1
|
Roze M, Gorb SN, Zeimet T, Krings W. Mandible composition and properties in two selected praying mantises (Insecta, Mantodea). Anat Rec (Hoboken) 2024. [PMID: 39511980 DOI: 10.1002/ar.25602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Insects process their food with their cuticle-based mouthparts. These feeding structures reflect their diversity and can, in some cases, showcase adaptations in material composition, mechanical properties, and shape to suit their specific dietary preferences. To pave the way to deeply understand the interaction between mouthparts and food and to determine potential adaptations of the structures to the food, this study focuses on the mandibles of two praying mantis species. Gongylus gongylodes feeds mainly on Diptera, and Sphodromantis lineola forages on larger prey. Employing scanning electron microscopy, the mandibular morphologies were analyzed. The degree of the cuticle tanning was tested using confocal laser scanning microscopy. Furthermore, the contents of transition and alkaline earth metals in the mandible cuticle were studied using energy-dispersive X-ray spectroscopy and the mechanical properties tested by nanoindentation. We found that S. lineola mandibles show pronounced gradients of Young's modulus and hardness from the basis to the tip, which might be an adaptation against high stresses during biting and chewing. G. gongylodes, in contrast, did not show pronounced gradients, which may indicate that there is less stress involved in feeding-necessary to test in future studies. The mechanical properties of manidibles in both species are related to the degree of cuticle tanning but also positively correlate with the content of magnesium. These findings enrich our understanding of insect cuticle biology but also present new sets of data on praying mantis structures.
Collapse
Affiliation(s)
- Malo Roze
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Timo Zeimet
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
| | - Wencke Krings
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Krings W, Gorb SN, Neumann C, Wägele H. Radular Tooth Coating in Members of Dendronotidae and Flabellinidae (Nudibranchia, Gastropoda, Mollusca). J Morphol 2024; 285:e21773. [PMID: 39252400 DOI: 10.1002/jmor.21773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
Nudibranchs, with their mesmerizing diversity and ecological significance, play crucial roles in marine ecosystems. Central to their feeding prowess is the radula, a chitinous structure with diverse morphologies adapted to prey preferences and feeding strategies. This study focuses on elucidating wear coping mechanisms in radular teeth of carnivorous molluscs, employing Dendronotus lacteus (Dendronotidae) and Flabellina affinis (Flabellinidae) as model species. Both species forage on hydrozoans. Through scanning electron microscopy, confocal laser scanning microscopy, nanoindentation, and energy-dispersive X-ray spectroscopy, the biomechanical and compositional properties of their teeth were analyzed. Notably, tooth coatings, composed of calcium (Ca) or silicon (Si) and high hardness and stiffness compared to the internal tooth structure, with varying mineral contents across tooth regions and ontogenetic zones, were found. The presence of the hard and stiff tooth coatings highlight their role in enhancing wear resistance. The heterogeneities in the autofluorescence patterns related to the distribution of Ca and Si of the coatings. Overall, this study provides into the biomechanical adaptations of nudibranch radular teeth, shedding light on the intricate interplay between tooth structure, elemental composition, and ecological function in marine molluscs.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Leipzig, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Charlotte Neumann
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Leipzig, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
| | - Heike Wägele
- Department of Phylogenetics and Evolutionary Biology, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| |
Collapse
|
3
|
Züger S, Krings W, Gorb SN, Büscher TH, Sombke A. Material composition and mechanical properties of the venom-injecting forcipules in centipedes. Front Zool 2024; 21:21. [PMID: 39180121 PMCID: PMC11342574 DOI: 10.1186/s12983-024-00543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Centipedes are terrestrial and predatory arthropods that possess an evolutionary transformed pair of appendages used for venom injection-the forcipules. Many arthropods incorporate reinforcing elements into the cuticle of their piercing or biting structures to enhance hardness, elasticity or resistance to wear and structural failure. Given their frequent exposure to high mechanical stress, we hypothesise that the cuticle of the centipede forcipule might be mechanically reinforced. With a combination of imaging, analytical techniques and mechanical testing, we explore the centipede forcipule in detail to shed light on its morphology and performance. Additionally, we compare these data to characteristics of the locomotory leg to infer evolutionary processes. RESULTS We examined sclerotization patterns using confocal laser-scanning microscopy based on autofluorescence properties of the cuticle (forcipule