1
|
Li C, Liu Q, Han L, Zhang H, Immler R, Rathkolb B, Secklehner J, de Angelis MH, Yildirim AÖ, Zeuschner D, Nicke A, Carlin LM, Sperandio M, Stoeger T, Rehberg M. The eATP/P2×7R Axis Drives Quantum Dot-Nanoparticle Induced Neutrophil Recruitment in the Pulmonary Microcirculation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404661. [PMID: 39364760 PMCID: PMC11615809 DOI: 10.1002/advs.202404661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Indexed: 10/05/2024]
Abstract
Exposure to nanoparticles (NPs) is frequently associated with adverse cardiovascular effects. In contrast, NPs in nanomedicine hold great promise for precise lung-specific drug delivery, especially considering the extensive pulmonary capillary network that facilitates interactions with bloodstream-suspended particles. Therefore, exact knowledge about effects of engineered NPs within the pulmonary microcirculation are instrumental for future application of this technology in patients. To unravel the real-time dynamics of intravenously delivered NPs and their effects in the pulmonary microvasculature, we employed intravital microscopy of the mouse lung. Only PEG-amine-QDs, but not carboxyl-QDs triggered rapid neutrophil recruitment in microvessels and their subsequent recruitment to the alveolar space and was linked to cellular degranulation, TNF-α, and DAMP release into the circulation, particularly eATP. Stimulation of the ATP-gated receptor P2X7R induced expression of E-selectin on microvascular endothelium thereby mediating the neutrophilic immune response. Leukocyte integrins LFA-1 and MAC-1 facilitated adhesion and decelerated neutrophil crawling on the vascular surface. In summary, this study unravels the complex cascade of neutrophil recruitment during NP-induced sterile inflammation. Thereby we demonstrate novel adverse effects for NPs in the pulmonary microcirculation and provide critical insights for optimizing NP-based drug delivery and therapeutic intervention strategies, to ensure their efficacy and safety in clinical applications.
Collapse
Affiliation(s)
- Chenxi Li
- Institute of Lung Health and Immunity (LHI)Comprehensive Pneumology Center (CPC)Helmholtz Center MunichMember of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Pulmonary and Critical CareShandong Provincial Hospital Affiliated toShandong First Medical UniversityJinanShandong250021China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI)Comprehensive Pneumology Center (CPC)Helmholtz Center MunichMember of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Lianyong Han
- Institute of Lung Health and Immunity (LHI)Comprehensive Pneumology Center (CPC)Helmholtz Center MunichMember of the German Center for Lung Research (DZL)85764MunichGermany
| | - Haiyun Zhang
- Institute of Lung Health and Immunity (LHI)Comprehensive Pneumology Center (CPC)Helmholtz Center MunichMember of the German Center for Lung Research (DZL)85764MunichGermany
| | - Roland Immler
- Walter Brendel Centre of Experimental MedicineBiomedical CenterInstitute of Cardiovascular Physiology and PathophysiologyLudwig‐Maximilians‐Universität München82152Planegg‐MartinsriedGermany
| | - Birgit Rathkolb
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum München85764NeuherbergGermany
- Institute of Experimental Animal Breeding and BiotechnologyLudwig‐Maximilians‐Universität München81377MunichGermany
| | - Judith Secklehner
- Cancer Research UK Scotland InstituteGlasgowG61 1BDUK
- School of Cancer SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum München85764NeuherbergGermany
- Chair of Experimental GeneticsTUM School of Life SciencesTechnische Universität München85354FreisingGermany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI)Comprehensive Pneumology Center (CPC)Helmholtz Center MunichMember of the German Center for Lung Research (DZL)85764MunichGermany
- Institute of Experimental PneumologyLMU80539MunichGermany
| | - Dagmar Zeuschner
- Electron Microscopy FacilityMax Planck Institute for Molecular Biomedicine48149MuensterGermany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and ToxicologyFaculty of MedicineLudwig‐Maximilians‐Universität München80336MunichGermany
| | - Leo M. Carlin
- Cancer Research UK Scotland InstituteGlasgowG61 1BDUK
- School of Cancer SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Markus Sperandio
