no less relevance due to their unique features, such as advanced porous properties, well-proven drug delivery efficiency and their versatility for creating highly efficient nanomaterials. The types of silica nanoparticles, their efficacy in biomedical applications and hybrid inorganic-polymer platforms are the subject of discussion in this review, with current challenges emphasized.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia; (A.I.); (R.P.); (D.G.); (N.K.); (E.B.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang L, Zhang Z, Wang W, Tabet A, Hanson S, Zhang L, Zhu D, Wang C. Polymer-Based Dual-Responsive Self-Emulsifying Nanodroplets as Potential Carriers for Poorly Soluble Drugs. ACS APPLIED BIO MATERIALS 2021; 4:4441-4449. [PMID: 35006856 DOI: 10.1021/acsabm.1c00194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A biodegradable amphiphilic liquid polymer was designed to form self-emulsifying nanodroplets in water for delivering poorly soluble drugs. The polymer was composed of multiple short blocks of poly(ethylene glycol) (PEG) and poly(caprolactone) (PCL) connected through acid-labile acetal linkages. With an overall average molecular weight of over 18 kDa, the polymer remained as a viscous liquid under room and physiological temperatures. Dispersing the polymer in an aqueous buffer gave rise to highly stable micelle-like nanodroplets with an average size of approximately 15-20 nm. The nanodroplet dispersions underwent reversible temperature-sensitive aggregation with cloud points ranging from 45 to 50 °C, depending on polymer concentration. Nuclear magnetic resonance (NMR) and dynamic light scattering analyses revealed that while the nanodroplets were stable at pH 7.4 for several days, hydrolysis of the acetal linkages in the polymer backbone was much accelerated under mildly acidic pH 5.0, resulting in the formation of large microdroplets. Nile red (NR), a poorly water-soluble fluorophore, can be solubilized in the nanodroplets, and efficient intracellular delivery of NR was achieved. The hydrophobic indocyanine green (ICG) was also encapsulated in the nanodroplets. Near-infrared (NIR) fluorescence imaging and in vivo biocompatibility of the ICG-loaded nanodroplets were demonstrated in mice. In summary, the self-emulsifying nanodroplets of amphiphilic liquid polymer would be a promising material system for poorly soluble drug delivery and imaging in vivo.
Collapse
Affiliation(s)
- Li Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhiming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Wenshou Wang
- Department of Biomedical Engineering, University of Minnesota, 7-116 Hasselmo Hall, 312 Church Street S.E., Minneapolis, Minnesota 55455, United States
| | - Anthony Tabet
- Department of Biomedical Engineering, University of Minnesota, 7-116 Hasselmo Hall, 312 Church Street S.E., Minneapolis, Minnesota 55455, United States
| | - Samuel Hanson
- Department of Biomedical Engineering, University of Minnesota, 7-116 Hasselmo Hall, 312 Church Street S.E., Minneapolis, Minnesota 55455, United States
| | - Linhua Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, 7-116 Hasselmo Hall, 312 Church Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
35
|
Mao X, Hu S, Shang K, Yang G, Yan J, Ma C, Yin J. Construction of biodegradable core cross-linked nanoparticles from near infrared dyes encoded in polyprodrug amphiphiles and investigation of their synergistic anticancer activity. Polym Chem 2021. [DOI: 10.1039/d1py00128k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Amphiphilic polyprodrugs with reduction-responsive camptothecin prodrug and photothermal converted IR780 dyes was performed via core cross-linking protocol. The nanoparticles could be served as a nanocarrier and presented severe cytotoxicity to HeLa cells.
Collapse
Affiliation(s)
- Xiaoxu Mao
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Shoukui Hu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Ke Shang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Guangwei Yang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Jinhao Yan
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Chao Ma
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| |
Collapse
|
36
|
Sridharan K, Rathore B, Yousuf M, Reddy Rachamalla HK, Jinka S, Jaggarapu MMCS, Banerjee R. Self-Assembling Derivative of Hydrocortisone as Glucocorticoid Receptor-Targeted Nanotherapeutics for Synergistic, Combination Therapy against Colorectal Tumor. Mol Pharm 2020; 18:1208-1228. [PMID: 33371687 DOI: 10.1021/acs.molpharmaceut.0c01091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hydrocortisone, a natural glucocorticoid secreted by adrenal and extra-adrenal tissues, locally governs the transcription of genes involved in inflammation, immune response, metabolism, and energy homeostasis via binding to its cognate glucocorticoid receptor (GR). In this study, we show that modified hydrocortisone (HC16), a cancer-selective cytotoxic molecule, showed synergism in combination with drugs like Doxorubicin and docetaxel, self-assembled into vesicles, entrapped docetaxel and complexed with anti-cancer plasmid DNA for enhanced killing of cancer cells. These vesicles exhibited GR-mediated nuclear localization, delivery of the p53 gene, and also inhibited cell viability selectively in RKO, HCT15, and CT26 colon cancer cells but not in normal cells like CHO and HEK293T. Apart from exerting its own anti-cancer activity, the self-assembled HC16 vesicles loaded with docetaxel sensitized the cancer cells to its drug cargo by downregulating the drug metabolizing CYP3A4 gene. This indirectly reduces the risk of nonspecific adverse effects in normal cells, as the viability of sensitized cancer cells could be significantly reduced even in low doses of cytotoxic docetaxel. The near infrared (NIR)-dye-associated self-assemblies accumulated in a colon tumor with higher orders of NIR intensity compared to those in a colon of healthy mice. Thereafter, the treatment of HC16-docetaxel-p53 vesicle/DNA complex led to significant tumor regression, which resulted in a cecum/body weight ratio in tumor-bearing mice similar to that of healthy mice measured at 24 h postcompletion of treatment. There was an up to 2.5-fold enhancement in the overall survivability of colon-tumor-bearing mice treated with HC16-docetaxel-p53 vesicle/DNA complexes when compared against the pristine docetaxel-treated groups. Further, the HC16-docetaxel-p53 vesicle/DNA complex-treated group showed reduced nuclear accumulation of cell proliferation marker Ki67, reduced protein levels of prosurvival and mesenchymal proteins like Bcl-2, PARP, vimentin, and N-cadherin, and increased the levels of pro-apoptotic activated caspases as compared to the pristine docetaxel-treated groups. The therapeutic package described herein is expected to find future use as a rational, multifaceted, GR-targeted approach for inhibiting colon tumor progression.