and leg) and elemental composition by energy-dispersive X-ray spectroscopy in representative species from all five centipede lineages. These experiments revealed gradually increasing sclerotization towards the forcipular tarsungulum and a stronger sclerotization of joints in taxa with condensed podomeres. Depending on the species, calcium, zinc or chlorine are present with a higher concentration towards the distal tarsungulum. Interestingly, these characteristics are more or less mirrored in the locomotory leg's pretarsal claw in Epimorpha. To understand how incorporated elements affect mechanical properties, we tested resistance to structural failure, hardness (H) and Young's modulus (E) in two representative species, one with high zinc and one with high calcium content. Both species, however, exhibit similar properties and no differences in mechanical stress the forcipule can withstand. CONCLUSIONS Our study reveals similarities in the material composition and properties of the forcipules in centipedes. The forcipules transformed from an elongated leg-like appearance into rigid piercing structures. Our data supports their serial homology to the locomotory leg and that the forcipule's tarsungulum is a fusion of tarsus and pretarsal claw. Calcium or zinc incorporation leads to comparable mechanical properties like in piercing structures of chelicerates and insects, but the elemental incorporation does not increase H and E in centipedes, suggesting that centipedes followed their own pathways in the evolutionary transformation of piercing tools.
Collapse
Affiliation(s)
- Simon Züger
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Wencke Krings
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstrasse 12, 04103, Leipzig, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Thies H Büscher
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Andy Sombke
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| |
Collapse
|
4
|
Krings W, Gorb SN. Performance of biological food processing interfaces: Perspectives on the science of mollusc radula. Biointerphases 2024; 19:030801. [PMID: 38940493 DOI: 10.1116/6.0003672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
The Mollusca comprises a diverse range of organisms, with the class Gastropoda alone boasting approximately 80 000 extant species. Their adaptability across various habitats is facilitated by the evolution of the radula, a key structure for food acquisition. The radula's composition and mechanical properties, including its chitinous membrane, teeth, and supporting structures, enable efficient food gathering and processing. Through adaptive tooth morphology and composition, an interplay between radular components is facilitated, which results in collective effects to withstand forces encountered during feeding and reduce structural failure, with the broad range of variations reflecting ecological niches. Furthermore, teeth consist of composite materials with sometimes high contents of iron, calcium, or silicon to reduce wear. During interaction with the food, the radula performs complex three-dimensional motions, challenging to document. Here, we provide a review on the morphology, the mechanical properties, the composition, and various other parameters that contribute to radular performance. Due to, e.g., the smallness of these structures, there are, however, limitations to radular research. However, numerical simulations and physical models tested on substrates offer avenues for further understanding radular function and performance during feeding. These studies not only advance our knowledge of molluscan biology and ecology but also provide inspirations for biomimetic design and further advances in materials engineering.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg 20146, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, Leipzig 04103, Germany
- Department of Mammalogy and Paleoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, Hamburg 20146, Germany
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| |
Collapse
|
5
|
Matsumura Y, Krings W, Kovalev A, Gorb SN. The puncture mechanics: an example from the bed bug Cimex lectularius showing traumatic insemination using the paramere. J R Soc Interface 2024; 21:20240108. [PMID: 38807525 DOI: 10.1098/rsif.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
Cimicidae are well-known for traumatic insemination, and males pierce females with their parameres and transfer sperm through them. The shape of parameres is relatively stable in the family, but in some genera, the paramere is elongated, appearing less resistant against lateral deflection. To understand the mechanical limitations of the paramere, we studied its penetration mechanics of the common bed bug, Cimex lectularius. We examined the post-abdominal morphology, paramere geometry and material properties and conducted breaking stress experiments on the paramere under wet and dry conditions. Mechanical property gradients are present with the paramere tip as the stiffest region and the base as the most flexible one. These mechanical properties relate to the presence of Ca, Zn and Si. The basal wing-shaped structure is flexible, enabling it to interlock with the anal region during mating. The paramere is slightly twisted; the tip region is circular in cross-section, and the geometry of the rest is rather complex. In the mechanical tests, wet parameres mainly buckled, while dried parameres broke off. The level of structural failures depended on directions from which the compression forces were applied. Structural, material and mechanical strengthening mechanisms preventing the paramere from mechanical failure are discussed.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University , Kiel, Germany