- Walter Brendel Centre of Experimental MedicineBiomedical CenterInstitute of Cardiovascular Physiology and PathophysiologyLudwig‐Maximilians‐Universität München82152Planegg‐MartinsriedGermany
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI)Comprehensive Pneumology Center (CPC)Helmholtz Center MunichMember of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI)Comprehensive Pneumology Center (CPC)Helmholtz Center MunichMember of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
2
|
D’Agnano V, Perrotta F, Fomez R, Carrozzo VM, Schiattarella A, Sanduzzi Zamparelli S, Pagliaro R, Bianco A, Mariniello DF. Pharmacological Treatment of Interstitial Lung Diseases: A Novel Landscape for Inhaled Agents. Pharmaceutics 2024; 16:1391. [PMID: 39598515 PMCID: PMC11597590 DOI: 10.3390/pharmaceutics16111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Interstitial lung diseases (ILDs) encompass a heterogeneous group of over 200 disorders that require individualized treatment. Antifibrotic agents, such as nintedanib and pirfenidone, have remarkably revolutionized the treatment landscape of patients with idiopathic pulmonary fibrosis (IPF). Moreover, the approval of nintedanib has also expanded the therapeutic options for patients with progressive pulmonary fibrosis other than IPF. However, despite recent advances, current therapeutic strategies based on antifibrotic agents and/or immunomodulation are associated with non-negligible side effects. Therefore, several studies have explored the inhalation route aiming to spread higher local concentrations while limiting systemic toxicity. In this review, we examined the currently available literature about preclinical and clinical studies testing the efficacy and safety of inhalation-based antifibrotics, immunomodulatory agents, antioxidants, mucolytics, bronchodilators, and vasodilator agents in ILDs.
Collapse
Affiliation(s)
- Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (R.F.); (V.M.C.); (A.S.); (R.P.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (R.F.); (V.M.C.); (A.S.); (R.P.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Ramona Fomez
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (R.F.); (V.M.C.); (A.S.); (R.P.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Valerio Maria Carrozzo
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (R.F.); (V.M.C.); (A.S.); (R.P.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Angela Schiattarella
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (R.F.); (V.M.C.); (A.S.); (R.P.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | | | - Raffaella Pagliaro
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (R.F.); (V.M.C.); (A.S.); (R.P.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (R.F.); (V.M.C.); (A.S.); (R.P.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | | |
Collapse
|
3
|
Carter D, Better M, Abbasi S, Zulfiqar F, Shapiro R, Ensign LM. Nanomedicine for Maternal and Fetal Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303682. [PMID: 37817368 PMCID: PMC11004090 DOI: 10.1002/smll.202303682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/25/2023] [Indexed: 10/12/2023]
Abstract
Conception, pregnancy, and childbirth are complex processes that affect both mother and fetus. Thus, it is perhaps not surprising that in the United States alone, roughly 11% of women struggle with infertility and 16% of pregnancies involve some sort of complication. This presents a clear need to develop safe and effective treatment options, though the development of therapeutics for use in women's health and particularly in pregnancy is relatively limited. Physiological and biological changes during the menstrual cycle and pregnancy impact biodistribution, pharmacokinetics, and efficacy, further complicating the process of administration and delivery of therapeutics. In addition to the complex pharmacodynamics, there is also the challenge of overcoming physiological barriers that impact various routes of local and systemic administration, including the blood-follicle barrier and the placenta. Nanomedicine presents a unique opportunity to target and sustain drug delivery to the reproductive tract and other relevant organs in the mother and fetus, as well as improve the safety profile and minimize side effects. Nanomedicine-based approaches have the potential to improve the management and treatment of infertility, obstetric complications, and fetal conditions.