Collapse
Affiliation(s)
- Kathyayani Sridharan
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Bhowmira Rathore
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Md Yousuf
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.,Department of Chemistry, Ramnagar College, Purba Medinipur, West Bengal 721 453, India
| | - Hari Krishna Reddy Rachamalla
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Sudhakar Jinka
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Madhan Mohan Chandra Sekhar Jaggarapu
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| |
Collapse
|
37
|
Selective antitumor activity of drug-free TPGS nanomicelles with ROS-induced mitochondrial cell death. Int J Pharm 2020; 594:120184. [PMID: 33340597 DOI: 10.1016/j.ijpharm.2020.120184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/29/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022]
Abstract
D-a-tocopheryl polyethylene glycol succinate (TPGS) as a FDA-approved safe adjuvant has shown an excellent application in the targeting delivery of antitumor drugs and overcoming multidrug resistance. Beside, TPGS can result in apoptogenic activity toward many tumor types because it can induce mitochondrial dysfunction. Therefore, TPGS can serve as an antineoplastic agent. However, the current research on the selective antitumor activity of TPGS is ignored. To reveal the issue, herein we develop a mitochondria-targeting drug-free TPGS nanomicelles with the hydrodynamic diameter of about 100 nm and outstanding serum stability by weak interaction-driven self-assembly of the amphiphilic TPGS polymer. Moreover, such drug-free TPGS nanomicelles intravenously injected into tumor-bearing mice exhibit long blood circulation time, superior tumor enrichment, and inhibit the tumor growth via inducing excessive reactive oxygen species (ROS) generation within tumor cells. Further in vitro and in vivo researches jointly demonstrate that drug-free TPGS nanomicelles have more significant antitumor effect on HeLa cells compared with that of other tumor cells. On the contrary, drug-free TPGS nanomicelles display the low toxicity toward normal cells and tissues. Taken together, these new findings confirm that TPGS drug-free nanomicelles represent simple, multifunctional, safe, and efficient antineoplastic agents, which can be expected to bring new light on the development of drug-free polymers for tumor therapy.
Collapse
|
38
|
Yang X, Wu D, Yuan S. Tyrosine Kinase Inhibitors in the Combination Therapy of HER2 Positive Breast Cancer. Technol Cancer Res Treat 2020; 19:1533033820962140. [PMID: 33034269 PMCID: PMC7592330 DOI: 10.1177/1533033820962140] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC)
accounts for about 20% to 30% of all BC subtypes and is characterized by
invasive disease and poor prognosis. With the emergence of anti-HER2 target
drugs, HER2-positive BC patient outcomes have changed dramatically. However,
treatment failure is mostly due to drug resistance and the special treatment
needs of different subgroups. Small molecule tyrosine kinase inhibitors can
inhibit multiple targets of the human epidermal growth factor receptor family
and activate PI3K/AKT, MAPK, PLC γ, ERK1/2, JAK/STAT, and other pathways
affecting the expression of MDM2, mTOR, p27, and other transcription factors.
This can help regulate the differentiation, apoptosis, migration, growth, and
adhesion of normal cells and reverse drug resistance to a certain extent. These
inhibitors can cross the blood-brain barrier and be administered orally. They
have a good synergistic effect with effective drugs such as trastuzumab,
pertuzumab, t-dm1, and cyclin-dependent kinase 4 and 6 inhibitors. These
advantages have resulted in small-molecule tyrosine kinase inhibitors attracting
attention. The new small-molecule tyrosine kinase inhibitor was investigated in
multi-target anti-HER2 therapy, showed a good effect in preclinical and clinical
trials, and to some extent, improved the prognosis of HER2-positive BC patients.
Its use could lead to a de-escalation of treatment in some patients, possibly
preventing unnecessary procedures along with the associated side effects and
costs.
Collapse
Affiliation(s)
- Xue Yang
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Dapeng Wu
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Shengli Yuan
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|