- Systematic Entomology, Graduate School of Agriculture, Hokkaido University , Sapporo 060-8589, Japan
- General and Systematic Zoology, Zoological Institute and Museum, University of Greifswald , Greifswald, Germany
| | - Wencke Krings
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University , Kiel, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig , Leipzig 04103, Germany
- Department of Mammalogy and Paleoanthropology, Leibniz Institute for the Analysis of Biodiversity Change , Hamburg 20146, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg , Hamburg 20146, Germany
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University , Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University , Kiel, Germany
| |
Collapse
|
6
|
Hackethal S, Schulz-Kornas E, Gorb SN, Krings W. Wear patterns of radular teeth in Loligo vulgaris (Cephalopoda; Mollusca) are related to their structure and mechanical properties. Interface Focus 2024; 14:20230082. [PMID: 38618237 PMCID: PMC11008966 DOI: 10.1098/rsfs.2023.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/05/2024] [Indexed: 04/16/2024] Open
Abstract
Radular teeth have to cope with wear, when interacting with ingesta. In some molluscan taxa, wear-coping mechanisms, related to the incorporation of high contents of iron or silica, have been previously determined. For most species, particularly for those which possess radulae without such incorporations, wear-coping mechanisms are understudied. In the present study, we documented and characterized the wear on radular teeth in the model species Loligo vulgaris (Cephalopoda). By applying a range of methods, the elementary composition and mechanical properties of the teeth were described, to gain insight into mechanisms for coping with abrasion. It was found that the tooth regions that are prone to wear are harder and stiffer. Additionally, the surfaces interacting with the ingesta possessed a thin coating with high contents of silicon, probably reducing abrasion. The here presented data may serve as an example of systematic study of radular wear, in order to understand the relationship between the structure of radular teeth and their properties.
Collapse
Affiliation(s)
- Svenja Hackethal
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, 04103 Leipzig, Germany
- Department of Mammalogy and Paleoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Ellen Schulz-Kornas
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, 04103 Leipzig, Germany
- Department of Mammalogy and Paleoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
| | - Wencke Krings
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, 04103 Leipzig, Germany
- Department of Mammalogy and Paleoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
| |
Collapse
|
7
|
Krings W, Neumann C, Gorb SN, Koehnsen A, Wägele H. Elemental composition and material properties of radular teeth in the heterobranch snail Gastropteron rubrum (Mollusca, Gastropoda, Cephalaspidea) foraging on hard organisms. Ecol Evol 2023; 13:e10332. [PMID: 37589038 PMCID: PMC10425275 DOI: 10.1002/ece3.10332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 08/18/2023] Open
Abstract
The molluscan feeding structure is the radula, a chitinous membrane with teeth, which are highly adapted to the food and the substrate to which the food is attached. In Polyplacophora and Patellogastropoda, the handling of hard ingesta can be facilitated by high content of chemical compounds containing Fe or Si in the tooth cusps. Other taxa, however, possess teeth that are less mineralized, even though animals have to avoid structural failure or high wear during feeding as well. Here, we investigated the gastropod Gastropteron rubrum, feeding on hard Foraminifera, diatoms and Porifera. Tooth morphologies and wear were documented by scanning electron microscopy and their mechanical properties were tested by nanoindentation. We determined that gradients of hard- and stiffness run along each tooth, decreasing from cusp to basis. We also found that inner lateral teeth were harder and stiffer than the outer ones. These findings allowed us to propose hypotheses about the radula-ingesta interaction. In search for the origins of the gradients, teeth were visualized using confocal laser scanning microscopy, to determine the degree of tanning, and analyzed with energy-dispersive X-ray spectroscopy, to test the elemental composition. We found that the mechanical gradients did not have their origins in the elemental content, as the teeth did not contain high proportions of metals or other minerals. This indicates that their origin might be the degree of tanning. However, in the tooth surfaces that interact with the ingesta high Si and Ca contents were determined, which is likely an adaptation to reduce wear.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Electron Microscopy, Institute of Cell and Systems Biology of AnimalsUniversität HamburgHamburgGermany