Collapse
Affiliation(s)
- Davell Carter
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Marina Better
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fareeha Zulfiqar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Laura M. Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Miyake Y, Tse WH, Wang JQ, Patel D, Ozturk A, Yamataka A, Keijzer R. Microinjection With Nanoparticles to Deliver Drugs in Prenatal Lung Explants - A Pilot Study for Prenatal Therapy in Congenital Diaphragmatic Hernia. J Pediatr Surg 2024; 59:847-853. [PMID: 38413261 DOI: 10.1016/j.jpedsurg.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Fetoscopic endoluminal tracheal occlusion (FETO) improves the survival rate in fetuses with severe congenital diaphragmatic hernia (CDH). We hypothesize that prenatal therapies into the trachea during FETO can further improve outcomes. Here, we present an ex vivo microinjection technique with rat lung explants to study prenatal therapy with nanoparticles. METHODS We used microsurgery to isolate lungs from rats on embryonic day 18. We injected chitosan nanoparticles loaded with fluorescein (FITC) into the trachea of the lung explants. We compared the difference in biodistribution of two types of nanoparticles, functionalized IgG-conjugated nanoparticles (IgG-nanoparticles) and bare nanoparticles after 24 h culture with immunofluorescence (IF). We used IF to mark lung epithelial cells with E-cadherin and to investigate an apoptosis (Active-caspase 3) and inflammatory marker (Interleukin, IL-6) and compared its abundance between the two experimental groups and control lung explants. RESULTS We detected the presence of nanoparticles in the lung explants, and the relative number of nanoparticles to cells was 2.49 fold higher in IgG-nanoparticles than bare nanoparticles (p < 0.001). Active caspase-3 protein abundance was similar in the control, bare nanoparticles (1.20 fold higher), and IgG-nanoparticles (1.34 fold higher) groups (p = 0.34). Similarly, IL-6 protein abundance was not different in the control, bare nanoparticles (1.13 fold higher), and IgG-nanoparticles (1.12 fold higher) groups (p = 0.33). CONCLUSIONS Functionalized nanoparticles had a higher presence in lung cells and this did not result in more apoptosis or inflammation. Our proof-of-principle study will guide future research with therapies to improve lung development prenatally. LEVELS OF EVIDENCE N/A TYPE OF STUDY: Animal and laboratory study.
Collapse
Affiliation(s)
- Yuichiro Miyake
- Division of Pediatric Surgery, Department of Surgery, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, Canada; Juntendo University School of Medicine, Department of Pediatric General and Urogenital Surgery, Tokyo, Japan
| | - Wai Hei Tse
- Division of Pediatric Surgery, Department of Surgery, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Jia Qi Wang
- Division of Pediatric Surgery, Department of Surgery, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Daywin Patel
- Division of Pediatric Surgery, Department of Surgery, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Arzu Ozturk
- Division of Pediatric Surgery, Department of Surgery, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Atsuyuki Yamataka
- Juntendo University School of Medicine, Department of Pediatric General and Urogenital Surgery, Tokyo, Japan
| | - Richard Keijzer
- Division of Pediatric Surgery, Department of Surgery, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.
| |
Collapse
|
5
|
Gan C, Wang Y, Xiang Z, Liu H, Tan Z, Xie Y, Yao Y, Ouyang L, Gong C, Ye T. Niclosamide-loaded nanoparticles (Ncl-NPs) reverse pulmonary fibrosis in vivo and in vitro. J Adv Res 2023; 51:109-120. [PMID: 36347425 PMCID: PMC10491968 DOI: 10.1016/j.jare.2022.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF), a life-threatening interstitial lung disease, is characterized by excessive activation and proliferation of fibroblasts and epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) accompanied by a large amount of extracellular matrix aggregation. There are no therapies to reverse pulmonary fibrosis, and nintedanib and pirfenidone could only slow down the decline of lung function of IPF patients and delay their survival time. Niclosamide (Ncl) is an antihelminthic drug approved by FDA, which has been reported to have pleiotropic pharmacological activities in recent years, but it's almost complete insolubility in water limits its clinical application. OBJECTIVES To improve the water solubility of Ncl, explore its ability to reverse BLM-induced pulmonary fibrosis and its specific mechanism of action. METHODS The Niclosamide-loaded nanoparticles (Ncl-NPs) were formed by emulsification solvent evaporation method. A mouse model induced by bleomycin (BLM) was established to evaluate its effects and mechanisms of inhibiting and reversing fibrosis in vivo. The cell models treated by transforming growth factor-β1 (TGF-β1) were used to examine the mechanism of Ncl-NPs inhibiting fibrosis in vitro. Flow cytometry, IHC, IL-4-induced macrophage