- Department of Cariology, Endodontology and PeriodontologyUniversität LeipzigLeipzigGermany
- Department of Mammalogy and PalaeoanthropologyLeibniz Institute for the Analysis of Biodiversity ChangeHamburgGermany
- Department of Functional Morphology and Biomechanics, Zoological InstituteChristian‐Albrechts‐Universität zu KielKielGermany
| | - Charlotte Neumann
- Department of Cariology, Endodontology and PeriodontologyUniversität LeipzigLeipzigGermany
- Department of Mammalogy and PalaeoanthropologyLeibniz Institute for the Analysis of Biodiversity ChangeHamburgGermany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological InstituteChristian‐Albrechts‐Universität zu KielKielGermany
| | - Alexander Koehnsen
- Department of Electron Microscopy, Institute of Cell and Systems Biology of AnimalsUniversität HamburgHamburgGermany
- Department of Cariology, Endodontology and PeriodontologyUniversität LeipzigLeipzigGermany
| | - Heike Wägele
- Department of Phylogenetics and Evolutionary BiologyLeibniz Institute for the Analysis of Biodiversity ChangeBonnGermany
| |
Collapse
|
8
|
Krings W, Wägele H, Neumann C, Gorb SN. Coping with abrasive food: diverging composition of radular teeth in two Porifera-consuming nudibranch species (Mollusca, Gastropoda). J R Soc Interface 2023; 20:20220927. [PMID: 37221862 PMCID: PMC10206459 DOI: 10.1098/rsif.2022.0927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
Molluscs forage with their radula, a chitinous membrane with teeth. Adaptations to hard or abrasive ingesta were well studied in Polyplacophora and Patellogastropoda, but for other taxa there are large gaps in knowledge. Here, we investigated the nudibranch gastropods Felimare picta and Doris pseudoargus, both of which feed on Porifera. Tooth morphologies were documented by scanning electron microscopy, and mechanical properties were tested by nanoindentation. We found that these parameters are rather similar in both species, indicating that teeth are similar in their function. To study the composition, teeth were visualized using confocal laser scanning microscopy (CLSM), to determine the degree of tanning, and analysed with energy-dispersive X-ray spectroscopy, to test the elemental composition. The emitted autofluorescence signal and the inorganic content differed between the species. This was especially prominent when studying the inner and outer tooth surfaces (leading and trailing edges). In F. picta, we detected high proportions of Si, whereas teeth of D. pseudoargus contained high amounts of Ca, which influenced the autofluorescence signal in CLSM. Employing nanoindentation, we determined high Young's modulus and hardness values for the leading edges of teeth, which relate to the Si and Ca content. This highlights that teeth with a similar morphology and mechanical properties can be mechanically enhanced via different chemical pathways in Nudibranchia.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, 04103 Leipzig, Germany
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Heike Wägele
- Department of Phylogenetics and Evolutionary Biology, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 160, 53113 Bonn, Germany
| | - Charlotte Neumann
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
9
|
The ontogeny of elements: distinct ontogenetic patterns in the radular tooth mineralization of gastropods. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2022; 109:58. [DOI: 10.1007/s00114-022-01829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/18/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
Abstract The molluscan phylum is characterized by the radula, used for the gathering and processing of food. This structure can consist of a chitinous membrane with embedded rows of teeth, which show structural, chemical, and biomechanical adaptations to the preferred ingesta. With regard to the chemical composition of teeth, some taxa (Polyplacophora and Patellogastropoda) were extensively studied, and high proportions of incorporated iron, calcium, and silicon were previously reported. However, outside these two groups, there is an immense lack of knowledge about the elemental composition of radular teeth. The here presented work aims at shedding some light on the radular composition by performing energy-dispersive X-ray spectroscopy (EDX) on six non-patelliform gastropod species (Anentome helena, Cornu aspersum, Lavigeria nassa, Littorina littorea, Reymondia horei, and Vittina turrita), with the focus on the ontogeny of the elemental composition. Proportions of elements, which are not part of chitin and other purely organic molecules, were documented for overall 1027 individual teeth of all ontogenetic radular stages, i.e., for the building zone, the maturation zone, and the working zone. We detected that the proportions of these elements increased from the building to the maturation zone. However, from the maturation to the working zone, two general trends are visible: either the proportions of the elements increased or decreased. The latter trend could potentially be explained by the acidic pH of the gastropod saliva, which awaits further investigations.
Collapse
|
10
|
Krings W, Matsumura Y, Brütt JO, Gorb SN. Material gradients in gastropod radulae and their biomechanical significance: a combined approach on the paludomid Lavigeria grandis. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2022; 109:52. [PMID: 36322292 PMCID: PMC9630255 DOI: 10.1007/s00114-022-01822-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/17/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
The radula, a chitinous membrane spiked with teeth, is the molluscan autapomorphy for the gathering and processing of food. The teeth, as actual interfaces between the organism and the ingesta, act as load transmitting regions and have to withstand high stresses during foraging - without structural failure or high degrees of wear. Mechanisms contributing to this were studied previously in paludomid gastropods from Lake Tanganyika. For some species, gradients in hardness and Young's modulus along the teeth were detected, enabling the bending and relying of teeth onto the next row, distributing the stresses more equally. The here presented study on one of them - Lavigeria grandis - aims at shedding light on the origin of these functional gradients. The mechanical properties were identified by nanoindentation technique and compared to the elemental composition, determined by elemental dispersive X-ray spectroscopy (EDX, EDS). This was done for the complete radular (mature and immature tooth rows), resulting in overall 236 EDX and 700 nanoindentation measurements. Even though teeth showed regional differences in elemental composition, we could not correlate the mechanical gradients with the elemental proportions. By applying confocal laser scanning microscopy (CLSM), we were finally able to relate the mechanical properties with the degree of tanning. CLSM is a common technique used on arthropod cuticle, but was never applied on radular teeth before. In general, we found that nanoindentation and CLSM techniques complement one another, as for example, CLSM is capable of revealing heterogeneities in material or micro-gradients, which leads to a better understanding of the functionalities of biological materials and structures.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Functional Morphology and Biomechanics, Zoologisches Institut, Christian-Albrechts-Universität Zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Yoko Matsumura
- Department of Functional Morphology and Biomechanics, Zoologisches Institut, Christian-Albrechts-Universität Zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- Department of General and Systematic Zoology, Zoological Institute and Museum, Universität Greifswald, Loitzer Str. 26, 17489, Greifswald, Germany
| | - Jan-Ole Brütt
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoologisches Institut, Christian-Albrechts-Universität Zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| |
Collapse
|
11
|
Krings W, Brütt JO, Gorb SN. Mechanical properties, degree of sclerotisation and elemental composition of the gastric mill in the red swamp crayfish Procambarus clarkii (Decapoda, Crustacea). Sci Rep 2022; 12:17799. [PMID: 36274188 PMCID: PMC9588795 DOI: 10.1038/s41598-022-22724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 01/19/2023] Open
Abstract
The gastric mill of Decapoda is a unique feature, which comprises teeth, stabilizing ossicles, and particle sorting setae. Involved in the fragmentation and sorting of the food, this structure serves as interface between the organism and its environment. As material properties complement morphology and hold information about function and trophic preferences, we here provide a basis for more comparative research on gastric mills. For gastric mill components of the adult red swamp crayfish Procambarus clarkii, we studied (a) the micro-structure via scanning electron microscopy, (b) the elemental composition by energy-dispersive X-ray spectroscopy, (c) the heterogeneities in material properties and degree of tanning (autofluorescence) by confocal laser scanning microscopy, and (d) the mechanical properties hardness and elasticity by nanoindentation technique. The morphology and micro-structure were previously described for this species, but the mechanical properties and the autofluorescence were not studied before. As epicuticle and exocuticle could be analyzed individually, material property gradients, with values decreasing from the interacting surface towards interior, could be determined. Finally, we were able to relate the mechanical property data with the elemental composition and the degree of tanning. We found that the epicuticle of the teeth is among the hardest and stiffest biological materials in invertebrates due to the incorporations of high proportions of silicon.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Mammalogy and Paleoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität Zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Jan-Ole Brütt
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
- Department of Mammalogy and Paleoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität Zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| |
Collapse
|
12
|