model and co-culture system were used to assess the effect of Ncl-NPs on M2 polarization of macrophages. RESULTS The Ncl-NPs improved the poor water solubility of Ncl. The lower dose of Ncl-NPs (2.5 mg/kg) showed the same effect of reversing established pulmonary fibrosis as free Ncl (5 mg/kg). Mechanistic studies revealed that Ncl-NPs blocked TGF-β/Smad and signaling transducer and activator of transcription 3 (Stat3) signaling pathways and inhibited the M2 polarization of macrophages. Additionally, H&E staining of the tissues initially showed the safety of Ncl-NPs. CONCLUSION These results indicate Ncl-NPs may serve as a new idea for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhongzheng Xiang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zui Tan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuting Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuqin Yao
- Department of Nutrition and Food Hygiene, School of Public Health, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changyang Gong
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Ullrich SJ, Yung NK, Bauer-Pisani TJ, Maassel NL, Guerra ME, Freedman-Weiss M, Ahle SL, Ricciardi AS, Sauler M, Saltzman WM, Piotrowski-Daspit AS, Stitelman DH. In utero delivery of miRNA induces epigenetic alterations and corrects pulmonary pathology in congenital diaphragmatic hernia. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:594-602. [PMID: 37200861 PMCID: PMC10185702 DOI: 10.1016/j.omtn.2023.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/19/2023] [Indexed: 05/20/2023]
Abstract
Structural fetal diseases, such as congenital diaphragmatic hernia (CDH) can be diagnosed prenatally. Neonates with CDH are healthy in utero as gas exchange is managed by the placenta, but impaired lung function results in critical illness from the time a baby takes its first breath. MicroRNA (miR) 200b and its downstream targets in the TGF-β pathway are critically involved in lung branching morphogenesis. Here, we characterize the expression of miR200b and the TGF-β pathway at different gestational times using a rat model of CDH. Fetal rats with CDH are deficient in miR200b at gestational day 18. We demonstrate that novel polymeric nanoparticles loaded with miR200b, delivered in utero via vitelline vein injection to fetal rats with CDH results in changes in the TGF-β pathway as measured by qRT-PCR; these epigenetic changes improve lung size and lung morphology, and lead to favorable pulmonary vascular remodeling on histology. This is the first demonstration of in utero epigenetic therapy to improve lung growth and development in a pre-clinical model. With refinement, this technique could be applied to fetal cases of CDH or other forms of impaired lung development in a minimally invasive fashion.
Collapse
Affiliation(s)
- Sarah J. Ullrich
- Department of Surgery, Yale University, New Haven, CT 06510, USA
| | - Nicholas K. Yung
- Department of Surgery, Yale University, New Haven, CT 06510, USA
| | | | | | | | | | - Samantha L. Ahle
- Department of Surgery, Yale University, New Haven, CT 06510, USA
| | - Adele S. Ricciardi
- Department of Surgery, Yale University, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Maor Sauler
- Department of Medicine, Yale University, New Haven, CT 06510, USA
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06511, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06511, USA
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
| | | | | |
Collapse
|
7
|
White BM, Morrisey EE, Peranteau WH. In Utero Gene Editing for Inherited Lung Diseases. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-021-00205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Sparks TN. The Current State and Future of Fetal Therapies. Clin Obstet Gynecol 2021; 64:926-932. [PMID: 34560766 PMCID: PMC8530888 DOI: 10.1097/grf.0000000000000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Through next-generation sequencing, we can now detect a myriad of rare genetic diseases in utero that were previously not diagnosed until after birth. Fetal therapies hold strong promise for transforming prenatal management of genetic diseases, preventing adverse effects from organ damage in utero, and improving the grim perinatal outcomes of numerous genetic diseases. Many novel, in utero therapies are under investigation for genetic diseases using hematopoietic stem cells, cellular pathway inhibitors, viral vectors, and other biotechnologies. This article reviews emerging fetal therapies, as well as existing guidance for their development, considerations for their safety, and ethical and societal implications.
Collapse
Affiliation(s)
- Teresa N Sparks
- Department of Obstetrics, Gynecology, & Reproductive Sciences
- Institute of Human Genetics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
9
|
Fabrication and characterization of zein-alginate oligosaccharide complex nanoparticles as delivery vehicles of curcumin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116937] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|