Krings W, Brütt JO, Gorb SN. Micro-cracks and micro-fractures reveal radular tooth architecture and its functional significance in the paludomid gastropod Lavigeria grandis. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210335. [PMID: 35909353 DOI: 10.1098/rsta.2021.0335] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Most molluscan taxa forage with their radula, a chitinous membrane with embedded teeth. The teeth are the actual interfaces between the animal and its ingesta and serve as load-transmitting regions. During foraging, these structures have to withstand high stresses without structural failure and without a high degree of wear. Mechanisms contributing to this failure- and wear-resistance were well studied in the heavily mineralized teeth of Polyplacophora and Patellogastropoda, but for the rather chitinous teeth of non-limpet snails, we are confronted with a large gap in data. The work presented here on the paludomid gastropod Lavigeria grandis aims to shed some light on radular tooth composition and its contribution to failure- and wear-prevention in this type of radula. The teeth were fractured and the micro-cracks studied in detail by scanning electron microscopy, revealing layers within the teeth. Two layers of distinct fibre densities and orientations were detected, covered by a thin layer containing high proportions of calcium and silicon, as determined by elemental dispersive X-ray spectroscopy. Our results clearly demonstrate the presence of failure- and wear-prevention mechanisms in snail radulae without the involvement of heavy mineralization-rendering this an example of a highly functional biological lightweight structure. This article is part of the theme issue 'Nanocracks in nature and industry'.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Jan-Ole Brütt
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
13
|
Krings W, Brütt JO, Gorb SN. Ontogeny of the elemental composition and the biomechanics of radular teeth in the chiton Lepidochitona cinerea. Front Zool 2022; 19:19. [PMID: 35690761 PMCID: PMC9188181 DOI: 10.1186/s12983-022-00465-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/05/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND The radula, a chitinous membrane with embedded teeth, is one important molluscan autapomorphy. In some taxa (Polyplacophora and Patellogastropoda) one tooth type (the dominant lateral tooth) was studied intensively in the last decades with regard to its mechanical properties, chemical and structural composition, and the relationship between these parameters. As the dominant lateral tooth is probably one of the best studied biological materials, it is surprising, that data on elements and mechanical properties of the other tooth types, present on a chiton radula, is lacking. RESULTS We provide data on the elemental distribution and mechanical properties (hardness and elasticity, i.e. Young's modulus) of all teeth from the Polyplacophora Lepidochitona cinerea (Linnaeus, 1767) [Chitonidae: Ischnochitonidae]. The ontogeny of elements, studied by energy-dispersive X-ray spectroscopy, and of the mechanical properties, determined by nanoindentation, was analysed in every individual tooth type. Additionally, we performed breaking stress experiments with teeth under dry and wet condition, highlighting the high influence of the water content on the mechanical behaviour of the radula. We thereby could determine the forces and stresses, teeth can resist, which were previously not studied in representatives of Polyplacophora. Overall, we were able to relate the mineral (iron, calcium) content with the mechanical parameters (hardness and Young's modulus) and the breaking force and stress in every tooth type. This led to a better understanding of the relationship between structure, material, and function in radular teeth. Further, we aimed at determining the role of calcium for the mechanical behaviour of the teeth: we decalcified radulae by ethylene diamine tetra acetic acid and performed afterwards elemental analyses, breaking stress experiments, and nanoindentation. Among other things, we detected that wet and decalcified radular teeth could resist highest forces, since teeth have a higher range of bending motion leading to a higher capability of teeth to gain mechanical support from the adjacent tooth row. This indicates, that the tooth material is the result of a compromise between failure reduction and the ability to transfer forces onto the ingesta. CONCLUSION We present novel data on the elemental composition, mechanical properties, and the mechanical behaviour of chiton teeth, which allows conclusions about tooth function. We could also relate the parameters mentioned, which contributes to our understanding on the origins of mechanical property gradients and the processes reducing structural failure in radular teeth. Additionally, we add more evidence, that the elemental composition of radular is probably species-specific and could be used as taxonomic character.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany. .,Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany. .,Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany.
| | - Jan-Ole Brütt
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.,Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| |
Collapse
|
14
|
Krings W, Brütt JO, Gorb SN. Elemental analyses reveal distinct mineralization patterns in radular teeth of various molluscan taxa. Sci Rep 2022; 12:7499. [PMID: 35525838 PMCID: PMC9079087 DOI: 10.1038/s41598-022-11026-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
The molluscan phylum is the second specious animal group with its taxa feeding on a variety of food sources. This is enabled by the radula, a chitinous membrane with embedded teeth, one important autapomorphy. Between species, radulae can vary in their morphology, mechanical, and chemical properties. With regard to chemical composition, some taxa (Polyplacophora and Patellogastropoda) were studied extensively in the past decades, due to their specificity to incorporate high proportions of iron, calcium, and silicon. There is, however, a huge lack of knowledge about radular composition in other taxa. The work presented aims at shedding light on the chemistry by performing energy-dispersive X-ray spectroscopy analyses on 24 molluscan species, thereof two Polyplacophora, two Cephalopoda, and 20 Gastropoda, which was never done before in such a comprehensiveness. The elements and their proportions were documented for 1448 individual, mature teeth and hypotheses about potential biomineralization types were proposed. The presented work additionally comprises a detailed record on past studies about the chemical composition of molluscan teeth, which is an important basis for further investigation of the radular chemistry. The found disparity in elements detected, in their distribution and proportions highlights the diversity of evolutionary solutions, as it depicts multiple biomineralization types present within Mollusca.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität Zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany.
| | - Jan-Ole Brütt
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität Zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| |
Collapse
|
15
|
Finite element analysis relating shape, material properties, and dimensions of taenioglossan radular teeth with trophic specialisations in Paludomidae (Gastropoda). Sci Rep 2021; 11:22775. [PMID: 34815469 PMCID: PMC8611077 DOI: 10.1038/s41598-021-02102-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/10/2021] [Indexed: 01/18/2023] Open
Abstract
The radula, a chitinous membrane with embedded tooth rows, is the molluscan autapomorphy for feeding. The morphologies, arrangements and mechanical properties of teeth can vary between taxa, which is usually interpreted as adaptation to food. In previous studies, we proposed about trophic and other functional specialisations in taenioglossan radulae from species of African paludomid gastropods. These were based on the analysis of shape, material properties, force-resistance, and the mechanical behaviour of teeth, when interacting with an obstacle. The latter was previously simulated for one species (Spekia zonata) by the finite-element-analysis (FEA) and, for more species, observed in experiments. In the here presented work we test the previous hypotheses by applying the FEA on 3D modelled radulae, with incorporated material properties, from three additional paludomid species. These species forage either on algae attached to rocks (Lavigeria grandis), covering sand (Cleopatra johnstoni), or attached to plant surface and covering sand (Bridouxia grandidieriana). Since the analysed radulae vary greatly in their general size (e.g. width) and size of teeth between species, we additionally aimed at relating the simulated stress and strain distributions with the tooth sizes by altering the force/volume. For this purpose, we also included S. zonata again in the present study. Our FEA results show that smaller radulae are more affected by stress and strain than larger ones, when each tooth is loaded with the same force. However, the results are not fully in congruence with results from the previous breaking stress experiments, indicating that besides the parameter size, more mechanisms leading to reduced stress/strain must be present in radulae.
Collapse
|
16
|
Krings W, Kovalev A, Gorb SN. Collective effect of damage prevention in taenioglossan radular teeth is related to the ecological niche in Paludomidae (Gastropoda: Cerithioidea). Acta Biomater 2021; 135:458-472. [PMID: 34358696 DOI: 10.1016/j.actbio.2021.07.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
The molluscan radula, a thin membrane with embedded rows of teeth, is the structure for food processing and gathering. For proper functioning, radular failures must be either avoided or reduced when interacting with the preferred food, as this might be of high significance for the individual fitness. Thus, the analysis of structural failure in radular teeth could be included in studies on trophic specializations. Here, we tested the failure of non-mineralized, chitinous radular teeth from taxa, belonging to an African paludomid species flock from Lake Tanganyika and surrounding river systems. These species are of high interest for evolutionary biologists since they represent a potential result of an adaptive radiation including trophic specialisations to distinct substrates, the food is attached to. In a biomechanical experiment a shear load was applied to tooth cusps with a force transducer connected to a motorized stage until structural failure occurred. Subsequently broken areas were measured and breaking stress was calculated. As the experiments were carried out under dry and wet conditions, the high influence of the water content on the forces, teeth were capable to resist, could be documented. Wet teeth were able to resist higher forces, because of their increased flexibility and the flexibility of the embedding membrane, which enabled them either to slip away or to gain support from adjacent teeth. This mechanism can be understood as collective effect reducing structural failure without the mineralisation with wear-minimizing elements, as described for Polyplacophora and Patellogastropoda. Since the documented mechanical behaviour of radular teeth and the maximal forces, teeth resist, can directly be related to the gastropod ecological niche, both are here identified as an adaptation to preferred feeding substrates. STATEMENT OF SIGNIFICANCE: The radula, a chitinous membrane with teeth, is the molluscan feeding structure. Here we add onto existing knowledge about the relationship between tooth's mechanical properties and species' ecology by determining the tooth failure resistance. Six paludomid species (Gastropoda) of a prominent species flock from Lake Tanganyika, foraging on distinct feeding substrates, were tested. With a force transducer wet and dry teeth were broken, revealing the high influence of water content on mechanical behaviour and force resistance of teeth. Higher forces were needed to break wet radulae due to an increased flexibility of teeth and membrane, which resulted in an interlocking or twisting of teeth. Mechanical behaviour and force resistance were both identified as trophic adaptations to feeding substrate.
Collapse
|
17
|
Krings W, Karabacak H, Gorb SN. From the knitting shop: the first physical and dynamic model of the taenioglossan radula (Mollusca: Gastropoda) aids in unravelling functional principles of the radular morphology. J R Soc Interface 2021; 18:20210377. [PMID: 34520692 PMCID: PMC8440039 DOI: 10.1098/rsif.2021.0377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
The radula is the structure used for food processing in Mollusca. It can consist of a membrane with stiffer teeth, which is, together with alary processus, muscles and odontophoral cartilages, part of the buccal mass. In malacology, it is common practice to infer potential tooth functions from morphology. Thus, past approaches to explain functional principles are mainly hypothesis driven. Therefore, there is an urgent need for a workflow testing hypotheses on the function of teeth and buccal mass components and interaction of structures, which can contribute to understanding the structure as a whole. Here, in a non-conventional approach, we introduce a physical and dynamic radular model, based on morphological data of Spekia zonata (Gastropoda, Paludomidae). Structures were documented, computer-modelled, three-dimensional-printed and assembled to gather a simplistic but realistic physical and dynamic radular model. Such a bioinspired design enabled studying of radular kinematics and interaction of parts when underlain supporting structures were manipulated in a similar manner as could result from muscle contractions. The presented work is a first step to provide a constructional manual, paving the way for even more realistic physical radular models, which could be used for understanding radular functional morphology and for the development of novel gripping devices.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Mammalogy and Paleoanthropology, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Functional Morphology and Biomechanics, Zoological Institute of the Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Hasan Karabacak
- Department of Mammalogy and Paleoanthropology, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute of the Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|